CORRESPONDENCE FOR NON-SINGULAR DEPTH-ZERO

HECKE ALGEBRAS AND LOCAL LANGLANDS

REPRESENTATIONS

MAARTEN SOLLEVELD AND YUJIE XU

ABSTRACT. Let G be a connected reductive group over a non-archimedean lo-
cal field. We say that an irreducible depth-zero (complex) G-representation is
non-singular if its cuspidal support is non-singular. We establish a local Lang-
lands correspondence for all such representations. We obtain it as a specialization
from a categorical version: an equivalence between the category of finite-length
non-singular depth-zero G-representations and the category of finite-length right
modules of a direct sum of twisted affine Hecke algebras constructed from Lang-
lands parameters. We also show that our LLC and our equivalence of categories
have several nice properties, for example compatibility with parabolic induction
and with twists by depth-zero characters.
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2 MAARTEN SOLLEVELD AND YUJIE XU

1. INTRODUCTION

Overview and main results.

Let F' be a non-archimedean local field and G a connected reductive algebraic group
over . Let GV be the group of C-points of the reductive group whose root datum is
dual to that of G. Let W g be the Weil group of F'. As a vast generalization of local
class field theory, the classical explicit local Langlands conjecture, first proposed in
the 1960s [Bor|, predicts a surjective map from the “group side”, which consists
of irreducible smooth representations of G(F) up to isomorphism, to the “Galois
side”, which consists of “L-parameters”, i.e. continuous homomorphisms ¢: Wg X
SLy(C) — GV x W . This conjectural surjective map oftentimes has non-singleton
fibres, called L-packets, which are expected to be always finite. When G is a torus,
the local Langlands conjecture recovers local class field theory. Both tori and GL,
famously have singleton L-packets.

In order to formulate a conjectural bijection (or an equivalence of categories) for
more general reductive groups, partially driven by aesthetics, many mathematicians
such as Deligne, Vogan, Lusztig etc. proposed a refined form of the local Lang-
lands conjecture (see for example [Vog] and [ABPS] for a more detailed exposition),
which takes into account the non-singleton nature of L-packets, and probes fur-
ther into the internal structure of the L-packets, parametrized by enhancements of
the L-parameters. The refined local Langlands conjecture considers enhanced L-
parameters on the Galois side, which consist of L-parameters ¢ together with an
irreducible representation of a certain component group attached to ¢ (see for
more details).

In this article, we establish the explicit refined local Langlands conjecture for a
large class of representations. In this overview, we first survey some known results
in the literature, then highlight the new advancements to the field added by our
current article.

On the group side, i.e. in the smooth complex representation theory of p-adic
groups, depth-zero representations play a pivotal role. On the one hand, it is ex-
pected that most representations of higher depth can be reduced in some sense to
depth-zero representations; on the other hand, experts have long postulated that
almost all possible technical difficulties (and new phenomenal!) already arise at
depth zero. In the groundbreaking work [DeRe|, DeBacker and Reeder constructed
depth-zero reqular supercuspidal L-packets, where the condition of “regularity” on a
supercuspidal representation can be very roughly (and perhaps rather inaccurately)
thought of as the character 6 (in Deligne-Lusztig’s R%) being “in general position”,
a notion which goes all the way back to [DeLu]. The results of [DeRe] were later
generalized from depth-zero to arbitrary depth in [Kal2], and the assumption of re-
gularity was later relaxed to non-singularity in [Kal3|]. To venture beyond the realm
of non-singular supercuspidals, one necessarily needs to enlist the theory of Hecke
algebras: (i) either one would like to consider singular supercuspidals—terminology
first due to [AuXu2], which are supercuspidals whose L-packets miz supercuspidals
and non-supercuspidals and whose study necessarily require a careful analysis of
their Bernstein block Hecke algebras; (ii) or one would like to consider non-singular
non-supercuspidals, which are G-representations whose supercuspidal supports are
non-singular.
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Hecke algebra techniques have proven particularly powerful in attacking the local
Langlands conjecture, as can be seen in [AuXull [AuXu2l [Sol6l [Sol10]. This is in
part due to the fact that Hecke algebras naturally show up on the Galois side of
the conjectural local Langlands correspondence (LLC). More precisely, as shown in
[AMST] (see also the enhanced L-parameters admit a natural decomposition,
a la Bernstein, according to their cuspidal supports, and each such Bernstein com-
ponent on the Galois side is parametrized by the irreducible representations of a
certain Hecke algebra [AMS3] (see also §8.1)).

In this article, we generalize the aforementioned literature and construct a local
Langlands correspondence for all depth-zero G-representations with non-singular
supercuspidal supportﬂ In [AuXul], an axiomatic setup for constructing a bijec-
tive local Langlands correspondence was proposed, which can be combined with an
analysis of Hecke algebras to obtain stronger results. In this article, we verify these
requirements for all non-singular depth-zero Bernstein blocks.

Our first main result is a bijection between

e the set IrrY(G),s of irreducible non-singular depth-zero G-representations
(up to isomorphism); and

e the set ®0((G),s of non-singular enhanced L-parameters for G which are
trivial on the wild inertia subgroup of the Weil group Wp.

Here (and throughout the paper) G should be viewed as a rigid inner twist of a
quasi-split F-group.

Theorem 1. (all results in

There exists a bijection

II‘I‘O(G)nS — (I)Q(G)ns
(1.1) 7r = (Pr, pr)
m(p.p)  — (p.p)

such that:

(a) The map Irt°(G),s — ®(G) : > @r is canonical.

(b) The bijection is equivariant for the natural actions of the depth-zero subgroup of
HY(Wpg, Z(GY)) and the associated group of depth-zero characters of G.

(¢) The central character of 7 is equal to the character of Z(G) canonically deter-
mined by pr.

(d) 7 is tempered if and only if pr is bounded.

(e) m is essentially square-integrable if and only if o is discrete.

(f) Our LLC (1.1), its version for supercuspidal representations of Levi subgroups
of G and the cuspidal support maps form a commutative diagram

Irr%(G) s +—> DY@ s
4 Sc 4 Sc .
|_|L Irrgusp(L)nS/W(Gv L) — |_|L (I)(c)usp(L)nS/W(va LV)WF

Here W(G,L) = Ng(L)/L, W(GY,LY) = Ngv(LY)/L" and L runs through a
set of representatives for the G-conjugacy classes of Levi subgroups of G.

(g9) Our LLC is compatible with parabolic induction. Suppose that P = MU
is a parabolic subgroup of G, with Levi factor M. Let (o,p™M) € ®%(M),s be

I¥or a precise definition, see
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bounded. Let 71'0(5[;) and WQ(Sg“') be the component groups for ¢ as object of,
respectively, ®(G) and ®(M). Then

18 (7™ (¢, pM)) = @p Hom g (p, pM) @ w (e, p),

where the sum runs through all p € Irr(ﬂo(S:g)) such that Sc(y,p) is GY-
conjugate to Sc(p, pM).

(h) Our LLC is compatible with the Langlands classification. Suppose that
(0, p) € YU(GQ)ns and ¢ = 2y with o, € ®(M) bounded and z € Hom(M,R~q)
strictly positive with respect to P = MU. Then Ig(z ® ™™ (py, p)) is a standard
G-representation and 7(p, p) is its unique irreducible quotient.

(i) The p-adic Kazhdan—Lusztig conjecture holds for Rep®(G)ps.

For any progenerator II; (e.g. from a type), the category Rep(G)s is naturally
equivalent to the category of right modules for Endg(I1s). By [Morll, Mor2|, Endg(ILs)
is rather close to an affine Hecke algebra, while its irreducible modules have been
studied extensively in [Sol5]. The Bernstein blocks Rep(G)s altogether make up the
category of non-singular depth-zero G-representations Rep’(G),s. We indicate its
full subcategory of finite-length representations by a subscript “fl”.

On the Galois side, the set ®(G),s decomposes naturally as a disjoint union of
Bernstein components ®.(G)¢" [AMSI], indexed by a finite set BY(G)?,. To every
such Bernstein component ®.(G s’ one can associate a certain twisted affine Hecke
algebra, H(ﬁv,q}p/ 2) (see [AMS?)], which is constructed in terms of the geometry
of the complex variety of Langlands parameters underlying @e(G)sv, and whose
irreducible module are parametrized canonically by @e(G)sv. Such an algebra
H(sY, q},/ 2) can be compared with Endg(Ils) for an appropriate inertial equivalence
class s for Rep(G). Our second main result is the following.

Theorem 2. (Theorem [9.6)
There exists an equivalence of categories

~ 1/2
Repfi(@ns = Dy copyy, Modn - His'ar”)

which is compatible with parabolic induction and restriction and with twists by depth-
zero characters.

There seem to be obstructions to generalizing this equivalence to categories of
representations of arbitrary length, due to certain 2-cocycles in the Hecke algebras
from [Morl] on the cuspidal level. On the other hand, for some special cases of
groups and representations, an equivalence of categories of the form

Rep(G)s = Mod - H(s", q/)

is known. See [AMS3] for inner forms of GL,(F'), [AMS4] for pure inner forms of
quasi-split classical groups, [Sol6l [Sol7] for unipotent representations, [AuXu2] for
Ga(F), [SuXu] for GSp4(F'), and [Sol10] for principal series representations.
Theorem [2] is in the spirit of recent geometric and categorical versions of a lo-
cal Langlands correspondence [Hel, [Zhu, BCHN| [FaSc], where the objects on the
Galois (or spectral) side are equivariant coherent sheaves on stacks of Langlands

2Compared to [AMS3], we specialized an indeterminate g-parameter to q;/Q = |kr|*2.
3In this paper, modules of a Hecke algebra are by default right modules.
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parameters, and one must pass to derived categories on both sides of the (conjec-
tural) correspondence to formulate the conjecture. The construction of H(s", q};/ 2)
in [AMS3] strongly suggests that its modules are related to such equivariant coherent
sheaves, but it has proven difficult to make that precise.

In Section [2, we prove new results on Deligne-Lusztig packets of supercuspidal
L-representations, which in the end show that they behave well with respect to
conjugation by Ng(L). In we conduct a closer analysis on the representations of
the component groups of supercuspidal L-parameters for L, related to conjugation
by Ngv(LY). On both sides of the LLC, it involves checking that certain extensions
of groups split equivariantly (see and for details). Using this, we are able
to (in even prove new results about the LLC on the cuspidal level from [Kal3].

