
ON DEPTH-ZERO CHARACTERS OF p-ADIC GROUPS

MAARTEN SOLLEVELD AND YUJIE XU

Abstract. We show new properties of the Langlands correspondence for arbi-
trary tori over local fields. Furthermore, we give a detailed analysis of depth-zero
characters of reductive p-adic groups, for groups that may be wildly ramified. We
present several different definitions of “depth-zero” for characters, and show that
these notions are in fact equivalent. These results are useful for proving new cases
of local Langlands correspondences, in particular for depth-zero representations.

1. Introduction

The local Langlands correspondence (LLC) for tori is a starting point for the
entire local Langlands program. Langlands famously discovered it in the 1960s and
published it much later in [Lan2]. This correspondence is crucial to parametrizing
those irreducible representations of reductive groups (over local fields) whose con-
struction involves characters of maximal tori – these constitute the majority of all
irreducible representations of such groups.

Let F be a local field with Weil group WF . For an F -torus T , let T∨ be its
complex dual group, endowed with a WF -action. Recall the following:

Theorem 1.1 (LLC for tori). [Bor, §9], [Lan2, Theorem 2], [Yu, Theorem 7.5]
There exists a natural isomorphism of topological groups

(1.1) Hom(T (F ),C×)
∼−→ H1(WF , T

∨) : χ 7→ φχ.

The family of these isomorphisms, for all tori over local fields F , is functorial with
respect to homomorphisms of F -tori and generalizes local class field theory.

The topologies in Theorem 1.1 are the compact-open topologies for maps T (F ) →
C× and for maps WF → T∨. While working on [SoXu1, SoXu2], we encountered
some interesting properties of the LLC for tori, which were not in previous literature.

Consider a separable extension E/F of local fields. It is well-known that Artin
reciprocity transfers the norm map NE/F : E× → F× into the inclusion WE → WF

[Neu, Proposition II.5.4]. Similarly, Artin reciprocity turns the inclusion F× →
E× into the Verlagerung map (WF )ab → (WE)ab by [Neu, Proposition II.3.3 and
Theorem III.9.3]. We show that the LLC for tori (1.1) enjoys analogous properties. To
formulate these precisely, we need the norm map for an F -torus T , which can be
defined as

NE/F : T (E) → T (F ), t 7→
∏

γ∈WF /WE

γ(t).

Let N∗
E/F : Hom(T (F ),C×) → Hom(T (E),C×) denote composition by NE/F . Let

corE/F be the corestriction map for WE ⊂ WF .
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Proposition 1.2 (see Propositions 2.1 and 2.2).
The following diagrams commute:

Hom(T (E),C×) H1(WE , T
∨)

Hom(T (F ),C×) H1(WF , T
∨)

∼

∼

N∗
E/F Res

WF
WE

and

Hom(T (E),C×) H1(WE , T
∨)

Hom(T (F ),C×) H1(WF , T
∨)

Res
T (E)
T (F )

∼

corE/F

∼

The main arithmetic significance of Theorem 1.1 for non-archimedean local fields F
lies in the fact that (1.1) preserve depths [Yu, Theorem 7.10], in the following sense.
If χ is trivial on the r-th filtration subgroup Tr of T = T (F ), then φχ is trivial on
the r-th ramification subgroup Wr

F ⊂ WF , and vice versa. However, in [Yu], this is
only proven under the assumption that T splits over a tamely ramified extension of
F . In fact, it is known that Theorem 1.1 often does not preserve depths for wildly
ramified tori (see for example [MiPa, §7]).

Fortunately, things become simpler in depth zero. Let T 0 be the unique parahoric
subgroup of T = T (F ), and let T0+ be its pro-p radical. Recall that a character of
T has depth zero if it is trivial on T0+. Let

PF = W0+
F ⊂ IF = W0

F ⊂ WF

be the wild inertia and inertia subgroups of WF . Recall that a Langlands parameter
φ ∈ H1(WF , T

∨), presented as a 1-cocycle WF → T∨, has depth zero if φ(w) = 1
for all w ∈ PF . The condition φ|PF

= 1 guarantees that φ(WF ) ⊂ T∨,PF , so the
depth-zero part of H1(WF , T

∨) is H1
(
WF /PF , T

∨,PF
)
. The following result is new

for F -tori that only split over a wildly ramified extension of F .

