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ABSTRACT. We consider four classes of classical groups over a non-archimedean
local field F: symplectic, (special) orthogonal, general (s)pin and unitary. These
groups need not be quasi-split over F'. The main goal of the paper is to obtain a
local Langlands correspondence for any group G of this kind, via Hecke algebras.

To each Bernstein block Rep(G)* in the category Rep(G) of smooth complex
G-representations, an (extended) affine Hecke algebra H(s) can be associated
with the method of Heiermann. On the other hand, to each Bernstein compo-
nent <I>C(G)sv of the space ®.(G) of enhanced L-parameters for G, one can also
associate an (extended) affine Hecke algebra, say H(s"). For the supercuspidal
representations underlying Rep(G)?, a local Langlands correspondence is available
via endoscopy, due to Moeglin and Arthur. Using that we assign to each Rep(G)®
a unique <I>e(G)5v.

Our main new result is an algebra isomorphism #(s)°® = H(s"), canonical
up to inner automorphisms. In combination with earlier work, that provides an
injective local Langlands correspondence Irr(G) — ®.(G) which satisfies Borel’s
desiderata. When F' has characteristic zero, this parametrization map is in fact
bijective. When F' has positive characteristic it is probably bijective as well, but
we could not show that in all cases.

Our framework is suitable to (re)prove many results about smooth G-represen-
tations (not necessarily irreducible), and to relate them to the geometry of a
space of L-parameters. In particular our Langlands parametrization yields an
independent way to classify discrete series G-representations in terms of Jordan
blocks and supercuspidal representations of Levi subgroups. We show that it
coincides with the classification of the discrete series obtained twenty years ago
by Moaeglin and Tadié.
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INTRODUCTION

In the theory of linear algebraic groups, the classical groups play a special role. As
the stabilizer groups of bilinear /hermitian forms, they can arise from many directions
and have various applications. Within the representation theory of reductive p-adic
groups, the main advantage of classical groups is their explicit structure. It enables
precise, combinatorial methods to study representations, on a level which is hard
to reach for other reductive groups. Such methods have been pursued by many
mathematicians, see for instance [Art, GGP, Hei4, KiMa, MoTa].

In this paper we translate the (smooth, complex) representation theory of classical
p-adic groups to affine Hecke algebras arising from Langlands parameters. This is
part of a long-term program [AMS1, AMS2, AMS3] that applies to all reductive p-
adic groups and aims to establish instances of Langlands correspondences via Hecke
algebras. The method has already proven successful for principal series representa-
tions of split groups [ABPS3] and for unipotent representations [Sol3]. For classical
groups, our Hecke algebra methods provide alternative proofs of many earlier results
(e.g. the classification of discrete series representations) and install a framework in
which one can easily establish many new results that involve categories of smooth
representations.

Let F' be any non-archimedean local field (p-adic or a local function field). We

will consider classical F-groups in a broad sense, namely

e symplectic groups;

e (special) orthogonal groups associated to symmetric bilinear forms on a finite
dimensional F-vector space V;
general (s)pin groups associated to such bilinear forms;
unitary groups associated to hermitian forms on vector spaces over a sepa-
rable quadratic extension of F'.

We stress that these groups do not have to be quasi-split, we allow pure inner
forms. For G = SO(V) and G = GSpin(V) we write, respectively, GT = O(V) and
Gt = GPin(V), otherwise GT = G. An advantage of including general spin groups
is that they provide information about all representations of spin groups, including
those that do not factor through special orthogonal groups.

General linear groups could also figure in the list, they are very classical (but
note that they do not come from a nondegenerate bilinear form). We excluded
them because for GL,(F) everything we will discuss has been known for a long
time already, see [HaTa, Hen, Sch, LRS] for the local Langlands correspondence and
[BuKu, AMS1] for the Hecke algebras.

The common feature of all the above groups G is that their Levi subgroups are
isomorphic to G’ x GL,, (F') x -+ x GLy, (F'), where G’ is a group in the same
family as G but of smaller rank, and F’ = F unless G is a unitary group, then
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[F': F| = 2. Tt is this structure which enables the aforementioned “combinatorial”
approach to representations of classical groups. In a sense that approach is recursive,
relating G-representations to similar groups of smaller rank and to representations
of GL,,(F'), which are understood well already. However, such a reduction strategy
does not say much about supercuspidal G-representations. The crucial technique
to analyse those is endoscopy, as in [Art, Mok, KMSW, MoRe]. From the work of
Arthur and Moeglin, the following version of a local Langlands correspondence (for
the discrete objects) can be distilled.

Theorem A. (Arthur, Mceglin, see Theorem 2.1)
Let F' be a p-adic field and let G be one of the connected classical groups listed above.

(a) Let 7 be a discrete series representation of GT. Then the L-parameter of m can
be obtained from the set of Jordan blocks of m, by taking the L-parameters of
all GLy,(F')-representations in Jord(mw) and combining those via block-diagonal
matrices.

(b) Pick a Whittaker datum for the quasi-split inner form of G. This determines
an extension of part (a) to an injection from the discrete series of GT to the set
of enhanced bounded discrete L-parameters for G (where the component groups
of L-parameters are computed in the possibly disconnected group GV ).

(¢c) When GT # G, it can be described explicitly in terms of Jord(mw) whether or not

Resg+ (m) is irreducible.

Moeeglin characterized also supercuspidality in the context of Theorem A, both
for G-representations and for enhanced L-parameters. We refer to Section 2 for the
notations and more background. For now, we make a couple of remarks to aid the
correct interpretation of Theorem A. Firstly, note that in part (b) no bijectivity
is claimed, although that is known for many of these groups. Secondly, we have
to warn that not all details of the proof of Theorem A have been worked out (we
ourselves did not try, we only provide the relevant references). Further, Theorem A
relies heavily on endoscopy, that is the reason why F' needs to have characteristic
Z€ro.

Nevertheless, Theorem A should also hold for classical groups over local function
fields, see [GaVa, GalLo] for some instances. In Paragraph 2.1 we attempt to derive
that with the method of close local fields. We managed to prove that in Proposi-
tion 2.3, under Hypothesis 2.2 on depths of representations in Jordan blocks (the
hypothesis most probably holds always). Unfortunately our arguments do not suf-
fice to prove surjectivity in Theorem A.b in complete generality for classical groups
over local function fields, even if we would know such surjectivity for the analogous
groups over p-adic fields.

For the purposes of this paper, we only need to know Theorem A for supercus-
pidal GT-representations. Indeed, the remainder of Theorem A follows from those
cases with either [Moel, MoTa] or with our results discussed below and the detailed
knowledge of the discrete series of the Hecke algebras from [AMS2, AMS3]. Conse-
quently all results in paper hold for G' and GT as soon as we know Theorem A for
supercuspidal representations of G* and of the groups of smaller rank in the same
family.



4 A.-M. AUBERT, A. MOUSSAOUI, AND M. SOLLEVELD

Next we discuss our new results. An important aspect is their canonicity, by
which we mean that they do not depend on arbitrary choices. For results that are
not entirely canonical, we indicate the freedom in the choices.

Recall that the category of smooth complex representations of any classical F-
group G admits the Bernstein decomposition

(1) Rep(G) = [ ] Rep(G)*,

indexed by inertial equivalence classes s. Each such s is a G-conjugacy class of
pairs (L, Xp (L) - 0), where o is an irreducible supercuspidal representation of a
Levi subgroup L of G and X,,;(L) is the group of unramified characters of L. Every
Bernstein block Rep(G)® is equivalent with the category of right modules of some
finitely generated algebra H(s), often an affine Hecke algebra. Usually these Hecke
algebras arise via types (in the sense of Bushnell-Kutzko). For classical groups such
types are indeed available [MiSt], but it has turned out to be difficult to analyse the
Hecke algebras via those types. Instead we follow the approach of Heiermann [Hei2,
Hei3, Heid], who constructed H(s) as the G-endomorphism algebra of a canonical
progenerator II; of Rep(G)®. (For GSpin(V) we use the more general results from
[Sol4, Sol5].) We recall that by design Homg(Ils,7) provides an equivalence of
categories

(2) Rep(G)* = Mod(#(5)°?) = Mod(Endg (IL)°P).

Here A°P denotes the opposite algebra of A, so that Mod(A°P) is the category of
right A-modules. These algebras H(s) have been described explicitly in terms of the
Jordan blocks of the underlying supercuspidal representations (of a Levi subgroup
of G). They are extended affine Hecke algebras [Hei3, Sol4]. That links them
to Theorem A and hence to Langlands parameters. These links were investigated
in [Hei4], where it was shown that each Rep(G)*® equivalent to a Bernstein block of
unipotent representations in another group. Unfortunately these equivalences are far
from canonical, as most of the comparison steps in [Hei4] involve arbitrary choices.
Also, the back-and-forth between various Langlands parameters and Hecke algebras
entails that in [Heid] there is no construction of representations in Rep(G)*® with an
unambiguous relation to Langlands parameters for G.

Fortunately, objects of the above kinds are also available directly for L-parameters.
Indeed, in [AMS1, §8] the space of enhanced L-parameters (of any connected reduc-
tive p-adic group G) is partitioned into Bernstein components:

(3) Be(CQ) = | |, 2e(G)",

indexed by inertial equivalence classes s for ®.(G). By definition each sV is a G-
conjugacy class of triples (“M, Xy (M) - ¢, €), where “M is a L-Levi subgroup of
L@, Xu (P M) denotes the analogue of unramified characters for “M and (¢,¢) €
Peusp(M) is a cuspidal enhanced L-parameter, see [AMS1, 7.1].

To each such Bernstein component, one can associate a twisted affine Hecke al-
gebra H(s",z) [AMS3]. Here z is an invertible indeterminate, analogous to ,/q
for Twahori-Hecke algebras. Two important features of H(s",z) were established
in [AMS2, AMS3|: a construction of (irreducible) representations in terms of the
geometry of a space of Langlands parameters and for each z € Ry a canonical
bijection

(4) D (G)*" s Irr(H(s", 2)),
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where H(s", z) denotes the specialization of H(s",z) at z = 2. Moreover, for z > 1
the bijection (4) sends bounded parameters and discrete parameters to the expected
kind of representations (respectively tempered and essentially discrete series). Later

we will specialize z to qllp/ 2, where g denotes the cardinality of the residue field of

F. The algebras H(s", qllw/ 2) are crucial, without them it is hardly possible to make
the relations between ®.(G) and Rep(G) canonical.

In Paragraph 1.2 we make the affine Hecke algebras H(s",z) completely explicit,
for any Bernstein component of ®(G) with G a classical F-group. This involves
a description of the underlying root datum and of the labels (equivalently: the ¢-
parameters) in terms of the relevant Jordan blocks. We refer to Table 2 for an
overview.

Theorem A enables us to associate to each Bernstein block Rep(G)°® a unique
Bernstein component of ®(G) which we call ®(G)*", see Theorem 3.1. When
Gt # G (so for special orthogonal groups and general spin groups), s is only
canonical up to the action of the two-element group Out(G). Our most important
result is a comparison of Hecke algebras on the two sides of the local Langlands
correspondence:

Theorem B. (see Theorem 3.3, Proposition 3.5 and Proposition 4.6)
Let G be a connected classical group over F and fix o Whittaker datum for the
quasi-split inner form of G. Suppose that the inertial equivalence classes 5 and sV
are matched as in Theorem 3.1. There exists an algebra isomorphism

H(s) = H(s",q”)

with the following properties.

e On the standard maximal commutative subalgebras O(T,) C H(s) and
O(Tyv) C H(sY, q};/Q), the isomorphism is prescribed by the L-parameters of
supercuspidal representations from Theorem A and from the local Langlands
correspondence for general linear groups.

o There is a canonical bijection between the root system associated to s and
the root system associated to s" .

e The isomorphism is canonical up to conjugation by elements of O(T,)* and
(in the cases with GT # G) up to the action of Out(G).

There exists an analogous isomorphism of Hecke algebras for G, which is canonical
up to conjugation by elements of O(Ts)*.

Further, the algebra H(s", q};ﬂ) 18 canonically isomorphic to its own opposite.

We remind the reader that in the case of classical groups over local function fields
we need the mild Hypothesis 2.2 for Theorem B (and hence for most subsequent
results). The Whittaker datum is needed for the canonicity of the above Hecke
algebra isomorphism. That is a subtle affair, it relies on a normalization of certain
intertwining operators in Paragraphsubsection 4.3, which in the end boils down to
[Art].

As a direct consequence of Theorem B and (2) we find an equivalence of categories

(5) Rep(G)® = Mod (H(s", q)/%)),
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which is canonical up to inner automorphisms of H(s", qllp/ 2) (and up to the action of
Out(G) when G # G). The analogous equivalence of categories for G is canonical
up to inner automorphisms of the involved Hecke algebra.

With the Bernstein decompositions (1) and (3), (5) makes Rep(G) equivalent to
the module category of a direct sum of Hecke algebras. In combination with (4) we
obtain:

Theorem C. (see Theorem 3.7 and Corollary 3.8)
Theorem A (for supercuspidal representations) and Theorem B induce an injective
local Langlands correspondence

Irr(G) = @ (G).

It is canonical (up to the action of Out(G) when Gt # G) and it sends supercuspidal/
essentially square-integrable/tempered representations to cuspidal/discrete/bounded
enhanced L-parameters.

There exists an analogous parametrization of Trr(GT), which uses component
groups of L-parameters computed in G¥F and is entirely canonical.

We note that (5) is much stronger than any results about the parametrization of
Irr(G), in the sense that it deals with an entire category of representations. Indeed,
earlier results about Hecke algebras entail that (5) has various consequences that
involve reducible representations, see Paragraph 3.2. Furthermore the equivalence
of categories (5) makes it possible to relate Rep(G) to the complex geometry of the
space/stack of L-parameters, as in [Sol6].

In Theorem C we do not claim surjectivity of the parametrization map, because
for that we would need surjectivity in Theorem A.b, which we do not know when F'
is a local function field. That is in fact the only obstruction: the image of the map
in Theorem C is the union of all Bernstein components of ®.(G) whose underlying
cuspidal L-parameters can be reached via Theorem A. So in all the cases where the
surjectivity of Theorem A.b has been proven, we also get surjectivity in Theorem C.

Theorem C yields in particular a classification of the discrete series of G, in terms
of the bounded discrete enhanced L-parameters in the image of the parametrization
map. On the other hand, Theorem A also classifies discrete series representations of
G™. For supercuspidal representations these two methods agree, that is a starting
point of our setup. We obtain two independent ways to classify the discrete series in
terms of supercuspidal representations of Levi subgroups: with Hecke algebras via
Theorem C and with Jordan blocks as in [Mcel, MoTa, KiMa].

Moreover both methods can be pushed further, to classify all irreducible smooth
Gt-representations. Indeed, in Theorem C that comes at the same time as the
discrete series (in the underlying proofs from [AMS2] the discreteness of representa-
tions is actually analysed last). Irreducible tempered G*-representations are classi-
fied with endoscopy and Jordan blocks in [MoTa, MoRe]. The step from tempered
representations to all irreducible smooth representations via the Langlands classifi-
cation is well-known for G and we show how this technique can be made to work for
GT. With that extension the papers [MoTa, MoRe]| also classify Irr(G™).

Theorem D. (see Theorem 4.12)

Let G be a connected classical group over F' and fix a Whittaker datum for the quasi-
split inner form of G. The following two ways to parametrize Irr(G™) with enhanced
L-parameters coincide:
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o with Hecke algebras as in Theorem C,
e with endoscopy and Jordan blocks (as in Theorem A) and the Langlands
classification.

Because the two strategies are very different, it is rather cumbersome to check that
they agree. We do this step by step in Section 4, in the following order: completely
positive discrete series, all discrete series, irreducible tempered, all irreducible repre-
sentations. The most difficult part concerns the enhancements of L-parameters for
discrete series representations. To match those for the two methods in Theorem D,
we have to investigate normalizations of intertwining operators. That also informs
us how to make Theorem B canonical.

A few words about the setup of the paper are in order. As we mentioned at
the start of the introduction, we consider four classes of classical groups. For all
classes the proofs of our results are extremely similar, yet not entirely the same. For
symplectic and (special) orthogonal groups, almost everything that we show about
Hecke algebras was known already, from [Hei2, Hei3] for p-adic groups and from
[Mou, AMS3] for Langlands parameters.

Instead we focus on general (s)pin groups in Sectionsl and 3. That is a little bit
more involved because the center Z(G) of such a group G is not compact. The proofs
for symplectic and (special) orthogonal groups can be recovered by restricting from
GV to its derived group, where GV denotes the complex reductive group with root
datum dual to that of G. Sections 2 and 4 are written so that they apply equally
well to symplectic, (special) orthogonal and general (s)pin groups.

For unitary groups, the necessary changes affect the notations so much that we
discuss them in the separate Section 5. We check carefully which modifications are
needed to make Sections1—4 work for unitary groups. It turns out that for unramified
unitary groups some calculations in Paragraph 1.2 have different outcomes, which
we record.

1. GENERAL SPIN GROUPS

Let F' be a non-archimedean local field with absolute Weil group W . Consider
a finite dimensional F-vector space V endowed with a symmetric bilinear form. The
associated general pin group, denoted GPin(V'), contains the general spin group
GSpin(V) with index two. Both are subgroups of the multiplicative group of the
Clifford algebra of V. For the root datum of GSpin(V) we refer to [AsSh, §2].
Simultaneously we consider the groups GSpin(V’), where dim(V’) = dim(V') and
disc(V) = disc(V’). The equivalence classes of such groups are naturally in bijection
with:

e equivalence classes of symmetric bilinear forms of the same dimension and
the same discriminant as V,

e pure inner twists of SO(V),

e rigid inner twists of GSpin(V') [Kall], with respect to the central subgroup

{#1} = ker (Spin(V') = SO(V)) = ker (GSpin(V') — SO(V) x F*).

To align with the other classical groups, we refer to the above groups as the pure
inner twists of GSpin(V'). Let us list all the possibilities:
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o for dim = 2n + 1, the split group GSpin,,, | ;(F) of F-rank n and one pure
inner twist GSpinj,,, ;(F) of F-rank n—1,
e for dim = 2n, the split group GSpiny,, (F') of F-rank n and one pure inner
twist GSpinb,, (F') of F-rank n—1,
e for dim = 2n, the quasi-split group GSpinj, (F) of F-rank n — 1 and one
pure inner twist GSpin, 4+1(F), which is also quasi-split.
For any of these groups GG, we write
(1.1) at — { GPin(V) if dimV is even
’ GSpin(V) if dimV is odd

All inner twists share the same Langlands dual group, so for that we have precisely
three possibilities:

e GSpiny,,; = GSp,,(C), and since one of the p-adic groups is split we may
take “GSpiny,,; = GSp,,(C),

e GSpiny, = GSOs,(C), and again one of the p-adic groups is split so we take
LGSpin,,, = GSO4,(C),

e GSpink’ = GSOs2,(C), and W acts on it via passing to a quotient Wr/W g
of order two and then conjugation by an element of Og,(C) \ SOs2,(C).
We may take “GSpin}, = GO2,(C), where we remember that every Lang-
lands parameter for GSpin3,, (F') sends Wg to GSO2,(C) and Wg \ Wg to
GO2,(C) \ GSO2,(C).

We write LG, or LG for LGSpiny,, 1, “GSpin,,, or “GSpin},. We also write

GSp,,,(C) der Sps,(C) if dimV = 2n + 1

Langlands parameters for G' are group homomorphisms ¢ : Wg x SLo(C) — LG,
with the usual requirements as for instance in [AMS1, Definition 6.4]. Considered
up to GV-conjugation, these form the set ®(G). Langlands parameters for G* take
values in “G and are considered up to conjugation by GV*.

1.1. Properties of Langlands parameters.

Let us investigate when a Langlands parameter ¢ for G is discrete. The image
of ¢ is contained in *G, so in GSpy,(C) or in GOg,(C). In the former case ¢ is
an L-parameter for GSpiny,, | (F') or GSpin,, ., (F), in the latter case for a general
spin group of even size. We can distinguish two subcases:

e when im(¢) C GSO2,(C), where ¢ is an L-parameter for GSpin,, (F') or
GSping, (F),
e otherwise there is an index two subgroup Wg C W such that
#(Wg x SLe(C)) € GSO2,(C). Then ¢ is an L-parameter for a group
GSpin,, (F) or GSpins, (F) which splits over E.
We suppose that the bilinear form By on C?" from which GV is defined is given
by a (skew-)symmetric matrix J € GLg,(C). Let pf: “G — C* be the similitude
character, that is

(1.2) By(gv1, gva) = pés(9)Bs(vi,va) i, v € C*" g € 1G.
Recall that (1.2) holds for g = ¢(w) with w € Wp x SLy(C). Hence the map
By: C* — (C2nyv

v = [ By, v)]
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provides an isomorphism of W x SLg(C)-representations
(1.3) ¢ — ¢V @ pulod or equivalently ¢ (uGop) ™ = V.
Here ¢V denotes the contragredient of ¢. The adjoint map
By o5 (00 (uhoo) ™) =0V @ufod
is also an isomorphism of Wr x SLg(C)-representations. Suppose that V; is an

irreducible subrepresentation of (¢, (CQ"), on which Bj is nondegenerate. By Schur’s
lemma there exists ¢; € C* such that B JV|V1 = c1By|y,. Then
~ 5 VWV Y ~
Bylvi =By 'lw = By |v = & Bilw,
so ¢1 € {1,—1}. This says that (V1, By) has a well-defined sign c;.
Since G = C*FGyer and “Gaer = Spy,(C) or “Gaer € O2,(C), the decompo-
sition of (¢, C?") in irreducible subrepresentations can be carried out just like for

orthogonal or symplectic representations. For those kinds of representations we use
the instructive paper [GGP]. Thus we decompose

(1.4) (¢,C*") =

where V}; is the space of the representation ¢ and N is the multiplicity space (with
a trivial action). By [GGP, Theorem 8.1] the right hand side of (1.4) determines ¢
up to GV-conjugacy, apart from some exceptional cases in which it is up to GOa,, (C)-
conjugacy. Further, by [GGP, §4] B induces bilinear a form on each N, and

(1.5) 2GY 40 (0) 1= Zgv 4, (#(Wp x SLp(C))) =
3( Hweﬁ O(Ny)®Idy, ) x Hd)el— Sp(Ny) ® Idy,, x H¢ezo GL(Ny) ® Idy, ey,

where S(H) denotes the subgroup of elements in H with determinant equal to 1.
Here we abbreviated

I = {¢ eir(Wp x SLz(C)): ¥ = 9" ® s 0 ¢, sgn(vh) = 5gn(G" der) },

I° = {¢ €lir(Wp x SL2(C)) : ¢ Z 0V ® s 0 9}/ (¥ ~ Y @ 0 9).
If GV = GSO4,(C), then we may also consider (1.5) with GV = GOg,(C) instead
of G¥. That results in omitting the S from the second line of (1.5).

