ON DEPTH-ZERO CHARACTERS OF p-ADIC GROUPS

MAARTEN SOLLEVELD AND YUJIE XU

ABSTRACT. We show new properties of the Langlands correspondence for arbi-
trary tori over local fields. Furthermore, we give a detailed analysis of depth-zero
characters of reductive p-adic groups, for groups that may be wildly ramified. We
present several different definitions of “depth-zero” for characters, and show that
these notions are in fact equivalent. These results are useful for proving new cases
of local Langlands correspondences, in particular for depth-zero representations.

1. INTRODUCTION

The local Langlands correspondence (LLC) for tori is a starting point for the
entire local Langlands program. Langlands famously discovered it in the 1960s and
published it much later in [Lan2|]. This correspondence is crucial to parametrizing
those irreducible representations of reductive groups (over local fields) whose con-
struction involves characters of maximal tori — these constitute the majority of all
irreducible representations of such groups.

Let F be a local field with Weil group Wg. For an F-torus 7, let TV be its
complex dual group, endowed with a W p-action. Recall the following:

Theorem 1.1 (LLC for tori). [Bor, §9], [Lan2, Theorem 2], [Yu, Theorem 7.5
There exists a natural isomorphism of topological groups

(1.1) Hom(T (F),C*) =5 H'(Wp,TV) : x +— ¢y

The family of these isomorphisms, for all tori over local fields F', is functorial with
respect to homomorphisms of F'-tori and generalizes local class field theory.

The topologies in Theorem are the compact-open topologies for maps 7 (F') —
C* and for maps Wgr — TV. While working on [SoXull, [SoXu2], we encountered
some interesting properties of the LLC for tori, which were not in previous literature.

Consider a separable extension E/F of local fields. It is well-known that Artin
reciprocity transfers the norm map Ng,p : E* — F* into the inclusion Wg — W g
[Neu, Proposition II.5.4]. Similarly, Artin reciprocity turns the inclusion F* —
E* into the Verlagerung map (Wg)e — (WEg)e by [Neu, Proposition 11.3.3 and
Theorem I11.9.3]. We show that the LLC for tori enjoys analogous properties. To
formulate these precisely, we need the norm map for an F-torus 7, which can be
defined as

Np/p: T(E) = T(F), tw H%WF/WE (t).

Let N : Hom(7 (F),C*) — Hom(T (E),C*) denote composition by Ng,p. Let
corg/p be the corestriction map for Wg C Wp.
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Proposition 1.2 (see Propositions and .

The following diagrams commute:

Hom(T(E),C*) —~— HY(Wg,TV) Hom(T (E),C*) —— HYWg,TV)
TNE/F Resag and J/RGSZE?; lCOTE/F
Hom(7 (F),C*) —~— HY(Wpg,TV) Hom(7(F),C*) —~— HYWpg,TV)

The main arithmetic significance of Theorem [I.1] for non-archimedean local fields F
lies in the fact that preserve depths [Yu, Theorem 7.10], in the following sense.
If x is trivial on the r-th filtration subgroup T, of T'= T (F'), then ¢, is trivial on
the r-th ramification subgroup W7 C W, and vice versa. However, in [Yu], this is
only proven under the assumption that 7 splits over a tamely ramified extension of
F. In fact, it is known that Theorem often does not preserve depths for wildly
ramified tori (see for example [MiPal §7]).

Fortunately, things become simpler in depth zero. Let 7 be the unique parahoric
subgroup of T' = T(F'), and let Ty be its pro-p radical. Recall that a character of
T has depth zero if it is trivial on Tpy. Let

Pr=Wy% Cc Ip=WY% Cc Wp

be the wild inertia and inertia subgroups of W . Recall that a Langlands parameter
¢ € H(Wp,TV), presented as a 1-cocycle Wr — TV has depth zero if p(w) = 1
for all w € Pr. The condition ¢p|p, = 1 guarantees that o(Wg) C TV'FPF so the
depth-zero part of HY(Wp,TV) is H' (Wg/Pg,TV'FPr). The following result is new
for F-tori that only split over a wildly ramified extension of F'.