Theorem 3. (See Theorem [4.8))
Identify (Z(LV)IF)‘:VF with the set of Langlands parameters for the group of unramsi-

fied characters Xy, (L). In the LLC for non-singular supercuspidal L-representations,
the choices can be made so that the bijection

II‘I‘O (L)ns — (bo (L)ns

cusp cusp
s equivariant for the natural actions of

W(G, L) % Xur(L) = W(GY, LY)WF w (Z(LY)')

o

Wg'
Outline and remarks of strategy.
Theorem |3| provides in particular a bijection between:

e the set of inertial equivalence classes s = [L,7]|g for Rep(G), such that
TE Irrgusp(L)ns for some Levi subgroup L C G,

e the set of inertial equivalence classes 5V = (Z(LV)IF)GVF (¢r, pr) for @.(G),
such that (¢, pr) € Dep(L)ns-
We will denote this bijection simply by

(1.2) 5+ 5.

It allows us to pass freely between the set of Bernstein components Irr(G)s of
Irr%(G) s and the set of Bernstein components ®,(G)° of ®(G)ys.

Sections study Hecke algebras for p-adic groups. These sections are logi-
cally independent from Sections [2H4] For a non-singular depth-zero Bernstein block
Rep(G)s, the work of Morris [Morll Mor2] provides us with a type (]3;, ), where ]3f
denotes the pointwise stabilizer of a facet § in the Bruhat—Tits building of G.

Extending results of Morris, we show that H(G,]%,&) is a crossed product of
an affine Hecke algebra and a twisted group algebra (see Theorem . Since we
already understand the set of cuspidal supports for Rep(G)s, we only need to further
consider two aspects of H(G, ]5;, 7): the g-parameters of the simple reflections from
the associated finite root system Rjs, and the 2-cocycle by which the group algebra
has been twisted.

Let II(L, T, 6) be a Deligne-Lusztig packet (see (2.5)) containing a representation
in the set of cuspidal supports for Rep(G)s. We show in Proposition that the
g-parameters of H(G,Pf,é}) are equal to the g-parameters of a Hecke algebra for
suitable principal series representations of a quasi-split reductive subgroup G5 C G
(see ) with T as minimal Levi subgroup. The argument runs mainly via
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similar Hecke algebras for finite reductive groups. These g-parameters for G5 can
be computed explicitly from (7, 6) [Sol§].

The comparison between Hecke algebras on the p-adic side and on the Galois side
of the Langlands correspondence is done in Sections On the Galois side, the
twisted affine Hecke algebra ?—[(sv,qllw/ 2) involves a finite root system R,v and g-
parameters, defined in completely different terms from complex algebraic geometry.
Fortunately, these parameters can also be reduced to the case of (G5, T, 0), already

studied in [Soll0]. In (8.18), we establish a canonical isomorphism of root systems
(13> R& = Rgv,

and we show that the g-parameters on both sides agree. The further comparison of
the Hecke algebras is more difficult. Recall that Bernstein associated a finite group

(14) Ws = Stabw(GJ:) (Rep(L)g)

to Rep(G)s. Similarly, one can associate a finite group

\

W5\/ = StabW(Gva)wF (@e(L)S )
to ®.(G)* . By Theorem [3| there is a canonical isomorphism (see also [AuXul])
(1.5) W, = Wev.

Let I's be the stabilizer in W of the set of positive roots in R4, and define I'sv C Wv
analogously. Using , we can decompose as
(1.6) Wy = W(Rs) ¥ s, Wev = W(Rsv) X Tgv, W(Rs) =2 W(Rsv), and I's = Tgv.
The algebra H(s", ql{ﬁ) can be written as

7_[(5v7 QJI?/z)O x C[[sv, fv],
where H(s", qllw/ 2)0 is an affine Hecke algebra and fsv is a 2-cocycle of T'yv. While

’H(sv,q}w/ 2)0 is canonically isomorphic to a subalgebra of H(G,Pf,&) (see Lemma

and Proposition , I's appears only indirectly in H(G, Pf, ). One can instead
replace H(G, ]55, &) with Endg(Ils), where Il is a canonical progenerator of Rep(G)s
constructed by Bernstein. The algebras H(G, pf, ¢) and Endg(Ils) are Morita equiv-
alent, but for various reasons it is easier to work with the latter [Sol5]. In general,
however, Endg(Ils) still does not contain a twisted group algebra of I's. To intro-
duce at least a subgroup of I'; into the picture, we localize Endg(Ils) with respect
to suitable sets of characters of its centre. Theorem [3| provides an isomorphism

(7)) Z(Bnde(Tl)) = O(Tm(1):) " = O(2c(L)) " = Z(H(s", q;1")).

so we can localize H(s", qllp/ 2) with respect to the corresponding set of central char-

acters. (This localization technique does not work well for representations of infinite
length, so from here on we restrict to finite length modules.) In Proposition we
show that Theorem [3[ and (1.6) induce an algebra isomorphism of the form

(1.8) localized version of Endg(Il;) = localized version of H(s", q;ﬂ).

In fact, both sides of can be described in terms of twisted graded Hecke al-
gebras. On the right-hand side of , the twist is given by the restriction of v
to a subgroup of W,v. The twisted graded Hecke algebra on the left-hand side of
involves a 2-cocycle of a subgroup of Wy as in [Sol5l Proposition 7.3]. The
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comparison of the 2-cocycles on both sides of is indeed the most difficult step
of the paper. It is finally achieved in Theorem [8.7] using the technical ingredients
we established in Appendices |Al and (B Combining cases of gives equivalences
of categories

(1.9) Repg(G)s = Mody - Endg(ITy) = Mody - H(s", g}/ %);

see Theorem Using (|1.2), one deduces Theorem [2l We then obtain our bijec-

tive LLC using the parametrization of Irr-H(s", q;/ 2) from [AMS3| Theorem 3.18],
which concerns left H(s", q};/ 2)—modules whereas in Theorem we translate to

right modules of (1.9). Finally, we prove the list of properties of our LLC in §10.2

Open problems and outlook.

Clearly it would be desirable to make our LLC for non-singular depth-zero represen-
tations canonical (including the enhancements). To this end, the input would have
to include a Whittaker datum for the quasi-split inner form of G. However, this
is not enough, even at the cuspidal level. At the moment, our LLC, or that from
[Kal2, [Kal3], is not specified uniquely by a Whittaker datum; more requirements
would be needed. This would possibly involve character formulas and endoscopy, as
in [FKS], in combination with a better understanding of the traces of the represen-
tations in question.

In another direction, one could try to make our LLC functorial with respect to
homomorphisms f : H — G of reductive F-groups such that both ker f and coker f
are commutative. The desired outcome was already conjectured in [Borl [Sol3|, and
has been proven in the cuspidal cases in [BoMe|. This would require some alignment
between the local Langlands correspondences for Irr®(G),s and Irr®(H),s, which
would render them more canonical.

A local Langlands correspondence for non-singular supercuspidal representations
of positive depth was established simultaneously with the one in depth zero [Kal2|
Kal3], for groups G that split over a tamely ramified extension of F. Types for
Bernstein blocks of non-singular representations of such groups are known from
IKiYu]. Recently it was shown [AFMOI, [AFMO2] that the Hecke algebras from
these Kim—Yu types are isomorphic to Hecke algebras from depth zero types, as in
IMorll, Mor2]. In view of these developments, it is reasonable to expect that our
LLC can be generalized to non-singular representations of arbitrary depth.

In a similar manner, one expects that the methods developed in this paper will
be useful for the study of arbitrary depth-zero representations.

Acknowledgements.
We thank Anne-Marie Aubert for some helpful comments. Y.X. was partially sup-
ported by the U.S. National Science Foundation under Award No. 2202677.

2. DELIGNE-LUSZTIG PACKETS FOR p-ADIC GROUPS

Let F' be a non-archimedean local field with residue field kg . Let £ be an F-Levi
subgroup of a larger connected reductive F-group G. We write G = G(F'), L = L(F)
etc. Let Laq be the adjoint group of £, and let B(Laq, F') = B(L) be the semisimple
Bruhat-Tits building of L. Let Z(L) be the centre of £, and Z°(L) its neutral
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component. We write Z°(L) = Z°(L)(F), and let X.(Z°(L)) be its lattice of F-
rational cocharacters. Recall that the Bruhat-Tits building B(L, F') = B(L) is the
Cartesian product of B(L,q) and X,.(Z°(L)) ®z R.

Let 7 be an elliptic maximal F-torus in £ which contains a maximal unramified
F-torus of L. Let {1, be the facet of B(L, F') corresponding to 7 (F'). Recall that every
facet of B(L, F') is the Cartesian product of a facet in B(Laq, F') and X, (Z°(L))®@zR.
We fix an embedding B(L, F') < B(G, F) that is admissible in the sense of [KaPr
Chapter 14]. We choose a facet § of B(G, F') that is open in fr.

Let P; = Gjo C G be the parahoric subgroup associated to f, with pro-unipotent
radical denoted by Gjoy. Then P;/Gjoq can be viewed as the kp-points of a con-
nected reductive group. More precisely, by [BrTi, §5.2], there is a model Py ot g
over the ring of integers op, such that 5 = Py (op). Then G7(kr) := P/Gjo4 18
the maximal reductive quotient of 77 (kr). Let ]5f be the pointwise stabilizer of § in

G, it contains P with finite index. Since P} is a characteristic subgroup of pf, these
two have the same normalizer in G, i.e. we have

(2.1) Gy = Stabg () = Na(P) = N ().

By [KaPr, Remark 8.3.4 and §9.2.5], there exists an op-group scheme P, which is
locally of finite type but not always affine, such that Pj(or) = Gj. It gives rise to
a kp-group scheme G; satisfying Gj(kr) = Gj/Gjo4. This contains l’ADf/Gf’OJr as the
group of kp-rational points of a (possibly disconnected) reductive subgroup Qf C Gj.
Similar notations will be used for £, but they only depend on the larger facet fr.
We shall write P := L N P instead of B, .

In G} = Pj(or) we also have T' = T (F) as the op-points of a subgroup scheme of
P;. In this way T can be viewed as an op-group scheme. The op-torus 7; :== 7 N g;
is (considered over F') a maximal unramified torus in £ and in G. Since G becomes
quasi-split over an unramified extension of F', Zg(7;) is a maximal torus of G, and
thus it must be 7. By the ellipticity of 7, the maximal F-split subtorus 75 of 7T is
contained in Z(£)°, thus we have

(2.2) L=25(2(£)°) = Zg(Ts).

A character of T' = T (F') is said to have depth zero if it is trivial on ker(7;(or) —
Ti(kr)). By the construction of P}, this kernel equals ker(7 (o) — 7 (kr)). Consider
a depth-zero character 6 of T', or equivalently a character 6 of 7 (k). Throughout
this section, we assume that € is F-non-singular for (7, L) in the sense of [Kal3|

Definition 3.1.1]. It means that, for any unramified extension E/F and any coroot
oV of (L(E), T(E)), the character

6 o (norm map for E/F on T)oa" : EX — C*

is nontrivial on oj. As mentioned in [Kal3 3.1.4], 6; := 0|7, is non-singular for
(Ti(kr), £ (kp)) in the sense of [DeLul, Definition 5.15], that is, 6; is not orthogonal
to any coroot of (L7, 7). Compared to [Kal2, Kal3], we do not require that 7 splits
over a tamely ramified extension of F'.