Recall that ¢ is discrete if and only if Zgv (¢)/Z(GV)WF is finite, which is equivalent
to: Zgv,,, (¢) is finite. From (1.5) we see that that is the case if and only if

(1.6) N,=0forreI"UI" and  dim(N,)<1for7el".

From now on we assume that ¢ is discrete. Thus each 7 ® P, has multiplicity at
most one in ¢.

Recall that SL2(C) has a unique irreducible representation (FP,,C*) of dimension
a € Z=o, and that it is self-dual with sign (—1)*71. Let Jord(¢) be the set of
pairs (1,a) € Irr(Wg) x Zsq for which 7 ® P, occurs in (¢, C*"). The set Jord(¢)
describes the Jordan decomposition of the unipotent element ugy = ¢(1,(§1)): for
each (7,a) € Jord(¢), uy has dim 7 Jordan blocks of size a. We abbreviate

Jord,(¢) ={a € Zso : (1,a) € Jord(¢p)}.

@wem(wpxsm(@) Ny @ Vy,

We define
Irr(WF)i = {rehr(Wp):7=77®pgo¢,sgn(r) = £sgn(GY der) },
Ir(Wp)g = {7€lx(Wp): 727 @pubod}/(T~7"@psos).

EXN
|
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Then we can express (1.4) more precisely as
(1.7)

(¢7C2n): @ TR @ P, | ® @ TR @ P,

Tglrr(wF);; a odd:(7,a)eJord(¢) TEIIT(WF); a even:(7,a)€Jord(¢)

The setup with rigid inner forms from [Kall] entails that we should consider cen-
tralizers of L-parameters in

(G/{£1})Y = (SO(V) x GLy(F))¥ = SO(V)" x GL;(C).

The factor GL;(C) is central, connected and fixed by Wg, so does not influence
the component groups and may be omitted. Therefore we may and will compute
component groups of L-parameters for our pure inner twists of GSpin(V) in GY qer =

SO(V')", which equals SO2,(C) or Sp,, (C). We put
(1.8) S¢ = 7'('()(ngdCr ((25)) and S;_ = TF()(ZGv:lrer ((b))

and we use the irreducible representations of Sy as enhancements of ¢. From (1.5)
we see that every (7,a) € Jord(¢) contributes a generator 2., of order two to S;r.
Then Sg is the Fo-vector space with these 2, as basis. Here z;, acts as —1 on
T ® P, and as 1 on the other summands of (1.7). The group S4 has index at most
two in ST and consists of all products of the Zr.q such that the determinant is 1.
Thus every element of Sy involves an even number of z;, with adim 7 odd.

A character € of Sy is a G-relevant enhancement of ¢ if and only if € restricted to
Z(GY ger)WF encodes G via the Kottwitz isomorphism, i.e. it is quadratic if G is a
“prime” form (with notation as above (1.1)) and trivial otherwise. Here the image
of Z(GY qer)WF in S, is generated by

(1.9)

T,Q)

H(T,rl)éJOId(d)): adim 7 odd &
which is an element of order at most two. We refine ®(G) and ®(G™) to sets of

enhanced L-parameters by

D.(G) = {(¢,p):¢ € ®(G),peIrr(Sy) is G-relevant},

(1.10) O.(GT) = {(¢,p):90€®(G),pe Irr(Sq'f) is G-relevant}.

We want to make explicit which enhancements of ¢ are cuspidal. Like in (1.7)

(1) Zev, W) =s( [ veo( @  c))x

TGII‘I‘(WF)%L a odd:(T,a)€Jord(¢)

II v, ®Sp( a c%).

T€lr(Wr), a even:(7,a)€Jord(¢)

This brings us to the setting of [Moel, MoTa] and [AMS3, §5.3]. In the latter it is
checked that (¢, ¢€) is cuspidal if and only if the following conditions are met:

e Jord(¢) does not have holes, that is, if (7,a) € Jord(¢) and a > 2, then also
(1,0 —2) € Jord(¢),
e ¢ is alternated, in the sense that for all (7,a), (1,a + 2), (77, 2) € Jord(¢):

(112) 67r(Z7'7aZT7a+2) =—1 and €7r(2,’7_/72) = —1.
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1.2. Hecke algebras for Langlands parameters.

We will work out the Hecke algebras associated in [AMS3, §3] to Bernstein compo-
nents of enhanced L-parameters for G. Although in [AMS3]| we used an alternative
group Sy coming from the simply connected cover of GV e, the constructions work
equally well with Sy as above.

For the convenience of the reader, we start by recalling the definition of the precise
kind of (extended) affine Hecke algebra that will be involved [AMS3, Proposition
2.2]. We use the following data:

e a root datum R = (R, X,RY)Y), endowed with a notion of positive and
simple roots in R,
e the Weyl group W(R),
e W (R)-invariant parameter functions A : R — Z>¢ and
N i {a € Ryeq : @Y € 2Y} — Z>,
e an invertible indeterminate z,
e (optional) a finite group I' acting on X and R, stabilizing A\, \* and the set
of positive roots.
Then H(R, A\, \*,z) x T is the vector space C[X]® C[W(R)] ® C[I'| ® C[z,z~ ] with
the multiplication rules:
C[X],C[I'] and C|z,z '] are embedded as subalgebras.
Clz,z7!] is central.
e the C[z,z !]-span of W (R) is the Iwahori-Hecke algebra H(W (R),z**) of
W (R) with parameters z>*(®). That is, it has a C[z,z']-basis {N,, : w €
W (R)} such that
Ny Ny = Ny if l(w) 4 £(v) = l(wv),
(N, + Z]-_A(a))(NSa - z;\(a)) = 0 if a € Ryeq is a simple root.
For w e W(R),z € X and v € I, corresponding to N,, € C[I']:

NyNuy0:N7' =N, 10

v(@)>
e For a simple root a € Ryeq and x € X corresponding to 6, € C[X]:
esta - Nsaasa(x) =

(Zx(a) _ Zf/\(a)) (6, — 98(1*(30))/(90 —*9—a) aV ¢ 2y .
(Z/\(a) — Zf/\(a) + Q_Q(Z)‘ (@) — z A (a)))(ﬁm — QSa(x))/(Go — Q_QQ) oV €2y

We can specialize z to any z € C*, that gives another extended affine Hecke algebra

HR AN, 2) x T = (H(R, X\ X", z) xT)/(z — 2).
When T is trivial or absent, we have the (non-extended) affine Hecke algebras

H(R, A\, \*,z) and H(R, A, \*, 2).

We fix a minimal F-Levi subgroup Lyin of G = GSpin(V') as in [AsSh, §2]. We
call a Levi subgroup L standard if it contains Ly,. It is shown in [AsSh, §2] that
every such L has the form

(1.13) L =Gy % GLy (F) % - x GLy, (F),
where n_ € N, G,,_ = G,, (F) = GSpin(V_) with disc(V_) = disc(V') and
dim(V) —dim(V_) = 2(n1 + - - - + ng).
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The embedding L — G will be described in (3.3).
The group “G,,_ has the same type as “G (but smaller rank) and

(114) LL = LGn_ X GLn1 (C) X X GLnk (C)

Assume that the (skew-)symmetric matrix J € GL2,(C) defining the bilinear form
has the following simple shape: the isotropic part is built from matrices (§§) or
(91 (1)) placed in rows and columns j,2n + 1 — j. Then the embedding “I — ©G is

given by
(1.15) (A, b1, hg) = (B, iy ey () TR T T8 pd (b)) Thy T,

where for an invertible matrix m we denote the inverse-transpose by m~7 = (m_l)T.
Consider a Langlands parameter ¢: W g x SLy(C) — “L. With (1.14) and (1.15)
we can write

(116)  ¢=(P s 000D, o) ouloo= o oD, 6 ® (4] ®ugo9),

where ¢_: Wp x SLy(C) = “Gp— and ¢j: Wp x SLy(C) — GLy, (C). Clearly ¢ is
discrete if and only if ¢_ and all the ¢; are discrete. Notice that Sy = &;_ because
ZGLnj (©)(¢5) is connected. An enhancement

e € Irr(Sy) = Irr(Sy_)

is cuspidal if and only (¢_,€) and all the (¢;,triv) are cuspidal. For (¢_,€) cusp-
idality was analysed after (1.11), while for (¢;,triv) it means that ¢; is trivial on
SLy(C) and ¢; is irreducible as representation of W [AMS1, Example 6.11].

Let ®eusp(L) denote the set of LY-conjugacy classes of cuspidal enhanced L-
parameters for L. The group Z (L") acts naturally on ®(L), ®.(L) and ®cysp(L)
[AMS1, (100)]. From now on we assume that (¢,€) € ®eysp(L). Following [AMSI,
§8] this gives a subset

s}, = (Z(LY)'F° - ¢,€) C Peusp(L)

and a Bernstein component ®.(G)* C P(G). For 7 € Irr(Wp), let £; be the
multiplicity of 7 in ¢_ (regarded as W p-representation via the standard embedding
LG,  — GLa,_) and let e, be the sum of the multiplicities of 7 in the GLy, (C).
Then (1.16) and (1.7) become

p=0-& P 2018 P elrerouios)

\Y

TEIrr(WF)jf 7'€Irr(WF)2S
¢|WF = @ (267' + ET)T ©® @ 67(7— ©® 7_\/ &® N\C/J o ¢)
Telrr(WF)j TGIrr(WF)g

From (1.5) we deduce

(117) Zg (6Wi) =S [[  Oserse. (€)@ 1dy, ) x

TGIrr(WF);

I  Speese,©@ldy, x  [[ GL(C)®Idy,avy.
TElr(Wp) 7'€Irr(WF)25
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Relevant for the determination of Hecke algebras are furthermore

Zovan@We) N L= [ 0n(€)x ()" @ldv.)x
TEII‘I‘(WF):;

II Spe.(©x ()" @ld, x [ (€9 @ldveavy,
Tl (Wr), T€lr(Wr)j

Gg =Zqv (¢(WF)) = (CXZGVder(d)(WF))’
M =GyNn*L=C*(Zgv,. (¢(Wp))NFL),

T=zMyr=c( [ @)= [ (@©9))=2zC*L).

TGIrr(WF)jf 7'€Irr(WF)25

If G¥ = GSO4,(C), we may extend it to GVT := GO2,(C). That means omitting
the S from (1.17), which makes the group (at most) a factor 2 bigger, so that it
decomposes naturally as a product over the involved 7’s:

(1.18) Zgvi (H(Wr)) = I G
7'611“1“(WF)j}zLJIrr(WF)25

Then the root system R(G:;,T ) decomposes canonically as a disjoint union of the
root systems

R, = R(Gy,T.T) = R(G),. TNGY,).

In [AMS3, §1] a graded Hecke algebra is attached to the data (G;, M, ug,€). The
maximal commutative subalgebra is O(Lie(T")), the root system is R, and the para-
meters of the roots come from [Lus2]. The root system and the parameter functions
¢: R: — Z>¢ (which are used to construct graded Hecke algebras) were worked out
in [AMS3, §5.3]. To write down the parameters uniformly, we define

max Jord,(¢_) Jord,(¢p_) # 0
(1.19) a, =4 0 Jord:(¢-) = 0,7 € r(Wp)
-1 Jord, (¢-) = 0,7 € Irr(Wp),

Notice that now a; is odd for 7 € Irr(Wp)(;f and even for 7 € Irr(Wp),. Fore; =0
the torus T'N G}AT reduces to 1, and there are no roots. Otherwise we denote a
root of length v/2 by a and a root of length 1 by . Now the root systems and the
parameter can be expressed as in Table 1. When e, = 1, we must regard D._ and
Ae._1 as the empty root system. Although S is not a root in C), or D,,, [AMS3,
§3.2] still allows us to attach a useful parameter ¢(3).

TABLE 1. Root systems and graded Hecke algebra parameters for 7

T E - R, c(a) c(B)
br(Wp)) =0 D, 2 0=1+a,
Ir(Wr)g >0 Be, 2 1+a;
Irr(Wpg), =0 C., 2 c28)=2c(f)=1=14a;
Irr(WF)% >0 BC.. 2 1+a,
IIT(WF)QS =0 AeT—l 2 -
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Recall that the cuspidal supports in the Bernstein component @e(G)5v are pre-
cisely the twists of (¢, €) by elements of

Xoe(PL) = Z(LY x Ip)y, = Xue(L).
Here W acts trivially on the type GL factors of “L and on Z(G,_) = C*, so
(1.20) Xoe("L) 2 2(Gp_) x [[ C1d=2Z(*L) = T.
J

Without changing q)e(G)ﬁv, we can bring (¢, €) in a somewhat better position:
o if ¢; : Wp — GL,,(C) differs from ¢Y @ uf o ¢ by 2 € Z(GL,,;(C)) =
Xur(GLy, (F)), then we replace ¢; by 2Y2¢;, so that

M2y 2 220 @ plo o = (226;)" @ g 0 6.
o if n; = n; and ¢;, ¢; differ by an element of X,,;(GLy,(F')), then we adjust
one of them so that actually ¢; = ¢;,
o if ¢;,0; € Irr(err)?‘5 and ¢, gij ® pl o ¢ differ by an element of GL,,(C),
then we replace ¢; by ¢;.
Let 7' € Irr(WF)(:; be a twist of 7 € II‘I‘(WF);: by an unramified character, such
that 7/ is equivalent with 7'V @ u% o ¢ but not with 7. By the above assumptions on
¢, ez =0 if e, > 0. Still, £, and ¢+ can be nonzero simultaneously. If e; > 0 and
lr <Ll (resp. {r =L =0 and a; = 0 < a,/) then we change ¢; =7 to ¢; =7/, so
that the roles of ¢, and ¢,/ (resp. of a,; and a,/) are exchanged.
Let Z(LV); C Z(L")° = T be the subgroup of elements z such that z¢ is equivalent

with ¢ in @e(L)ﬁv. It is finite and the map
Z(LV)° JZ(LY)3 — Be(L)* @ 2 v (2¢,€)

is a bijection. The affine Hecke algebra we are constructing has the underlying
complex torus

(1.21) Ty :=Z(LY)°/Z(LY)g =T/ Hj Z(GLy,; (C))sg,-

Let t; be the torsion number of 7 € Irr(Wp), that is, the order of the group
Z(GL4_ (C));. Then t, is also the number of irreducible constituents 6 of Res}ZF T.

We need to distinguish two cases:

(1) 0 = 6" ®@plod. Then the same goes for all constituents of Res}z’F T, because
all those are in one orbit for Wg. The proof of [Sol5, Proposition 4.10.a]
(which concerns self-dual representations of W) applies and shows that 7
and 7' have the same sign.
(ii) 0 2 0¥ @ p o¢ for all eligible §. Again the proof of [Sol5, Proposition 4.10.a
applies, now it shows that 7 and 7/ have different signs.
According to these two cases, we divise a new partition of Irr(W F);F:

o Irr(Wp)tt is the set of all 7 € Ir]r(WF);Lr in case (i) above, modulo the
relation 7 ~ 7/;

e Irr(Wp)~~ is defined in the same way, only starting from Irr(Wp)

o Irr(Wpg)t™ is the set of all 7 € Irr(WF)(f in case (ii) above, modulo the

relation 7 ~ 7/;
o Irr’(WF);f =Ir(Wp)ttUlir(Wg) "~ ULrr(Wg)T™ = Irr(WF);f/(T ~ 7).
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A computation like for (1.17) yields
Zovau@@0) =S [T Oserrese,©7) I Spoeriern, (O

’rEIrr(WF)qtJr TEII‘I‘(WF);7
(1.22) x I  GLaesst,40,(©F2x ][] GLe (O).
TeIrr(WF);:7 ’rEIrr(Wp)g5

Analogous to (1.18) we decompose

Zijer (¢(IF)) = HT GX(IF)Jﬂ

Tyw =C*  x Ty, =C* x C*/Z(GLg (C)),),
(2  Te=C x JL Ter =0 < T (€26 (©))

X*(Tw) CZ® @TX*(TEV,T) >~ 7. @ @TZET.

In each of the above cases, the product or sum runs over Irr’ (Wp)jf U Irr(Wp)g.
For comparison with [AMS3] we record the group

(1.24) J =Z¢v(o(Ip)) = C* Zgv, . (o(IF)).
The root system of J° with respect to the (possibly non-maximal) torus 7" splits
naturally as a disjoint union of root systems R(G;(IF) JT,T), indexed as in (1.23).

We note that by the above assumptions on 7 and 7 we have ¢, > ¢, = 0 and if
£ =0, then ¢, =0 and a, > a,». With Table 1 at hand, one checks readily that
(1.25) R(GYq,,T.T) = R(Gy T, T)

in all cases. (Only the dimensions of the root subspaces for G;( )r are higher

IF sT
than for GXT, namely ¢, times higher in all but ones cases.) In view of [AMS3,
\

Proposition 3.9], this means that (¢, €) is a good basepoint of ®.(L)* .

Now the roots for the Hecke algebra that we are after can be found with [AMS3,
Definition 3.11]. The reduced roots «a € R(Gg(IF),TT, T) need to be scaled by a
certain factor m, € N, which we compute next. Let By D T be a ¢(Frobp)-stable

Borel subgroup and maximal torus of J°, such that T ?(Fme ) 5 T. A natural choice

for T’y comes from the standard maximal tori 7y in GX(IF) o

(1.26) Ty = *( I1 rox II mlx I1 1)

TElrr(Wp) tHUlee(Wp) , ~ Telrr(Wp)$~ TElrr(Wp)9

We see that R(G(\;(IF) _,Tj) has t, irreducible components, unless 7 € Irr(WF);f_,
then there are t./2. Following [AMS3, Definition 3.11], m, equals ¢, (or t,/2 for
T E Irr(WF);f) times a number m,, which is m, for Reswg ¢ where E/F is the
unramified extension of degree ¢, (or t,/2 for 7 € Irr(W F);_) By definition m/, is
the smallest number such that ker(m,«) contains all ¢ € T for which tRes%Z ¢ is
equivalent with Resgg o.

The group of t € T with t¢ = ¢ factors as a product indexed by all possible 7,
and the contribution from one 7 consists of ¢, unramified characters of Wr. But
this group of unramified characters becomes trivial if we pass from W g to the Weil

group of the degree t, unramified extension of F. Hence m/, = 1, unless maybe
when 7 € Irr(WF);_. In the latter situation we usually have m/ = 2, because



16 A.-M. AUBERT, A. MOUSSAOUI, AND M. SOLLEVELD

ker(1m/,a) has to contain an element ¢ € (1 — ¢(Frobp)'7/?)T;, with a(t) = —1. The
only exception occurs when ¢, = 0 and « € C,_ is long, then m/, = 1. We conclude
that mq, = t, in all cases, except when 7 € Irr(WF);_, £ =0 and o € C,_ is long,
then my = t,/2.

Finally, we are ready to define the root datum for our affine Hecke algebra:
Rev = (Rev, X*(Tyv), Ry, Xu(Tyv)),
where Ryv = {mqaa : a € R(GY, T)rea}-
Here R;v is the disjoint union of root subsystems

Ry 7 = {mqaa: a € R(GY T, T)rea}-

Notice that X*(T,v ;) arises from the part of X*(7T") associated to 7 by multiplication
with ¢., where t, = m, for most a € R(GZJT, T). The multiplication rules in
our affine Hecke algebra are determined by parameter functions A\, \*: Rsv — Z>o,
which come from [AMS3, Proposition 3.14]. The outcome of those constructions is
summarized in [AMS3, §5.3]:

e For @ € R;yeq a short root in a type B root system, t; = mq, cla) =
ar +1,c*(a) = a + 1 and
Ma) =tr(ar + ap + 2)/2, N (a) =t (ar —ar)/2.
We note that \*(«) > 0 because £, > £,
e For @ € R;ped, T € Irr(Wp)qf*, £ = 0, « a long root of a type C root
system: c¢(a) = 2 and
AMa) =N (a) =mqy =t:/2.
e For all other a € R;1eq: c(a) =2 and
AMa) = N (a) =mq =t
We note that the operation o +— mya preserves the type of the root systems R ;eq
from Table 1, except that in the case 7 € Irr(WF);f_, L+ 10 =0 type C¢, is turned
into B, .
We also need to determine Wyv, the stabilizer of s} in
(1.28) Ngv(LY x Wg)/LY = Ngv(LY) /LY.

Recall the embedding I — *G from (1.15). For each j the group Ngv+(LY)
possesses an element that exchanges hj and pf(h-)J hj_TJ —1. In terms of represen-
tations of Wy (via ¢), this

(1.27)

(1.29) exchanges 7 and 7" ® u o ¢.