Proposition 1.3 (see Proposition [2.3)).

Let T be an arbitrary torus over a non-archimedean local field F'. The local Langlands
correspondence for tori restricts to an isomorphism between the depth-zero parts on
both sides of the correspondence:

Hom(T/Ty+,C*) 2 HY (Wp/Pp, TVFr).

For comparison, recall that the group of weakly unramified characters of T is
Hom(7/T°,C*). By [Hai, §3.3.1], the LLC for tori restricts to an isomorphism

(1.2) Hom(T/T°,C*) = H' (Wp/Ip,TVr).

Our next results concern characters of arbitrary reductive groups G = G(F), over
a non-archimedean local field F. In [Lan2l [Bor|, Langlands also parametrized these,
as follows. Let Z(GY) be the centre of the complex dual group GV and let G/Gy. be
the cokernel of the canonical map Gg. — G, where Gg. denotes the simply connected
cover of the derived group of G. In these terms, Langlands constructed a natural
homomorphism

(1.3) HYWg, Z(GY)) — Hom(G/Gye, CX),

which by [Lalal is bijective.

In order to study depth-zero representations of G, it is tremendously helpful to
know which characters of G/Gs. have depth zero (see [SoXul]). There are several
conceivable and reasonable notions of depth zero, depending on the point of view. If
one views as a generalization of the LLC for tori, then it is natural to require
that x : G/Gsc — C* has depth zero when restricted to every (or one) maximal
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torus T C G. On the other hand, considered as a G-representation, one would
require that x has depth zero when restricted to one (or every) parahoric subgroup
G}, (i.e. x is trivial on the pro-unipotent radical Gy of Gjp). Fortunately, it turns
out that all these notions are equivalent.

Theorem 1.4 (see Theorem and Lemma |3.5)).

For a character x : G — C* that is trivial on Gy, the following are equivalent:

(i) x| has depth zero, for every mazimal torus T C G,
(ii) x|r has depth zero, for one mazimal F-torus T C G which contains a mazimal
unramified F-torus of G,
(iii) ker(x) contains Gy, for every parahoric subgroup Gjo C G,
(iv) ker(x) contains Gy, for one Iwahori subgroup Gjo C G.

As in Proposition [1.3] we emphasize that Theorem holds for any connected
reductive group over a non-archimedean local field, without any assumptions on
splitness or ramification. Of course the wildly ramified groups present the biggest
challenge in our proofs.

The results in this paper will be applied in our work on a local Langlands corre-
spondence for G-representations whose cuspidal supports are non-singular. First we
do that in depth zero [SoXul], then for representations which are tensor products of
depth-zero representations with characters, and finally in arbitrary depths [SoXu2].

2. PROOFS OF PROPERTIES OF THE LLC FOR TORI

Proposition 2.1. Let E/F be a separable extension of local fields and let T be an
arbitrary F-torus. The following diagram commutes:

Hom(T (E),C*) —— HYWg,TV)
NE/FT TResxg
Hom(T (F),C*) —— HYWpg,TV)
In other words, py|w, = ¢xoNg,p for all smooth characters x : T(F) — C*.

Proof. First we consider non-archimedean local fields. Let K/F be a finite Galois
extension such that K O E and T splits over K. The construction of the LLC for
T(E) and T(F) in [Yu, §7.7] can be summarized with the following diagram:

(2.1)

Hom(T(E),C*) —— Hom(T(K),C*)gax/py — H' (Wi, TV)wyw, —— H' (Wg,TV)

NE/FT (i)A (i) (i)

Hom(T (F),C*) —— Hom(T(K),C*)gax/ry — H'(Wr, TV)w,jw, — H'(Wp,TV)

Here all the horizontal arrows are isomorphisms and the dotted arrows are defined

such that the diagram commutes. The upper-left horizontal arrow comes from

T(E) = T(K)GE/E) the middle horizontal arrows come from local class field

theory, and the right horizontal arrows are induced by corestriction maps.