Proposition 1.3 (see Proposition 2.3).
Let T be an arbitrary torus over a non-archimedean local field F . The local Langlands
correspondence for tori restricts to an isomorphism between the depth-zero parts on
both sides of the correspondence:

Hom(T/T0+,C×) ∼= H1
(
WF /PF , T

∨,PF
)
.

For comparison, recall that the group of weakly unramified characters of T is
Hom(T/T 0,C×). By [Hai, §3.3.1], the LLC for tori restricts to an isomorphism

(1.2) Hom(T/T 0,C×) ∼= H1
(
WF /IF , T

∨,IF
)
.

Our next results concern characters of arbitrary reductive groups G = G(F ), over
a non-archimedean local field F . In [Lan2, Bor], Langlands also parametrized these,
as follows. Let Z(G∨) be the centre of the complex dual group G∨ and let G/Gsc be
the cokernel of the canonical map Gsc → G, where Gsc denotes the simply connected
cover of the derived group of G. In these terms, Langlands constructed a natural
homomorphism

(1.3) H1(WF , Z(G
∨)) −→ Hom(G/Gsc,C×),

which by [LaLa] is bijective.
In order to study depth-zero representations of G, it is tremendously helpful to

know which characters of G/Gsc have depth zero (see [SoXu1]). There are several
conceivable and reasonable notions of depth zero, depending on the point of view. If
one views (1.3) as a generalization of the LLC for tori, then it is natural to require
that χ : G/Gsc → C× has depth zero when restricted to every (or one) maximal
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torus T ⊂ G. On the other hand, considered as a G-representation, one would
require that χ has depth zero when restricted to one (or every) parahoric subgroup
Gf,0 (i.e. χ is trivial on the pro-unipotent radical Gf,0+ of Gf,0). Fortunately, it turns
out that all these notions are equivalent.

Theorem 1.4 (see Theorem 3.4 and Lemma 3.5).
For a character χ : G→ C× that is trivial on Gsc, the following are equivalent:

(i) χ|T has depth zero, for every maximal torus T ⊂ G,
(ii) χ|T has depth zero, for one maximal F -torus T ⊂ G which contains a maximal

unramified F -torus of G,
(iii) ker(χ) contains Gf,0+, for every parahoric subgroup Gf,0 ⊂ G,
(iv) ker(χ) contains Gf,0+, for one Iwahori subgroup Gf,0 ⊂ G.

As in Proposition 1.3, we emphasize that Theorem 1.4 holds for any connected
reductive group over a non-archimedean local field, without any assumptions on
splitness or ramification. Of course the wildly ramified groups present the biggest
challenge in our proofs.

The results in this paper will be applied in our work on a local Langlands corre-
spondence for G-representations whose cuspidal supports are non-singular. First we
do that in depth zero [SoXu1], then for representations which are tensor products of
depth-zero representations with characters, and finally in arbitrary depths [SoXu2].

2. Proofs of properties of the LLC for tori

Proposition 2.1. Let E/F be a separable extension of local fields and let T be an
arbitrary F -torus. The following diagram commutes:

Hom(T (E),C×) H1(WE , T
∨)

Hom(T (F ),C×) H1(WF , T
∨)

∼

∼

N∗
E/F Res

WF
WE

In other words, φχ|WE
= φχ◦NE/F

for all smooth characters χ : T (F ) → C×.

Proof. First we consider non-archimedean local fields. Let K/F be a finite Galois
extension such that K ⊃ E and T splits over K. The construction of the LLC for
T (E) and T (F ) in [Yu, §7.7] can be summarized with the following diagram:
(2.1)

Hom(T (E),C×) Hom(T (K),C×)Gal(K/E) H1(WK , T
∨)WE/WK

H1(WE , T
∨)

Hom(T (F ),C×) Hom(T (K),C×)Gal(K/F ) H1(WK , T
∨)WF /WK

H1(WF , T
∨)

N∗
E/F (i) (ii) (iii)

Here all the horizontal arrows are isomorphisms and the dotted arrows are defined
such that the diagram commutes. The upper-left horizontal arrow comes from
T (E) = T (K)Gal(K/E), the middle horizontal arrows come from local class field
theory, and the right horizontal arrows are induced by corestriction maps.