Further Ngv+ (L") contains elements that permute the factors GLy;(C) of the same
size. It follows that Ngv+(LY)/LY is isomorphic with a direct product of Weyl
groups of type B, , where ey counts the number of j’s with n; = N. The group
(1.28) has index at most two in Ngv+(LY)/LY, which comes from the difference
between GOz, (C) and GSO2,(C).

The group W,v can be represented with elements that normalize M and T and
centralize ¢(Ip x SLg(C)), so in particular elements of J. Further Wyv contains
W(Rsv) = W(J°,T) as a normal subgroup. Fix a standard Borel subgroup B" of
GV. That determines a Borel subgroup B” of J°, and hence a system of positive
roots in R(J°,T) and in Rgv. Let I'sv be the subgroup of Wyv that stabilizes this
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positive system of roots. By standard results about finite root system and Weyl
groups

(1.30) st = W(Rsv) X Fﬁv.

Let us determine I'yv in terms of the action of Ngv(LY)/L"Y on the type GL factors
of LY and on the tensor factors of ¢ (as described above). The 7 € Irr(Wp) with
e; = 0 do not contribute. If e; > 0, then e;g, = 0 for every unramified twist 7 ® x
which is not isomorphic to 7 by our normalization of ¢. Hence every element of
Ngv+(LY) that stabilizes sY must already stabilize ¢. In other words, Wyv equals
the stabilizer of ¢ in Ngv(LY)/LY. Thus we can represent Wyv with elements of
Zagv,..(¢) that normalize T'. Let W;Q and F;Q be the versions of Wyv and I'yv for
GY*. From (1.17) we see that

(1.31) wh=1[wd,.=2 JI wW®B)x J[ WA ).

7"€Ir1r’(WF)qi5 €T (Wr)g,

Comparing with Table 1, we find that

(1.32) I, = IT W)/ woD.,) = I 70(02.(C)®1dy,).
TGII‘I‘/(WF)gigq—ZO TEIrr’(Wp);fzéT:O

In (1.32) every 7 contributes a factor
TN, = (r) 2Z/2L

to F:v. For 7 not appearing in (1.32), we may put F;Q,T =1.

When dim 7 is even, det(r;) = 1 and when dim 7 is odd, det(r;) = —1. Hence
the S in (1.17) does not put any condition on the r, with dim 7 even. If there exists
aT e Irr(WF);f with £; > 0, then we can use Oy_(C) to make the determinant of
a product of r:’s equal to 1. From [Mou, §4.1] we know that this leaves just two
possibilities for I'yv:

o I'yv = l_I’rEIrr’(WF);’:E,—:O<r7'>7
e if G is a form of GSpiny, and £ = J[; GLy; with n; € Z>o, then

Fov = I1 (rr) < S( I1 (rs)),

TGIrr'(WF)$:€T:0,dim T even TEIrr’(WF);f:ET:O,dim 7 odd

where S denotes the subgroup of elements with determinant 1.

Conceivably our affine Hecke algebra could contain the span of I'sv as a twisted
group algebra. But here the 2-cocycle of Wyv involved in the Hecke algebra can be
computed for each 7 separately, and (r;) = Z/2Z only has trivial 2-cocycles.

Let us summarise our findings. From (1.23) we know that X*(7,v) has index
two in Z @ €. Z°", where Z¢ = X*(Tyv ). If we replace X*(Tyv) and X, (Tyv)
in Rgv by @©;Z°", we get a new root datum Rgv ger that decomposes naturally.
More precisely, the root datum Rsv ger, extended with the finite group F:V acting
on it, is a direct sum of such extended root data, where the product is indexed by
T E Irr/(WF)i U Irr(WF)g. For each such 7 the data are (with a a root of length

V2 and B a root of another length) are collected in Table 2. Recall from (1.19) that
ar is odd for 7 € Irr(WF)g; and even for 7 € Irt(Wp) .
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TABLE 2. Data from R4v for each 7

ar Q. X*(Tsvﬂ_) Rsvﬂ_ )\(Oz) )\(ﬁ) ¥ (ﬂ) F::/
1 -1 7= D, ¢ — —— Out(D.)
0o -1 z& B.. t, tr/2 tr)2 1
0 0 zZer C..  t t t 1
>1 -1 z& B., t, tr(ar+1)/2 tr(ar+1)/2 1
>1 >0 7™ B.. tr  tr(ar+apr+2)/2 t-(ar—az)/2 1
II‘I‘(WF)% 77 ABT,1 tr — — 1

Here the second, third and fourth lines can be regarded as special cases of the
fifth line. We write them down nevertheless, because they arise from different lines
in Table 1. With Table 2 and (1.23) we can finally make the affine Hecke algebra
associated in [AMS3] to s (and a parameter z € C*) explicit:

(1.33) H(sY,2) = H(Rev, A\, A*, 2) x Tyv,

where T'yv acts on H(Rsv, A, \*, z) via automorphisms of Rsv.

2. M@EGLIN’S CLASSIFICATION OF DISCRETE SERIES REPRESENTATIONS

Arthur famously proved the local Langlands correspondence for symplectic and
quasi-split (special) orthogonal groups over p-adic fields [Art]. An analogue for quasi-
split unitary groups was announced in [Mok] and proven (for all unitary groups) in
[KMSW]. As explained in [Moe4, MoRe], Arthur’s endoscopic methods can also be
applied to (special) orthogonal groups and general spin groups that are not necessar-
ily quasi-split. In principle that should yield local Langlands correspondences for all
classical groups over p-adic fields. However, not all arguments have been worked out
in detail. For classical groups over local function fields far less is known, the notable
exception being [GaVa]. We address that in Paragraph 2.1. Here we make Moeglin
's parametrization of discrete series representations [Mcel, MoTa, Moe3, Moed] more
explicit.

Let G = G, = G(F) be a symplectic group, a special orthogonal group or a
general spin group. When G is an even special orthogonal group or an even general
spin group, we denote by G the associated orthogonal or general pin group, as
in (1.1). In the other cases G means just G. Let Z(G)s be the maximal F-split
central torus in G. It is isomorphic to F'* for general spin groups and trivial in the
other cases.

We say that an irreducible smooth G-representation belongs to the discrete series
if it is square-integrable modulo centre. More explicitly, that means that 7 has a
unitary central character and its restriction to the derived group of G is square-
integrable.

The group GL,,(F) x G, is a Levi subgroup of a group G4, of the same kind
as G, but of rank m higher. There is a parabolic induction functor

x : Rep(GLy(F)) x Rep(Gy) — Rep(Gram),

which up to semisimplification does not depend on the choice of a parabolic subgroup
of Gpim with Levi factor GL,,(F) X G,. Similarly there is a parabolic induction
functor

x : Rep(GLy,(F)) x Rep(G,t) — Rep(G;t,,)-

n+m
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Let p € Irr(GLg,(F)) be unitary and supercuspidal, for some d,. For an integer
a > 1 we can form the generalized Steinberg representation 0(p, a) € Irr(GL,,(F'))
with m = d,a. Take 7 in the discrete series of G, and let v, be the character by
which Z(G)s acts on 7. One says that (p,a) lies in the Jordan block of 7 if 6(p, a) x
is irreducible but there exists a’ € a + 2Z such that §(p,a’) x 7 is reducible. We
denote the set of all such pairs (p,a) by Jord(m). That reducibility is only possible
if the nontrivial element
Sa € NGLdpa(GLdpa(F) x Gt)/(GLg,a(F) x Gf),

see (3.4), stabilizes d(p,a’) ¥ 7 up to an unramified character. That in turn implies
that the version of s, with a = 1 stabilizes p, or more explicitly

(2.1) 0= pY @y

To Jord(m) one associates a finite group Sr, the Fo-vector space with basis {z,, :
(p,a) € Jord(m)}. Via endoscopy, m determines a character e, : S — {1,—1},
see [Art, Theorem 2.2.1] and [MoRe, §2.1]. This requires a Whittaker datum for
the quasi-split inner form of G, which we will use as input. Alternatively, e, can
be defined almost entirely using parabolic induction, see [Meel, p. 147-148] or
Paragraphs 4.1-4.3.

Theorem 2.1. [Mceglin]
Let F be a p-adic field and consider w in the discrete series of G.

(a) Jord(m) has image in LG, by which we mean that the Langlands parameter of
&(p,a)EJord(w)(s(p7 CL) € II‘I‘( H GLdpa(F))

factors through “G.

(b) Jord(m) determines precisely the L-packet containing .

(¢) When G # G, the restriction of T to G is reducible if and only if d,a is even
for all (p,a) € Jord(m).

(d) Fiz a Whittaker datum for the quasi-split inner form of G. That and the above
determine an injection from the discrete series of GT to the set of pairs (Jord, €)
(up to GV -conjugacy) for which Jord has image in “G and € is G-relevant, as
explained around (1.9).

(e) m is supercuspidal if and only if Jord(w) does not have holes and e is alternated
in the sense of (1.12).

(p,a)€Jord(m)

In fact there should be a bijection in part (d), but for our purposes an injection
suffices. Theorem 2.1.a entails in particular

— \
(2.2) Z(p’a)ejord(ﬂ) dya = size of G,

where the size of an N x N-matrix is N. Parts (a) and (b) of Theorem 2.1 are in
proven in [Mce3, §2.2-2.5]. When in addition G is quasi-split, parts (c) and (d) are
shown in [Mce4, §7.1]. Theorem 2.1.c-d is stated for all our Gt in [Mae3, §2.5],
attributed to Arthur [Art]. Later this was worked out for non-quasi-split groups in
[MoRe]. We note that these sources do include surjectivity in part (d). Part (e) was
shown in [Mce3, Theorem 2.5.1].

For the main results in this paper it suffices to know that Theorem 2.1 holds for
supercuspidal representations. We point out that unfortunately the proof of those
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cases of Theorem 2.1 is not yet entirely complete (except when G has very small
rank). Arthur’s book [Art] relies on certain papers that were announced but have
not yet appeared. Meanwhile most of this has been settled in [MoWa, AGIKMS],
and it is expected that the remaining gaps in [Art] will be fixed soon. The paper
[MoRe] uses [Art], and also leaves some other details to be worked out.

On the other hand, the part of Theorem 2.1 that classifies discrete series rep-
resentations in terms of supercuspidal representations is documented much better.
Besides the above references, it is also treated in [Meel, MoTa, KiMa, Xu]. We
describe this explicitly in Paragraph 4.1.

2.1. The method of close local fields.

To goal of this paragraph is to deduce instances of Theorem 2.1 for groups over
local function fields (for which very little is in the literature) from Theorem 2.1 for
groups over p-adic fields. To this end we employ the method of close fields, a general
method to transfer statements from a group over one local field to the same group
over an another local field, provided these fields look sufficiently similar. Let F be a
local field of positive characteristic and let F’ be a local field of characteristic zero.
From the classification of classical groups we see that we can define any algebraic
group G = G, as in Section 2 simultaneously over F' and over F”.

Consider 7 in the discrete series of G(F)™. Let d be the maximum of the depths of
m and of all the p that appear in Jord(w). We denote the subcategory of Rep(G(F'))
generated by the representations of depth < d by Rep(G(F'))<4. Let F” be a p-adic
field which is sufficiently close to F', with respect to the depth D := D(p,G,d) and
the groups G, GL,,, G,, with m < 1k(G). Here F and F’ are at least D-close, but
usually a lot closer is needed.

By [Gan] the method of close fields yields canonical equivalences of categories

COFF . Rep(Gu(F))<p = Rep(Gn(F"))<p,
(2.3) O Rep(GLin(F))<p  — Rep(GLn(F")<p,
¢ Rep(Gnym(F))<p — Rep(Gnim(F'))<p,

for all m < rk(G) = n. By [Sol5, Theorem 3.5] these equivalences of categories are
compatible with normalized parabolic induction. Hence the equivalences (2.3) trans-
fer the condition that (p, a) belongs to Jord(w) into the condition that ¢St FF (1)
belongs to Jord(¢9FF (xr)). In other words, (2.3) induces an injection

(2.4) Jord(m) — Jord(¢9FF ().

Now the problem arises that Jord(w) could be too small, so that (2.4) would not be
surjective. Then (2.2) fails and Jord(m) would not yield a Langlands parameter for
G(F'). For groups over p-adic fields this used to be a difficult problem [MoTa, p.
727], which has only been solved with the endoscopic methods from [Art]. To carry
out the method of close fields completely, we need the following additional input.

Hypothesis 2.2. Fix G, a prime p and a depth d € N. There exists a bound
D(p,G,d) € Z>q such that

e for all p-adic fields F’,

e for all unitary supercuspidal representations o € Irr(G(F')) of depth < d,

e for all p € Trr(GLg,(F")) occurring in Jord(o),

the depth of p is < D(p,G,d).
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For symplectic groups and split special orthogonal groups this assumption is
known (for p > 2) from [GaVa, Lemma 8.2.3|, in the stronger form D(p, G, d) = d+1.
In fact the main results of [GaVa] imply Theorem 2.1 for these split groups, includ-
ing bijectivity in part (c). For possibly non-split classical groups (with p > 2 but
not general spin groups), it seems likely that Hypothesis 2.2 follows from [KSS].

Proposition 2.3. Fiz a prime p and a group G as before. Suppose that Hypothe-
sis 2.2 holds for all d € N. Then Theorem 2.1 holds for G(F), for any local function
field F.

Proof. Write (95 () as a subquotient of the parabolic induction of a supercuspidal
representation o X py X -+ X p,. of a Levi subgroup of G(F’)™. Since (normalized)
parabolic induction preserves depth [MoPr, Theorem 5.2], o and all the p; have
depth < d. The Jordan block of ¢9%F (7) consists of the Jordan block of o and some
pairs (p,a) where p is an unramified twist of p;. By Hypothesis 2.2 all p appearing
in Jord(¢9FF' (n)) have depth < D(p, G, d). We note that p € Irr(GL,,(F")) where
m < rk(G) by Theorem 2.1.a. Hence every such p is in the image of (Glm-FF for
the correct m. Then (¢Gm-FF)=1) Jies in Jord(r), and we can conclude that (2.4)
is in fact a bijection.

The L-parameter ¢, of any p from Jord(m) has depth < D, because the local Lang-
lands correspondence for general linear groups preserves depths [ABPS2, Proposition
4.2]. Let WY, be the r-th filtration subgroup of the absolute Galois group of F'. Re-
call from [Del, (3.5.1)] that the D-closeness of F' and F’ is reflected in a group
isomorphism

(2.5) Wp/WEt = We /WD

Composition with (2.5) transfers ¢, to a L-parameter for GLg,(F”), say ((¢,). When
F and F’ are very close (for instance 247 D-close), ((¢,) is indeed the L-parameter
of ¢Glap BN F (p) [ABPS2, Theorem 6.1]. We note that we really can chose F’ that
close to F: by [Del] such a field exists and the above works for any choice of F’ that
is D-close to F. For such an F’ composition of the L-parameter of

&(p’,a)eJord(Cg’FvF/(ﬂ))5(p,7 CL)

with (2.5) yields the L-parameter of

IZ(p,a)GJord(7r)5(:07 CL).

By Theorem 2.1.a the former parameter has image in G, hence so does the latter
parameter. We define the latter to be the L-parameter of m, like in (2.9). Then
parts (a) and (b) of Theorem 2.1 hold for G(F).

The (partially defined) character € g, r.r (v 18 transferred, via (2.4), to a (partially
defined) character ex of Sr. Moreover e is G(F)-relevant because €, r, (185G (F)-
relevant.

Suppose that two discrete series representations 7,7 of G(F)* have the same
Jordan block and the same e. Then their transfers to representations of G(F”)
also share the same Jordan block and the same e. With Theorem 2.1.d we find
COBF () = ¢9FF (7). Then (2.3) says that m = 7.

Similarly (2.3) readily shows that Theorem 2.1.d carries over from G(F') to G(F)). O
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2.2. Parametrization of essentially square-integrable representations.
From now on F' can be any non-archimedean local field, but we need Hypothesis
2.2 if F' has positive characteristic.
We note that Out(G) is trivial except for special orthogonal groups and general
spin groups associated to vector spaces of even dimension 2n. Then (for n # 2)

(2.6) Out(G) = GV /GY 22 0,(C) /S0, (C).

When G is a form of SOy, we ignore its exceptional automorphisms and instead we
use (2.6) as a definition of Out(G). In particular the two-element group (2.6) acts
naturally on Irr(G) and on ®.(G).

Theorem 2.4. Fiz a Whittaker datum for the quasi-split inner form of G.

(a) Suppose that Out(G) is trivial. There exists a canonical injection
e from the set of discrete series representations of G,
e to the set of discrete bounded parameters in ®o(G).
(b) Suppose that Out(G) is nontrivial. There exists an injection
e from the set of discrete series representations of G,
e to the set of discrete bounded parameters in ®o(G),
which intertwines the actions of Out(G). The induced injection between Out(G)-
orbits in these two setls is canonical.
(¢) The injection in parts (a) and (b) send supercuspidal unitary G-representations
to bounded cuspidal L-parameters, and non-supercuspidal representations to non-
cuspidal enhanced L-parameters.

Proof. (a) If we apply the local Langlands correspondence for GLg,(F) to a p oc-
curring in Jord(7), we obtain ¢, € Irr(Wp). The property (2.1) translates to

(2.7) Gp = by @ Gu, -
From (2.7), (1.3) and Theorem 2.1 we see that

{(¢p,a) : (p,a) € Jord(m)}
is the set of Jordan blocks of some ¢ € ®(G) with

(2.8) ¢’ Qubodp ==’ ®¢,,.

Further ¢ is unique by [GGP, Theorem 8.1], and discrete because Jord(w) does not
have multiplicities. As p (from above) was unitary supercuspidal and in particular
tempered, ¢, is bounded and therefore ¢ is also bounded.

Under the correspondence Jord(n) — Jord(¢), the group Sy becomes Sy. The set
of G-relevant characters of Sy is naturally in bijection with the set of partially defined
characters €, of S; which figures in Theorem 2.1.d. Thus we can define the required
injection by sending 7 to (¢, €) such that the local Langlands correspondence for
GL,, sends

(2.9) (Jord(m),ex) to (Jord(e),e).

(b) The proof of part (a) applies perfectly well to the disconnected reductive group
G*. It provides a canonical injection from the discrete series representations 7+ of
G™ to the pairs (¢,€) with ¢ € ®(G)/Out(G) bounded and discrete and € € S,

where qu is like Sy but computed in O, (C). We can distinguish two cases:
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Case (i): There exists (7,a) € Jord(¢) with adim7 odd.
From (1.5) we see that the group S; contains an element of Og,(C) \ SO2,(C).
Hence the preimage of ¢ in ®(G) is just one equivalence class.

By Theorem 2.1.c, 7+ € Irr(G™T) restricts to an irreducible representation m of
G. In particular 7 is stable under Out(G). Clifford theory tells us that there are
precisely two inequivalent irreducible representations of G that restrict to .

As Sd'f = F|2J0rd(¢)|, we find
ng_ = S¢ X FQ.

Hence there exist precisely two characters of S; that extend e|s,. We decree that
the bijection for the discrete series of G sends 7 to (¢, ¢s, ), that is the only natural
possibility and does not disturb the injectivity we had for G*.
Case (ii): adim7 is even for all (7,a) € Jord(¢).
Now (1.5) shows that S(;f does not contain any elements from Og,(C) \ SO2,(C),
SO 8(; = S,. By [GGP, Theorem 8.1] the preimage of ¢ in ®(GSpin(V')) consists
of two equivalence classes, say ¢’ and ¢”. Then ¢” is equivalent with Ad(h")¢’ for
some hY € 09, (C) \ SO2,(C) and Sy is canonically isomorphic with Sg.

By Theorem 2.1.c the restriction of 7 to G is reducible. By Clifford theory it
is the direct sum of two inequivalent irreducible G-representations say «’ @ 7", and
any element of G* \ G exchanges 7’ and 7.

(2.10) We choose a bijection between {(¢’,¢), (¢",€)} and {7, 7"},

and we decree that it gives two instances of the injection for the discrete series of
G. Notice that this guarantees Out(G)-equivariance on these objects.

Combining all instances, we obtain the desired injection for the discrete series of
G. Its only noncanonical parts are the choices (2.10), which become invisible when
we pass to Out(G)-orbits.

(c) This is clear from the criteria for cuspidality on page 10 and in Theorem 2.1.e. [

For the moment G is a general spin group. Since the centre of G is not com-
pact (unlike for the other groups in Section 2), we have to distinguish between
discrete series representations and essentially square-integrable representations. A
G-representation 7 is called essentially square-integrable if its restriction to Gger is
square-integrable. If m is in addition irreducible, then there exists an unramified
character x € X,,;(G) such that y ® 7w has unitary central character, that is, y ® 7
belongs to the discrete series. We can even achieve this with x a real power of the
norm character of F* 2 G/Gyer.

Recall from [Hai| that the group Xy, (G) of unramified characters of G is naturally
isomorphic with (Z(G")°17)w,, which for our G is just Z(GV)® = C*. Similarly
the group Xyn,(G) of unitary unramified characters is naturally isomorphic with the
maximal compact subgroup Z(GY)¢,, of Z(GVY)°. The group Xy, (G) acts on Irr(G)
by tensoring and the group Z(GY)IF = Z(GY) acts on ®.(G) by

z(¢, p) = (2p,9), (20)|1,-xSLa(C) = Pl1xSLa(C)5 (2¢)(Frobp) = z ¢(Frobp).
Theorem 2.5. Let G be a general spin group.

(a) The injection in Theorem 2.4.a is equivariant for the actions of Xun(G) =
Z(Gv)gpt, and by suitable choices the bijection in Theorem 2.4.b can be made
equivariant for these actions.
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(b) The injection from part (a) extends canonically to an injection
e from the set of irreducible essentially square-integrable G-representations,
o to the set of discrete parameters in ®o(G).
(¢) The injection in part (b) is equivariant for the actions of Xn(G) = Z(GV)°, and
it respects cuspidality.