We now deduce formulas for the dotted arrows. The map (i) is best seen as
Hom(T(K), C*)cayx/r) — Hom(T(K), C*)cayk/E):
X 11 xoy .
~EGal(K/F)/Gal(K/E)
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This map is well-defined because we start with Gal(K/FE)-coinvariants, and it fac-
tors through Hom(7 (K),C*)gak/r)- Let ¥ € Wpg be any representative for
v € Wg/Wg. Similar to (i), the arrow (ii) in (2.1)) can be realized as the map

H' Wi, T )wwie = H (W, TV )w o /wie

Z [w — HveWF/WE - z(y

which is well-defined and factors through H'(W g, TV)w, /W~ We now study the
right-hand square in the diagram (2.1)), with (ii) replaced by (2.2):
H (Wg, TV )w,, /wi —E H' (Wg,TV)
1i (id3)
cor
H (Wi, T )w e ———— H' (Wp,T")

(2.2) 1

wy)],

An explicit formula for the corestriction map corgp H'(Wg,TV) - H (Wg,TV)
is given in [NSW| §1.5.4]. Let ¥ € Wp be a representative for v € Wrp/Wg, and
let z € HY(Wg,TV), then for w € W, we have

(2.3)
corg/p(z)(w) = I1 T2 ) = 1T 7 - 2(F3~ waE)-
7,72EWE/Wg: Y3, YAEW g /W g :
wE%WKVQ_l wys€EW i

The third expression in (2.3)) is equal to the second because W is normal in Wg.
Note that 4 is uniquely determined by w, while there is no condition on 3 €
Wr/Wg. For z € H (Wg,TV), we compute

corg/p © (2.2)(2)(w) = 11 II w7 G '% 'wvwewsy).
V5, %6EWE /WK yEWE/Wg
wyeEW g

We can use the elements 757 as representatives for Wr/W g, and then we see that
corg /g o (2.2)(2) = Resgg o corg/p(2).

Hence the diagram commutes, with ReswfJ as the map (iii).

Now we consider archimedean local fields. There is only one nontrivial field ex-
tension, namely C/R. We use the notations from [Bor) §9.4]. Recall that W¢ = C*,
and that W = C* U7C* with 72 = —1 and 727! = Z for z € C*. We denote the
action of the nontrivial element of Gal(C/R) on X,(7) and on X*(7) by o. If the
standard complex conjugation on X,(7) ®z C is written as x — Z, then the action
of Gal(C/R) on T(C) is given by = — o(Z) on Lie(T(C)) = X.(T) ®z C.

Let x € Hom(7(R),C*) have Langlands parameter o, € H'(Wg,T"). There
are p,v € X*(T) ®z C such that p — v € X*(T), v = o(p) and

(2.4) oy (2) = 21 2 for z € C*.

Replacing ¢, by a T"V-conjugate, we may assume that ¢, (7) is fixed by o. Pick
h € X*(T)®zC such that ¢, (7) = exp(2wih). By [Lanll p. 117], for x € X, (T)®zR
with exp(z) € T(R) we havéﬂ

X(exp(z)) = exp ((h,x — (2)) + (1/2,2 + 0(2))).

IThe corresponding formula in [Borl, §9.4] contains a typo, one of the x’s should be Z.
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For any y € X.(7) ®z C, we compute

X o Neyr(exp(y)) = x(exp(y +0(7)))
=exp ((h,y — 0(§) +o(§) =) + (1/2,y + o(5) + 0(9) +v))
= exp ((1/2,2y) + (1/2,0(29)))
= exp ((1,9) + (,9))-
Comparing the last expression with and [Bor, §9.1], we see that ¢,on, /R is

equal to ¢y |we. a

Proposition 2.2. Let E/F be a separable extension of local fields and let T be an
arbitrary F-torus. The following diagram commutes:

Hom(T (E),C*) —— HYWg,TV)
lRes;Eg lCOTE/F
Hom(T7(F),C*) —— HY(Wpg,TV)
In other words, ¢y, .. = corg/p(py) for all smooth characters x : T(E) — C*.