ﬁf(kF)(Q)
T(kr)
of Li(kr) (see for example [DeLu] and [Kal3, §2]), in the same way as for the con-

nected group &7 (kr). It is a virtual representation of L(kp), but iRgf((kkf )) (0) is an

From the data (Lj, T, 6), one can build a Deligne-Lusztig representation R



NON-SINGULAR DEPTH-ZERO REPRESENTATIONS 9
actual representation for a suitable sign +. By [Kal3|, Corollary 2.6.2], :thf((kk; )) @)
is a quotient of

indﬁf(kF)

{(kr) Li(kp) T (k
£?(kF)(i7zf 3 05) = R (ind () 6y)

Ti(kr) T(kr)

Moreover :l:RTf((k )) (0) is a representation of Lj(kr) x T (kr), where Lj(kr) acts
from the left and 7 (kp) acts from the right via the character #. The action of
Z(Ls)(kr) C T(kr) is the same from the left and from the right, therefore,

Ls(k .
(2.3) Z(L5)(kr) acts on £ RIG)(0) via 0] 72;)(p)-

We define the Deligne—Lusztig packet
H(ﬁf(kﬁF), T(kip), 0) C Irr([,f(kp))

as the set of irreducible constituents of :l:REf((k;F ))(0). Let N, (x,)(T)o be the stabi-

lizer of 6 in N (1) (T). Let Irt (N, () (7)o, 0) be the set of irreducible representa-
tions of Nz, (k) (T )¢ whose restriction to T (k) contains §. The group N, (k) (7)o

acts on iRﬁ((:;)) (0) by L;(kp)-intertwiners, constructed in [Kal3, (2.18)]. First,

canonical L;(kr)-intertwining operators are exhibited, by geometric means. These
respect the multiplication in Nz, (1,.)(7)e only up to a scalars, and to combine them
into an actual representation the geometric intertwining operators are normalized
by the choice of a “coherent splitting” [Kal3, Definition 2.4.9] which we indicate by
e. By [Kal3, Theorem 2.7.7.1], there is a bijection

Irr(Nﬁf(kF) (T)g, 0) — H(ﬁf(k‘p), T(k‘F), 9)

Li(k a N T -
p > (p@ =R 0)) Ve T

(2.4)

Let Rep(L) be the category of smooth L-representations on complex vector spaces.
We recall that a L-representation (m,V') has depth zero if it is generated by the
union, over all facets f of B(L, F'), of the subspaces V7(Gro+) . We denote the full
subcategory of Rep(L) formed by depth-zero representations by Rep®(L). Let Irr(L)
be the set of irreducible L-representations in Rep(L) (up to isomorphism). For the
p-adic group L, we define the Deligne—Lusztig packet

. . . . oL c;(k
(2.5) IIL,T,0):= {mdﬁf(o') : 0 is a constituent of 1nf£f( )(:lz R f((k;)) 0))}
in Irr(L). More precisely,
(L, T,0) C Trr%(L) := {r € Trr(L) : 7 has depth zero}.

By definition, a supercuspidal L-representation of depth zero is non-singular if and
only if it belongs to one of the packets II(L, T, ). By (2.3]), we know that

(2.6) every m € II(L, T, 0) admits the central character 6]z (z).
By [MoPr2, Proposition 6.6], we have a bijection

) . oL

1nd£f1nfﬁ’;(kF) I(Li(kp), T (kr),0) — II(L, T, ).

Let Irr (N1 (T)g,0) be the set of irreducible representations of N7,(T) whose restric-
tion to 1" contains 6 (or equivalently, on which 7" acts via the character 6). As
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explained in [Kal3, §2.7 and §3.3], there is a bijection

e \Np(T €
(27)  In(NL(T)p.0) = (L. T,0), pr (p@nfry) 0" = ki,

where m(Lj’f@) = ind%finfg(kﬂ (£ R?f(ff))(ﬁ)ﬁ) is an L x Np(T)¢-representation. The
action of Np(T)g factors through N .(x,)(7T)e and is induced from the action on

Li(kr) .
iRTf(kf) (0)° in (2.4).
Lemma 2.1. The supercuspidal L-representation Ké:’; pr 08 defined in (2.7)), is tem-
pered if and only if 0 is unitary.

Proof. Any irreducible supercuspidal representation is tempered if and only if its
central character is unitary. Since 7" is a maximal torus of L, it contains Z(L). We
denote the maximal compact subgroup of a torus over F' by a subscript cpt. Since T’
is elliptic, Z°(L)/Z°(L)cpt is a finite-index subgroup of T'/Tcp. Hence 6 is unitary if

and only if 6| (1) is unitary. The constructions of j:R?((:;))(G) and k¢ show that

(T,6)
they admit central character 0|z(r). Hence so does né’g o O

If X is any set with an Ng(L)-action, then the group W (G, L) := Ng(L)/L acts
naturally on the set of L-orbits in X. Let Ng(L,T) be the largest subgroup of G
that normalizes both L and T. The W (G, L)-stabilizer of the L-conjugacy class of
(T, 0) can be expressed as

(2.8) W(G, L) 1,0 = Ng(L,T)o/Nr(T)g.

The actions of Ng(L,T)y on the sets in are trivial on Np(T)g, thus by (2.8),
they factor through W (G, L) (). We note that W (G, L)) is a quotient of the
stabilizer of 6 in W(Ng(L),T) = Ng(L,T)/T.

For characters of L, there are several reasonable notions of “depth-zero”. It is not
a priori obvious which one is the most appropriate, but fortunately they all coincide
by [SoXul Theorem 1.4]. Let Ls. = Ls(F') be the simply connected cover of the
derived group Lger = Lger(F). We abbreviate the cokernel of the canonical map
Lsc — L as L/Lg., and we consider the following group of characters:

X%(L) = {x: L/Lsc = C* | x|r has depth zero for all maximal tori T C L}.

We showed in [SoXu, Theorem 3.4] that X°(L) is equal to the group of characters
of L that are trivial on the image of Ly, — L and on Lj, o4 for every facet §z, of
B(L, F). An advantage of this notion of “depth-zero” for characters is that tensoring
representations by elements of X°(L) stabilizes Rep®(L).

Recall that a character L — C* is called unramified if it is trivial on every compact
subgroup of L. The group of unramified characters X,,(L) is essential for defining
Bernstein blocks in Rep(L). For any maximal torus 7' C L, the pro-p radical Ty of
the unique parahoric subgroup of T" is compact. Hence every unramified character
X : L — C* has Tpy in its kernel, so x|r has depth zero and y € XY(L).

More precisely, X,.(L) is a connected component of X(L). Every character of L
also defines a character of any inner form L’ of L. In this way, the groups X,.(L)
and X°(L) can be identified with their versions for L'.

The group XY(L) acts on Irr(L) by tensoring, and this action preserves the set
Irr°(L) of irreducible depth-zero representations of L. For x € X%(L), we have

NL(T)xgo = Np(T)g and  W(L,T)ygo = W(L,T)p;
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similarly for other analogous sub-quotients of L. We define Np(T)xo(rys (resp.
N (L, T)xo(r)s) to be the stabilizer of X%L)® 6 in Ni(T) (resp. Ng(L,T)). Set

W(L,T)xo(ryg = NL(T)xo(ryo/T and W(Ng (L), T)xo(ry9 = Na (L, T)xoryo/ T

Likewise, let W (G, L)1 xo(1)9) be the stabilizer of L - (T, X°(L)#) in W (G, L), which
is isomorphic to W(Ng(L), T)xo(ryo/W (L, T)x0(1)9- Notice that Ng (L, T)x0(z,)g nor-
malizes N7(T)y and that

n- Irr(NL(T)g, 0) = Irr(NL(T)g,n . 9) for any n € NG(L,T)x0<L)9.

Tensoring a representation with a character does not change its space of self-intertwiners,

so in (2.7]) we can
(2.9) pick the same coherent splitting e for all #’ € X°(L)6.

Proposition 2.2. Under (2.9), the collection of bijections (2.7) for all ¢ € X°(L)0
is W(G, L) xo(r)e)-equivariant. In particular, the bijection (2.7) is W(G, L)1 )-
equivartant.

Proof. Let U be the unipotent radical of a Borel subgroup of E;’ containing 7;. The

representation in:rf((kkj)) (0)€ is defined on the vector space Hdu (YME 7.Qy)s, which

arises from the variety
YT = {Id € L;/U : 1 Frob(l) € U - Frobd},

see [Kal3l §2.6]. It is viewed as a complex representation via a fixed field isomorphism
Q)= C. For g € Ng(L, T)xo(Ly, the map iU gltg~" induces a linear bijection

Li = ~ L =
(2.10) ng (YL{ f7 QZ)B — ng (};Z/{fg—laQ€>g-9'

As in [Kal3, (2.18)], we compose this with eqff/gug,l to land in Ho%(Y;y", Qp)g0-

Here \Iff{fgug,l is obtained from a canonical geometric construction [Kal3, (2.17)]
and it is normalized by means of a “coherent splitting” e. In the process, the

N ﬁf(kF)(’T)g—action from [Kal3l (2.18)] is precomposed with conjugation by g, which

we indicate by a superscript € o g~ 1.

Li(kr) X N,y (T)o-representations

This allows us to define an isomorphism of

L:(k e~ L:(k cog—1
(2.11) g- =R 0 =5 LRI (g 0y
which is canonical once € has been chosen. Now by (2.7]), we have
L,e ~ L,eog "\Np(T)g _ L,e Np(T)e _ Ly
(212) g-Kizg, = (PO g ) =0 0O RT0) T = KT g0gn O

The collection of bijections considered in Proposition is also XY(L)-equivariant.
Namely, by [Kal3l Theorem 2.7.7]

Lie ~ L 0
(2.13) X @ KT = BiTysoxse X EX (L)

L2 (k
Let o be a constituent of the Deligne-Lusztig representation iRT:(Ec;)) (6;), which

decomposes into mutually inequivalent subrepresentations:

L2(kF) .
iRﬁf(kF) (6r) = 69><eIrr(Qef) 7 Qg = W(LF, Ty) (kF)o;-
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By definition, these representations o, form a Deligne-Lusztig packet for ,C?(k‘p)
By inflation, we can also regard o and the o as representations of Pp;. Via the
types (Prs,0y), they give rise to the category

(2.14) Rep(L) (7.0, = P Rep(L)(p, ;.00)-

xGIrr(ng)
Consider the set W(G, L)(7; ;) := {weWwW(G,L): w-Rep(L)(py ;o) C Rep(L)(Tfﬂf)}.
Lemma 2.3. W(G, L)(7;6;) is a group, isomorphic to N (Pr, Ti)e; /Ni;(T5)e;-

Proof. The irreducible representations in Rep(L)(ﬁﬁf) are ind%f(&x), where 7, is an
extension of oy to Ly and x € Irr(€p,). More precisely:

2.15 rr(L -
(2.15) rr(L) (7 0) UXeIrr(Qef)

The set W(G, L)(7; g;) sends Irr(L)(p, ; o) to Irr(L)(7; 4,) and

Irr(L)(PL,f:Ux)'

w - (PLyf,U) = (’LUPL7fw_1,IU . U).