Proof. (a) Let m € Irr(G) and (¢,€) € ®(G) be as in the proof of Theorem 2.4.
For x € Xunr(G), x @ 7 is of the same kind. From the natural isomorphisms

(x ®St(p,a)) X (x ® 7) = x @ (St(p,a) x 7)
we see that

Jord(x ® m) equals {(x® p,a): (p,a) € Jord(n)} =: x ® Jord(m).
The properties of €, in [Mce3, §2.5] readily imply that

exen(2x@p,a) = €x(Zp,a)-
Let ¥ € Z(G")° correspond to x via Xunr(G) = Z(GY)gpi- Then x¢ is still discrete
and bounded, while

Jord(x¢) equals {(x7,a): (7,a) € Jord(¢)} =: xJord(¢).
The action of x does not change € as character of

S¢ - ZGvder (¢) = ZGvder (>AC¢) = Sf«f"
However, the element z,, € Sy is renamed as zy,, and to account for that we
rename € to Ye.
Suppose now that m and (¢, €) are matched by Theorem 2.4, so (2.9) holds. By
the known equivariance properties of the local Langlands correspondence for GL,,,

(x ® Jord(m), €yor) is sent to  (xJord(¢), Xe).

In the setting of Theorem 2.4.a, this shows that y ® 7 is matched with (x¢, xe),
which is the desired equivariance.

In the setting of Theorem 2.4.b, only the choices in (2.10) could disturb this
equivariance for Xun(G) = Z(GY)gy. To prevent that, it suffices to make the
entirety of the choices (2.10) in an equivariant way. This can be done as follows.
Pick a set of representatives for the (¢, €) with all a dim 7 even, modulo the action of
Z(GY)2y- For each of these ¢’s we fix a choice (2.10), say (¢',€) + 7'. Then decree
that, for each x € Xunr(G), (X¢', €) is matched via x @ 7.

(b) By design, the set of essentially square-integrable irreducible G-representations

can be expressed as
(2.11) discrete series of G' X x,. (@) Xur(G)-

Similarly, it follows from [Heil, Lemma 5.1] that the set of discrete parameters in
®.(G) can be constructed as

(2.12) bounded discrete part of ®.(G) XZ(GV)%, Z(GY)°.

From (2.11), (2.12) and part (a) we deduce an injection from the set of essentially
square-integrable irreducible G-representations to the discrete part of ®.(G), which
is equivariant for X,,(G) = Z(GY)°.

(c) The actions of X,,;(G) on Irr(G) and of Z(GV)° on ®.(G) preserve cuspidality.
Combine that with Theorem 2.4.c and the construction of the injection in part
(b). O
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Now G can again be any group as in Section 2. The set of supercuspidal Bernstein
components of Irr(G) is just Irreusp(G)/Xnr(G). Recall the notion of a Bernstein
component of enhanced L-parameters from [AMS]1, §8]. By definition, the set of cus-
pidal Bernstein components of ®@(G) is ®eusp(G)/Z(GY)°. If we apply Theorems 2.4
and 2.5 to these sets, we obtain:

Corollary 2.6. Theorems 2.4 and 2.5.b induce an injection

e from the set of supercuspidal Bernstein components of Irr(G),
e to the set of cuspidal Bernstein components of ®c(G).

This injection is Out(G)-equivariant and becomes canonical if we pass to Out(G)-
orbits on both sides.

3. COMPARISON OF HECKE ALGEBRAS FOR BERNSTEIN COMPONENTS

In this section G is a general spin group. All our results are also valid for sym-
plectic groups and for (special) orthogonal groups, with slightly simpler proofs, see
[Hei2, Hei3, Heid] (on the p-adic side) and [Mou] and [AMS3, §5.3] (on the Galois
side). In [Sol4, §10] an extended affine Hecke algebra

H(s) = Endg(T,)

was attached to s, where Il is a particular progenerator of Rep(G)®. We have
II; = IglLL, where Ig is the (normalized) parabolic induction functor for P a
parabolic subgroup of G with Levi factor L. Further I, := indél(ol), with L' the
subgroup of L generated by all compact subgroups and o7 an irreducible constitutent
of Res 0. It is shown in [Ren, §V1.10.1] that II; is canonical, in the sense that

(3.1) up to isomorphism, Il; depends only on s.

We note that [Sol4, §10] is applicable because the restriction of o to L' is multiplicity-
free, which follows from the fact that £ is a direct product of reductive groups with
centre of dimension < 1. In this setup there is a natural equivalence of categories

Rep(G)® =% Mod(Endg(Ils)°P)
(3.2) T — Homg(Ils,m)
V @Fnde ) Hs ¢ vV

see [Ren, Théoreme VI.10.2]. We will explain the structure of #(s) := Endg(Ils) in
terms of the data and the presentation at the start of Paragraph 1.2. From there
we will see that it is self-opposite, and we will compare it with H(s", 2).

Before we come to that, we need to match Bernstein components for Irr(G) and
for ®.(G). Suppose that the bilinear form on V' is given by a symmetric matrix J,
such that the isotropic part is made from blocks (¢ [1)) placed in rows and columns
J,dimV + 1 —j. Let ug : G — F* be the spinor norm, so that Spin(V) = ker u¢.
The Levi subgroup L = L(F') is embedded in G = GSpin(V) via
(33 Gpn_ /F* x GLy,(F) x --+ x GL,, (F) = G/F* =2 SO(V)

(9=, 91,y 98) — (gl, ey Ok s Jg,;TJ_l, e Jg,;TJ_l)

It is difficult to write down the actual embedding . — G in such terms, to study
that the root datum from [AsSh] is more useful. The group Ngpiy(v)(L) contains
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an element that exchanges g; and J gj_Tj —! and the same time multiplies g_ with
det(g;). As automorphism of L , it is given by

(34> (g—agh cee 7gk) = (det(gj)g—7glv -y 951, jgj_Tj_lvgj—‘rlv cee 7gk)
We record that the effect of (3.4) on irreducible representations is
J,@Jl&~-&ak»—)U,@m@---&aj,l&(@/@ya_ odet) Mojp X--- Koy,

where v,_ is character by which the central subgroup F* C G,,_ acts on o_.

Further Ng(L) contains elements that act on L by permuting some type GL
factors of the same size. The group Ngpin(v)(L)/L is generated by elements of
these two kinds, and is isomorphic to a direct product of Weyl groups of type Be.
For Ng(L)/L the only difference is that the elements from (3.4) are subject to a
determinant condition if dim(V) is even. Notice that these descriptions match those
after (1.28). Thus there are canonical isomorphisms

(3.5) Ng(L)/L = Ngv(LY)/LY and Napinvy(L)/L = Nev+ (LY)/LY.

Theorem 3.1. (a) There exists a injection
e from the set of supercuspidal Bernstein components of Irr(L),
e to the set of cuspidal Bernstein components of ®o(L).
This bijection is equivariant for the natural actions of (3.5) and becomes canon-
ical if we pass to Out(G,,_)-orbits.
(b) Let L run through a set of representatives for the conjugacy classes of Levi
subgroups of G. The corresponding instances of part (a) provide an injection
e from the set of Bernstein components of Irr(G),
e to the set of Bernstein components of ®o(G).
This injection becomes canonical if we pass to Out(G)-orbits.

Proof. (a) The injection and the canonicity follow from Corollary 2.6, while the
equivariance can be seen from our explicit formulas for the actions of (3.5), namely
(1.15), (1.29) and (3.4).

(b) By definition Bernstein components of Irr(G) are parametrized by supercuspidal
Bernstein components for Levi subgroups of G. Further s;, C Irreysp(L) and sy C
Irreusp(L') give the same Bernstein component for Irr(G) if and only if s7, and sy
are G-conjugate. Analogous statements hold for Bernstein components of ®.(G)
[AMS], §8], which yields the desired bijection. By the equivariance in part (a), this
bijection does not depend on the choice of the representative Levi subgroups. O

With Theorem 2.4 we consider 0 = 7(¢q, €r) € Irteusp(L). Then s;, = Xy, (L)o is
the image of s} under Theorem 3.1.b. The injectivity and X, (L)-equivariance in
Theorem 2.5 say that this extends to an injection from sy, to /. Then the equiv-
ariance in Theorem 3.1.a guarentees that the groups W; and W,v are canonically
isomorphic.

We may assume that o has been normalized like ¢ after (1.20). Then the group
W,v can also be described as the stabilizer of

(36) g = 0O_ & gp p&ep = o_ IZ &J p]&ej

in Ng(L)/L. The stabilizer W," of ¢ in Ngpin(y)(L)/L decomposes as a direct
product of subgroups W; ,. From (3.4) we see that

o if p2 pY @ vy_ odet, then Wy , = S, = W(A,,_1),
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o if p=pY ®v,_ odet, then W, , = W (Be,) = W(C,,), which can sometimes
be interpreted better as W (De,) x Aut(Dy,).

Using Theorem 3.1, we can express the complex torus underlying H(s) as
(3.7) Ty =51, = s) =Ty,
Further, the action of W, on T can be identified with the action of W;C on Tyv.
The map x — o ® x provides a homeomorphism
Ts = X (L) / X (L, 0),
where Xy, (L,0) C Xy (L) is the stabilizer of o € Irreusp(L). Hence

* ~ 1 _
X*(Ts) = L,/L* where L, = ﬂXGan(L,U) ker x.

More explicitly, L/L' = Z x Hj 7% and
Ly /L' is the subgroup Z x H (tp,2),
J

where the first factor Z comes from Z(G)° = GL;. We recall that ¢, denotes the
torsion number of p, that is, the number of unramified characters of GLg,(F') that
stabilize p € Irr(GLg, (F')). We write the root datum for H(s) as

Rs = (257 X*(ﬂ)7 Z;/)X*(ﬂ))

As explained in [Sol4, §3], the root system X comes from the roots a € 3q(G, Z(L))
for which the so-called Harish-Chandra p-function p® has a zero on s;. Then X
consists of multiples of some elements of ¥eq(G, Z(L))Y = Xeq(GY, Z(LY)), just like
Rev in (1.27).

The group W;" acts naturally on R, and contains W (3Xs). Our choice of a Borel
subgroup BY of GV yields a system of positive roots 3F in 3. If T\ denotes the

stabilizer of X7 in W{"), then
(3.8) Wi =T x W(3s) and W, =T x W(X,).

To match this decomposition with (1.30), we need to compare the underlying root
systems. In [Sol4, §3] an element

(3.9) hl € (LyNLL)/L' C Ly/L' = X*(T%)

was associated to each o € X1eq(G, Z(L)). Here L, is the Levi subgroup of G which
contains L and the root subgroups Uy (for o/ € R(G,S) with o[y € Qo) and
whose semisimple rank is one higher than that of L. In fact (L, N LY)/L' = Z, h)
generates this group and is pinned down by the requirement vg(a(hy)) > 0. Then

(3.10) Ys = {h) : u® has a zero on 57 }.
Recall that Rgv is a disjoint union of irreducible root systems
Ry, = R(Gy . T,T) = R(Gyq,, T.T)

which are given explicitly in Table 2. Similarly, by [Hei3, Proposition 1.13], ¥ is
a disjoint union of irreducible root systems Rs ,, each one coming from the factors
GLp,; (F) of L with o; = p. By [Hei3, Proposition 1.15] (generalized to our setting)
the groups W, and I'}” decompose canonically as direct products of subgroups W;fp
and T'f .
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We fix one p and we let 7 € Irr(Wp) be its image under the local Langlands

correspondence for GLy,;(F'). By design e; = e, > 0. Recall from (1.31) and (1.32)
that ij and Fjv decompose canonically as direct products of subgroups W;Q , and

I'J,. By Theorem 3.1.a
(3.11) Wi, =Wl - forall 7 € Ir(Wp) with e, > 0.

Since Jord(o_) and Jord(¢_) correspond via the local Langlands correspondence,
¢; > 0 if and only if p appears in Jord(c_). We write

a, = max{a: (p,a) € Jord(c_)},

which equals a,. Let p’ correspond to 7’ via the local Langlands correspondence for
GLg,(F), so p' is an unramified twist of p which is not isomorphic to p, but still

0= oY @, odet.

Proposition 3.2. There is a canonical bijection Rs , — R;eq which respects posi-
tivity of roots. In particular W(Rs,) = W(R;) and T, = rl .

Proof. The proof of [Hei3, Proposition 1.13] shows that for GLg,(F)% C L the
roots o : t — titj_l with 1 < 4,5 < e,,i # j can be treated entirely like roots for
some general linear group. Hence the associated function p® has a zero on s;, and
hy € ¥s. Thus R, , always contains a root subsystem of type A, ,—1. In terms of
Rs: the corresponding part of X*(75) can be identified with (¢,Z)% and A, 1 is
embedded there as the elements by = t,o" with o € Z® of the usual form

(0,...,0,1,0,...,0,—1,0,...,0).

In view of the description of W, following (3.6), Rs,, is a Se,-stable reduced root
subsystem of BC¢,. In other words, it has type Aep_l, Be,, Ce, or D.,. We check
all the cases in Table 1.

o 7€ lir(Wpg)},0; = 0. Then p % p¥ @ v, o det and from (3.4) we see that
Ry =2 A, 1 =R,

e T C Irr(WF)if,ET > 0. Here p & pY @ v,_ odet and a; = a, > 0. Since
(p,a,) € Jord(c_), p®@| - [(@+D/2 x o_ is reducible [Mced, §3.2]. Hence the
automorphism (3.4) comes from a root « for which p® has a zero on T;. In
the picture (3.9) that becomes h) = t,o” with o a standard basis vector
of Z%. In particular Rs, has type Be,, just like R; req-

e TCE Irr(WF);JT = 0. Again p = p¥ ® v,_ o det, but now p does not occur
in Jord(o_). Still (3.4) fixes p, and by [Hei2, p. 1610] p® | - |¥/2 x o_ is
reducible. This is like the previous case, only with a, = a, = 0. Notice that
b =ap = ay =0 as well. Again we find R;, = Be,, while R, = C,.

T C Irr(WF);ﬁ,ZT = 0. Now (3.4) fixes p = p” @ v,_ o det although p does
not occur in Jord(o_). By [Hei2, p. 1610], p x o_ is reducible. By our
assumptions on o, £+ = 0, so p' x o_ is also reducible. Then the shape of
p® [Sold, (3.7)] entails that u® is constant on Ty, for « associated to (3.4).
Hence R; , does not contain short roots from B, or long roots from Ck,.

Consider a root in D, \ Ac,1, so of the form

g=(0,...,0,1,0,...,0,1,0,...,0).
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Via a suitable reflection s, with a as before, 3 is associate to a root 3’ €
Ae,—1. Since sq € W, b = ,uﬂl 0 Sq. As uﬁl has a zero on Ty, so does .
Therefore R, contains

hg =tp,8" =1,(0,...,0,1,0,...,0,1,0,...,0),
and Rs, = D, = R;.
In all cases there is indeed a natural bijection R; , — R; ;eq: the identity on all roots
except the short roots in the second case, those are multiplied by 2. The bijection

preserves positivity of roots, so it induces an isomorphism from the stabilizer F;fp C
W, of Rf, to the stabilizer I, - C W _of RF. O

Now we analyse the ¢g-parameters for H(s). In view of the shape of u® [Sol4, (3.7)
and (3.10)], the condition (3.10) on o € ¥,e4(G,Z(L)) is equivalent with g, > 1,
where ¢, comes from p® and will also be a g-parameter for #(s). The parameter
functions A, A* : ¥ — R>( and the parameters

Ala)+A* Ala)—A*
o = q% (a)+ (a))/2’ . = ql(m (a)=A*(a))/2
were computed in [Hei2, Hei3]. Although these papers were written for Sp(V') and
SO(V), the same arguments apply in our setting, that was checked in [Sol4, Sol5].
The g-parameters on R, are expressed in terms of ¢, and a,. More precisely, by
[Hei2, Proposition 3.4] the g-parameters are:

to(a,+1)/2

qif(apH)/Q and ¢, = ¢ )

o if R; , = B, and « is a short root, then g, =
e otherwise ¢, = thp and ¢}, = 1.

With qr as g-base that gives
o MNa) =ty(ap+ay +2)/2,\(a) = t,(a, —ay)/2 if a is a short root in B,
o \a) = X(a) = t, otherwise.

In the case 7,7 € Irr(WF);, by + L =0 we find gg = ¢ = q}”/2 for the short roots

h\ﬂ/ in B.,. As explained in [Sol5, proof of Theorem 4.9], we may replace h[vg by a
long root (hj)? = hy Jg of Ce,, and simultaneously put

(3.12) Gr=df  Gp=1 AB/2)=X(5/2)=1,

With that improvement, the bijection R;, — R;req in Proposition 3.2 becomes
simply the restriction of the canonical bijection X*(Ts) — X.(Tsv) to reduced roots.
That yields a canonical isomorphism of root data

Rﬁ = Rsv,reda

where the subscript red means that (for the involved non-reduced root systems BC,)
we take only the indivisible roots and the non-multipliable coroots. Comparing with
page 16, we see that the parameter functions A\, A\* for H(s) are the same as those

for H(s",z) with z = q};/ %, Thus we find a canonical isomorphism of affine Hecke
algebras

(3.13) H(Re, M, A, q) %) 2 H(Rav, M, X, ).

Here we have qll,,/ ? instead of gp because in the setup of [AMS3] the indeterminate

2% was a replacement of the usual ¢ in affine Hecke algebras.
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We recall from (1.32) that

rf, = H T
s” TGIrr(WF)$,€T:0< T>7

where 7 is the nontrivial automorphism of Ryv » = D, . With Proposition 3.2 we
deduce that
+ _

Iy = HTeIrr(WF)g,zT=0<Tp>’
where p corresponds to 7 via the local Langlands correspondence for GLgim - (F') and
r, is the nontrivial automorphism of Rs , = D, ,- For each such 7 we define J,_ as
in [Hei3, §4.6], it is unique up a factor +1. Then the arguments from [Hei3] remain
valid in our setting (see [Sol4, §10]) and they show that

(3.14) H(s) = H(Re, A, N, qi%) % T,

where T's acts on H(Rs, /\,)\*,q},,/ 2) via automorphisms of R;. We note that the

algebra on the right is canonically isomorphic to its own opposite:

H(Ra AN ) ) Te =5 (H(Re, A, g3 %) 3 T) P

T, = T f feo(Ty),we Ws.

Here T, with w € W(Rs) x I's denotes a product of a standard generator of
H(Rs, A, A, q;/z) and an element of T'.

(3.15)

Theorem 3.3. (a) There exists an algebra isomorphism

H(s) = H(s",q)”)

which extends the isomorphism O(T,) = O(Tgv) given by Theorem 2.5. This
isomorphism is canonically determined up to:
(i) the action of Out(G),
(ii) conjugation by elements of O(Ts)*,
(iii) adjusting the image of T's in H(s) by a character of T's,
(iv) Let B be a short simple root in a root system Be,, and suppose that Rs,
has type D., or that Rs, has type Be, and qg = 1. Then we may replace
1/2

sg by hysg € X*(Ts) x W (Rs) and T3, by T}’Lgsﬁ in H(Rs, A, N*, gt ") x T
(b) Composition with (3.15) yields an algebra isomorphism
H(s)P = H(s” q5”).

which is exactly as canonical as part (a).

Remarks. The condition ¢j = 1 in (iv) is equivalent with A(8) = A*(8), and also
with ¢,/ = 0,a,» = —1. Canonical choices for (iii) and (iv) will come from Propo-
sition 3.5 and Paragraph 4.3. That will render the isomorphisms in Theorem 3.3
canonical up to Out(G) and inner automorphisms.

Proof. (a) From (1.33), Theorem 2.5 and Proposition 3.2 we get an algebra isomor-
phism
(3.16) H(s' qi") = H(Ra, A A", i) 5 T

It is canonical up to the action of Out(G) on supercuspidal representations, see
Theorem 2.4. We fix a bijection s;, — s} as in Theorem 2.5, then we do not have
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to worry about Out(G) any more. We compose (3.16) with (3.14) to obtain the
isomorphism in the statement.
Any two such isomorphisms differ by an automorphism ¢ of H (R4, A\, A*, qllm/ 2) xI.

We need to investigate the possibilities for 1. Since the isomorphism
O(Tsv) = O(Ts) - 7—[(5)

has been fixed, ¢ is the identity on O(T;). Any such v extends naturally to an
automorphism ), of

(C(TS)WE ® H(Rﬁa)‘7 A*aq;‘/2) X F57
O(T:)Ws

an algebra which by [Lus3, §5] is isomorphic to C(Ts) x Ws. As 1. is the identity
on C(T;) and W, acts faithfully on T, 1), must send any w € Ws to 6,w for some
0, € C(Ts)™.

For a simple reflection s, € W(Rs) there are unique f1, fo € C(Ts) such that
T, = fi5a + fo, see [Lus3, 5.1.(a)]. Then

U(Ty,) = five(sa) + f2 = f105,50 + fo,
so by the invertibility of 1) we must have
05, € O(T)" =C* x X*(Ts).
Write 6,, = 20, with z € C* and = € X*(T;). (We write 6, to emphasize that we
regard x as an element of O(T5).) Then
1 =52 = 9e(50)? = (20:54)% = zQHIHSa(x)sa = z29m+sa(w).

Hence 2z = +1 and s,(z) = —z, which implies x € Zh). (Here we do not use (3.12),
in the sense that we do not replace B., even when that is possible.) For every
x € ZhY, f10:54 + fo satisfies the same quadratic equation as T 5., that follows from
a computation in C(7;) which uses that 6,s, is a reflection in the same direction
as Sq. On the other hand — f160,s, + f2 does not satisfy that quadratic relation, so
z =1 and

(3.17) Ve(Sa) = Onahy sa for some n, € Z.