Proof. First we consider non-archimedean local fields. We use a modified version of

the diagram ([2.1)):

(2.5)

HOIII(’T(E‘)7 CX) — HOIII('T(I()7 (CX)Gal(K/E) — [fl(va7 TV)WE/WK e Hl(WE, TV)
JRes (4) (44) D)

~

Hom(T(F),C*) —— Hom(T(K),C*)ca(x/ry — H' (W, T )wpyw, —— H' (Wp,TV)

As in , the dotted arrows are defined such that the diagram commutes. Clearly
the map (i) is induced by the identity on Hom(7 (K),C*), so (i) is just taking
Gal(K/F)-coinvariants. It follows that (ii) is induced by the identity map on
HY(Wg,TV). Hence the right hand side of the diagram can be lifted to

Hl(WK, TV) e HI(WE, TV)
(2'6) lid (47)

'

H' (Wg,TV) —— HY(Wpg,TV)

The transitivity of the corestriction map [NSW| §I.5.4] shows that commutes
if we substitute (iii) by corp,p. Hence commutes with corg,p instead of (iii).
Since this commutativity was exactly the condition that defined (iii), we conclude
that (iii) is equal to corg/p.

Now we consider the unique nontrivial extension of archimedean local fields,
namely C/R. We use the same notations from [Borl §9.4] as in the proof of Propo-
sition Any smooth character x : 7(C) — C* is of the form

x(exp(A ® 2)) = exp((u, A\)z + (v, \)Z) where A € X, (T),z € C*,
for unique p,v € X*(T) ®z C with yu — v € X*(T). Then by [Borl, §9.3],
by(z) = 212" for z € C* = Wg.
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By formula for corestriction from W¢ to Wg, with v =1 and v, = 7:
corg/r(dx)(2) = ¢y (2) o (D (T7127)) = 22" (4 (2))
= 25 o (7)) = Suto(v) 2V+U(/L)’
corer(¢x)(T) = dr (1) 7(dy (1)) = by (~1)a(1) = dy(=1) = (=1)**".

The equivalent L-parameter ¢ := Ad((—%)"i")corc/r(¢y) coincides with corc/r(¢y)
on C* and satisfies

(1) = (—i)H (1) o (i (—i)) = iu(_i)via(u)(_i)a(V) — jpto(p)—v—o(v)
Note that ¢ (7) is fixed by . We choose h € X*(T) ®z C with exp(2mih) = (1),

for instance h = (u + o(u) — v — o(v))/4. Consider z € Lie(T(C)) = X.(T) ®z C
with exp(z) € T(R), or equivalently with x — o(Z) € 2mi X, (7). By [Lanll, p. 117],

xy(exp(z)) = exp ((h,x — o (Z)) + ((u+0(¥)/2,2 +0(Z))) =
(2.7)

exp ((U('ul_y,m —o(Z)) + M_j(y),:v —o(Z)) + u—i—;(u)’m + a(:i’)})
The condition on z implies that Z — o(z) =z — (&) = 0(Z) — z, so (2.7)) equals

exp ((”4“(“)31; —o()) + <“4"(”), v —o(@) + <’”2"(”), z+0())) =

exp (w’ x —:(m) x —:(m) N a:+;(x)> s z —z(x) n z —z(x) N x+;(w)>>
= exp((p, ) + (v, T)) = x(exp(z)).
Hence Xeore s (6) = Xv = XIT(®)- O

Proposition 2.3. Let T be a (not necessarily tamely ramified) torus over a non-
archimedean local field F. The local Langlands correspondence for tori restricts to
an isomorphism between the depth-zero parts on both sides of the correspondence:

Hom(T/Ty+,C*) 2 H' (Wp/Pp, TVFr).