By the essential uniqueness of depth-zero types for supercuspidal representations
[MoPr1l Theorem 5.2], (Pr 4, 0) is uniquely determined up to L-conjugacy. Hence we
can find a representative for w in Ng(Pr ). Then w-o must be one of the o, thus w
stabilizes the Deligne-Lusztig series associated to (75, ). Here (7j, 65) is unique up to
E?(kp)—conjugacy, so we can even represent w by an element of Ng(Pyj, 7})9f. Con-
versely, every element of N (P, Tj)o; represents a class in W(G, L)(7; ;) Thus the
natural group homomorphism Ne(Pry, Ti)e; — W(G, L) has image W(G, L)1 o)
and kernel L N Ng(PLj, T;)e; = Nr;(T;)e;- O

Lemma 2.4. (a) The stabilizer of II(L,T,0) inside W(G, L) equals W (G, L))
It is a subgroup of W (G, L)(Tfﬁf)’ where 6 = 9]7?(;@).

(b) IfII(L,T,0) contains a representation fized by W (G, L)(7},9,«): then W (G, L)(r,9)
equals W (G, L)(T,c,@f)'

Proof. (a) The construction of II(L, T, #) implies that any element of W (G, L) that
stabilizes the L-conjugacy class of (7, 6) also stabilizes II(L, T, #). For an arbitrary
Deligne-Lusztig packet II(L, T, ), we claim that

(i) I(L,T,0) = (L, T, 0) if (T,0) and (T,0) are L-conjugate;

(ii) II(L, T, 6) is disjoint from II(L, T, 6) if (T,0) and (T, ) are not L-conjugate.
Indeed, by [Kal3, Proposition 2.6.11], this holds for the group Lj(kr) instead of
for L. This statement transfers to L; by inflation of representations. Consider any
T = indff(o’) e II(L,T,0) as in . By [MoPr2, §6], 7 determines the L-conjugacy
class of (Lj, o). Hence the validity of (i) and (ii) extends from L; to L.

Consequently, any element of W (G, L) that sends a member of II(L, T, 0) into
II(L,T,0) must stabilize the L-conjugacy class of (T,6). Then it also stabilizes the
L-conjugacy class of (75, 6;), and thus it belongs to W(G, L) (7, ¢,)-

(b) For any w € W (G, L)('Tf’gf), by the definition of these Deligne-Lusztig packets,
we have w-TI(L, T,0) = II(L,wTw™!,w-0), which contains an element of II(L, T, )
by assumption. By (i), we know that (wTw™!, w-#) is L-conjugate to (T, #), which
implies that IT(L, wTw ™!, w - 6) equals II(L, T, ). O



NON-SINGULAR DEPTH-ZERO REPRESENTATIONS 13

The Weyl group W (L, T) has the structure of a finite F-group, such that N (7')/T
is a subgroup of W (L, T)(F). Recall from [Kal3l Lemma 3.2.1] that W (L, T)(F)g
is abelian.

Lemma 2.5. The subgroup W (L, T)(F)g of W(Ng(L),T)(F)g is central.

Proof. Recall that 7; =T N g;. Let 7jaq be the image of 7; in E?ad. By the proofs
of [Kal3l Lemmas 2.2.1 and 3.2.1], we have an embedding

(2.16) W(L, T)(F)s < Irr(coker(Tj(kp) — Tjada(kr))).

This embedding is natural, and is in particular W(Gs, 7;)(kr)g;-equivariant. One
can easily see that the action of W (Gj, T)(kr)e; on Tj lifts to the action of W (G, T)
on 7, which adjusts 7 by elements of ZR(G,T) ®z F;* for a separable closure Fs of
F. Thus the action of W (G, T;)(kr)e; on Tjaq only adjusts Tjaq(kr) by elements of

(2.17) (ZR(G, T) N Xu(Tj.0a) @z Fr)",

where Frob denotes the Frobenius automorphism of kg /kp. Since ZR(G, T)NX+(Tj ad)
is contained in X, (7;), all elements of come from 7;(kr). Hence W(Gj, T;) (kF)o,
acts trivially on coker(7j(kr) — Tjaa(kr)). Via the embedding (2.16]), the conjuga-
tion action of W (Gy, T5)(kr)e; on W (LY, Ty)(kr)e; is trivial. O

Now we study the structure of W (G, 7)(F') in greater detail.

Lemma 2.6. (a) We have W(G,T)(F) =W (Ng(L),T)(F).
In the following, assume moreover that G(F') is quasi-split. Recall that 1, is the
facet in B(L, F) containing f.
(b) By replacing T within its stable conjugacy class for L, we can achieve that there
exists a point y € f1, whose image in B(Gaq, F') is a special vertez.
(c) Let G, be the connected reductive kp-group associated to the facet y of B(Gad, F),
and define L;, analogously. We have

WG, T)(F) = W(Gy, Ty)(kr) = W(Ngg (L), Ty) (k).

Proof. (a) As already noted in (2.2)), we have £ = Zg(7;), where T, denotes the
maximal F-split subtorus of 7. Every element w € W(G, T)(F') normalizes T, thus
also normalizes £. Hence w € W(Ng(L), T)(F).

(b) By [Kal2l Lemma 3.4.12], we can achieve (by changing 7 within its stable
conjugacy class) that the image of fr in B(L.q, F) is a special vertex. Thus for
every yr, € fr, the root system R(Ly (kr),Ti(kr)) equals R(L(F), T;(F)). Take a
basis Az of R(L(F),T;(F)), and extend it to a basis A of R(G(F),T;j(F)). By the
linear independence of A\ A in the character lattice of Z(£)°, for every a € A\ A,
we can translate yz, by an element t € X, (Z(£)°) ®z R, such that y := yr, + 1 lies in
a wall of B(G, F) in the direction o. Then y is special.

(c) Part (b) implies the first isomorphism of Weyl groups. The second isomor-
phism follows from this and part (a). (One can also rephrase the proof of part (a)
so that it applies to the kp-group QZ) O

We warn the reader that the kp-group G, from Lemma is in general bigger
than G7. Via the isomorphism Tj(kp) = X.u(7})Frob, from [DeLul (5.2.3)], we can
view 0; as a character of X,(7;). The values of ¢; belong to group of roots of unity
in C*, which is isomorphic to Q/Z. Hence 6; can also be viewed as an element of
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X*(T;) ®zQ/Z, where X*(7T;) denotes the character lattice of 7;. Then the action of
W(Gy,T;) on X.(T;) (or the action on X*(7;)) gives rise to a kp-group W(Gy, Tj)s;,
satisfying W(Gy, Ty)e, (kr) = W(Gy, T;)(kF)o;- From [DeLul p. 131], one can deduce
the following about the structure of W(Gy, Tj)g;:

(i) It has a normal subgroup W (G, ’7})&, generated by the reflections whose coroot
in X,(7;) is orthogonal to 65. It is equal to the W(Gy,T;)-stabilizer of an
extension of ¢ to a group in which Gy (kr) is “regularly embedded” in the
sense of [GeMa, §1.7].

(ii) It admits a decomposition W (G, Ty)e, = W (G, ﬁ)gf x I', where I is the stabi-

[e)

lizer of a set of positive roots for the Weyl group W(Gy, 7})9f.

(iii) There exists a point 0~f in the fundamental alcove for the action of the affine
Weyl group of R(Gy,T;) on X*(T;) ®z Q, such that

(2.18) WGy, e = (W(Gy, Ty) x X*(T)) 5.

(iv) The previous item implies that I' = W(Gy, T;)e, /W (G, ﬁ)gf is isomorphic to a
subgroup of X*(7;)/ZR(G,, Tj)-
By part (iv) the group I' tends to be very small, provided that G is semisimple. We

will use that later, to analyse W (G, 7)o,
We also have a version of Lemma in this context.

Lemma 2.7. Assume that we are in the setting of Lemma [2.6.b—c. The group
WLy, Ty)e; is central in W(Nge (L), Ti)e; -

Proof. By the non-singularity of ;, the intersection of W(Ly, Tj)e, and W (G, 7})3f
is trivial. Thus (iv) above provides an embedding

(2.19) WLy, Ty)o; = X*(Ty)/ZR(Gy, Ty)-

The construction of this embedding via (iii) shows that it is W(Ngs(Ly), Ty)e;-
equivariant. Since a reflection s, € W(Gy,T;) translates every element of X*(7;)

by a multiple of a, the action of W(Gy, T;) on X*(7;) only adjusts the latter by ele-
ments of ZR(Gy,7;). In particular, the action of W(Gy, Tj)e; on (2.19) is trivial. O

2.1. Embeddings of tori and extensions.

Given the F-torus T, there are various ways to embed it in a rigid inner twist of
L. Starting from one embedding one obtains first a stable conjugacy class of embed-
dings, and next by composition with inner twists a larger collection of embeddings,
which are then called admissible. We fix a finite central F-subgroup Z of £. The
equivalence classes of such admissible embeddings j can be parametrized by a coho-
mology set HY(£,Z — T) [Kal3, §4.4] and [Dil, §3]. Here the symbol &£ denotes a
certain gerbe whose precise definition is not important to us. This parametrization
requires the choice of a standard admissible embedding of F-groups jo : T — L7,
such that £’ is a quasi-split rigid inner twist of £ and jo7(F) fixes an absolutely
special point in the reduced Bruhat-Tits building of £ over F.