Let of € Rgv be the coroot associated to hY € Rs. In the algebra C[Hom(ZR,v,Z) x
W (Rsv)], the element (3.17) can be rewritten as

Ve(Sa) = 0ysab_y when <y,oﬂ) = ng.

Guided by this formula we define y € Homgz(ZR,v,Z) by (y, at) = n,, for all simple
coroots af. Embed Homz(ZR,v,Z) in QR and form the lattice
X, := X*(T}) + Homz (ZRe, Z) € X*(T3) @7 Q.

Then 9. extends to the automorphism of C[X. x W(Rs)], given by conjugation
with 6,. Hence v is also conjugation with 6,, at least on H(Rs, A, )\*,q};/ 2). For
y € X*(T5) that is simply an inner automorphism, which accounts for (ii).

There are only few other possible y. For each 7 with e, > 0, we have a direct
summand

(Z°",Rs 7,257, Rgv ;) of TRy,

where R, . has type A., 1, Be, or D, . For type A. _1, Z° surjects onto
Homgz(ZRgv ,7Z). Otherwise Homy(ZRsv -, Z) is spanned by Z° and
y = (1,1,...,1)/2. Conjugation by 0, on C[Z*" x W(Be,)] sends sg to hgsg and
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fixes the other simple reflections. When Rs ; = D, , this gives an automorphism of
H(De,,q?) % (s5) and of H(s)°P.

However, when R, has type B, conjugation by 6, only extends to an auto-
morphism of H(Rs, A, )\*,qllw/Q) if qg = 1, because the g-parameters ngg of sg and
93 (q/g)_1 of thE need to be equal for such an automorphism. That gives the choices
for 1 described in (iv). Notice that this excludes the cases C._ that could arise via
(3.12).

It remains to investigate automorphisms 1 of H(Rq, A\, A*, q};/ 2) x I's that restrict
to the identity on H(Rs, A, \*, q;/Q). As above we deduce that for each v € ' there
exist z € {£1} and x € X*(Ts) such that ¥ (y) = 260,7. Just like conjugation by =,

conjugation by (7) is a product of diagram automorphisms of D._ on

Y(HRe AN qY2)) = H(Re, AN, q2).

Hence z0, must lie in the centre of H(Rs, A, \*, q},/ 2), which means that (z,af) =0

for every coroot af. Looking at the rank of R -, we see that x lives only in the Z°"
for which Rs, = A, _1. The part of = in the associated direct summand of X*(75)
is a multiple of (1,1,...,1). In particular 6, commutes with v. As v has finite order
in the finite group Ts:

1= ,yord'y — w(,)/)ord'y — (Zex,y)ord'y _ Zord'yegrd’y,yord'y _ Zord’yeord('y)z'

This implies that ord(y)xz = 0 and = = 0,9(7y) = £vy. We deduce that there exists
a character € : I's — {£1} such that ¥(y) = €(y)7.
(b) This follows from part (a) and (3.14). O

3.1. Versions for G™.
There also exists a version of Theorem 3.3 for GT. Let L1 = Zg+(Z(L£)°) be the
F-Levi subgroup of Gt with identity component £. It has the same shape:

(3.18) Lt =G} xGLy, (F) x -+ x GLy, (F).

Usually [LT : L] = [GT : G], but there are exceptions to that. Recall from (1.13)
that G,,_ C GL(V_) for some linear subspace V_ C V. If (and only if) V_ = {0},
we have G/ = G,,_ = {e} and L™ = L. This can happen for the split groups O(V)
and GSpin(V) with dim V' even, even though G+ # G for those groups.

The whole theory behind H(s", z) [AMS1, AMS2, AMS3| was written for possibly
disconnected complex reductive groups, so it applies to G*. The set of cuspidal
Bernstein components in ®,(L") is

Pousp (L) /(Z(LT)'F )Wy = Peusp(LT) /Z(L)°.

An element in there is the same as an element (¢,€) € Peusp(L)/Z(L)° together
with an extension of ¢ € Irr(Sy) to €t € Irr(S;). Let s denote the Bernstein

component determined by (¢, "), and similarly without the +. We note that there
is a canonical bijection

D (L) = B(L) : (20, €) > (20, €).
The same arguments as in Paragraph 1.2 shows that

(3.19) H(s™,2) = H(Rev, A, A5, 2) @ T
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The arguments in Paragraph 2.2 and for Theorem 3.1 lead to a canonical injection
from the set of Bernstein components of Irr(G™) to the set of Bernstein components
in ®(GT), say s +— sV, It relates to Theorem 3.1 by Resg+7 as in the proof of
Theorem 2.4. On the level of representations and enhanced L-parameters of L™, by
Theorems 2.4 and 2.5 each instance s — sV comes a bijection

(3.20) Trr(L)*E 22 Ty — Ty = B (LH)

As justified by (3.20), we will sometimes write Ty+ for Tg, or Ty+v for Tyv.

The theory used to construct and analyse H(s) is not known for arbitrary discon-
nected reductive groups. For O(V) and GPin(V) (the only disconnected instances
of GT) we can work it out by hand though. First we need a good progenerator

I, for Rep(L*)°L with s, = [L,0],. We start from II;, = ind%, (1), where L*
is the subgroup of L generated by all compact subgroups and oy is an irreducible
constituent of Resﬁl o. We distinguish two cases.

Suppose first that Out(G,,_) does not stabilize sy, or that L™ = L. Then indgr (")
is irreducible for all ¢’ € Irr(L)°L, and

(3.21) ind?" (II,,) = ind% (01) = I+

is a progenerator of Rep(LJr)ﬁJLr for the same reasons as for II;,. If L™ = L, then
clearly End + (Hﬁf) = End, (I, ). Otherwise, since L is normal in LT,

Resf indf () =1, &1 I, =1, &1l
where [ € LT\ L and s}, =1[-sy. Further, by Frobenius reciprocity

(322)  Endps(indf Tl ) 2 Homy (IT,, , indf T, ) = Homy (I, , I, &1y, ).

L

By the Bernstein decomposition of Rep(L) this equals Endy (I, ), which by (3.7) is
naturally isomorphic with O(T5).

Suppose now that Out(G,, ) stabilizes s;, and LT # L. Since Xy,(G,,_) = {1},
Out(G, ) stabilizes every o’ € Irr(L)*t. Clifford theory tells us that o extends in
two ways to a representation of L™, say ¢ and o~. For an unramified character
X € X (L) = X0 (L) we put

(cox)"=0c"@x and (0®X) =0 @Xx.
This yields two Bernstein components Irr(L*)q = X (LT)oT and Irr(L1)°L =
Xue(LT)o™, both naturally in bijection with Irr(L)2. We note that 5] and s, are in

different N+ (L)-orbits, because they are inequivalent on G and N+ (LT) /G

only adjusts Irreysp(LT) on the type GL factors of L. The Bernstein decomposition
for L™ enables us to write

. + . +
(3.23) ind?" (11, ) = I+ @1 with I+ € Rep(LT).
Then Hs{ is a progenerator of Rep(lfr)szr and its restriction to L is just ind%, (o) =

I, . All the elements of O(T}) determine L*-endomorphisms of indfil(oﬂ, SO

O(Ts) = EndL(HgL) = EndL+ (Hsz)
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In both above cases we constructed a progenerator Hﬁ of Rep(L*)sJLr, with LT-
endomorphism algebra O(T;). We define

+
M, = IS} (1),
where P is the semidirect product of L™ and the unipotent radical of P.

Proposition 3.4. The representation Il + is a canonical progenerator 0fRep(G+)5+.
Induction from G to Gt gives an injective algebra homomorphism Endg(Ils) —
Endg+ (II°7), which is bijective when Out(G, )sp = sr.

Proof. The L*-representation Hsz is canonical because in both cases (3.21) and

(3.23) it arises naturally from the L-representation Il , which we already knew is
canonical (3.1).
Suppose that Out(G,,_)sy # s, or that Lt = L. Then

(3.24) M, = IS (ind%" (Il,)) = indS" (I§(IL,,)) = indS* (T,).
Now indg+ yields an algebra homomorphism
(3.25) Endg(Il,) — Endg+ (indG 11,) = Endg+ (IL+ ),

which is injective because II; C Resg+H5+. As G is open in G, indgr preserves
projectivity. Moreover G has finite index in G, so (3.24) shows that I + is finitely
generated and projective. For any nonzero 7 € Rep(G)5+, the part of Resg+7 in
Rep(G)*® generates 7 so is nonzero. Hence

Homg+ (IL,+, 7) = Homg (Ils, 7) # 0,
which shows that II,+ generates Rep(G)*".
Next we suppose that Out(G,,_)s; = s, and LT # L. Then

(3.26) Res@ Mg+ = I(I¢ ) = IR (IL,) = 1L,
(3.27) ind%" (1) = 187 (ind}" (10,,)) = 157 (I @ indk 1, (07))
= If7 (T,y) & 157 (indf1a(07)) = Mye @ 51 (T, ).
Since s, and s; are in different N+ (LT)-orbits, sT # s~ = [LT,07]g+. By the

Bernstein decomposition Rep(GJr)ﬁJr and Rep(GT),- are orthogonal subcategories
of Rep(G™), so

(3.28) Endg+ (indS' (Ily) = Endg+ (Iy+ & 11, ) = Endgs (T4 ) ® Endgs (TT,-).
From (3.28), imdg+ and (3.26) we obtain algebra homomorphisms
(3.29) Endg(Ils) — Endg+ (Il;+) — Endg(Il,+) = Endg(1l,).
The composition of these homomorphisms is the identity and Endg+ (IL;+) is nat-
urally a subalgebra of Endg(Il;+), from which we conclude that (3.29) consists of
isomorphisms.

By the same argument as in the first part, indg+ (IL,) is finitely generated and

projective. In view of (3.27), so is its direct summand II;+. Let 7 € Rep(G™),+ be
nonzero. By (3.27)

Homg+ (I;+, 7) = Homg+ (I @ T, 7) = Homg+ (ind$ Ty, 7) = Homg (I, 7).
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As we already saw above, the right hand side is nonzero. Therefore I1,+ is indeed a
progenerator of Rep(G™),+. O

We define H(s') = Endg+ (Il,+), then Proposition 3.4 shows that there is an
equivalences of categories

~

Mod(H(st)°?) =5  Rep(G)*"

3.30 .
( ) V = V O (st) I+

Proposition 3.5. There exists an algebra isomorphism

H(s™) = H(s 0 4%) = H(Rov, M N %) 0 TE = H(sHY, g%)P.

~

It extends the isomorphism O(T;) = O(Tsv) induced by (3.20) and is canonical up
to the operations (ii), (iii), (iv) in Theorem 3.3.

Proof. With the progenerators I+ at hand, the paper [Sol4] also applies to G™.
Therefore all the arguments in Section 3 remain valid. The only difference with the
proof of Theorem 3.3 is that we do not have to replace W~ by W, any more. U

From the above proof we see that in the description of Proposition 3.5 the map
H(s) — H(sT) from Proposition 3.4 becomes just the inclusion

(3.31) H(Rav, A A, /%) % T — H(Rov, AN g 2) x T

Remark. In Proposition 4.6 we will fix choices for (iii) and (iv) from Proposition
3.5, depending only on a Whittaker datum for the quasi-split inner form of G. That
will make the isomorphisms in Proposition 3.5 canonical up to inner automorphisms.
Via (3.31), that also determines choices for (iii) and (iv) in Theorem 3.3.

Lemma 3.6. (a) Suppose that Out(G,,_)sy, = s. Then the restriction map
Rep(GH)s" — Rep(G)® is an equivalence of categories.

(b) Suppose that Out(G,_)sr # sr and that all the direct factors GL,,(F) of L have
m even. Then indg+: Rep(G)* — Rep(GT)s" is an equivalence of categories.

(¢) In the remaining cases Rep(G)® and Rep(G1)*" are not naturally equivalent.

Proof. (a) Via (3.26) and (3.31), the restriction is induced by the algebra homomor-
phism H(s) — H(sT). In Proposition 3.4 we saw that it is an isomorphism.

(b) The second condition implies that Ng+(L*)/LT = Ng(L)/L. Hence I'} = T,
which together with (3.31) means that the map H(s) — H(s") from Proposition 3.4
is an algebra isomorphism. That yields equivalences of categories

Rep(G)® <+ Mod(H(s)P) <« Mod(H(st)P) «  Rep(GT)*"
V®H(5) II;, <« Vv > VT VT ®H(S+) H5+'

By the first condition, (3.24) holds. Hence V' ®3,) Ils is mapped by (3.32) to

(3.32)

VE @pery ot = V @iy ind§ ' () = indg" (V @pye) 1)
(c) The assumption says that L has a direct factor GL,,(F") with m odd, and that
Out(G,,_)sp, = {sr,s,} with s, =1 -5, # s, for any I~ € G/ \ G,,_. Consider
an element s, € Ng+(LT) which acts in this factor GL,,(F) by g — Jg~7J~! and
on L asin (3.4). Then det(s,) = —1 because m is odd, so soL ¢ Ws. On the other
hand sol~ stabilizes 57, so sol"LT = soLT € W;. Thus W, # W,", which by
(3.31) means that the inclusion H(s) — H(s™) is not an isomorphism. O
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3.2. Langlands parameters via Hecke algebras.
Let s = [L,0]g be an inertial equivalence class for G. Recall the canonical pro-
generator Il; and the equivalence of categories

(3.33) Homg(ITs, ?) : Rep(G)® — Mod(H(5)°P) = Mod(End (ILs)°P)

from (3.2). Let us fix an isomorphism as in Theorem 3.3.a. That and (3.15) induce
equivalences of categories

(331)  Mod(M(s)*") = Mod(H(s",¢;/*)) = Mod(H(s",¢;/")).

From (3.33) and (3.34) (or (3.30) and Proposition 3.5 for G) we obtain equivalences
of categories

I

Rep(G)* Mod(?—l(sv, q},ﬂ)),

3.35
(3.35) Rep(GT)s™ = Mod(?—l(s*v,q;/z)).

It was shown in [AMS3, Theorem 3.18] that there is a canonical bijection
5\/

(3.36) e (H(sY, /%)) «— @.(G)*,

and similarly for GT. This proceeds via reduction to the graded Hecke algebras
mentioned around (1.19), which are then studied in terms of varieties of Langlands
parameters, perverse sheaves and equivariant homology [AMS2]. Disconnected com-
plex reductive groups and the associated Hecke algebras are an integral part of
[AMS2, AMS3|, and therefore (3.36) works in the same way for G* as for G. Fol-

lowing [AMS3], we denote the image of (¢, €) € Bo(G)*  under (3.36) by

M(¢,6,q)%) € Tr(H(s", q}*)).

Remark. In (3.36) € is a representation of Sy, a group in which all elements
have order at most two. Therefore ¢ may identified with its contragredient €”. By
construction [AMS2, AMS3] M (qb,e,q;/ 2) is the unique irreducible quotient of a

standard H(s", q};ﬂ)—module

(3.37) E($,¢,q)/%) = Homs, (e, E(6,q}”)).

Reinterpreting € as €', that becomes the irreducible quotient of

Homs, (€', B(, 1)) = (c ® B(¢,q1*)) ™.

This might be the most natural setup for comparison with endoscopic methods, that
is indicated for instance by [MoRe, §2] and [Kal2, Definition 2.7.6].
1/2

Let M(qﬁ,e,q}/z)"p be M(¢, ev,q};ﬂ) considered as irreducible right H(s", ¢ ")-
module via (3.15). Via Theorem 3.3.a it corresponds to an irreducible right H(s)-
module, to which we can apply (3.33).

Theorem 3.7. The maps (3.33), (3.34) and (3.36) induce a bijection

Irr(G)® +— P(G)
m(@€) = (9

It satisfies the following properties:

sv
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(a) The cuspidal support maps form a commutative diagram

Irr(G)® — o.(G)®
J Sc J Sc
Trr(L)* /Wy Peusp(L)® /WS

In particular (¢, €) is cuspidal if and only if w(¢,€) is supercuspidal.

(b) w(o,¢€) is essentially square-integrable if and only if ¢ is discrete.

(¢) w(op,¢€) is tempered if and only if ¢ is bounded.

(d) For any x € Xn:(G), corresponding to X € (Z(GV)1F°)w,., there is a canonical
isomorphism m(x¢,€) = x @ 7(p, €).

(e) The Z(G)s-character of w(¢,€) equals the character of Z(G)s determined by the
image of ¢ in ®(Z(Q)s).

(f) Suppose that Theorem 3.3 can be made canonical, up to Out(G) and inner au-
tomorphisms of the involved algebras. Then the above bijection is canonical up

to Out(G).

All the above statements also hold with Gt instead of G. Then part (f) relies on a
canonical version of Proposition 3.5, and we can omit Out(G).

\Y

Remark. Parts (b)-(e) were already predicted in [Bor, §10]. In fact Borel for-
mulated more general versions of (d) and (e), which in principle can also be checked
in our setup. We refrain from taking that up here, because it will boil down to
properties of endoscopy which fall outside the scope of this paper. The canonicity
requirements in part (f) will be established in Proposition 4.6.

Proof. (a) The central character of M (¢, e, q};/ 2) is described in [AMS3, Theorem

3.18.a]. It lies in T4v/Wev and by construction equals WyvSc(¢,€). Similarly the
central character of Homg(Ils, w(¢,€)) € Irr(H(s)°P) lies in T,/W, and by [Sol2,
Condition 4.1 and Lemma 6.1] it equals WSc(7(¢,¢€)).

(b) By [Sol2, Theorem 4.9.a] the map (3.33) respects temperedness. The equivalence
(3.34) does so as well, because by Proposition 3.2 the isomorphism in Theorem
3.3.b preserves the notion of positive roots (which determines the conditions for
temperedness, see e.g. [Sol2, p. 215]). By [AMS3, Theorem 3.18.c], under the map
(3.36) temperedness of irreducible representations corresponds to boundedness of
(enhanced) L-parameters.

(c) This is similar to part (b), now we use [Sol2, Theorem 4.9 and Proposition 4.10],
Proposition 3.2 and [AMS3, Theorem 3.18.d].

(d) This follows from [Sol2, Lemma 4.3.c] and [AMS3, Theorem 3.18.¢].

(e) First we reduce to the cuspidal case. Clearly 7(¢,€) and Sc(m(¢,€)) have the
same Z(G)-character. Recall that Z(G)s" = GV/GY e = C*. The quotient map
GV — Z(G)s" is the similitude character u, so the image of ¢ in ®(Z(G);) is g 0.
The cuspidal support map for enhanced L-parameters only changes things in GV qer
(and modifies the enhancements), so pf 0 ¢ = pf o ¢ where Sc(¢,€) = (¢e, €:). In
view of part (a), (¢, €) is the enhanced L-parameter of Sc(m(¢,€)) =: 7.

The GL-factors of LY lie in GV ger, so they are contained in the kernel of y10s. Hence
pés © ¢ depends only on the component of ¢, in Gy,_, let us call the latter ¢_. On
the other hand, Z(G)s is contained in the factor G,,_ of L, so the Z(G)s-character
of m. depends only on the component of 7. in G,,_, say m_ € Irreusp(Gr_ ).

It remains to compare the Z(G)s-character v, of m_ with p o ¢—. Those agree
by (2.8).
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(f) This holds because it can be checked at every step in the construction. The
progenerator Il and the bijections (3.33), (3.36) are always canonical, and now by
assumption (3.34) is canonical up to Out(G).

The proof for G* is basically the same. To get the bijection we use (3.30) and
Proposition 3.5 instead of (3.33) and (3.34). Although in [Sol2] the group G is
connected, the parts that we use work just as well for G*. For parts (d) and (e) it
is helpful to note that

X (G) =2 X0 (G, Z(GTY)=7Z(GY) and Z(G) =Z(G"). a

Recall from Theorem 3.1 that the map s — 5" between sets of Bernstein compo-
nents for G and GV is injective. From that, (3.35) and Theorem 3.7 we conclude:

Corollary 3.8. Let QY(G) be the image of the map from Theorem 3.1 in the set of
Bernstein components for ®.(Q), and define QY (G1) analogously. Theorem 3.1 and
(3.35) provide equivalences of categories

SVEQV(G) 5\/69\/ G)
Rep(G*) — IT Mod (H(sT, qllm/2)) - Mod( 2 H(st, qllm/2)>'
sTVeQV(GT) stV eV (GH)

For irreducible representations the equivalences of categories and (3.36) provide in-
jections, which are unions of instances of Theorem 3.7:

\%

Irr(G) — |_|5\/EQ\/(G) Do (G)*,
Ir(GY) = [givequian ®(GH)

The image of the parametrization maps in Corollary 3.8 is a union of Bernstein
components of enhanced L-parameters. Surjectivity on the cuspidal level in Theo-
rem 2.1.d would imply surjectivity in Corollary 3.8, then QV(G) would be the set
of all Bernstein components in ®¢(G). That is known when F' is a p-adic field, from
[Art] and [MoRe]. When F' is a local function field, that surjectivity has been shown
for symplectic and for split special orthogonal groups, assuming p > 2 [GaVal. By
Proposition 2.3, the Hypothesis 2.2 suffices to obtain such surjectivity.

Suppose now that M C G is a Levi subgroup which contains L. It is a direct
product of a group of the same type as G and of factors GL,,(F'), so all the previous
results apply just as well to L. Then H(sy/) = Endp(Ils,,) embeds in H(s) via
normalized parabolic induction and H(s\J(J,qF/ ) embeds naturally in H(s ,q};/ 2).
As isomorphism
(3.38) Hsa)P = H(sir,ap”)
we can simply take the restriction of H(s)°P = H(s", qllr/ 2) from Theorem 3.3.b. The
same works for M+ C G, using Paragraph 3.1. In this setting we can compare the
equivalences of categories (3.35) and their analogues for M, M ™, using normalized

parabolic 1nduct1on.