We now deduce formulas for the dotted arrows. The map (i) is best seen as

Hom(T (K),C×)Gal(K/E) → Hom(T (K),C×)Gal(K/E),

χ 7→
∏

γ∈Gal(K/F )/Gal(K/E)

χ ◦ γ−1.
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This map is well-defined because we start with Gal(K/E)-coinvariants, and it fac-
tors through Hom(T (K),C×)Gal(K/F ). Let γ̄ ∈ WF be any representative for
γ ∈ WF /WE . Similar to (i), the arrow (ii) in (2.1) can be realized as the map

H1(WK , T
∨)WE/WK

→ H1(WK , T
∨)WE/WK

,

z 7→
[
w 7→

∏
γ∈WF /WE

γ̄ · z(γ̄−1wγ̄)
]
,

(2.2)

which is well-defined and factors through H1(WK , T
∨)WF /WK

. We now study the
right-hand square in the diagram (2.1), with (ii) replaced by (2.2):

H1(WK , T
∨)WE/WK

H1(WE , T
∨)

H1(WK , T
∨)WE/WK

H1(WF , T
∨)

corK/E

corK/F

(2.2) (iii)

An explicit formula for the corestriction map corK/F : H1(WK , T
∨) → H1(WF , T

∨)
is given in [NSW, §I.5.4]. Let γ̄ ∈ WF be a representative for γ ∈ WF /WK , and
let z ∈ H1(WK , T

∨), then for w ∈ WF , we have
(2.3)

corK/F (z)(w) =
∏

γ1,γ2∈WF /WK :

w∈γ1WKγ
−1
2

γ̄1 · z(γ̄1−1wγ̄2) =
∏

γ3,γ4∈WF /WK :
wγ4∈WK

γ̄3 · z(γ̄3−1wγ4γ3).

The third expression in (2.3) is equal to the second because WK is normal in WF .
Note that γ4 is uniquely determined by w, while there is no condition on γ3 ∈
WF /WK . For z ∈ H1(WK , T

∨), we compute

corK/E ◦ (2.2)(z)(w) =
∏

γ5,γ6∈WE/WK
wγ6∈WK

∏
γ∈WF /WE

γ̄5γ̄z · (γ̄−1γ̄5
−1wγ6γ5γ̄).

We can use the elements γ̄5γ̄ as representatives for WF /WK , and then we see that

corK/E ◦ (2.2)(z) = ResWF
WE

◦ corK/F (z).

Hence the diagram (2.1) commutes, with ResWF
WE

as the map (iii).
Now we consider archimedean local fields. There is only one nontrivial field ex-

tension, namely C/R. We use the notations from [Bor, §9.4]. Recall that WC = C×,
and that WR = C× ∪ τC× with τ2 = −1 and τzτ−1 = z̄ for z ∈ C×. We denote the
action of the nontrivial element of Gal(C/R) on X∗(T ) and on X∗(T ) by σ. If the
standard complex conjugation on X∗(T )⊗Z C is written as x 7→ x̄, then the action
of Gal(C/R) on T (C) is given by x 7→ σ(x̄) on Lie(T (C)) = X∗(T )⊗Z C.

Let χ ∈ Hom(T (R),C×) have Langlands parameter φχ ∈ H1(WR, T
∨). There

are µ, ν ∈ X∗(T )⊗Z C such that µ− ν ∈ X∗(T ), ν = σ(µ) and

(2.4) φχ(z) = zµ z̄ν for z ∈ C×.

Replacing φχ by a T∨-conjugate, we may assume that φχ(τ) is fixed by σ. Pick
h ∈ X∗(T )⊗ZC such that φχ(τ) = exp(2πih). By [Lan1, p. 117], for x ∈ X∗(T )⊗ZR
with exp(x) ∈ T (R) we have1

χ(exp(x)) = exp
(
⟨h, x− σ(x̄)⟩+ ⟨µ/2, x+ σ(x̄)⟩

)
.

1The corresponding formula in [Bor, §9.4] contains a typo, one of the x’s should be x̄.
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For any y ∈ X∗(T )⊗Z C, we compute

χ ◦NC/R(exp(y)) = χ
(
exp(y + σ(ȳ))

)
= exp

(
⟨h, y − σ(ȳ) + σ(ȳ)− y⟩+ ⟨µ/2, y + σ(ȳ) + σ(ȳ) + y⟩

)
= exp

(
⟨µ/2, 2y⟩+ ⟨µ/2, σ(2ȳ)⟩

)
= exp

(
⟨µ, y⟩+ ⟨ν, ȳ⟩

)
.