We now compare Weyl groups associated to different admissible embeddings. Any
two such admissible embeddings, say j : T — £ and j' : T — L', correspond to
the same conjugacy class of embeddings of Langlands dual groups. In fact that is
another characterization of our class of admissible embeddings [Kal2, §5.1]. Hence

(2.20) W(L,iT)(F) =W (L, §T)(F).
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Let G’ be a rigid inner twist of G containing £’ as an F-Levi subgroup. By [ABPS|
Proposition 3.1], W(G, L) is naturally isomorphic to W(G’, L’). Similar to (2.20)),

W(G, L) 10 = WI(G,L)(F)re = WG, LY F)re = WG, L) e
We fix jg as above, and we abbreviate jo7 = 77, joT = 1. The character o Jo Lof
T will still be denoted 6. By [Kal3| §4.5], there is an isomorphism
(2.21) WL, T°) = W (L, T")(F).

We warn the reader that this need not hold for another embedding j. It turns out
that (2.21)) can be generalized to a setting with G. Let G be a rigid inner twist of
G containing £” as an F-Levi subgroup, thus in particular G? is quasi-split.

Lemma 2.8. There is a natural isomorphism W (N (L), T°) = W (Ng, (L), T*)(F).

Proof. First we note the following isomorphisms

(2.22)  W(Ng (L), T°)/W(L,T°) = N (L, T") [N (T°) = W(G, L) o,
where the subscript 7” means that the L’-conjugacy class of T” is stabilized. Since
L’ is quasi-split, the natural maps

(2.23) Nes (L) = W(G®, L) — (N (L") /L) (F) = W(G°, L)W

are surjective. Hence (2.22) is equal to W(G”, £L°)(F )». Clearly, any element of this
group also stabilizes the £’-conjugacy class of 7?. On the other hand, if an element

of W(Qb, Eb) stabilizes the £’-conjugacy class of 77, then a suitable representative
of that element normalizes T°. Therefore ([2.22)) is naturally isomorphic to

(2.24) W (G, L) (F) = (W(Ng» (L), T°) /W (L, T°)) (F),

which has a subgroup W (Ng» (L), T°)(F)/W(L>, T?)(F). The natural isomorphism
from the left hand side of to the right hand side of ([2.24)) factors through
, thus this subgroup is equal to . Combined with (2.21]), it implies that
the natural map W(Ngs (L), T°) — W (Ng (L"), T’)(F) is an isomorphism. O

We now consider the case of an embedding j : T — £ admissible in the sense of
[Kal3l, § 4.4], such that £ is not necessarily quasi-split. Suppose j corresponds to

(2.25) [z] = inv(j, jo) € H(£,Z2 = T).

Then x defines a form of N, (77), with the property that

(2.26) W (L, §T) = WL, T")u(F) = W (L, T°)(F) -
Similar to [Kal3, §4.5], we construct the extension

(2.27) 1 =T —= Ny(jT)g = Np(T?)o(F) — W(L,jT)g — 1.
By and pushout along 6, we obtain a central extension

(2.28) 1= C* = & = WL, T)(F)pe — 1.

The set Irr(é’(gm],id) of irreducible representations of Sem on which C* acts as z — 2
is naturally in bijection with Irr(Ng(jT)g,6). Via and Proposition it
matches with II(L, jT',0). We can rephrase as & = Np(jT)s x 7,0 C*. For
x € X9(L), the bijection

NiL(JT)ye0 X jTne0 C = NL(GT)s X 10 C* : (n,¢) — (n, x(n)c)
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induces a canonical isomorphism of extensions

1 — C* Exbg —— W(L,jT) oo — 1
] F ]
1 y CX ; 85”] ——— W(L,jT)y —— 1

z]

In this way the extensions & 2] for varying 6/ € X°(L) ® 6 are naturally isomor-
phic. The conjugation action of Ng(L,jT) on (2.26) descends to an action of

N (L, jT)xo(Lys on . The quotient
(2.30) Ne(L,jT)xo(r 9/JT W(NG (L), 5T)xo0(1)p =

W (Ngs (L), T")a(F)zo(rys = W (Ngs (L"), T)(F) . 20(1)0
acts on the family of extensions , with ¢ € Ng(L,jT)xo(r)s sending &gx] to
Eg[afg). Only the subgroup W(Ng(L),jT)s = W(Ng (ﬁb),fp)(F)[m],g stabilizes Eem
and Irr(Ng(57T)e, 0) = Irr(f,’o[x], id). Consider now the extension

(2.31) 1= T — Np(T)g — WL, T)g = W(L, T")(F)g — 1,
which gives the following central extension via pushout along 6:
(2.32) 1= C* = E) = WL, T°)(F)g— 1.

The extensions 8(9,, for varying ¢’ € X(L) ®#, are naturally identified by a variation
on ([2.29)). The group NGb(Lb,Tb)xO(L)g acts on (2:31)). Tts subgroup Ng»(L?,T%)g
also acts on (2:32), and that action factors through W (N (L), T%)s. This gives an
action of N, (L?,T°)g on

Irr (N, (T7)g, 0) = Irr (&9, 1d),
which by Lemma [2.4) (a) factors through Ngs (L, T%)g /Ny (T%)g = W(G*, L) (15 g
Pulling back (2.31)) and (2.32) along W (L, T°)(F) g0 — W(L", T")(F) gives
(2.33) 1T — Npp(T) g9 = WL, T)F) g — 1
(2.34) 1= C = &M S WL, T)(F)u — 1.
0,[z]

In general, £,""" is not isomorphic to 55:]’ and the difference can be measured by
yet another extension, i.e. similar to [Kal5, §8.1], we consider

(2.35) LT = (T ) WL, T))a(F)g = WL, T")(F) g = 1,

where z determines a form of the algebraic group 72 x W (£?, 7?). By pushout along
#, we produce a central extension

(2.36) 15 C = &M S WL, T)(F)e — 1.
Reasoning as in (2.28)) and ([2.32]), the extensions 50,[ 4 with ¢/ € XL) ® 6 are

naturally identified, and this family of extensions is endowed with a conjugation
action of W (Ng» (L), Tb)(F)[xLxO(L)@.

Lemma 2.9. (a) The extension ([2.27)) is the Baer sum of the extensions (2.33)) and
235).
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(b) The extension (2.28)) is the Baer sum of (2.34) and (2.36), as extensions of
W(Ng» (L%, ﬁ)(F)[x]79—gr0ups.

Proof. (a) In the proof of [Kal5l Proposition 8.2], setwise splittings of and
are chosen. A setwise splitting of can then be obtained essentially as
the product of these two splittings. It follows that the 2-cocycle classifying (2.27)) is
the sum of the 2-cocycles classifying and , which means that is
isomorphic to the Baer sum of the other two extensions.

(b) As the difference between the extensions in part (a) and those in part (b)
is given by pushout along 6 in all three cases, the isomorphism here is a direct
consequence of part (a). The construction of this Baer sum takes place in the
category of groups with an action of W(Ngb(/:b), ’f“)(F)[xw, with the actions given
above of this lemma. O

Lem]rnam7 combined with the next proposition, shows that Séz] is isomorphic to
5; 2] as W(Ngb (»Cb), 'TJD)(F)[I} ’XO(L)Q—groups.

Proposition 2.10. The family of extensions &), with ¢’ € X°(L) ® 6, admits
an NGb(Lb,Tb)XO(L)g—equivariant splitting. In particular, @ € Trr(T°) extends to a
W(G, Lb)(T»’e)—stable character of Ny, (T?)g.

Proof. First we reduce to the case of finite reductive groups. Let P2 C G” be the
parahoric subgroup associated to the special vertex y from Lemma (b). Similar
to the extension ([2.31]), we consider the extension

(2.37) 1= P)NT" — Py Nep (L, T")g, = W(Ngs (L), T")g, — 1.

By Lemma [2.6] (c), pullback of ([2.37) along W(L?,T")g — W (Ngs(L?),T")s,, fol-
lowed by pushout along 0; : P, N'T' > C*, recovers the extension (2.32)). Since 05
has depth zero, the pushout of ([2.37)) along 6; can also be obtained from

(2.38) 1 = Ti(kr) — Nggo(Ly, T;) (kr)o; — W (Ngs (L), Tp)(kr)e; — 1.

The image of W (Ng» (L), T*’)(,;f in W(Gy, 7;)(kr) is contained in W (Nge (Ly), T;) (kr )o;-

If we can establish a W (Gy, T;)(kr)-equivariant splitting of ([2-38), then we can ex-

tend it W(Ng (L), Tb)xo(L)gf—equivariantly to the versions of for other 6;.
Thus it suffices to construct an Nge (Ly, T5) (kr)o-equivariant setwise splitting of

(2.39) 1— 7;(]6}7’) — Ng; (ﬁ)(kp)gf — W(ﬁ;,ﬁ)(kp)gf — 1,
which becomes a group homomorphism in the following pushout along 6;:
(2.40) 1—C*— 5& — W(Ly, Tj)(kr)o; — 1.

The existence of such a splitting was shown in [Kal3, Lemma 4.5.6 and Corollary
4.5.7]; it remains to prove its Ngs(Ly, T;)(kr)e,-equivariance.

We denote the derived group of G by Gger, and its simply connected cover by
Gsc. For disconnected algebraic groups, we define the derived and simply connected
analogues by first passing to the neutral component of the group. Let ;. be the
preimage of 7; in G sc. Then 6; can be pulled back to a character 6; . of Tj .(kr). The
preimage Ly of Ly in Gy s is a Levi subgroup of the latter, so the derived subgroup
of Ly . is simply connected and we denote it by Lys.. We write Tyse = Tje N
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L;sc. By pushout along 65 : Tj.(kr) — C* and pullback along I/V(L;,’7})(]<;F)9f N
W(Ly.ec, T,c)(kF)Gf,c of the extension

(2.41) 1= Tielkr) = N, (Tie)(kF)o; ., = W(Lye: Tie)o. — 1,

one can obtain (2.40). The group Ngo (L3, T;) (k) still acts by conjugation on
, and we need to keep track of equivariance for that action. This may be re-
placed by the conjugation action of Ng, .. (L;e, Ti.c) (kF)g; ., because the latter group
has a larger image in Gy ger(kr). Therefore we may assume without loss of gen-
erality that G is simply connected. Then decomposes as a direct product
of the analogous extensions for the kp-simple factors of Gy, thus we may assume
without loss of generality that G is in addition kp-simple. By passing to a finite
field extension of kr, we can make Q; absolutely simple.
From now on, we assume that G is absolutely simple and simply connected.

By Lemma WLy, Ty)(kr)o; commutes with Nge (L7, T)(kr)e;/Tj(kp) in the
group W(Gy, T;)(kr). Choose a pinning of Gy, associated to a maximal torus of
ﬁ; and stable under the action of Frob used to define g; as kp-group. Then the
Levi subgroup L is Frob-stable, and Frob stabilizes the pinning of £ obtained by
restriction from Gy. We can write Ngo(Ly) = Ly x I', where I' is a finite group
of pinning-preserving automorphisms of £7. For v € I' C Ngo (£y), the element
FrobyFrob™! preserves the pinning and thus again lies in T'. In other words, Frob
acts on the subgroup I' of Nge (L), and that action coincides with the Frob-action
on Ngeo(Ly)/L; = T. This implies

]\fgv73 (EZ)(kF) — Ng;; ([’Z)Fmb — (E?j « F)Frob — £;,Frob ><I FFrob — EZ(]CF) q FFrob.