Let E(¢, ¢ qF ) be the standard H(s", qllr/2)—m0dule associated to (¢, €) in [AMS3,
§2.2 and Theorem 3.18]. By deﬁnition M (¢, e, qllp/ 2) is the unique irreducible quotient
(“Langlands quotient”) of E(¢, e, qF ) We let 7s¢(¢, €) be the image of E(¢, € qll;/Z)
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under (3.35), and we use analogous notations for G*, M, M ™, with superscripts M
or +. Let us point out that for bounded ¢ (and in fact for almost all ¢):

E($,e,q)%) = M(¢,e,q)/?) and  my(,e) = 7(6,€).

Theorem 3.9. Let (¢,eM) € ®o(M)*™ be bounded, or a twist of a bounded param-
eter by an element of Z(M") which is positive with respect to MV BY in the sense
of [AMS2, Appendix A]. Then

IﬁU (Wst(¢7 GM)) = @e Homsgf (GM; 6) & Wst((z)v 6)7

where the sum runs over all € € Irr(Sy) with Sc(¢,€) = Sc(p, €M). The same holds
for MT C GT.

1/2 sV,ap/?)
5V 1/2)

Proof. By [AMS3, Lemma 3.19.a] this holds for E(¢, ¢M, qp ") and ind: A7) We
note that the condition in [AMS3, Lemma 3.19.a] is fulfilled by [AMS2, léwrogosition
A.3] and the assumed properties of ¢. Via (3.34) and (3.38) we obtain the corre-
sponding statement for modules of H(s)°? and H(sys)°P. By [Sol2, Condition 4.1
and Lemma 6.1] the equivalences (3.33) commute with normalized parabolic induc-
tion, which enables us to transfer the statement to representations of G and M. The

same proof works for M*T C GT. O

4. COMPARISON OF LANGLANDS PARAMETERS

In this section we will compare the enhanced L-parameters for G obtained via
the endoscopic methods of Arthur and Mceeglin with the enhanced L-parameters
associated to irreducible G(F')-representations in Theorem 3.7. Although endoscopy
only seems to be available when F' is a p-adic field, in Paragraph 2.1 we showed
how the resulting parametrization can be transferred to classical groups over local
function fields. That requires Hypothesis 2.2 (which we hope to lift in the future).
Then Moeglin’s constructions to find enhanced L-parameters make sense for any
classical group over a non-archimedean local field. Since that applies to G rather
than G, we will focus on G"-representations in this paragraph.

We will compare them with our method via Hecke algebras, increasing the classes
of representations under consideration step by step. For supercuspidal representa-
tions the enhanced L-parameters in Theorem 3.7 are by definition equal to those
constructed in Theorems 2.1 and 2.4. The relation between the discrete series and
the supercuspidal representations of classical groups is due to Mceglin and Tadié
[Meel, MoTa], also proven with different methods by Kim and Matié¢ [KiMa).

4.1. Cuspidal supports of essentially square-integrable representations.

There are cuspidal support maps both for irreducible G-representations and for
®.(G). Recall from Theorem 3.7.a that these maps commute with the assignment
of enhanced L-parameters via Hecke algebras. We want to check that the same
holds for Mceglin’s parameters of discrete series representations. (Since the cuspidal
support maps commute with tensoring by unramified characters, that implies the
same statement for essentially square-integrable representations.) The initial steps
to determine the cuspidal support of (¢, €) € ®(G) are:
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e Replace (¢,€) by dlw, and (¢|si,(c),€), where ¢(SL2(C)) lies in H :=
Zer . (§(W)) and

Ss = 10(Z6v e (0)) = 70 (Z (Dls1a(c)))-
e From (o|sr,(c), €) we extract the triple

q;/2 0 11
S¢p = (Z5 0 q;l/2 , Uy = (Z) 0 1) € c Irr(ﬂo(ZH(S¢,U¢))).

Such triples can be regarded as H-valued enhanced L-parameters which are
trivial on Wy, and that provides a notion of cuspidal support for such
triples. Up to H-conjugacy the triple (sg,ug, €) contains precisely the same
information as (@|sr,(c), €)-

e The cuspidal support of (s4, ue, €), in the group H, is another triple (¢, v, €.)
with ¢ € H conjugate to sy,v € H unipotent, tot™! = 09 and € €
Irr(mo(Zp (t,v))).

e The cuspidal support of (¢,€) is an enhanced L-parameter (¢, ¢€.) recon-
1/2

structed from (¢lw ., t, v, €.), sowith ¢¢ (§ 1) = v and ¢, (w, <q’; ?/2> )=
dr
¢(w)t for any arithmetic Frobenius element w € Wg.

We work this out further for discrete enhanced L-parameters of G*. (That is a little
easier than for G, and yields basically the same information.) From (1.11) we know
that H = Zg+v,  (¢(Wr)) is a direct product of orthogonal and symplectic groups
over C. To complete the above characterization of Sc(¢,¢€), it suffices to describe
the cuspidal support for triples (s,u,¢€) in O,(C) or Sp,,(C). For that we use the
detailed analysis from [Lusl] and [Mou, §5]. Fortunately, it turns out that there are
only very few possibilities for the cuspidal supports [Lusl, §10].

Symplectic case
Take a Levi subgroup Lg = Spga41)(C) X GL1(C)»~4d+1)/2 of Sp,, (C) and let
Uuq € Spg(q4+1) be a unipotent element with Jordan blocks of sizes {2,4,...,2d}. Take
any semisimple element s € Ly with sugs™' = u?". Then 7 (Zsp%(c)(s,ud)) o Fg
with basis {29, 24, . .. 224}, and €q(22;) = (—1)7 gives a cuspidal triple (s, uq, €4)-

Given a triple (s,u, €), the only options for Sc(s,u, €) are (s, uq, €q) with d € Z>o.
We write

d’:{ d+1 ifdis even,
—d if d is odd.

In [Lusl, §12] the cuspidal support of (u,€) is computed via this number d’, which
is called the defect of (u,€). Assume for simplicity that all Jordan blocks of u have
different size i1,42,...,%, which are even (this is the case if (s,u) comes from a
discrete L-parameter). Write mo(Zsp, (c)(s,u)) = Fh with basis {z;,, zi,, . .., zi, }. If
r is even, we define a new € by adding ig = 0 with ¢/(z9) = 1, apart from that ¢ = e.
Then the advanced combinatorics in [Lusl, §11] entails that d' = ) j(—l)j e (z;) €
1+ 27Z. Hence
i1 PR e s S (=1 (ziy) it d >0,
(4.1) = { SN (St () id <0,
Orthogonal case
Take a Levi subgroup Lg = Oy2(C) x GL1 (C)™~4)/2 of 0,,(C) (so with d = n mod 2)
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and let ug € O42(C) be a unipotent element with Jordan blocks of sizes (1,3, ...,2d—
1). Let s € Ly be semisimple such that sugs™' = u%". Then mo(Zg 2©(8,uq)) = I
with basis {21, 23, ..., 22¢-1} and €4(22j—1) = (—1)7 and —¢, give two cuspidal triples
(s,uq, Te€q).

Given a triple (s,u,¢€) for O,(C), the options for Sc(s,u,¢€) are (s,uq, +€eq) with
d € Z>¢ of the same parity as n. In this case d is the defect of (u,€) [Lusl, §13].
Suppose that all Jordan blocks of u have different sizes 11,2, ...,4,, which are all
odd (as for discrete L-parameters). Then [Lusl, §13] entails that

(4.2) d=| Z e(zi,)|

By that and [AMS1], Sc(s,u,€) = (s,uq,+€) where the sign is determined by
+eq(z) = €(z) for some z € Oz(C) \ SOz (C). We embed Ogz2(C) in O,(C) so
that the subgroup O1(C) C Zg 2(@)(ud), which comes from the Jordan block of size
1, is contained in a subgroup O,m( ) C Zo,,(c)(u) which comes from a Jordan block
of size i,. Then we take z = z;, and we find (using that i,, is odd)

(4.3) +eq(z1) = €(21) = e(21)™ = €e(z,,).
This determines the sign, and thus fixes Sc(s, u, €).

Proposition 4.1. Meglin’s parametrization of the discrete series of G is com-
patible with the cuspidal support maps, in the following sense. For a discrete series
representation w € Irr(G) with Sc(w) € Irr(LT), Sc(¢r, €x) is Ng+v (LTY)-conjugate
to (¢Sc(7r)7 6Sc(7r))‘

Proof. In [Mcel] the cuspidal support of 7 is studied in relation with ¢, and e;. The
Moeglin parameter of Sc(7) is obtained via a recursive procedure, whose important
steps are mentioned on [Moeel, p. 147].

Suppose first that a,a’ € Jord,(w) are adjacent (that is, no b inbetween a and
a’ belongs to Jord,(m)) and that e-(p,a) = ex(p,a’). Then {(p,a),(p,a’)} can
be removed from Jord(r), and the new (Jord’,€’) corresponds to a discrete series
representation with the same cuspidal support as m (apart from (a + a’)d, extra
factors GL1(C) in the Levi subgroup from Sc(7)). This enables us to reduce to
the cases where €, is alternated in the sense that e(p,a) = —ez(p,a’) whenever
a,a’ € Jord,(r) are adjacent.

Suppose now that €, is alternated.

(i) If Jord,(m) consists of even numbers a and ex(p,a) = —1 for the minimal such
a, then Jord,(Sc(m)) = {2,4,...,2d} with d = |Jord,(7)| and egc(x)(p,2a) =
(“1)e.

(ii) If Jord,(m) consists of even numbers a and e, (p,a) = 1 for the minimal such a,
Jord,(Sc(m)) = {2,4,...,2d} with d = |Jord,(7)| -1 and eg.(r)(p, 2a) = (—1)*.

(iii) If Jord,(m) consists of odd numbers, then Jord,(Sc(7)) = {1,3,...,2d — 1}
where d = |Jord,(m)| and ege(x)(p, 1) = €(p,a) for the minimal a € Jord,(m).
This last property is implicit on [Moeel, p. 147], which mentions that here e
does not change if we pass from 7 to Sc(m).

If we now compute the above numbers d in terms of the original €,, we recover
precisely (4.1) and (4.2). In case (iii) we can embed O42(C) in O, (C) such that the
part Paq—1 : SLa(C) — O2,—1(C) of Jord,(Sc()) lands in the subgroup Og;,—1(C) C
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0,,(C) that contains the image of the part P;,_1 of Jord,(7). Then the aforemen-
tioned property €g(x)(p; 1) = €(p, a) becomes (4.3). O

4.2. Jordan blocks of discrete series representations.

First we check that the Jordan blocks of a discrete series representation 7 of
Gt = G} can be read off directly from the enhanced L-parameter assigned to it by
Theorem 3.7.

Lemma 4.2. Let (¢,e) € ®o(GT) be bounded and discrete, such that ww(p,€) is
defined in Theorem 3.7. Then Jord(mw(¢,€)) corresponds to Jord(¢) under the local
Langlands correspondence for general linear groups.

Proof. Let p € Ttreysp(GLg, (F)) with p = p¥ ® (4., a condition which by (2.1)
is fulfilled by all Jordan blocks of 7(¢,€). Recall that a pair (p,a) belongs to
Jord(m (¢, €)) if and only if

e §(p,a) X w(p,€) is irreducible and

e §(p,a’) x m(¢,€) is reducible for some a’ € a + 27Z.
Let 7 € Irr(Wp) be the L-parameter of p. Then 7 = 7V ® pfs o ¢ by (2.7) and
Theorem 3.7.e, as needed for Jord(¢) by (1.6). We write

V=T@P,x¢=(TOT @ ulod)®P,® 9,

where in the middle we work in GL,,(F)x G, and on the right in G, ,. Theorem 3.9
tells us that

(44) (0. ) x 7(6.€) = @), Homg (e,1) @ 725,

where the sum runs over all n € SJ with Sc(i,n) = Sc(¢,€). The groups Sg and
SJ can be compared with (1.5).
(i) When sgn(T ® P,) # sgn(G"V ger): SJ = S(; and (4.4) is always reducible.

(ii) When sgn(r ® P,) = sgn(GYger) and (7,a) € Jord(¢): again S} = S; and
(4.4) is reducible.

(iii) When sgn(t ®@ P,) = sgn(GVger) and (7,a) ¢ Jord(¢): SJ = S; x {1,274}
Then Sc(v, ) = Sc(¢, €) for every extension 1 of € to S, because 7® P, occurs
with even multiplicity in v and hence does not influence the cuspidal support.
In this case (4.4) is a direct sum of two inequivalent irreducible representations.

We compare this with the aforementioned characterization of Jord(mw(¢,€)). The
reducibility of d(p,a’) x 7(¢, €) rules out case (i), and §(p, a) x 7(¢, €) is reducible in
case (ii) but not in case (iii). We conclude that (p,a) € Jord(w(¢,¢€)) if and only if

(1,a) € Jord(¢). O

Recall that the parametrization of the discrete series in Theorem 2.1 involves the
Jordan blocks of ¢ and a character €, : Sy — {£1}. To facilitate a comparison with
our Hecke algebra methods, we revisit Meeglin’s construction of €, [Moel] and we
show that it shares some properties with the constructions behind Theorem 3.7.

Let (¢,€) € ®o(GH)*" be discrete and bounded, and let 7(¢, ) be the discrete
series representation of GT = G, associated to it by Theorem 3.7. Recall that SJ
is the Fa-vector space with basis {z;, : (7,a) € Jord(¢)}. For such a 7 we let p be
the corresponding representation of GLg4,(F) and we write €(2,4) = €(2r,4). Here
we use that by Lemma 4.2 the Jordan blocks of ¢ and of 7(¢, €) are matched via the
local Langlands correspondence for general linear groups.
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Proposition 4.3. Let a > a' € Jord,(7(¢,¢€)) be adjacent.

(a) €(2pa) = €(2par) if and only if w(¢, €) embeds in 6(p, (a—1)/2,(1—a’)/2) x T for
some discrete series representation 7 of G:—dp(a+a’)/2' Moreover, in this case

Jord(7) = Jord(x(d, ) \ {(p, 0), (0, ")}

and @ = w(¢, ) where € = 6"9«%'

(b) Suppose that a_ is the minimal element of Jord,(¢) and that it is even. Then
part (a) also holds with a = a_, o' =0, provided we put €(z,0) = 1.

Proof. (a) Suppose that 7(¢, €) is a subrepresentation of §(p, (a—1)/2, (1—a’)/2) X 7.

We write M = GLg,(a1a)/2 X Gn—d,(ata’)/2, SO that MU is a parabolic subgroup

of G, with Levi factor M. From Theorem 3.7 we get ™ = 71'((;;, €) for some discrete
bounded ¢ € ®(M ™). The L-parameter of

3(p(a=1)/2,(1=d")/2) is 7® Plapap®|- [/,
and | - ](“_“/)/ 4 is in positive position with respect to M+TU. Thus Theorem 3.9 is
applicable, and it says that
- + a—a' ~
8(p, (a—1)/2,(1 = d)/2) x & = I ;7 (T @ Plasaryp @ | - 7% x 4,€)
= @E’ Homsgﬁ (g, 6/) X 7T(P(a+a/)/2 X | . ’(a—a’)/4 % Q’;, 6/),
where the sum runs over all € € Irr(S;r) with
Sc(g, €) = sC(T ® Platay2 ® | - |(a_a/)/4 X &, €/>'

It follows that ¢ is G™V-conjugate to Platary2®| |(@=a")/4 % § and that H0m5£/1+ (€ €)
is nonzero. We deduce that
(4.5) 8;’ = Sg X (27,0, 2r.a)

and that € = €| g+. Our assumption entails that 7(¢, €) and 6(p, (a—1)/2, (1—a’)/2) x
é

7 have the same cuspidal support. Now Theorem 3.7.a and the formulas (4.1) and
(4.2) for the cuspidal support of enhanced L-parameters show that €(z,4) = €(2,q/)-

Conversely, suppose that €(z,,) = €(z,q). Write ¢ as L-parameter ¢, X ¢
for M. Then (4.5) holds and we can take é = €|g+. The L-parameter ¢, q €
é

®(GL(q4ary/2(F)) is discrete and its cuspidal support consists of terms 7| - |" with
r € R. Hence ¢y =T ® Plyiq)2 ® || for some r € R. Embedding in ®(G,) and
comparing with the shape of ¢ we find

(46) P(a+a’)/2 ® | ’ |T @ P(a+a’)/2 ® | ’ |_T =Py ® Pu,

or at least up to conjugation in GL,. 4 (C). That entails r = (a — a’) /4, from which
we deduce that

7(Gaa) = 3(p, (a+d)/2) @ || = 5(p, (a —1)/2,(1 = d)/2).
By Theorem 3.9

+

(4.7) ISy (8(p, (a—1)/2,(1 —a')/2) K m (¢, €)) = EB Homgy+ () @m(d,€),
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where the sum runs over all € € Irr(S;”) with

Sc(g,€) = Sc(gbaﬂ/ X &, €). = Sc(¢, €).
We note that in (4.7) we may use irreducible representations instead of the standard
modules from Theorem 3.9, because the latter are irreducible (since ¢ and ¢ are
bounded and ¢, o is a twist of a discrete parameter by an unramified character).
To get a nonzero contribution to (4.7), €'|g+ must equal € = ¢[g+. Then we see

from (4.1) and (4.2) that €(2,4) = €(2,). In other words, the only nontrivial
contributions to (4.7) come from e and one other ¢, and it reduces to

(48)  Ifym(3(p,(a—1)/2,(1 - a')/2) R 7($,8)) = m(6,€) & (o, €).
In particular m(¢, €) embeds in the left hand side of (4.8), which can be written as

5(p, (@ = 1)/2,(1 = a')/2) x 7(3,8).
As qz is discrete and bounded, Theorem 3.7.b,c guarantees that 77(&, €) belongs to
the discrete series.
That proves the equivalence. The description of Jord(7) occurs at various places
in the above arguments, it is seen most clearly from (4.6).
(b) This can be shown in the same way as part (a). Notice that a_ needs to be even
to make sense of the SLa(C)-representation P,_ /. O

It was shown in [Moel, Proposition 5.3 and Lemme 5.4] that the Moeglin para-
meters of discrete series representations also satisfy Proposition 4.3.

Next we zoom in on a particular class defined in [Mcel, §1], completely positive
discrete series representations. By [Mcel, Proposition 5.3], among the discrete series
these are precisely the w for which ¢, is alternated:

(4.9) €(2p.a) = —€(2,4) for adjacent a,a’ € Jord, ().

A few useful properties of such representations follow directly from our description
of the cuspidal support maps.

Corollary 4.4. Let w be a completely positive discrete series representation of G .

(a) 7 is uniquely determined by Jord(m) and Sc(rw).
(b) Jord,(m) # 0 if and only if Jord,(Sc(m)) # 0.

Proof. (a) Under the condition (4.9) we see from (4.1), (4.2) and (4.3) that e, is
uniquely determined by ¢, and Sc(¢r, €x). Combining that with Theorem 2.1 and
Proposition 4.1, we see that 7 is uniquely determined by Jord(w) and Sc(r).

(b) This follows from (4.1) and (4.2): under the condition (4.9) these numbers d
cannot be 0. U

Lemma 4.5. Let ™ be a completely positive discrete series representation of GT
and let (¢, €x) be its Maeglin parameter. Then the G -representation ' attached
to (¢r,€x) by Theorem 3.7 is isomorphic to 7.

Proof. By Theorem 3.7.b,c 7’ is discrete series and from Lemma 4.2 we know that
Jord(n") and Jord(m) both correspond to Jord(¢r), so m and 7" have precisely the
same Jordan blocks. By Theorem 3.7.a and Proposition 4.1 both Sc(7) and Sc(n’)
have enhanced L-parameter Sc(¢r, €r), so Sc(m) = Sc(n’).

By (4.9) and Proposition 4.3.a 7’ cannot be embedded in §(p, (a—1)/2, (1—a’)/2) x7
for adjacent a > o’ € Jord,(m) = Jord, (') and a discrete series representation 7.
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Then [Mcel, §5] entails that 7’ is a completely positive discrete series representation.
Now Corollary 4.4.a shows that = = 7. O

4.3. Intertwining operators for discrete series representations.

For general discrete series representations 7, Proposition 4.3 achieves a kind of
reduction to the completely positive instances without changing cuspidal supports.
Indeed, when 7 is not completely positive, Proposition 4.3 allows us to replace it
by 7, to which we can apply the same considerations. By recursion that yields a
completely positive discrete series representation that we denote 7. In the process
some direct factors of Sy are removed, so we lose information about €,. Most values
of €, can be reconstructed from data for 7™, but not all. For the missing ones we
will need to study certain normalized intertwining operators.

Suppose that (p,a) € Jord(w) with a odd and that Jord,(7™) is empty. Such
p provide the only parts of e; that cannot be recovered from e,+. We note the
L-parameters of such p are precisely the 7 € Irr(Wp);g for which /; =0 < e,.

By Corollary 4.4.b we may equally well assume that Jord,(Sc()) is empty. Then
Proposition 4.3 leaves two possibilities for e, on Jord,(), distinguished by € (2,_)
where a_ = min(Jord,(n)). The characterization of €;(z,4_) € {£1} from [Mcel,
§6.1.1] involves several steps, which we recall next. Write

Se(m) = X ---RogRo_ € Irr(LT),

where o; € Irr(GLy,,(F)) and o € Irr(G;} ). Then o_ is the partial cuspidal support
of 7, as used in [Mcel, (1)]. There is a holomorphic family of intertwining operators

b

(4.10) J(sg,p’ x a_) € HomGL (p’ xo_,prtxo_),

+dp
where b € C and v(g) = |det(g)|7. This family can be normalized via a choice of

an intertwining operator in the case b = 0, an element

(4.11) J(sg,pxo_)€End+ (pxo_).

n,-{—dp

There are two possibilities which square to the identity, we choose the one from
[Mcel, §6.1.2] and [Art, §2.4], which is determined by compatibility with endoscopy
and depends on a Whittaker datum for the quasi-split inner form of G.