Comparing the last expression with (2.4) and [Bor, §9.1], we see that ϕχ◦NC/R is

equal to ϕχ|WC . □

Proposition 2.2. Let E/F be a separable extension of local fields and let T be an
arbitrary F -torus. The following diagram commutes:

Hom(T (E),C×) H1(WE , T
∨)

Hom(T (F ),C×) H1(WF , T
∨)

Res
T (E)
T (F )

∼

corE/F

∼

In other words, ϕχ|T (F )
= corE/F (ϕχ) for all smooth characters χ : T (E) → C×.

Proof. First we consider non-archimedean local fields. We use a modified version of
the diagram (2.1):
(2.5)

Hom(T (E),C×) Hom(T (K),C×)Gal(K/E) H1(WK , T
∨)WE/WK

H1(WE , T
∨)

Hom(T (F ),C×) Hom(T (K),C×)Gal(K/F ) H1(WK , T
∨)WF /WK

H1(WF , T
∨)

Res (i) (ii) (iii)

As in (2.5), the dotted arrows are defined such that the diagram commutes. Clearly
the map (i) is induced by the identity on Hom(T (K),C×), so (i) is just taking
Gal(K/F )-coinvariants. It follows that (ii) is induced by the identity map on
H1(WK , T

∨). Hence the right hand side of the diagram (2.5) can be lifted to

(2.6)

H1(WK , T
∨) H1(WE , T

∨)

H1(WK , T
∨) H1(WF , T

∨)

id (iii)

The transitivity of the corestriction map [NSW, §I.5.4] shows that (2.6) commutes
if we substitute (iii) by corE/F . Hence (2.5) commutes with corE/F instead of (iii).
Since this commutativity was exactly the condition that defined (iii), we conclude
that (iii) is equal to corE/F .

Now we consider the unique nontrivial extension of archimedean local fields,
namely C/R. We use the same notations from [Bor, §9.4] as in the proof of Propo-
sition 2.1. Any smooth character χ : T (C) → C× is of the form

χ(exp(λ⊗ z)) = exp(⟨µ, λ⟩z + ⟨ν, λ⟩z̄) where λ ∈ X∗(T ), z ∈ C×,

for unique µ, ν ∈ X∗(T )⊗Z C with µ− ν ∈ X∗(T ). Then by [Bor, §9.3],

ϕχ(z) = zµ z̄ν for z ∈ C× = WC.
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By formula (2.3) for corestriction from WC to WR, with γ1 = 1 and γ2 = τ :

corC/R(ϕχ)(z) = ϕχ(z)σ
(
ϕχ(τ

−1zτ)
)
= zµz̄ν σ(ϕχ(z̄))

= zµz̄ν σ(z̄µzν) = zµ+σ(ν) z̄ν+σ(µ),

corC/R(ϕχ)(τ) = ϕχ(τ
2)σ(ϕχ(1)) = ϕχ(−1)σ(1) = ϕχ(−1) = (−1)µ+ν .

The equivalent L-parameter ψ := Ad((−i)µiν)corC/R(ϕχ) coincides with corC/R(ϕχ)

on C× and satisfies

ψ(τ) = (−i)µiν(−1)µ+νσ(iµ(−i)ν) = iµ(−i)νiσ(µ)(−i)σ(ν) = iµ+σ(µ)−ν−σ(ν).

Note that ψ(τ) is fixed by σ. We choose h ∈ X∗(T ) ⊗Z C with exp(2πih) = ψ(τ),
for instance h = (µ + σ(µ) − ν − σ(ν))/4. Consider x ∈ Lie(T (C)) = X∗(T ) ⊗Z C
with exp(x) ∈ T (R), or equivalently with x− σ(x̄) ∈ 2πiX∗(T ). By [Lan1, p. 117],

(2.7)

χψ(exp(x)) = exp
(
⟨h, x− σ(x̄)⟩+ ⟨(µ+ σ(ν))/2, x+ σ(x̄)⟩

)
=

exp
(
⟨σ(µ)− ν

4
, x− σ(x̄)⟩+ µ− σ(ν)

4
, x− σ(x̄)⟩+ µ+ σ(ν)

2
, x+ σ(x̄)⟩

)
.

The condition on x implies that x̄− σ(x) = x− σ(x̄) = σ(x̄)− x, so (2.7) equals

exp
(
⟨ν − σ(µ)

4
, x̄− σ(x)⟩+ ⟨µ− σ(ν)

4
, x− σ(x̄)⟩+ ⟨µ+ σ(ν)

2
, x+ σ(x̄)⟩

)
=

exp
(
⟨µ, x− σ(x̄)

4
+
x− σ(x̄)

4
+
x+ σ(x̄)

2
⟩+ ⟨ν, x̄− σ(x)

4
+
x̄− σ(x)

4
+
x̄+ σ(x)

2
⟩
)

= exp(⟨µ, x⟩+ ⟨ν, x̄⟩) = χ(exp(x)).