Proof. The right-hand side of is the kernel of the restriction map H' (W g, TV) —
H'(Ip, TV). Hence and the LLC for tori induce the following isomor-
phisms of topological groups

Hom(7,C*) _  HYWpg,TV)
Hom(T/T°,C*)  HY(Wg/Ip, TV.Ir)
Here and below, the subscript e indicates that we only consider those classes that
can be extended to H'(Wpg, TV).

Since T° is commutative, its pro-p radical Ty, is the unique maximal pro-p sub-
group of T%. By Pontryagin duality, Hom(Tp;,C*) is the unique maximal pro-p
quotient of Hom(7?,C*). In other words, Hom(T°/Ty,C*) is the largest subgroup
of Hom(T?,C*) that has no nontrivial pro-p quotient groups.

Recall from [NSWJ, Proposition 7.5.2] that Ir/Pp is isomorphic to the quotient
of the profinite completion of Z by the p-adic integers. This group is profinite and
has no nontrivial pro-p subgroups, so every element of H'(Iz /P, TV-Pr ) has order
coprime to p. Therefore H' (I r/Pp, TVPF ) has no nontrivial pro-p quotient groups.
Consider an element 2 € H'(Ip,TV) \ H'(Ir/Pp,TV'Fr). By the continuity of z,
there exists an open subgroup Ky C P that fixes TV pointwise, such that z|k, = 1.

1%

(2.8)  Hom(T°,C*) ~ qHl(IF,TY).
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Then P /Kp is a finite p-group and the image of 2 in H'(Pr/Kp,T") is nontrivial,
so its order is a power of p. Thus the group generated by H'! (IF/PF, TV’PF) u{z}
does have a nontrivial pro-p quotient group.

We conclude that the isomorphism sends Hom(T°/Tpy,C*) bijectively to
the largest subgroup of H} (I, TV) that has no nontrivial pro-p quotients, namely
H} (IF/PF,TV’PF). Now we take the images of these groups in the two middle
terms of , which produces an isomorphism

Hom(T/Toy,C*) , H'(Wp/Pp,TVFPr)
Hom(T/T°,C*)  HYWg/Ip, TVIrF)
To conclude, we combine this with (1.2]). O

3. DEPTH-ZERO CHARACTERS OF REDUCTIVE p-ADIC GROUPS

Let G be a connected reductive group defined over a non-archimedean local field
F. We are interested in the smooth characters of G = G(F). Let Gs be the
simply connected cover of the derived subgroup Gger of G. The quotient map Gy, —
Gger sends Gg. to a normal subgroup of GG, which is in general smaller than Gge.
The cokernel of the canonical map Gy — G will be abbreviated as G/Gs. (even
though Gy is usually not a subgroup of G). For most reductive groups, Gsc is
generated by commutators, so it automatically lies in the kernel of any character.
This fails, however, when Gge, is anisotropic, which is why we explicitly require that
our characters of G are trivial on the image of Gyc.

In [LanTl p. 124-125], Langlands constructed a natural map from HY(W g, Z(GV))
to smooth characters of G/Ggs.. The next theorem is a variant on the analysis in
[LaLal of the Langlands map. In particular, for archimedean fields, by [LaLal, Lemma
A.1], the Langlands map is not necessarily injective.

Theorem 3.1. Let G be a connected reductive group over a non-archimedean local
field F. There exists a natural isomorphism of topological groups

HY (W g, Z(GY)) = Hom(G/Gs,C*) : ¢+ Xy

Proof. In [LaLa, Lemma A.1], it is stated that Langlands’ map is bijective with
image Hom(G, C*), provided that Gy is perfect. The proof loc.cit. actually shows
that Langlands’ map is always bijective if we take Hom(G/Gg., C*) as image. The
maps in the arguments loc.cit. are continuous, so the resulting group isomorphism
is also a homeomorphism. O

From now on, our main object of study is the group of characters
xX%(@) := {x : G/Gs. — C* | x|r has depth zero for all maximal tori T' C G}.