Remark. The normalization of the operators (4.11) will make Theorem 3.3 and
Proposition 3.5 canonical (up to inner automorphisms).

From (4.10) one obtains a family of intertwining operators
(4.12)  J(sp x sg, pv* x o2 x o) P x pr?? x o = pr x prT2 x o,

which reduces to (4.10) (tensored with the identity on one of the pr*) upon applying
normalized Jacquet restriction. The same works with more factors pr?.

In GLag, (F), the element s12 that exchanges the two blocks of GLg, (F') x GLg, (F)
induces an intertwining operator
(4.13) J(s12, o/ x pp*? x 0_) € Hom,,+ (' x pv®2 x o, pv®2 x pr?t x o),

n_+2dp

where b1, b2 € C. We normalize it so that it depends holomorphically on by — by and
becomes the identity when b; = bs.
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Let e € N be odd and let by, ba,...,b_1)/2 € C. The order two permutation

we := (s8,58,...,58)0(le)(2e—1)---((e—1)/2 (e+3)/2)
belongs to the Weyl group W (B,). The composition of the corresponding operators
(4.12) and (4.13) yields an intertwining operator

(4.14) J(we, prPt X -+ x prPe/2 x p x pre1/2 ) ox prT X o),

from the indicated G:ﬁ te dp—representation to itself. The upshot of [Mcel, p. 176] is
that the holomorphic family (with variables b;) of intertwining operators (4.14) can
be normalized so that each operator (4.14) squares to the identity and they reduce
to (4.12) in the special case b; = 0 for all 7. All these intertwining operators are
unique up to scalars, so our conditions leave just the choice of a sign, which in turn
is determined by J(sg,p x 0_).
Pick a € Jord,(m) \ {a—} with €(z,.4) = €(2,4_), and embed 7 in
o

(4.15) 0(p,(a—1)/2,(1—a_)/2) x C O(p,(a—1)/2,(14+a—)/2) x(p,a_) xT

for a discrete series representation 7 of G:ﬁ (ata_)/2" Embed the right hand side in

(4.16) 5(p,(a—1)/2,(1+a-)/2) x Ind Sc(d(p,a—)) x Ind Sc(7),

where Ind stands for normalized parabolic induction. We note that o_ is a factor
of Sc(7) and that

1

Ind Sc(d(p,a—)) = pr*"D/2 x - x pr x px prt x - ox ppltTa)/2

I

which fits with (4.14). Then (4.14) and the identity on the other factors of (4.16)
induce a self-intertwining operator of (4.16). That operator can be restricted to
(4.15) and thus yields a normalized intertwining operator

N(p,a-) € Endg+ (6(p, (a —1)/2, (1 +a-)/2) x §(p,a_) x 7).
Then €x(z,q_) is the scalar by which N(p,a_) acts on 7, or equivalently
(4.17) 7 is fixed pointwise by ex(2pa_ )N (p,a—).

We emphasize that the one choice of J(sg,p x 0_) determines a normalization for
(potentially) many instances of (4.17).

In the Hecke algebras H(s", qllm/ 2) and H(sTV, q},/ 2) we also have intertwining op-
erators, they come from the underlying geometric setup [AMS2]. In the general
setting of Theorem 3.7, the way an enhancement € of ¢ helps to find the irreducible
representation 7(¢,€) is by applying Homs,(¢,?) to a standard module 7(¢,s")
constructed from ¢ and the cuspidal support.

In the case at hand, for 7 = 7(¢, €) we have

Homg (6,7(6,5™) = d(p, (a = 1)/2,(1 = a-)/2) x &

where Sg comes from 7. When 7 is the L-parameter of p, the geometric setup

provides a canonical action of {1, 2, ,_} on this representation, by a G*-intertwining
operator that we denote N(7,a_). That means

T =m(p,€) = HomS;-(e,W(¢,5+V)) = Homg, , y(€,6(p,(a—1)/2,(1 —a-)/2) x 7)
(4.18) = {fixed points of €(z; 4~ )N(7,a_) in §(p, (a —1)/2,(1 —a_)/2) x 7}.
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In contrast with J(sg,p x 0_), these intertwining operators for Hecke algebra rep-
resentations do not have to be normalized, they arise naturally. The only freedom
we have is that from Theorem 3.3, which we will use next. Let J(sg, 7 x ¢_) be
the canonical intertwining operator associated to sg and the Hecke algebra repre-
sentation corresponding to p x o_ via Proposition 3.5. (We suppress ¢, from this
notation.)

Proposition 4.6. Let s = [L* 0]|q+ be an arbitrary inertial equivalence class
for G*. Fix a Whittaker datum for the quasi-split inner form of G, so that the
intertwining operators (4.11) are determined.

The isomorphism H(st)P = H(s*v,q};ﬂ) from Proposition 3.5 can be chosen
such that the following holds. For every T € Irr(WF)(;o with e, > 0 = £, the
intertwining operators J(sg, T x ¢_) and J(sg,px o_) from (4.11) agree via the ap-
propriate equivalences of categories from (3.35) induced by the chosen Hecke algebra
isomorphism.

A Hecke algebra isomorphism with these properties is canonical up to conjugation
by elements of O(Ts4)™

Proof. Let p' be an unramified twist of p such that o' = pV @ vy and p ¥ p. Be-
cause p' influences the structure of H (s, qllp/ 2) in the part coming from the same
irreducible root system as p, we have to consider p and p’ simultaneously. Let 7 and

7/ be the L-parameters of respectively p and p'.

The case /., > 0.
1/2

From (1.14) we know that the relevant tensor factor of H(Rsv der, A, A*, ¢ ) X Fjv is
an affine Hecke algebra #,, with underlying root datum (Zep’,Bep,,ZeP’ ,Ce ,). The

o
base point of Tyv , for H, comes from p’, and pgep’ is related to this basepoint by

an order two element of the associated complex torus. The condition e, > 0 = £,
entails that /, = 0,a, = —1 and qg = 1 for the short roots 3 of B,,.

Then Proposition 3.5 allows us to replace sg by hr\ésﬁg in the isomorphism

H(s)P = H(sTY, q;/Q).
The representation p x o_ does not appear directly in this framework, but it does so
via a short detour. Pick x € Irr(Z%’) such that the values y; := x(e;) € C* are in
generic position, except that Xe,, = —L. We identify x; with an unramified character

H
P C
X

of GLg,(F), unique up to Xu(GLg,(F),p). The H,-representation indC[ZeP’]

corresponds to
(4.19) Proxt X xp @xe,—1xXpxo_.

The decomposition of this representation in irreducibles is governed by the compo-
nent group S, of the L-parameter, which in this case is just (sg), acting on the last
coordinate.

Things become more transparent if we complete the centre of H, at its maximal
ideal associated to W (B,)x, as in [Lus3, §7]. That also gives a completion of H .
Recall [Lus3, 10.3.(a)] that such a completion functor does not change the category
of modules which admit the central character W (Be,)x. By [Lus3, Theorem 8.6],
this completion of H, is Morita equivalent with the completion (also determined
by x) of the simpler extended affine Hecke algebra C[Z°'] x Sy. Moreover, by
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[Soll, Theorem 2.1.2.c] this gives rise to a natural equivalence between the category
of C[Z%'] x S,-modules with central character x and the category of H,-modules
with central character W(Be,)x. Via that equivalence, our induced representation
becomes

CIZ"#" ]x(sp)

(4.20) indc[zep’]

Cy.
Since X(h/\é) = —1, the automorphism which exchanges sz and hI\B/SB affects the

action of sg on (4.20) by multiplication with -1. As a consequence the canonical
H

intertwining operator from sz on (4.20), or equivalently on ind C[”Z ep,}(CX or (4.19), is
adjusted by a factor by —1 by the replacement sg — th@.
The intertwining operator on (4.20) associated with sg is induced by the inter-

twining operator from sg on the representation

- ClZ1x(sp)

de[Z] C_4
of the smaller algebra C[Z] x (sg). By [Lus3, Theorem 8.6] and [Soll, Theorem 2.1.2]
the completion of that algebra (with respect to the central character (sg)(—1) = —1)
is naturally isomorphic to the completion (also with respect to the central character

-1) of H(s'Y, q},/Q), where (T X ¢_,€,_) € (I)(G:_erp
operator for sz on (4.20) is related to the intertwining operator J(sg, T x ¢_), and
multiplying the former by —1 entails that the latter is also multiplied by —1.

As J(sg,px o_) is a priori unique up to a factor —1, it follows that we can match

it with J(sg, 7 x ¢_) under the appropriate Hecke algebra isomorphism by making
the (unique) correct choice for the image of Ty, € H(sT", q}/Q) in H(st)oP.

)* . In this way the intertwining

The case /.» = 0.
Here we need to take both J(sg, 7 x 0_) and J(sg, 7 x o_) into account. The

relevant tensor factor of H(Rsv der, A, A, q};/ 2) X F:v is of the form

H, = H(Rp,,q}*) x Out(D,,),

where Rp,, = (Z™,Dp,,Z™, Dy,). As basepoint of the underlying torus we take
P2 . We can modify the isomorphism H(s)°P = H(stV, qllp/ %) in four ways on this

tensor factor. Namely, write Out(De,) = (sg) with § a short root in Be, D De,. As

the image of sg € H(5+v,q;/2) in H(s7)°P we may take —sg, hysg, —hgss or sg.

Like in the previous case, we can study the representations of H, induced from
characters x of Z°. We pick the first e, — 1 coordinates of x generically in C*, and
take xe, = 1. That corresponds to

PROXLX X PR Xe,—1XpRELX0,

where p®1 = p and p® —1 = p’. We can complete H, with respect to the maximal
ideal of Z(H,) associated to W (B.,)x. By [Lus3, Theorem 8.6] that the completion
is Morita equivalent to the completion (with respect to the central character (sg)x =
x) of the simpler extended affine Hecke algebra C[Z®'] x (s3). Moreover [Soll,
Theorem 2.1.2.c| provides a natural equivalence between the modules with central
character W (Be,)x or x of these two algebras. Thus we transfer the issue to modules
for C[Z%'] x (sg).
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When x., = 1, the intertwining operator for sg on

(4.21) indg (7., “*7'C,

is induced from the intertwining operator on indg[?x@i >(C1. The completion (with

respect to the central character x) of the algebra C[Z] % (sg) is naturally isomorphic
to the completion (with respect to the central character 1, which corresponds to the
basepoint 7) of the affine Hecke algebra for the Bernstein component containing (7 x
¢—,0_). Thus the intertwining operator on (4.21) is essentially J(sg, 7 x ¢_). Via an
instance of (3.35) for a Bernstein component of Irr(G;F n dp), the latter corresponds

to £.J(sg, p x o_). Possibly adjusting the isomorphism H(sT)P = H(sHV, q;/Q

that sg goes to —sg, we can match J(sg, 7 x ¢_) and J(sg,p X 0_).

) so

When x., = —1, the situation is similar, but now (4.21) is induced from
indCLE (s >(C_1, which comes from (77 X ¢_,€e,_). Here the intertwining operator

Cizj
from sz on (4.21) is essentially J(sg, 7" x ¢_). Via the same instance of (3.35) as
above, this operator corresponds to £J(sg, p’ X o). We can still adjust the isomor-
phism H(s1)°P = H (st qllm/ 2) by composition with the automorphism that sends sg
to thﬁ. That multiplies J(sg, 7/ X ¢_) with -1, while perserving J(sg, 7x¢_). Thus,
by a suitable choice we can arrange that J(sg, 7’ x ¢_) corresponds to J(sg, p' xo_),
without disturbing the previous normalization. In total we have a unique choice (out
of four) for the image of sg under the algebra isomorphism, such that both relevant

pairs of intertwining operators match up.

With the above choices, for ¢,» > 0 and for all relevant p, we managed to fulfill
the conditions imposed in the statement. To this end we exploited the freedom
provided by the operations (iii) and (iv) in Theorem 3.3 and Proposition 3.5, and
we fixed choices for all instances of (iii) and (iv). These are canonical because the
intertwining operators (4.11) are determined by the Whittaker datum for the quasi-
split inner form of G, which is part of our input. In view of Proposition 3.5, this
renders our Hecke algebra isomorphism canonical up to conjugation by elements of
O(T+)™. O

Applying Proposition 4.6, we can match many more intertwining operators be-
tween G T -representations with intertwining operators between H (s, qllr/ %)-modules.

Lemma 4.7. Choose an isomorphism H(s1)P = H (s, q;/z) as in Proposition 4.6.

For every discrete series representation m € Irr(GT)*" and every (p,a_) € Jord(r)
with a_ minimal and odd and Jord,(Sc(m)) empty, the intertwining operators N(p,a—)
and N(1,a_) from (4.17) and (4.18) coincide on the representation

d(p,(a—1)/2,(1 —a_)/2) x 7 from (4.15).

Proof. After (4.11) we described how J(sg, p x 0_) determines N(p,a—). By Propo-
sition 4.6, J(sg, p x o_) corresponds to J(sg, T X ¢_), so it remains to check that
the latter determines N(7,a_) in the same way.

The constructions around (4.15) and (4.16) work analogously for modules of Hecke
algebras, which reduces our task to comparing

(4.22) J(we, prPt x -+ x prPer2 5 p x pr7Ue1/2 x o oox prT X o)
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from (4.14) with its version for the appropriate Hecke algebra H(s Y, qllp/ 2). Recall
that v* € X,:(GLg, (F)) corresponds to the central element ¢4 € GLg,(C), and then
pv? corresponds to q%T. In the geometric setup from [AMS2], given w, there is a
canonical intertwining operator

(4.23) J(w indH(slv’qllw/Q)ﬂ( b oo ED2 s g X ¢ )
' € O(Tsl\/) qFT qF T T qF T — €o_ 9

from the indicated module to itself. (Here the symbols x refer to an L-parameter
with values in a direct product of groups, not to parabolic induction.) This operator
has order 2, and it comes as a member of an algebraic family parametrized by b; € R.
When all b; are equal to 0, the permutation (1 e)(2e—1)---((e—1)/2 (e+3)/2) lies
in the connected component of the centralizer group of the L-parameter in (4.23),
and the canonical intertwining operator associated to that permutation is just the
identity. Hence for b; = 0 the operator (4.23) reduces to

v 1/2

(4.24) J<85 X -ee X 85,indgg;/;qf )7'((7' X oo X T X ¢_,607)>.

This operator is induced by J(sg, T x ¢_) on each of the e = e, coordinates, in
the following sense. Upon completion of ’H(slv,qllr/ 2) with respect to the central
character associated to 7 X -+ x 7 x ¢_ (like in the proof of Proposition 4.6) we
obtain an e-fold tensor product of modules

. ClZIx(s
1nd(c% < 5>7T(T X ¢p_).

Then (4.24) can be identified with the e-fold tensor product of the operators J(sg, 7 x
¢—_) on these modules. This is the same procedure as in (4.12), so Proposition 4.6
guarantees that (4.24) agrees with (4.12) for b; = 0 and the correct number of
factors. Since all instances of (4.23) square to the identity and they are part of
a continuous family, all these instances are fixed when we know (4.24). That is
completely analogous to the situation in (4.14). Therefore (4.22) and (4.23) agree
via a Hecke algebra isomorphism as in Proposition 4.6. (]

After all these preparations, we are ready to compare the two parametrizations
of arbitrary discrete series representations of G™T.

Proposition 4.8. Choose a Hecke algebra isomorphism H(s1)P = 7—[(5+v,q11;/2)

as in Proposition 4.6. Let (¢,€) € ®(GT)" be discrete and let m € Irr(GT) be
associated with (¢, €) by Theorems 2.1 and 2.5. Then 7(¢,¢€) is isomorphic to 7.

Proof. Write ¢ as zg¢p, with z4 € Z(GY) and ¢, € ®(G) bounded and discrete. Let
X¢ € Xnr(GT) correspond to z,. By Theorem 2.5 m = x4 ® m, where m, corresponds
to (¢p, €). On the other hand Theorem 3.7.d says that

7T(¢a 6) = 7T(2¢¢b7 6) = X¢ ® 7T(¢b7 6)'

Therefore it suffices to prove the proposition under the additional assumption that
¢ is bounded.
Applying Proposition 4.3 repeatedly, we find that 7(¢, €) embeds in

(4.25) [T, 80 (= 1/2.(1 - )/2) x x(6.2).
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where Jord(¢) C Jord(¢) and € = €|¢+ is alternated in the sense of (4.9). Here the
é

product runs over some triples with €(z,,) = €(2,,4/), not necessarily all such triples.
Similarly, by [Moeel, §5] m embeds in

(4.26) Hpva,a, 5(p.(a—1)/2,(1—d)/2) x &

with Jord(7) C Jord(m) and €z = €| ¢+ alternated. By Lemma 4.5 both (¢, €) and

7 are completely positive discrete series representations. Further 7 and 7r(q~5, €) have
the same Jordan blocks, because both are obtained from Jord(w) = Jord(w (¢, €)) by
removing the pairs (p,a), (p,a’) that appear in the product. By Theorem 3.7.a and
Proposition 4.1, m(¢,€) and 7 have the same supercuspidal support. From (4.25)
and (4.26) we see that W(é, €) and 7 also have the same supercuspidal support. With
Corollary 4.4 we deduce that 7 = 7(, €).

Thus both (¢, €) and 7 are subrepresentations of (4.25), which is isomorphic to
(4.26). By Theorem 3.9, (4.25) is a direct sum of precisely [Sy : S q;]l/ 2 subrepre-
sentations, which are mutually inequivalent. Every factor §(p, (a —1)/2,(1 —a’)/2)
doubles the number of constituents, because

(4.27) 8(p, (a—1)/2,(1 —a')/2) x 7(6,€)

has length two. We can distinguish three classes of p’s:

Case (i). When Jord,(7) is nonempty, Proposition 4.3.a determines which sum-
mands must be picked to get m. (This works also for Moeeglin’s parametrization,
by [Mcel, §5].) Namely, start with (p,b) € Jord(7) and an adjacent (p,a) €
Jord(m) \ Jord(w). Then Proposition 4.3.a imposes a condition (recall that e was
given). Next, take (p,a’) € Jord(w) \ Jord(7) adjacent to (p,a). Of the two choices
for a subrepresentation of (4.27), one fulfills the previous condition and one does
not (that is another consequence of Proposition 4.3.a). Proceeding in this way, now
with ¢ \ {(p,a),(p,a’)} in the role of ®, we discover step by step how to pick the
right constituent of

(4.28) 5(p, (a” —1)/2, (1 - a”)/2) x 7(3,¢)

for other a”,a” € Jord(w) \ Jord(7) as well.
Case (ii). Suppose that Jord,(7) is empty and that Jord,(m) consists of even
numbers. In this case we may take a’ = 0, set €(p,0) = 1 and use Proposition 4.3.b.
As in the previous case, € determines which constituents of (4.27) and (4.5) must
chosen to enable an embedding of .
Case (iii). Suppose that Jord,(7) is empty and that Jord,(m) consists of odd
numbers. By Proposition 4.6 and Lemma 4.7, our two parametrizations involve
the same constituent of 6(p, (b —1)/2, (1 — a_)/2) x 7(¢,€), where b is the smallest
a € Jord,(m) \ {a—} such that €(z,,) = €(z,4_). Once we know that, the method
from the previous cases tells us which constituent of (4.28) we have to take, for any
adjacent a”,a” € Jord,(r).

Hence 7 and 7(¢, €) are obtained from (4.25) by taking the same constituents of
(4.28) in all cases, so m = (¢, €). O

4.4. Tempered representations.
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Consider a bounded L-parameter ¢ € ®(G). Recall from (1.4) and (1.5) that we
can decompose (¢, C?") as

(4.29) @weli Ny ®Vy® @welo Ny ® (Vy & V),

where Ny, is a multiplicity space and Vd\}/ is endowed with the representation 9V ®
pé o ¢. There exists a Levi subgroup L of G, unique up to conjugation, such that ¢
factors through ®(L) and defines a discrete L-parameter for L. Every factor GL,, (F')
of L appears in G as

{(A,B) € GL,,,(F) x GL,,,(F) : B=JA T}

The same goes for LY and GV. Hence every ) € IT which appears with multiplicity
p in ¢lgr,, (c), accounts for multiplicity 2u in (4.29). In view of (1.7), the part of ¢
with image in the factor G of L is precisely [ [, ¢ +.qim Nyoda ¥ while the part of
¢ in the type GL factors of LV is

@weli |dim(N,)/2|¢ @ EB , dim(Ny)ep.

For 1 € I this involves a choice of 7 or 9" ® pé o ¢, but that hardly matters
because both will appear equally often when we pass to GV. For the component
groups of ¢ it is a bit easier to work with G and L™, so we consider ¢ as element
of ®(G*) and as ¢, € ®(L). By these we mean just ®(G) and ®(L), only with
component groups of ¢ or ¢ computed in G¥* or LYT. In the description of Sy
following (1.5), passing to G replaces Sy by S;, which means that we forget the
determinant condition “S” on Zgv,_ (¢). Thus

Zp+v g, (9r) = H 01(C) x H GL | dim(n,)/2) (C) % H GL(Ny),

pelt:dim Ny odd pel* Ppelo

Sy = I G
Yelt:dim Ny odd

S = H (z) = S, x H (z) = S xs;/¢
YEIT:Ny#0 YeIT:dim(N,y)€2Z>0

Letusfixep, € Irr(SgL) such that (¢, 1) belongs to the image in of the parametriza-
tion map in Theorem 3.7 for L*. Tt gives a discrete series representation 7(¢p,€r) €
Irr(L*"), which by Proposition 4.8 is the same for the endoscopic method as for
the Hecke algebra method. By Theorem 3.9, If:UW@L,eL) has precisely |S;F/¢L|
irreducible direct summands, which are mutually inequivalent and indexed by

{eehn(S)): €|S;fL =eL} = Irr(S;r/qu)-

The same conclusion was obtained in [MoTa, Theorem 13.1]. One part of the con-
structions behind Theorem 3.7 in [AMS2, AMS3] is

(4.30) (¢, €) = Homg+

G+
For (5’3+ IL+U7T(¢L7€L))'

/oL
This goes back to [AMS3, (1.17)], and from there it is transfered via various Hecke

algebras in [AMS3] to an analogue for H (s ,qF/ %), see (3.37). Using the equivalences
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of categories (3.34) and (3.33), one arrives at (4.30). Here the action of S;r/m comes
from intertwining operators

N(zy, ¢r,€r) € Endg+ (IfiUW(¢L,€L)),

+
one for each generator z, of S /b

On the other hand, an irreducible tempered GT-representation m(¢). is con-
structed with endoscopy in [MoRe, §3.6], and it is checked that If: yT(érL, er) (called
o in [MoRe]) decomposes as

@eelrr(SJ) W((Z))e.