Let £,; be an almost direct factor of £, coming from one Ngo(Ly)(kp) x (Frob)-
orbit of simple factors of L. The group Ey dor = Ly,sc is simply connected, thus is
equal to the direct product of these £, ;’s. The group £} is an almost direct product

of L7 4o and Z (£°)° For each ¢, let I'; be the image of I" in the automorphism group

of Ly ;. We write L = Ly,; x I';. Similarly, we can define 'y C Aut(Zg: (£} 4.,)°)
and write

Zg; (Ego;,der)+ = ngj (Egj,der>o xIz.

Then there is a natural embedding
(242) W(Ngqj (‘C’Z)’/];) — W(qu‘j ([’jcy),der) ) O O X H W yza

where Tj; := Ty N Ly;. We define W (L}, Tji)o, as the image of W(Ngg([,;),ﬁ)g

Y547 f
under ([2.42)) followed by projection onto the i-th coordinate. This group satisfies
(2.43) W(TiLyi, Tro; © WL, Tride, © WI(Ly . Tsideg.

where 0; ; := 9]:\7 (k). In general, both of the above inclusions can be proper. The
upshot of the construction is that Lemma 2.7 still applies. For every 4, we can
construct an extension similar to as follows:

(2.44) 1— Tilkr) — Nﬂii(ﬁyi)(kp)gf — W(EyZ,T J(kr)o; — 1,

where the subscript 6; is defined as above and it guarantees the exactness of the
above sequence (2.44)). The extension (2.40) can be recovered from the extensions
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(2.44) for all i. Since the action of Ngo(Ly,Tj)(kr)e; still shows up in (2.40)), it

suffices to construct splittings of
(2.45) 1— T}Z(kp) — Nﬁy,i (7%1')(]{71:’)9f — W(ﬁyi,Ti)(kF)gf — 1,

which are invariant for the conjugation action of W(EyZ,Tz)(kF)ef and become

group homomorphisms in the following pushout along 0; ;:
(2.46) 1-C* = 59 — WLy, Tyi)(kr)o; — 1.

The existence of such a splitting was shown in [Kal3, Lemma 4.5.6 and Corollary
4.5.7]; it remains to show the invariance. The N g (75:)(kF)g-invariants in the

pushout of (| are canonically isomorphic to the invariants in the version of
- for one k:F simple factor of £, ; except with invariants under a subgroup of
N L;i('ﬁ,i)(k:p)gf. Therefore we may assume without loss of generality that in ,
Ly ; is kp-simple and simply connected.

Furthermore, £,; is the scalar restriction of a simple group ﬁfw- over a field
extension k' of kp. We may replace without loss of generality kz by k" and L, ; by
E’ Thus we can reduce to the case where £, ; is absolutely simple and simply
connected Lemma [277] still applies, and shows that

(2.47) W(Ly,i, T;i)(kr)e, is central in W(E;NT )(kF)o;-

Since W (G, T;) is a Weyl group containing W (Ly, 7;), and Nge (Ly, T;) (kr)e;/ Ti(kr)
normalizes W (Ly, 7;), the actions of N+ (7;;)(kr)e;, on (2.45) and (2.46) are con-
Y,

structed from:

e conjugation by elements of N . (7;:)(kr);
e for each Dynkin diagram automorphism W (L, ;, 7;;), at most one coset of

Ne, i (Tri) (kr).

We now check case-by-case.

Case I. N£+ (T5.i)(kr)e, acts on Ty; as conjugation by elements of W(Ly;, Ty ).
This holds Whenever W (Ly,T;) has type A1, By, Cp, E7, Es, Fy or Ga, because then

the only Dynkin diagram automorphism is the identity. Then the action of
NL+ (75,i)(kF)o; can be viewed as coming from elements of N¢, (7;:)(kr)g;- Hence

any sphttlng of (2.46), as in [Kal3| §4.5], is N£+ (75,1) (kF)g;-invariant.

Case II. W(Ly;,T;:) has type Es.

If W(Ly,i, Tri)(kr)e, is trivial, there is nothing to prove. Otherwise, we have
WLy, Tsi)(kr)e;, = Z/3Z. However, its image in the automorphism group of the
affine Dynkin diagram of W (L, ;, T;;) does not commute with the nontrivial diagram
automorphism 7 of Eg, thus by (2.47)), 7 does not play a role in the picture. We
conclude as in Case 1.

Case III. W (Ly i, Ts.i) has type A,_1 with n > 2.

If £, ; is an outer form of a split group, then W (L, ;, T;.;)¥°P becomes a Weyl group
of type Bp—1 or C,,—1. The associated root system does not admit nontrivial diagram
automorphisms, thus we reduce back to case I. Therefore we may assume without
loss of generality that £, ; is split, and thus it is isomorphic to SL,. By a change
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of coordinates for SL;, we may assume without loss of generality that 7;; is the
diagonal torus in £, ;, with Frob-action given by the gp-th power map composed
with conjugation by an elliptic element Fy € W (L, ;,T5;). With respect to these
coordinates, this is also how Frob acts on SL,. Since elliptic elements in S,, are
n-cycles, we may assume that Fy = (12...n). Note that T;; splits over the degree
n extension k' of kp

By , one can classify the possibilities for ¢;; in terms of points of a funda-
mental alcove. The non-singularity of 6; and force that W (L, ;, ’7',1-)9f is either
trivial or comes from the barycentre of an alcove, in which case we have

W(Lyi, T’Z‘)em ={((12...n)).

More precisely, GL1(k’) admits an order n character represented by (, € k¥, and
05, can be represented by diag(1, ¢n, ..., ¢, ") € PGL,(K). However, W(Ly;, Tji)e; ,
does not commute with the nontrivial diagram automorphism 7 of S,; from their
actions on the affine Dynkin diagram of type A,,_1, we see that 7 acts by inversion.
By , W (Ly., ’7',14)9f can only contain elements of W (L, ;, Tj;)e; , of order < 2.
IEW(Ly,, T,i)gf is trivial, then there is nothing to show; thus we may assume that n
is even and that W (L, Tyi)e, = ((12.. .n)"/?). The group 5;1- = Ly; xI'is equal
to SL,, x (=T), where —T denotes the inverse transpose automorphism, because the
nontrivial element of I' acts by —T composed with conjugation by an element of

SL,, (because n is even). One can check that W(EyZ,T Jo, = (w1, w2) = (Z/27,)?,

where w; = (12...n)"? and wo = —T o (2n)(37n - 1) (n/2n/2+2). However,

the element ws does not commute with Frob in W(Ey ;» T5.i). Hence we have

Nes (Ta)(kr)o; = Ne, o (Tyi) (ke o

Case IV. W(Ly;,T;;i) has type Dy, with n > 4.
Now W(Ly.i, Tji)e;, embeds in Z/4Z (for n odd) or in Z/27 x Z/2Z (for n even). If
we are not in Case I, the action of N c (7;,i)e;,, on the Dynkin diagram D, uses the

nontrivial automorphism e€,. We reahze Ly, as a spin group on a vector space of
dimension 2n, and 7, as the diagonal torus. Then €, becomes the reflection in the
n-th coordinate of 7j;. It only fixes one nontrivial element of X*(7;;)/ZR(Ly, Tj ;).
thus W (L, i, Ty.i)e; , has order two.

Again by , we have a classification of the possible 6;; via points in a fun-
damental alcove. Via conjugation, we can reduce to the following situation: the
character 6;; of 7j;(kr) has trivial restriction to the first coordinate and quadratic
restriction to the n-th coordinate, while the restrictions to the other coordinates (as
well as their inverses) differ and have higher order. Then W(Ey o Tii)os, = (€1, €n)
and W(EW,TJ-)QM = (€1€,). Recall that - has a splitting, say it sends €€,
to s1s, with si,s, € Eyﬂ'(kp) representing reflections in these coordinates and

st =s,2¢€ Z(Ly;)(kr). Then ¢, acts as conjugation by s, on Ly, and fixes s15y.

Case V. W(Lyi,T;i) has type Dy.
In the automorphism group of the affine Dynkin diagram of Dy, the order-three

automorphisms of Dy do not commute with (the image of) any nontrivial element
of W(Lyi, Tyi)e;, C Z/2Z x Z/27Z. 1f the action of N£+ (7;,i)(kF)s;, on the Dynkin

diagram D, includes such exceptional automorph1sm then W (Ly, T;)e; is trivial
and there is nothing to show. Otherwise either we are in Case I, or the action of



NON-SINGULAR DEPTH-ZERO REPRESENTATIONS 21

N L;i(ﬁ,i)(k:p)gm uses exactly one nontrivial diagram automorphism 1), of order

two. But 1 is conjugate to the standard Dynkin diagram automorphism ¢, by an-
other diagram automorphism 7 of D4. Conjugating everything by this 7 brings us
back to Case IV, which works just as well for n = 4 with these simplifications. [

3. SUPERCUSPIDAL L-PARAMETERS OF DEPTH ZERO

3.1. Preliminaries.

Let GY = GY(C) be the complex dual group of G, endowed with an action of the
Weil group Wr C Gal(Fg/F) that stabilizes a pinning. The Langlands dual group
of Gis 'G =G := GY x Wg. Consider Langlands parameters

¢ : Wr x SLy(C) = 1'G = GY x W,

such that ¢[gp,(c) : SL2(C) — GV is an algebraic homomorphism, ¢|w,. is a contin-
uous homomorphism preserving the projections onto Wg, and (W g) consists of
semisimple elements. Let Pp C Ir C Wp be the wild inertia and inertia subgroups
of Wg. Let Frobg be a geometric Frobenius element of Wg. A Langlands param-
eter has depth zero if p(w) = w for all w € Pp. For any w € Wy and x € SLy(C),
we write p(w, z) = o(x)po(w)w, where gy : Wrp — GV is a 1-cocycle. Since P is
normal in W, we have

wpw ™! = p(wpw ™) = p(w)p(p)e(w) ™t = o(w)wpw ™ po(w) ™!
for any depth-zero L-parameter ¢. Since wpw™! runs through all of P, we have
vo(w) € Zgv(Pp) for all w € Wp. Since ¢(SLa(C)) commutes with ¢(Pr) = Pp,
it lies in Zgv(Pp) as well. Therefore, any depth-zero Langlands parameter ¢ gives
rise to a 1-cocycle. g : Wp/Pr x SLy(C) — Zgv(Pp).