We define X°(GV) ¢ H'(Wr, Z(G") as the image of X°(G) under Theorem [3.1] Let
us present two more explicit descriptions of X°(GY).

Lemma 3.2. (a) X°(GY) is equal to the set of ¢ € H (Wp, Z(GY)) such that, for
all mazimal tori T C G, ¢ has depth zero in H' (W g, TV).

(b) X°(GY) contains H*(Wp/Pp, Z(GY)Fr).

(¢) If G splits over a tamely ramified extension of F, then

X0GY) = H (Wg/Pp, Z(GY)PF).
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Proof. (a) From any L-embedding “T" — “G, we obtain a homomorphism
(3.1) HY Wp, Z(GV)) = HY (Wp,TV).

It does not depend on the choice of the L-embedding because only central elements
of GV play a role in the domain. For ¢ € H'(Wg, Z(GY)), by the naturality of
Langlands’ map in Theorem the following coincide:

e the character of T' determined by ¢ via the map (3.1)) followed by the LLC

for tori ,
o the restriction to 7' of the character x,, from .
By Proposition the LLC for tori preserves the depth-zero property. Thus, for
any maximal torus 7" C G, the condition that x,|7 has depth zero is equivalent to
the condition that ¢ as an element of H'(W g, T") has depth zero.

(b) If o € HY(Wp/Pp,Z(GY)Pr), then clearly ¢ has depth zero as an element
of HY(Wp,TV), for any maximal torus 7' C G. Combine this with part (a).

(c) By assumption, there exists a tamely ramified maximal F-torus 7 C G. Let
¢ € XY(GY), thus x, € X%(G) and in particular y,|7 has depth zero. Reversing
the argument for part (a), ¢ as an element of H'(W g, TV) has depth zero. Now
¢ is an equivalence class for T"-conjugacy, so there exists an element ¢ € T such
that ¢(w) = tw(t~!) for all w € Pp. Since Py fixes T pointwise (by the tame
ramification of 7), we have p(w) = 1 for all w € Pp. This implies that ¢ €
HI(WF/PF,Z(GV)PF). O

For an alternative characterization of X°(G), we use some Bruhat-Tits theory.
Let F,; be a maximal unramified extension of F. Let & be a maximal F-split
torus of G, and let &’ be a maximal Fy;-split F-torus of G which contains S (for
its existence, see for example [KaPr, Proposition 9.3.4]). By well-known results of
Lang and Steinberg (see for example [KaPr, Example 2.3.2 and Theorem 2.3.3]), the
group G is quasi-split over Fy,. Then 7' := Zg(S’) is a minimal F,;-Levi subgroup
and a maximal F-torus of G.

Let B(G, F) be the Bruhat-Tits building of F. For every facet f of B(G, F),
we have the stabilizer group Gj and its Moy—Prasad subgroups Gj, for r € R>
[MoPr]. Similarly, we have the filtration subgroups 7. of the unique parahoric sub-
group Tp of T.

Proposition 3.3. For every facet f of B(G, F), the group Ty, -Im(Gs. — G) contains
Gf’(H,.

Proof. Recall that B(Gsc, F') is the reduced building of G, and that the set of its
apartments is naturally in bijection with the set of apartments of B(G, F’). By [KaPrl,
Proposition 9.3.22], Gy acts transitively on the set of apartments of B(G, F'). Since
Ggior = gGﬁoJrg_l for g € Gy, we may assume that f lies in the apartment Ag
associated to S.

The Moy-Prasad subgroups Gj,, give rise to op-Lie subalgebras g; , of g = Lie(G).
Let q : G — Gger be the quotient map and consider the map

(3.2) T x Gse = G : (t,9) = tq(g).