(€l o+ =€
S¢L

This decomposition can be achieved with suitable intertwining operators that make

S;/ s, act on IEIUW((ﬁL,GL) and are normalized in a way that is compatible with

the endoscopic methods in [MoRe]. The appropriate normalization stems from [Art,
§2.3] and involves L-functions and e-factors. Unfortunately, it becomes untractable
in the setting of Hecke algebras. Nevertheless, we can say more concretely that,
for every ¢ € I with dim Ny € 2Z~ and 7 (¢)) = (p,a), there is a normalized
intertwining operator

N(Zpya,ﬂ'(qu, eL)) € Endg+ (Ig:Uﬂ'(qu, EL))

which squares to the identity. From [MoRe, §2] we see that

+
(4'31) 7T((;5)€ = (€|S;—/¢ & Ig:Uﬂ'(qu,eL))S‘PML =
L
{fixed points of the operators €(zy)N (2, 7(¢r,€r)) with dim Ny € 2Z~0}.

Lemma 4.9. Pick an inertial equivalence class s for G and choose an isomor-
phism H(sT)P = H(stY, q11:/2) as in Proposition 4.6.

For every bounded (¢,¢) € ®(GT)" and every ¢ € It N Jord(¢) with w(1p) =
(p,a), the intertwining operators

N(zpja,w(qSL,eL)) and N (zy, 1, €r)
agree via the Hecke algebra isomorphism.

Proof. We need to distinguish a few cases.

First we suppose that dim Ny, is odd. Then ¢ appears in the factor G} of L,
and the two intertwining operators of GT-representations under consideration are
induced by the analogous intertwining operators of G, -representations. The latter
two agree by Lemma 4.7.

Now we suppose dim N, that is even and that ¢ = 7 ® P, with 7 € Irr(WF);f.
Here a is odd because ¢» € IT. The same arguments as for Lemma 4.7 show that
N (2pa,7(¢r,€r)) and N(zy, o1, €1) agree, because N(sg, pxo_) and N(sg, 7 X ¢_)
agree by Proposition 4.6.

Finally we suppose that dim Ny is even and that ¢ = 7 ® P, with 7 € Irr(W F)(;
Now a is even because ¢ € I, In this case we do not know whether N(sg,p X o_)
and N(sg, T x ¢_) match via the Hecke algebra isomorphism. But both are unique
up to scalars and square to the identity, so the agree up to a factor £1.
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Write e = ad,. Motivated by (4.16), we want to compare the operators
(4.32) N (we,Ind Sc(8(p,a)) x o) and N (we,Sc(r ®@ P,) X ¢—),

where the right hand side is an abbreviation of (4.23). From the remarks after
(4.14) we know that the former is determined (via a continuous deformation) by the
intertwining operator

(4.33) N((sgXx---x38g),pX--XpXo_),

where sg and p both appear a times. For each such factor p, we get a contribution
which is induced by N(sg,p x 0_).

Similarly, in the proof of Lemma 4.7 we saw that N(we,Sc(T ® P,) X ¢_) is
determined in the same way by (4.24) and N(sg, 7 x ¢_). Writing

N(Sﬂap X O-*) = iN(sﬁvT X d)*)a

it follows that, via the appropriate Hecke algebra isomorphism, (4.33) and (4.24)
agree up to a factor (£1)?. Since a is even they really agree, and so do the two sides
of (4.32). We note that

N(zpya,ﬂ'(gbL,eL)) and  N(zy, ¢r,€r)

are induced by (4.32), on both sides in the same way as in (4.16), so with the identity
on factors not involved in (4.32). We combine that with the above analysis of (4.32)
to establish the lemma in this case. U

From Proposition 4.8, Lemma 4.9, (4.30) and (4.31) we conclude:

Corollary 4.10. In the setting of Proposition 4.0, let (¢, €) € <I>e(G+)5+ be bounded.
Then (¢, €) € Irr(GT) from Theorem 3.7 is isomorphic with the tempered represen-
tation w(¢). from [MoRe].

Together with Theorem 3.7.d, Corollary 4.10 implies that

(4.34) T(XP)e = X ®@ (o).
for all bounded (¢, €) € ®(GT) and all unitary y € X, (GT).

4.5. Irreducible smooth representations.

With the Langlands classification [Ren, Théoréme VII.4.2] one can construct
and parametrize all irreducible smooth representations of a reductive p-adic group
in terms of the irreducible tempered representations of its Levi subgroups. Al-
though the Langlands classification usually applies to connected reductive groups, it
can be extended to some disconnected reductive groups [BaJa, Theorem 4.2 and
Remark 4.2]. For our G with the Levi subgroups LT = Zg+(Z(L£)°)(F), the
formulation is the almost same as for connected reductive groups, at least when
[GT : G] = [LT : L] and we limit ourselves to G*-representations from stan-
dard modules that are parabolically induced from LT-representations. Indeed, from
[BaJa, Introduction] one sees that in those cases the Langlands data are triples
(P*,7,v) where PT = LTUp is a parabolic subgroup of G*, 7 € Irr(L") is tem-
pered and v € Hom(L",R+() is in strictly positive position with respect to P*.
As usual Igi (1 ® v) has a unique irreducible quotient 7(P™,7,v), and that sets
up a bijection between the G"-conjugacy classes of such Langlands data and the
associated subset of Irr(GT).
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There also exists a Langlands classification for (enhanced) L-parameters [SiZi],
which is similar. For every ¢ € ®(G) there exists a parabolic subgroup PY = LVU
of GV, a bounded ¢, € ®(L) and o € HY(Wg /I, Z(LY)), strictly positive with
respect to PV, such that ¢ = ¢,0 in ®(G). Moreover, by [SiZi, Theorem 4.6]
this yields a bijection between ®(G) and the GV-conjugacy classes of such triples
(PY, ¢y, D). Of course we can pass to a bijection between GV T-conjugacy classes in
®(G) and of triples (PY, ¢y, V). Further, by [SiZi, Proposition 7.3]

Sp = S0 = Sey»

where Sy, and Sy, are computed in LY. By the same argument, this extends to
an isomorphism

S;r = S;rb,; when [GT: G] = [L1: L].

Then the Langlands classification from [SiZi] sends (¢,€) € ®o(G) to (PY, ¢y, 7, €)
with (¢p, €) € Pe(LT).

In the exceptional cases where L™ = L but G # G, this does not work so nicely.
Then I$(r ® v) is indecomposable, but Ig+ (T ®v) is a direct sum of one or two
indecomposable G -representations. For Langlands parameters, the analogous issue
is that S;fb = Sy, has index one or two in SJ. To handle those cases in similar style,
we resort to the method from [ABPS1].

Theorem 4.11. With the above versions of the Langlands classification, one can
canonically extend the parametrization of irreducible tempered G -representations
from [MoTa, MoRe] to a parametrization of Irr(G™).

Proof. Case (i): [GT :G] = [L*: L].
The above Langlands classifications show us what to do: to (¢p7, €) we associate the
unique irreducible quotient of II§++ (mr+(¢p)e @ V).

From now on we suppose that LT = L but G # G. Consider Langlands data
(PY, ¢y, v, €) for ®(G). Let Y be the variety of x € Xy, (L) such that Sd;& = S;rbl;.
It is a coset of a complex algebraic subtorus of X,,(L), with finitely many cosets of
subtori of smaller dimension removed, see [ABPS1, §3]|. It intersects the maximal
compact subgroup of Xy,(L), so we can pick a unitary x € Y.

Case (ii): Stﬁ = Sy,» for ¢ as element of ®(G).

By Corollary 4.10 we may use Theorem 3.7 for (¢pX,€). Comparing Theorem 3.7
for G and G, we see that the condition of this case implies that imdg+ preserves
the irreducibility of mg(¢pX)e. By Theorem 3.9 and (4.34) for L:

(o) = indS wa(¢pR)e = mdG IS (mr(dpR)e) = IS (w1 () @x) = IS m(pR, €.

Now 7(¢px,€) = m(¢pp, €) ® x is irreducible for any y € Y (not necessarily unitary)
and Theorem 3.7 for L shows that I§+(7r(¢b)e) ® x) = 7mst(PpX,€) has a unique
irreducible quotient. That means that we are back in the setting of the Langlands
classification. As in case (i), it imposes that to (¢7,€) one must associated the
irreducible quotient of Ing (m(dp)e) R V).

Case (iii): Ser,; # Sy, » for ¢ as element of ®(G).

+
Let e be the restriction of € to Sy, and write indgzZZeG = e® €. Theorem 3.7 for

G" and G, in combination with the condition of the case, show that Resg+7r(q5b§<)6
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is irreducible and equal to 7¢(#5X)e,- By Theorem 3.9

+ . Gt . . .G . . .
IE (L(dp)eq ® X) = ndG IBTL(0p%)ee = ndG 76 (00%)ee = m(@pX)e © T(d4X)er-
For arbitrary x € Y, Theorems 3.7 and 3.9 entail that

I}C:IH— (WL(¢b)eG ® X) = Wst(ﬁbbf()e S5 Wst(ﬁﬁbf()e’a

where both standard G -representations 7 (¢X) ) have a unique irreducible quo-
tient. The Langlands classification decrees that to (¢2, €) we must associate one of
the irreducible quotients of Iff (TL(Pp)ee @ x). But only me(¢px)e fits in a conti-
nuous family of G*-representations x — s (¢pX)e which for unitary x € Y recovers
T(PpX)e, S0 we must send (g0, €) to the irreducible quotient of that standard rep-
resentation. (]

We next result collects the conclusions from Section 4.

Theorem 4.12. Let 5T be an inertial equivalence class for Gt and fix a Whittaker
datum for the quasi-split inner form of G. There exists an algebra isomorphism
H(sT)oP = H (s, q;ﬁ), canonical up to conjugation by elements of O(Ty+)*, such
that the following holds.

For each (¢,€) € ®o(G1)*"", the GT-representation (¢, €) constructed via Hecke
algebras in Theorem 3.7 is isomorphic to the G -representation associated to (¢, €)
by [MoRe| and the Langlands classification.

Proof. As before, the Hecke algebra isomorphism and its canonicity property comes
from Propositions 3.5 and 4.6.

We claim that the extensions of [MoRe| by means of the Langlands classification,
as in Theorem 4.11, always sends (¢p0,¢) € ®o(GT) to the unique irreducible
quotient of 7s(¢pr, €). Indeed, the proof of Theorem 4.11 states that explicitly in
the cases (ii) and (iii). In case (i) it follows because Theorem 3.9 shows that

IE: (e (90)e @ v) = IR (i (040, €)) = mot( Do, ).
On the other hand, by construction (see the lines before Theorem 3.9), 7w(¢pv, €) is
also the irreducible quotient of mg(Pp?, €). O

5. UNITARY GROUPS

In this section we discuss how the setup and the statements in Sections 1-4 can be
adjusted, so that the arguments and the results hold for unitary groups. Most of this
can be found in [Moe2] and [Hei4, §C]|. We prefer to use the convenient description
of L-parameters for unitary groups from [GGP].

Let E/F be a separable quadratic extension. Let V' be a finite dimensional E-
vector space endowed with an Hermitian form. Recall that the unitary group U(V')
is a reductive algebraic F-group, an outer form of GLgiymy. The classification of
pure inner twists reads:

e When dimV = 2n, there is one quasi-split group Us,(E/F) and one pure
inner twist UY, (E/F), which is not quasi-split.

e When dim V' = 2n + 1, there is a quasi-split group Us,11(E/F), associated
to a Hermitian form with discriminant 1. There is an isomorphic but dif-
ferent form Uj, | (E/F), which is associated to an Hermitian form whose
discriminant is nontrivial in F*/Ng/p(E™).
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The complex dual group of U,,(E/F) and U, (E/F) is GL,,(C). The group
Wr/Wg = Gal(E/F) acts on GL,,(C) by the outer automorphism

Ay JmA_TJ,;l,

where —T" denotes inverse transpose and J,, is the anti-diagonal m x m-matrix whose
with on the anti-diagonal alternating 1 and -1. We use a compressed form of the
Langlands dual group:

LUWE/F) =tU (E/F) = GL,(C) x Wp/W.

Modifications in Paragraph 1.1.
According to [GGP, Theorem 8.1], any L-parameter ¢ for U(V') is determined (up
to U(V)Y-conjugacy) by its restriction to Wg x SLs(C), which we denote ®,. This
®, is a conjugate-dual representation, which means that ®! is isomorphic to s - ®,
for any s € Wp \ Wg. Moreover &, is conjugate-orthogonal (sign +1) if dim V' is
odd and conjugate-symplectic (sign -1) if dim V' is even. That provides a bijection
from ®(U(V)) to the isomorphism classes of conjugate-dual representations of Wg
with sign (—1)4mV =1 For consistency we define sgn(U(V)Y) = (—1)dimV-1,
Conversely, let a conjugate-dual m-dimensional representation ®, of W g x SLy(C)
with sign (—1)"~! be given. Then one can determine

(5.1) qb: WF X SLQ((C) — GLm((C) A WF/WE
up to conjugacy by requiring that ¢(W g \ Wg) consists of elements s (in the non-
identity component) such that s - @, is equivalent with ®Y. We abbreviate this
operation to ®, — indwg d,.

It is natural to relate the centralizer group of ¢ (computed in U(V)V) to a suitable
centralizer group of ®.. To this end we recall from [GGP] that ¢ determines an

explicit bilinear form By on C™, with respect to which ®. is conjugate-dual. By
[GGP, Theorem 8.1.iii]

Zyyv (9) = Zaus(s,) (Pe),
Aut(By) = {g € GL(C) : By(gv, gv') = By(v,0') Yu,v" € C™}.
From [GGP, §4] one sees that ZAut(B¢)((I>e) behaves exactly like ZGV(;“ (¢) in the

case of general spin groups. More explicitly, Zyyv(¢) and Zauyp 4))(@5) are given
by (1.5) and (1.11), we only have to omit the S (for det = 1) from those formulas.

Modifications in Paragraph 1.2.
The standard Levi subgroups of G,, = U(V') are of the form

L =G, xGLy (E)x---xGL,,(E)
with Gy, = U(V”’) of the same type as G, and dimV — dim V' = 2(ny + - - - + ny).
Similarly
LD =%G_ x ind{F (GLy, (C) % -+ x GLy, (C)).
By Shapiro’s lemma, ®(L) is naturally in bijection with
O(Gy_) X ®(GLy, (E) x --- x GLy, (E)),

which by [GGP, Theorem 8.1] can be regarded as a set of conjugacy classes of
homomorphisms with domain Wg x SLg(C). Accordingly, the centralizer of ¢ €
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®(L) can be computed as the centralizer of ®, in
LY, := Aut(By) x GLy, (C) x - -+ x GL,, (C).

We write
Sy = Sa, = m0(Z1v(9)) = 70 (ZLy (Pe)).
The cuspidal support [AMS1] of (¢, €) € ®(G) can be computed via
Zav((WF)) = Zaui(s,) (Pe(WE)).
This implies that
Sc(p, e) = Sc(indggfbe, e) = indgg (Sc(qﬁ, e)),

where indgg does not change the enhancements.

As a consequence, everything in Paragraph 1.2 can be carried out for unitary
groups, with @, and LY, instead of ¢ and LY. However, the results are not always
precisely as before. We have to distinguish two cases, depending on the ramification
of U(V), that is, the ramification of E/F.

Suppose first that F/F is ramified. We take a Frobenius element of W also as
Frobenius element of W, and we pick a representative for Wz /Wg in Ip. Then
Res}ZE and ResE’F are compatible with ¢ — ®, and indwg . Hence the calculations
in Paragraph 1.2 produce the correct results for U(V'). We only have to remember
to omit the centre C* of GSpin(V)" and the S for det = 1, like we needed to do for
symplectic groups.

Next we suppose that E/F is unramified. Then Iy = Ir and as Frobenius element
of Wr we take the square of a Frobenius element of Wg. In contrast to the ramified
case, the impact on Paragraph 1.2 is substantial.

For 7 € Irr(WE)(f, there is still a unique (up to isomorphism) unramified twist
7/ = 7 ® x which is conjugate-dual and not isomorphic to 7. However, in contrast
to before 7" and 7 always have different signs [Sol5, Proposition 4.10.b]. We order
7,7 so that £ > ¢, and if £; = £, = 0 then a; > a,.

The next change occurs in (1.21), there

Tow =T /(Hj Z(GLy, (C))indvvgg ¢j)
= HT (CX/Z(GL”]'(C)%M&;%) g HT Ty 7,
with the latter two products running over Ir]r'(WE);LE U Irr(W E)g We note that
|Z(GLy, ((C))indde)_‘ = 2|Z(GLy4.(C)),| = 2t,.
W Pi
In particular
X*(Tyw 1) = 2 (X*(T) NQX*(Tav ).
Further (1.22) becomes
J = Zgv(¢(Ip)) = HT G iip)r
= ][ Glaiere, (©7x ][] GLe (©)*.

Tel' (Wp)E Tl (Wg)§
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As a consequence (1.25) has to be modified in the cases 7 € Irr(WE)('g, now it reads

Vi _ Ce,— br+ 4 =0
R(G¢(IE)7TT7 T) - { BC@T ET —|— ET’ > 0

In view of the new shape of J, its maximal torus given in (1.26) becomes

n=I]r= I (@)t T (@)™

T TEIrr/(WE)i Telr(Wg))

The computation of m, for a € R(J,T),eqa after (1.21) also changes for unramified
unitary groups. For 7 € Irr(WE)gs, the root system R(GZ(IE),TT, T) has 2t, irre-
ducible components, all of type A.._1 and permuted cyclically by Frobr. Hence my,
equals 2t,m/ , and the same argument as before shows that m, = 1.

When 7 € Irt’/ (WE)i, the root system R(GZ(IE)JT’ T) has t, irreducible com-
ponents. They are of type Ase i¢,4¢, and Frobp permutes them cyclically, so
me = t;m.,. Here the computation of m/, proceeds analogously to in Paragraph 1.2
for the cases 7 € Irr(W F);f. We conclude that m, = 2¢; unless £, + £, = 0 and
a € Ce, is long, then my, =t,.

From this we obtain the root systems R,v  whose union is Rsv. For 7 € Irr(W E)g
we obtain A, 1 C X*(Tgv ) as before. For 7 € Irr’(WE);F with £, + /4. > 0
we get 2t.B. C 2t,X*(T), which can be identified with B, in X*(T,v ). For
7 € I’ (Wg), with £, + £ = 0 we obtain 2t;De, U t-(Ce, \ D) in 2t-X*(T),
which identifies with B, in X*(Tyv ;).

The root datum for the affine Hecke algebra decomposes nicely:

Rev = @7— Rev r = @7— (X*(TSV,T)7 Ryv 7, X*(TEV,T)7 R;/V)'

The calculation of the parameter functions A\, \* (following the method in [AMS3,
§3.3]) leads to the following modified version of Table 2:

TABLE 3. Data from R4v for each 7

ar  ay X" (Ty.) Rev. Ma) A(B) A*(B)
0 -1 Ze B.. 2, ¢ i

>1 >-1 Zc~ B.. 2t;  tr(ar+ar+2) tr(ar —ap)
II"I“(WE)g 7™ AeT—l 2t7- —— ——

Here the first line is an instance of the second line, we mention it separately because
it comes from the exceptional case £, + ¢, = 0 discussed above. We note that in all
lines of Table 3 W (R,v ;) is the full group Wsv, so FS_) is trivial and can be omitted
from the table.

Modifications in Section 2.
Most of the necessary adjustments, as well as a proof of Theorem 2.1.c,d for unitary
groups, can be found in [Moe2]. Let us spell out the significant changes.

The Jordan blocks of a discrete series representation m of G = U(V') are based
on unitary supercuspidal representations p of GL,,(E). Instead of (2.1), they have
to be conjugate-dual: p = p¥, where the bar indicates composing a representation
with the natural action of Gal(E/F) on U(V).
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Although there exist outer automorphisms of unitary groups, we should not in-
volve them like for SO(V) and GSpin(V), because here Gt = G. Rather, we
should just replace Out(G) by the trivial group everywhere. Then all results in
Section 2 hold for unitary groups (except Theorem 2.5 which is specific for general
spin groups).

Modifications in Section 3.

No further adjustments are needed, everything works in the above setup. The groups
s, I'f, Tov, I‘:v are trivial, so all considerations about those are superfluous for uni-
tary groups. Also, as G = G the material in Paragraph 3.1 becomes trivial.

Modifications in Section 4.

There is only one small change, when U(V) is unramified. In the proof of Propo-
sition 4.6 the case £, = 0 can be treated just as £, > 0, because by Table 3 the
relevant Hecke algebra has a root datum of type B.. with parameters such that

A(B) = A*(B) > 0.
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