Hence χcorC/R(ϕχ) = χψ = χ|T (R). □

Proposition 2.3. Let T be a (not necessarily tamely ramified) torus over a non-
archimedean local field F . The local Langlands correspondence for tori restricts to
an isomorphism between the depth-zero parts on both sides of the correspondence:

Hom(T/T0+,C×) ∼= H1
(
WF /PF , T

∨,PF
)
.

Proof. The right-hand side of (1.2) is the kernel of the restriction mapH1(WF , T
∨) →

H1(IF , T
∨). Hence (1.2) and the LLC for tori (1.1) induce the following isomor-

phisms of topological groups

(2.8) Hom(T 0,C×) ∼=
Hom(T,C×)

Hom(T/T 0,C×)
∼=

H1(WF , T
∨)

H1(WF /IF , T∨,IF )
∼= H1

e (IF , T
∨).

Here and below, the subscript e indicates that we only consider those classes that
can be extended to H1(WF , T

∨).
Since T 0 is commutative, its pro-p radical T0+ is the unique maximal pro-p sub-

group of T 0. By Pontryagin duality, Hom(T0+,C×) is the unique maximal pro-p
quotient of Hom(T 0,C×). In other words, Hom(T 0/T0+,C×) is the largest subgroup
of Hom(T 0,C×) that has no nontrivial pro-p quotient groups.

Recall from [NSW, Proposition 7.5.2] that IF /PF is isomorphic to the quotient
of the profinite completion of Z by the p-adic integers. This group is profinite and
has no nontrivial pro-p subgroups, so every element of H1(IF /PF , T

∨,PF ) has order
coprime to p. Therefore H1

(
IF /PF , T

∨,PF
)
has no nontrivial pro-p quotient groups.

Consider an element x ∈ H1(IF , T
∨) \H1

(
IF /PF , T

∨,PF
)
. By the continuity of x,

there exists an open subgroupKF ⊂ PF that fixes T∨ pointwise, such that x|KF
= 1.



ON DEPTH-ZERO CHARACTERS OF p-ADIC GROUPS 7

Then PF /KF is a finite p-group and the image of x in H1(PF /KF , T
∨) is nontrivial,

so its order is a power of p. Thus the group generated by H1
(
IF /PF , T

∨,PF
)
∪ {x}

does have a nontrivial pro-p quotient group.
We conclude that the isomorphism (2.8) sends Hom(T 0/T0+,C×) bijectively to

the largest subgroup of H1
e (IF , T

∨) that has no nontrivial pro-p quotients, namely
H1
e

(
IF /PF , T

∨,PF
)
. Now we take the images of these groups in the two middle

terms of (2.8), which produces an isomorphism

Hom(T/T0+,C×)

Hom(T/T 0,C×)
∼=
H1(WF /PF , T

∨,PF )

H1(WF /IF , T∨,IF )
.

To conclude, we combine this with (1.2). □

3. Depth-zero characters of reductive p-adic groups

Let G be a connected reductive group defined over a non-archimedean local field
F . We are interested in the smooth characters of G = G(F ). Let Gsc be the
simply connected cover of the derived subgroup Gder of G. The quotient map Gsc →
Gder sends Gsc to a normal subgroup of G, which is in general smaller than Gder.
The cokernel of the canonical map Gsc → G will be abbreviated as G/Gsc (even
though Gsc is usually not a subgroup of G). For most reductive groups, Gsc is
generated by commutators, so it automatically lies in the kernel of any character.
This fails, however, when Gder is anisotropic, which is why we explicitly require that
our characters of G are trivial on the image of Gsc.

In [Lan1, p. 124–125], Langlands constructed a natural map fromH1(WF , Z(G
∨))

to smooth characters of G/Gsc. The next theorem is a variant on the analysis in
[LaLa] of the Langlands map. In particular, for archimedean fields, by [LaLa, Lemma
A.1], the Langlands map is not necessarily injective.