By the construction of Gj, in [KaPr, Definition 7.3.3 and §9.8], for any r € R,
(3.2) restricts to a map

(33) Tr/ X Gsc,f,r — Gfﬂn.
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The Lie algebra of 77 X Gsc is t' @ gger, and similar to (3.3), the addition map
(3.4) ' @ gdger = g sends t,. ® Gderjr tO Gfp-

Let 0 <7 < s < 2r € R, and assume that either »r < 1 or s < 2r — 1. The maps
(3.3) and (3.4) fit in a commutative diagram with the Moy—Prasad isomorphism (see
[KaPrl, Theorem 13.5.1]):

Gir/Gis = %,/ 95,s

(3.5) T T

(T} x GSC,f,T>/(TsI X Gyefs) —— (e gder,f,r)/(t/s ® Gder,j,s)

Although is a group homomorphism only when G is a torus, the commutativity
of Gj »/Gj,s implies that both vertical maps in are group homomorphisms. We
claim that the vertical map on the right-hand side in is surjective.

In the next steps, we consider Lie algebras as F-schemes. We follow the convention
that g(F') is the same as g, and we let g(Fy;) := g @ Fyy be the Lie algebra of Fy,-
rational points of g. It carries an action of Wg/Ip = (Frobp), and by definition
Ojr = g(Fm)fime . The same holds for ¢, and gderj,,. Therefore, for our claim, we
need to check that the addition map

(36) t/(Fnr)T @ gder(Fnr)f,r — Q(Fnr)f,r

is surjective. Our earlier assumption on f implies that it lies in the apartment of
B(G, F) associated to S’. By [KaPr, Definition 7.3.3], g(Fy.)s, is generated by
t'(Fyr)r and subspaces uq(Fyr)s,r, where uq (Fir) C g(Fir) is the weight space for a
root € R(G,S’). These uq(Fyr)s,r are also contained in gqer(Fur)j,r, which shows
the surjectivity of . It follows that the vertical map on the right-hand side in
the diagram is surjective.

By the commutativity of , the vertical map on the left-hand side

(3.7) (T} X Gser)/(Tg X Gses) = Gy /G s

is surjective as well. The jumps in the Moy—Prasad filtration of G; form a discrete
subset of R>p, so we can find r9 > 0 such that Gjoy = Gjr,. Extend this to a
sequence rg < r; < ro < ... with lim,_,c 7, = 00, such that each pair (r,,r,+1)
satisfies the conditions in [KaPr, Theorem 13.5.1]. This provides a filtration of Gy o
with successive subquotients as in the top row of (3.5). The same holds for 7" and
G, with the same r,. Now the surjectivity of ith r=r1rp,S = rp+1 and the
completeness of g with respect to the p-adic topology imply that is surjective
for r = ro. In other words, Ty, x Im(Gycj0+ — Gjo4) surjects onto Gj o4 O

Recall that a chamber C of B(G, F) is a facet of maximal dimension, and that the
associated parahoric subgroup G¢ o is called an Iwahori subgroup of G. While G¢ o
is minimal among the parahoric subgroups of G, its pro-unipotent radical G'¢ 4 is
maximal among the subgroups Gj o4 for facets f of B(G, F') [KaPr, Lemma 7.4.12].
We are ready to establish an alternative description of X°(G). It shows that tensoring
by elements of X°(G) stabilizes the category of depth-zero representations of G.

Theorem 3.4. (a) The group X°(G) is equal to
{x:G/Gsc = C* | Gjoy C ker(x) for every facet § of B(G, F)}.
(b) X%G) = {x: G/Gsc — C* | Geo+ C ker(x) for one chamber C of B(G, F)}.
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Proof. (a) For x, € X°(G), Xx|r has depth zero, thus Tf, C ker(x,). By Proposi-
tion ker(x,) contains Gj o4 for all f.