We abbreviate MY := Zgv(PF). This group is reductive (because Pp acts on
GY via a finite quotient) but not necessarily connected. Although L-parameters are
usually considered up to GV-conjugacy, our depth-zero condition is not preserved
under GV-conjugation, therefore we need to make some adjustments. We denote
the set of MV-conjugacy classes of depth-zero L-parameters for G by ®°(G), which
injects into the set p(G) of GY-conjugacy classes of L-parameters for G.

Consider G as a rigid inner twist of its quasi-split inner form G”, with respect to
a chosen finite subgroup Z C Z(G) as in [Kalll, [Dil]. More precisely, this means that
G is equipped with more information, which can be packaged into a character (g
of a certain group mo(Z(GV)T). Here G := G/Z has complex dual group GV, and
Z(GV)* is the preimage of Z(GY)WF in Z(GY). The group GV is a central extension
of GV, which gives rise to a conjugation action on GV x W . Its associated version
of the centralizer of ¢ is

ST = Zav (p(Wr x SLy(C))) = preimage of Zgv(p) in GV,

An enhancement of ¢ is an irreducible representation p of mo(S; ), and it is called G-
relevant if p| Z(GV)y+ 18 (g-isotypic. The group G acts naturally on the set of enhanced
L-parameters for G, and this action factors through GV. The group M := Zgv (PF)
does the same if we restrict to depth-zero enhanced L-parameters. Let ®%(G) be the
set of MV-orbits of G-relevant enhanced depth-zero L-parameters. It is a subset of
the set ®.(G) of GV-orbits of G-relevant enhanced L-parameters.

A Langlands parameter ¢ is called supercuspidal if it is discrete and trivial on
SLy(C). It is expected that this condition should be equivalent to the L-packet IL,
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consisting entirely of supercuspidal representations (of various inner twists of G).
This expectation is a special case of [AMSI], Conjecture 7.8].

Lemma 3.1. FEvery supercuspidal depth-zero L-parameter for G gives rise to the
following objects, which are canonical up to MY -conjugacy:
e an L-group UT with an embedding *j : YT — LG, such that *5(TV) is a
mazimal torus of GV and *j(PF) equals Pr C FG;
e an F-torus T and a mon-singular depth-zero character 6 of T, such that
T/Z(G) is elliptic and ¢ is equal to the composition of ¥j with the L-
parameter of 6.

Proof. Consider a depth-zero supercuspidal L-parameter ¢ for G. By [Kal3, Lemma
4.1.3.2], Zgv(e(IF))° is a torus. (The torally wild assumption in [Kal3] is not needed
in the proof.) Note that Zgv(¢(Ir)) C MY because ¢(Pr) = Pp. By the proof of
[Kal2, Lemma 5.2.2.2], we have that Ty, := Zav.c (Zgv(p(IF))°) is a maximal torus
of MV, normalized by ¢(W ) and contained in a Borel subgroup of M" normalized
by ¢(Ir). Upon conjugating ¢ by a suitable element of MY, we may assume without
loss of generality that T} is contained in a W p-stable Borel subgroup of MV, s.t.

(3.1) P(Wr) C N (Ty) x W,

Now, Ad(yp) gives an action of W /P g on T);, and the F-torus Ty dual to Ty, (with
this W p-action) is tamely ramified. Since ¢ is discrete, Zpy (0(Wg)/Z(GVYWF is
finite and Tys/Z(G) is elliptic. By [Kal3, Remark 4.1.5], there exist canonical tamely
ramified x-data for R(M"Y,Ty;). As in [LaSh| and [Kal4l §6.1], these y-data yield

an embedding “Ty /P < MY x Wr/Pr, whose M"-conjugacy class is canonical.
It inflates to an L-embedding

(3.2) i : Xy = MY x Wi C G,

such that “j,;(Wp) stabilizes a pinning of M". By [Kal3, Lemma 4.1.11], we may
assume that

(3.3) Liv(1,2) = (1,2) for all 2 € Ip.

For any embedding jps : Tar — G whose dual L-homomorphism is (GV-conjugate
to) Ljas, we have

(3.4) v (Tar) is a maximal tamely ramified torus of G.

In particular, Zg(jar(7ar)) is a maximal F-torus of G. Hence TV := Zgv(T};) is a
maximal torus of GV, and it is stable under Ad(¥jy(LTyr))-action because T}, is.
We denote L5y, with target G by ©j. Then

Ly =TV % Lj(Wg)
is the L-group of an F-torus 7. Since ¢ is discrete, Zpv(9(Wr))/Z(GY)WF is finite
and 7/Z(G) is elliptic.

Note that ©j(W ) normalizes a Borel subgroup of GV, i.e. the group generated
by TV = Zgv(Tyy) and the root subgroups Uy,v for o € R(GY,T") such that o[y
is positive with respect to the “j;(Wr)-stable Borel subgroup of M" from (3.1)).
The same arguments as for “j,; ensure that ©j(Wp) stabilizes a pinning of GV.

By construction, ¢ factors as LjM o1, , Where o1, : Wp — LTys. Via the LLC
for tori [Lan2, Yul, ¢r,, yields a character 67,, of Tjps. The LLC for tori preserves
depth zero [SoXul, Proposition 1.3], so fr,, has depth zero. We can also write that



NON-SINGULAR DEPTH-ZERO REPRESENTATIONS 23

o factors as j o pp, where pr € ®°(T). Then @7 determines a depth-zero character
6 of T that extends ér,,. Since Zgv(¢(IF))° is a torus, by [Kal3, Lemma 4.1.10],
Or,, is F-nonsingular. By , this implies that 6 is F-nonsingular as well. More
precisely, for any embedding j : T — G associated to ©j, we see that 6 determines
a non-singular depth-zero character j.0 of j(T). O

Note that from the data (T,%7,6) in Lemma we can recover ¢ = j o pp.
The following result was established in arbitrary depth by Kaletha, we formulate it
explicitly here because in depth zero fewer assumptions are necessary.

Lemma 3.2. There is a canonical bijection between the supercuspidal part of ®°(Q)
and M -conjugacy classes of data (T,73,0) as in Lemma .

Proof. The argument for bijectivity is given in [Kalll Proposition 5.2.7] and [Kal3|
Proposition 4.1.8]. With Lemma at hand can apply these proofs in the special
case of depth-zero L-parameters, then the tame ramification assumption on 7" and
G in [Kalll [Kal3| is not needed. O

3.2. Extensions related to enhancements of L-parameters.

We now fix a Levi subgroup L of G and consider depth-zero supercuspidal L-
parameters for L. To view L as a rigid inner twist of its quasi-split inner form, we use
the same Z as for G. In this setup, we obtain the set of supercuspidal parameters in
®Y(L), which carries a natural action of a group analogous to W (G, L) = Ng(L)/L,
i.e. by [ABPS, Proposition 3.1], there is a canonical isomorphism

(3.5) Ng(L)/L = Ngv(LY x Wg)/L".
We write W (G, LV) := Ngv(LY)/LV. 1t is easy to see there is a natural isomorphism
(3.6) Nev(LY x Wg)/LY =W (G, LV)Wr.

The subgroup W (MY, LY)Wr = Ny (LY x Wp) /(MY N LY) acts by conjugation
on ®Y(L). This action extends to ®Y(L) in the following way. Let (¢, p) represent an
element of ®Y(L), and let m € M" represent an element of W (MY, LY)WF. Then
(3.7) m - (¢,p) = (mpm™", po Ad(m)™").

If we allow arbitrary (enhanced) Langlands parameters for L, then the entire group
W(GY, LY)WF acts in this way. Denote the stabilizer of ¢ € ®°(L) in W (GY, LV)Wr,
or equivalently in W (MY, LV)Wr by W(GY, LY)Wr . It acts naturally on Irr(mo (S} )
and we have
(3.8) W(GY, L)V = (Ngv(LY x Wr) N Zev () / Zv (9).
We write

W(Negv (LY), TVYWF = (Ngv(LV,TV)/TV)WF =~ Ngv(LY, TV x Wg)/T".
Since T is determined by ¢ and is contained in L, (3.8) is equal to

(3.9)  (Nev(LY,"T) N Zev(9)) [ Zov (@) = W (Ngv (LY), TV)Wr JW (LY, TY)VF.

Here Wi acts via “j, and the group W (LY, TV)WF acts naturally on ®°(7). By
the functoriality of the LLC for tori [Yul, this action satisfies

(3.10) W (LY, T)Wr = W (L, T)(F)y.
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By [Kal3 Lemma 3.2.1], the group W (L", TV)Z‘;F is abelian. Hence the conjugation
action of W (Ngv(LY), TV)WF on W(LY, TV)¥F descends via (3.9) to an action of
W(GY,LV)Vr.

Lemma 3.3. The subgroup W (LY, TY)Wr of W(Ngv (L"), TV)WF is central.
Proof. Via (3.10) and the similar isomorphism

(3.11) W(Ngv(LY), TV)J0F = W(Ng(L), T)(F)g,
the desired statement is equivalent to Lemma |2.5 O

Write £ :=£L/Z and T := T /Z. Let T = Zzv () be the preimage of TV-Wr

inT". By [Kal3, Corollary 4.3.4] and ([3.10]), there is a functorial exact sequence
(3.12) 1T =85 > WELY, TV)Wr - 1.
We note that the group Ngv(LY x W, TV) N Zgv(p) from (3.9) acts naturally on
(3.12)). Moreover, (3.12)) implies that T is an abelian normal subgroup of S;r , such
that W (LY, TV)WWTF acts naturally on Irr(Tv’Jr). For n € Irr(mo (TV’+)), let Trr (S5, n)
be the set of irreducible representations p of S;r whose restriction to 7" contains
n. In fact, any such p contains the entire W(LV,TV)Z‘;F -orbit [n] of 7. B}L (13.9),
W(GY,LY)¥r acts naturally on the set of W (LY, TV)Wr-orbits in Irr(WO(TV’+)).
In particular, the stabilizer W(G", LV)ZV[% of [n] is well-defined. Similar to (3.8)) and
(8-9), set

(3.13) W(GY,LY)Wr = (Nev(LY,ET)y 0 Zev () [ Z1v (©)n,
W(Ngv(LY), TV)W5 = (Ngv(LY,"T), 0 Zgv(p)) /TVWr.
The group W(GY, LY)WF embeds naturally in W(GY, LY)WF, which gives an iso-
morphism W (G, LY)¥r = W(G¥, LY) .
Similar to X°(L), we consider

o,rvy . J € HY(Wg,Z(L")) : ¢ has depth zero in HY(Wg,TV)
(3.14)  XU(LY) := { for every maximal torus 7' C L ’
The groups X°(LY) and HY (W, Z(L")) act naturally on ®(L) as
(3.15) (z-9)(7,A) = 2(v)¢(y, A) for ¢ € D(L),2 € X°(LY),y € Wp, A € SLy(C).