Theorem 3.1. Let G be a connected reductive group over a non-archimedean local
field F . There exists a natural isomorphism of topological groups

H1(WF , Z(G
∨))

∼−→ Hom(G/Gsc,C×) : φ 7→ χφ

Proof. In [LaLa, Lemma A.1], it is stated that Langlands’ map is bijective with
image Hom(G,C×), provided that Gsc is perfect. The proof loc.cit. actually shows
that Langlands’ map is always bijective if we take Hom(G/Gsc,C×) as image. The
maps in the arguments loc.cit. are continuous, so the resulting group isomorphism
is also a homeomorphism. □

From now on, our main object of study is the group of characters

X0(G) := {χ : G/Gsc → C× | χ|T has depth zero for all maximal tori T ⊂ G}.

We define X0(G∨) ⊂ H1(WF , Z(G
∨) as the image of X0(G) under Theorem 3.1. Let

us present two more explicit descriptions of X0(G∨).

Lemma 3.2. (a) X0(G∨) is equal to the set of φ ∈ H1(WF , Z(G
∨)) such that, for

all maximal tori T ⊂ G, φ has depth zero in H1(WF , T
∨).

(b) X0(G∨) contains H1
(
WF /PF , Z(G

∨)PF
)
.

(c) If G splits over a tamely ramified extension of F , then

X0(G∨) = H1
(
WF /PF , Z(G

∨)PF
)
.



8 MAARTEN SOLLEVELD AND YUJIE XU

Proof. (a) From any L-embedding LT → LG, we obtain a homomorphism

(3.1) H1(WF , Z(G
∨)) → H1(WF , T

∨).

It does not depend on the choice of the L-embedding because only central elements
of G∨ play a role in the domain. For φ ∈ H1(WF , Z(G

∨)), by the naturality of
Langlands’ map in Theorem 3.1, the following coincide:

• the character of T determined by φ via the map (3.1) followed by the LLC
for tori (1.1),

• the restriction to T of the character χφ from (1.3).

By Proposition 2.3, the LLC for tori preserves the depth-zero property. Thus, for
any maximal torus T ⊂ G, the condition that χφ|T has depth zero is equivalent to
the condition that φ as an element of H1(WF , T

∨) has depth zero.
(b) If φ ∈ H1

(
WF /PF , Z(G

∨)PF
)
, then clearly φ has depth zero as an element

of H1(WF , T
∨), for any maximal torus T ⊂ G. Combine this with part (a).

(c) By assumption, there exists a tamely ramified maximal F -torus T ⊂ G. Let
φ ∈ X0(G∨), thus χφ ∈ X0(G) and in particular χφ|T has depth zero. Reversing
the argument for part (a), φ as an element of H1(WF , T

∨) has depth zero. Now
φ is an equivalence class for T∨-conjugacy, so there exists an element t ∈ T∨ such
that φ(w) = tw(t−1) for all w ∈ PF . Since PF fixes T∨ pointwise (by the tame
ramification of T ), we have φ(w) = 1 for all w ∈ PF . This implies that φ ∈
H1

(
WF /PF , Z(G

∨)PF
)
. □

For an alternative characterization of X0(G), we use some Bruhat–Tits theory.
Let Fnr be a maximal unramified extension of F . Let S be a maximal F -split
torus of G, and let S ′ be a maximal Fnr-split F -torus of G which contains S (for
its existence, see for example [KaPr, Proposition 9.3.4]). By well-known results of
Lang and Steinberg (see for example [KaPr, Example 2.3.2 and Theorem 2.3.3]), the
group G is quasi-split over Fnr. Then T ′ := ZG(S ′) is a minimal Fnr-Levi subgroup
and a maximal F -torus of G.

Let B(G, F ) be the Bruhat–Tits building of F . For every facet f of B(G, F ),
we have the stabilizer group Gf and its Moy–Prasad subgroups Gf,r for r ∈ R≥0

[MoPr]. Similarly, we have the filtration subgroups T ′
r of the unique parahoric sub-

group T ′
0 of T ′.

Proposition 3.3. For every facet f of B(G, F ), the group T ′
0+·Im(Gsc → G) contains

Gf,0+.

Proof. Recall that B(Gsc, F ) is the reduced building of G, and that the set of its
apartments is naturally in bijection with the set of apartments of B(G, F ). By [KaPr,
Proposition 9.3.22], Gsc acts transitively on the set of apartments of B(G, F ). Since
Ggf,0+ = gGf,0+g

−1 for g ∈ Gsc, we may assume that f lies in the apartment AS
associated to S.

The Moy–Prasad subgroups Gf,r give rise to oF -Lie subalgebras gf,r of g = Lie(G).
Let q : Gsc → Gder be the quotient map and consider the map

(3.2) T ′ ×Gsc → G : (t, g) 7→ t q(g).