Consider x as in the statement, and let 7" C G be a maximal torus. The group
TY is compact, so by the Bruhat-Tits fixed point theorem TV stabilizes a facet  of
B(G, F). Recall that by definition Ty, is the maximal pro-p subgroup of 7°. Let
G° be the kernel of the Kottwitz homomorphism for G. By the functoriality of the
Kottwitz homomorphism [KaPrl §11.5] and by [KaPr, Proposition 7.7.5], we have

T° C G° N Gj = Gjyp.
By [KaPxl, Proposition 13.5.2.1], we know that Gj o4 is a pro-p subgroup of Gj g, but
it is not necessarily maximal. Together with [KaPr, Proposition 13.5.2.2], we see
that the maximal pro-p subgroups of Gjg are the groups Gy o4, with f a chamber
of B(G, F) such that Gy o4 C Gf7().E| Hence Tp; C Gy o4 for such a chamber §'. By
the assumption on Y, this means Ty C ker(x).

This holds for any maximal torus 7' C G, thus x € X°(G).

(b) By part (a), X°(G) is contained in the right hand side. Let x be as in the
statement and let § be an arbitrary facet of B(G, F'). Let C’ be a chamber of B(G, F)
such that C” D f, so Gjor C Geroy. There is only one G-orbit of chambers in
B(G, F) [KaPr, Proposition 9.3.22], so we can find g € G such that gC' = C’. The
equivariance properties of Moy—Prasad subgroups [KaP1l, Proposition 13.2.5] gives

ker(x) = gker(x)g ™' D G+~ = Gyoor = Goror D Giot-
Now part (a) shows that x € X°(G). O

The next lemma shows that the definition of X°(G) can be simplified: instead of
requiring x|r to have depth zero “for all maximal tori”, it suffices to check on one
well-chosen torus in G.

Lemma 3.5. Let T be a mazimal F-torus of G that contains a mazximal unramified
F-torus Tor of G. Suppose that o € H (Wp, Z(GV)) and that x,|r has depth zero.
Then ¢ € X°(GY) and x, € X°(G). In particular

X%G) = {x:G/Gsc = C*| x|r has depth zero}.

Proof. Since G is quasi-split over Fy;, Zg(Tyr) is a maximal torus of G and hence
Zg(Tar) = T. Let E/F be a finite unramified extension splitting 7p,. Let

Xo.E : G(E)/Gse(E) — C*
be the character associated to ¢|w, in Theorem By the compatibility of The-

orem with the LLC for tori (see the proof of Lemma (a)), Xe,ElT(E) 18 the
character with Langlands parameter ¢|w, € H'(Wg,TV). By Proposition this
character is equal to X, |7 (r) © Ng/p-

The map Ng/p : T(E) — T(F) can be viewed as a homomorphism of F-tori.
By the functoriality of filtrations of tori [KaPr, Definition 7.2.2 and Proposition
B.10.10], Ng/p(T(E)o+) C T(F)os. By assumption, x,|7(r) has depth zero, so

T(E)ot C ker(xyl7(r) © Ne/r) = ker(Xy,£l7(E))-
This implies
T(E)oy - Im(Gse(E) — G(E)) C ker(xy,r)-

2The condition on i’ is equivalent to f C f/, but we do not need this.
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The E-torus 7 contains the maximal unramified torus 7y, which is also a maximal
E-split torus in G. Thus T (F) has the form of T’ above. Proposition applies
and we see that ker(x, g) contains G(E); 4., for every facet | of B(G, E).

By Theorem Xe,E|D(E) has depth zero for every maximal E-torus D C G, thus
in particular for every maximal F-torus. By Proposition olw, € H{(Wg,DV)
has depth zero. Since E/F is unramified, Pp = Py and ¢ € H'(Wg,DV) also has
depth zero. By Lemma (a), v € X%(GY) and x, € X9(G). O
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