By the construction of Gf,r in [KaPr, Definition 7.3.3 and §9.8], for any r ∈ R≥0,
(3.2) restricts to a map

(3.3) T ′
r ×Gsc,f,r → Gf,r.
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The Lie algebra of T ′ ×Gsc is t′ ⊕ gder, and similar to (3.3), the addition map

(3.4) t′ ⊕ gder → g sends t′r ⊕ gder,f,r to gf,r.

Let 0 < r < s ≤ 2r ∈ R, and assume that either r ≤ 1 or s ≤ 2r − 1. The maps
(3.3) and (3.4) fit in a commutative diagram with the Moy–Prasad isomorphism (see
[KaPr, Theorem 13.5.1]):

(3.5)

Gf,r/Gf,s gf,r/gf,s

(T ′
r ×Gsc,f,r)/(T

′
s ×Gsc,f,s) (t′r ⊕ gder,f,r)/(t

′
s ⊕ gder,f,s)

∼

∼

Although (3.2) is a group homomorphism only when G is a torus, the commutativity
of Gf,r/Gf,s implies that both vertical maps in (3.5) are group homomorphisms. We
claim that the vertical map on the right-hand side in (3.5) is surjective.

In the next steps, we consider Lie algebras as F -schemes. We follow the convention
that g(F ) is the same as g, and we let g(Fnr) := g⊗F Fnr be the Lie algebra of Fnr-
rational points of g. It carries an action of WF /IF = ⟨FrobF ⟩, and by definition

gf,r = g(Fnr)
FrobF
f,r . The same holds for t′r and gder,f,r. Therefore, for our claim, we

need to check that the addition map

(3.6) t′(Fnr)r ⊕ gder(Fnr)f,r → g(Fnr)f,r

is surjective. Our earlier assumption on f implies that it lies in the apartment of
B(G, Fnr) associated to S ′. By [KaPr, Definition 7.3.3], g(Fnr)f,r is generated by
t′(Fnr)r and subspaces uα(Fnr)f,r, where uα(Fnr) ⊂ g(Fnr) is the weight space for a
root α ∈ R(G,S ′). These uα(Fnr)f,r are also contained in gder(Fnr)f,r, which shows
the surjectivity of (3.6). It follows that the vertical map on the right-hand side in
the diagram (3.5) is surjective.

By the commutativity of (3.5), the vertical map on the left-hand side

(3.7) (T ′
r ×Gsc,f,r)/(T

′
s ×Gsc,f,s) → Gf,r/Gf,s

is surjective as well. The jumps in the Moy–Prasad filtration of Gf form a discrete
subset of R≥0, so we can find r0 > 0 such that Gf,0+ = Gf,r0 . Extend this to a
sequence r0 < r1 < r2 < . . . with limn→∞ rn = ∞, such that each pair (rn, rn+1)
satisfies the conditions in [KaPr, Theorem 13.5.1]. This provides a filtration of Gf,0+

with successive subquotients as in the top row of (3.5). The same holds for T ′ and
Gsc, with the same rn. Now the surjectivity of (3.7) with r = rn, s = rn+1 and the
completeness of g with respect to the p-adic topology imply that (3.3) is surjective
for r = r0. In other words, T ′

0+ × Im(Gsc,f,0+ → Gf,0+) surjects onto Gf,0+. □

Recall that a chamber C of B(G, F ) is a facet of maximal dimension, and that the
associated parahoric subgroup GC,0 is called an Iwahori subgroup of G. While GC,0
is minimal among the parahoric subgroups of G, its pro-unipotent radical GC,0+ is
maximal among the subgroups Gf,0+ for facets f of B(G, F ) [KaPr, Lemma 7.4.12].
We are ready to establish an alternative description of X0(G). It shows that tensoring
by elements of X0(G) stabilizes the category of depth-zero representations of G.

Theorem 3.4. (a) The group X0(G) is equal to

{χ : G/Gsc → C× | Gf,0+ ⊂ ker(χ) for every facet f of B(G, F )}.
(b) X0(G) = {χ : G/Gsc → C× | GC,0+ ⊂ ker(χ) for one chamber C of B(G, F )}.



10 MAARTEN SOLLEVELD AND YUJIE XU

Proof. (a) For χφ ∈ X0(G), χφ|T ′ has depth zero, thus T ′
0+ ⊂ ker(χφ). By Proposi-

tion 3.3, ker(χφ) contains Gf,0+ for all f.
Consider χ as in the statement, and let T ⊂ G be a maximal torus. The group

T 0 is compact, so by the Bruhat–Tits fixed point theorem T 0 stabilizes a facet f of
B(G, F ). Recall that by definition T0+ is the maximal pro-p subgroup of T 0. Let
G0 be the kernel of the Kottwitz homomorphism for G. By the functoriality of the
Kottwitz homomorphism [KaPr, §11.5] and by [KaPr, Proposition 7.7.5], we have

T 0 ⊂ G0 ∩Gf = Gf,0.

By [KaPr, Proposition 13.5.2.1], we know that Gf,0+ is a pro-p subgroup of Gf,0, but
it is not necessarily maximal. Together with [KaPr, Proposition 13.5.2.2], we see
that the maximal pro-p subgroups of Gf,0 are the groups Gf′,0+, with f′ a chamber

of B(G, F ) such that Gf′,0+ ⊂ Gf,0.
2 Hence T0+ ⊂ Gf′,0+ for such a chamber f′. By

the assumption on χ, this means T0+ ⊂ ker(χ).
This holds for any maximal torus T ⊂ G, thus χ ∈ X0(G).

(b) By part (a), X0(G) is contained in the right hand side. Let χ be as in the
statement and let f be an arbitrary facet of B(G, F ). Let C ′ be a chamber of B(G, F )
such that C ′ ⊃ f, so Gf,0+ ⊂ GC′,0+. There is only one G-orbit of chambers in
B(G, F ) [KaPr, Proposition 9.3.22], so we can find g ∈ G such that gC = C ′. The
equivariance properties of Moy–Prasad subgroups [KaPr, Proposition 13.2.5] gives

ker(χ) = g ker(χ)g−1 ⊃ gGC,0+g
−1 = GgC,0+ = GC′,0+ ⊃ Gf,0+.

Now part (a) shows that χ ∈ X0(G). □

The next lemma shows that the definition of X0(G) can be simplified: instead of
requiring χ|T to have depth zero “for all maximal tori”, it suffices to check on one
well-chosen torus in G.

Lemma 3.5. Let T be a maximal F -torus of G that contains a maximal unramified
F -torus Tnr of G. Suppose that φ ∈ H1(WF , Z(G

∨)) and that χφ|T has depth zero.
Then φ ∈ X0(G∨) and χφ ∈ X0(G). In particular

X0(G) = {χ : G/Gsc → C× | χ|T has depth zero}.

Proof. Since G is quasi-split over Fnr, ZG(Tnr) is a maximal torus of G and hence
ZG(Tnr) = T . Let E/F be a finite unramified extension splitting Tnr. Let

χφ,E : G(E)/Gsc(E) → C×

be the character associated to φ|WE
in Theorem 3.1. By the compatibility of The-

orem 3.1 with the LLC for tori (see the proof of Lemma 3.2(a)), χφ,E |T (E) is the

character with Langlands parameter φ|WE
∈ H1(WE , T

∨). By Proposition 2.1, this
character is equal to χφ|T (F ) ◦NE/F .

The map NE/F : T (E) → T (F ) can be viewed as a homomorphism of F -tori.
By the functoriality of filtrations of tori [KaPr, Definition 7.2.2 and Proposition
B.10.10], NE/F (T (E)0+) ⊂ T (F )0+. By assumption, χφ|T (F ) has depth zero, so

T (E)0+ ⊂ ker(χφ|T (F ) ◦NE/F ) = ker(χφ,E |T (E)).

This implies
T (E)0+ · Im(Gsc(E) → G(E)) ⊂ ker(χφ,E).

2The condition on f′ is equivalent to f ⊂ f′, but we do not need this.
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The E-torus T contains the maximal unramified torus Tnr, which is also a maximal
E-split torus in G. Thus T (E) has the form of T ′ above. Proposition 3.3 applies
and we see that ker(χφ,E) contains G(E)f,0+, for every facet f of B(G, E).

By Theorem 3.4, χφ,E |D(E) has depth zero for every maximal E-torus D ⊂ G, thus
in particular for every maximal F -torus. By Proposition 2.3, φ|WE

∈ H1(WE ,D∨)
has depth zero. Since E/F is unramified, PE = PF and φ ∈ H1(WF ,D∨) also has
depth zero. By Lemma 3.2(a), φ ∈ X0(G∨) and χφ ∈ X0(G). □
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