This action (3.15) stabilizes $°(L) and we have S, = S}. Moreover, it extends to
an action on ®.(L) and on ®Y(L) that acts trivially on enhancements. The group

(3.16) N, := Negv (LY, “T) N Stabgv (X°(LY)¢p)

acts naturally on all terms of (3.12). Restricting (3.12)) to the stabilizers of 7 gives
the following extension of N, ,-groups

—v.t
(3.17) LT = (ShHy = WLy, TV)Wr — 1.
Pushout of (3.17)) along 1 gives a central extension

\Y VW
(3.18) L= C* = &7 = W(LY,TY) 5k — 1,
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where the N, ,-action from (3.17)) factors via

(3.19) W (Ngv (LV) TV) = N,,/TVWr.

nX0(LV)or "

The significance of (3.18)) is that Irr(&F7,id) is naturally in bijection with Irr(S(j, n),
which will parametrize a part of an L-packet (in Proposition . Next we express
(3.17) and (3.18)) as Baer sums of simpler extensions. Firstly, consider the following

split extension
(3:20) Lo TV = T s WLY, TV = W(LY, T8 =1,

Restricting to ¢ (W p)-invariants and then taking preimages in T % W(LY, T V)UWF
gives a central extension

Ve WY, T )W 1,

321) 1T o (T WLy, 7v)Wr)#r wr

whose push out along 7 gives us an extension

(3.22) 1= C* = &7 - W(LY,TV)VE — 1.

For any z € X°(LV), the groups apT (Wr) and zeo7(W p) centralize the same elements
of LY. Hence N, acts on via its quotient W (Ngv (LY),TV)W,

that descends to an action on .
Secondly, consider the extension

(3.23) 1—TY = Npv(TY) = W(LY, TV) = 1,

endowed with the Wg-action from *j : Wy — FL. By [Kal3, Lemma 4.5.3], it
remains exact upon taking W p-invariants. (For use in Appendix [B| we remark that
this still works if we replace Nyv(TV) by Ngv(LY,TV) in , by the same
argument.) Next taking preimages in G’ and pullback along W(LY, T V)Z‘;F —
W(LY, TVYWF give

xO(LV)<p and

3.24 1T = N (THE = WL, T)Wr 1.

L
Then we pull back along W (LY, TV),IWSOFT — W(LY, TV)WF to obtain the extension
(3.25) 1T = (N (T gy — WLV, TV)WE 1,

Pushout along 7 gives a central extension

(3.26) 15C* = EOWT N W(L\/ Tv)nwvi Ny

Again the group Nw y from acts naturally on (3.23)—(3.26]), which induces an
action of W (Ngv (LY), TV)17 X0(LV)pp O1 3.26)).

Lemma 3.4. (a) The extension (3.17)) is isomorphic to the Baer sum of (3.21)) and

(13.25), as e:rtensions of Ny n-groups.
(b) The extension is isomorphic to the Baer sum of (3.22)) and (3.26), as

extensions of W(Ngv(Lv) ™ W xO(LV) L~groups.

Proof. (a) The following is shown in the proof of [Kal5, Proposition 8.2]. One
has setwise splittings of (3.21]) and (3.25)), from which one constructs 2-cocycles in
Z2(W(LV,TV)X‘;FT ) that classify these two extensions. Then the product of these
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2-cocycles classifies the extension (3.17). Translating back from 2-cocycles to exten-
sions establishes the desired isomorphism. To these arguments we only have to add
that they all take place in the category of N, ,-groups.

(b) This is a direct consequence of part (a) and the earlier observations that, upon
pushout along 7, the N, ,-actions on the said extensions factor through (3.19). O

We shall also need the following technical result similar to Proposition Al-

though all the extensions 52’% with ¢/ € X°(LY)pr are naturally isomorphic, we
need to distinguish them for this purpose.

Proposition 3.5. The family of extensions SS’SOT with ¢l € XO(LY)or admits a
W (Ngv(LY), Tv)nwx%(LV)goT -equivariant splitting.

Proof. It suffices to show that (3.26) admits a W(Ngv (L), TV)WF -equivariant
splitting, for then the other required splittings are obtained by conjugating with
elements of W(Ngv (L"), TV)X,‘;%(LV)W' By Lemma w (c), we have

(3.27) W(GY, TV)Wr = W(G, T)(F) = W(Gy. Ty)(kr)-

Since the group G, and its maximal torus 7; split over an unramified extension
of F, shows that we can realize W(GY,TV)WF in W(GVAre TV )Wk,
(Recall from that Ir acts in the same way on TV and on GV.) Furthermore,
as in the proof of Proposition we may replace by its restriction 6; to T(or),
which factors via Tj(kp). This makes the stabilizer of 6 bigger but preserves the
non-singularity. On the dual side, it means that we may replace ¢ by ¢|1,, which
has image in TV17° x I. If ;- € I is a topological generator of Ir/Pf, then ¢(ir),
i.e. the semisimple parameter of 6, and ¢(Ir) have the same centralizer in GVlre,
These replacements for GV, TV and ¢ tell us that it suffices to prove the proposition
assuming I acts trivially on GV, and with the centralizer of ¢(1r) € TV instead of
the centralizer of .
Let Ty be the preimage of T' in Lg.. The element

nE Irr(ﬂo(Tv’+)) ~HYEZ = T)

can be constructed as an invariant of (j, jo) as in [Kal3, §4.4]. Since the embeddings
4,70 : T — L 1ift to Tge — Lgc, the element 7 lifts to

the € HY(, T) & I (ro(TW7).

This means that
(3.28) n:mo(T" ) = C* factors through n : mo(ToWF) — C*.
As in [Kal3l Corollary 4.5.5], (3.26) can be obtained from

(3.29) 1—TYWr — Ny (TSY:)Z‘;F — W(LY TSY:)Z‘;F —1

sco

via pullback along W (LY, TV)Wr — W (L, T.)¥* and pushout along n.. Since
Ls." = LV.q = LY/Z(LV), we may replace all relevant subgroups of Ngv(LY) by
their image in Ngv(LY)/Z(L"). Then it suffices to find an N-equivariant setwise
splitting of , which becomes a group homomorphism upon pushout along 7.
The existence of such a splitting was shown in [Kal3, Lemma 4.5.4]; it remains to

show Ngv (LY, LT),-equivariance.



NON-SINGULAR DEPTH-ZERO REPRESENTATIONS 27

As an intermediate step in this reduction process, we can divide out Z(G"), such
that GV is of adjoint type. Then GV is a direct product of simple groups, permuted
by Wr, and the extension decomposes accordingly. Therefore we may (and
will) assume the GV is simple and of adjoint type.

Let LY be a direct factor of LY, which is the product of all simple factors of LY,

in one N, x W p-orbit, and write 7)Y := T.¥. N LY. Then the decomposition

(3.30) W(LY,TY) = H W(LY,T)

sc?

is preserved by Ngv (LY, XT),xW p. Let W(LY, T} ) ;. be the image of W (LY, ToY) o

in W(LY,T)) via projection onto the i-th coordinate in ([3.30)). Similar to (2.43)),

there are inclusions

W(TSCVL;/,TSCV)@T - W(L;/aT'v)goT - W(L;/anv)Z(LSCVWT

)

The extension ([3.29) embeds in a direct product of analogous extensions
(3.31) L= (LO)WF = Ny (L) gy — WL TY) gy =1

for the various i. Hence it suffices to consider one such extension. The Ngv (LY, LT),-
invariants in the pushout of along 7. are canonically isomorphic to the in-
variants in the analogue for one F-simple factor of L except for invariants with
respect to a subgroup of N,. Therefore, it suffices to prove the proposition when L
is F-simple and simply connected.

Now LV is a direct product of simple factors, and W permutes these factors
transitively. We may replace LY by one of its simple factors and W by the stabilizer
of that simple factor, because this replacement preserves the group of W p-invariants.
Hence we may assume without loss of generality that LY is simple and adjoint.
Recall that by the simplifications at the start of the proof we are in a setting where
G" x (Frobp) is dual to a connected finite reductive group.

By the proof of [Kal3, Lemma 4.5.4], we know that W (LY, TV)Wr is cyclic or

YT
isomorphic to the Klein four group, and by Lemma we know that W (LY, T V)z‘;F

commutes with Ngv(LY,LT), in W(GY,TV)Wr.

Since W(GY,TV) is a Weyl group containing the Weyl group W (LY, TV) and
Nev (LY, ET), normalizes W (LY, TV), the action of Ngv(LV,LT), on comes
from conjugation by elements of W (LY, TV) and Dynkin diagram automorphisms
of W(LV,TV). Thus we can conclude with a case-by-case check. This is entirely
analogous to the cases I-V in the proof of Proposition [2.10 Il

4. AN LLC FOR NON-SINGULAR DEPTH-ZERO SUPERCUSPIDAL REPRESENTATIONS

In this section, we first recall the LLC for depth-zero supercuspidal L-parameters
from [DeRel [Kal3]; then we prove further functorial properties of this LLC.

Consider a supercuspidal L-parameter ¢ € ®°(L), and factor it as Ljopr asin
Lemma Fix a Whittaker datum for the quasi-split inner twist L’ of L, which
by [Kal3, Lemma 4.2.1] determines an embedding jo : 7 — £°. We also fix €
Irr (7o(TV"")). Recall the natural isomorphism

(4.1) Irr (mo(TV'1)) = HYE,Z2—T)

from [Dil, Corollary 7.11]. As in [Kal3, §4.2], these data determine a rigid inner twist
L' of L and an embedding j : T — £’ of F-groups, such that the invariant (7, jo)
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equals 1. Then j(T) is a maximal torus of L’ and j(T')/Z(L’) is elliptic. By Lemma
[B:1] ¢ corresponds to a character 6 of T', which can also be viewed as a character
of j(T).

The torus j(T) determines a unique vertex in the Bruhat-Tits building B(L. 4, F),
as follows. By (3.4), j(T) contains a unique maximal tamely ramified torus j(7as)
of L'. Let E denote a finite tamely ramified extension of F inside Fs such that

Tar splits. Then j(Ty(E)) is a maximal E-split torus in £'(E), so it determines an
Gal(E/F)
T (E)

of just one point. By [Kal2, Lemma 3.4.3], it is also a vertex of B(L, 4, F'). In other

words, we can associate the same vertex of B(L! ;, F') to j(T) as to j(Tw).

This vertex gives a unique minimal facet f in B(L', F), stabilized by j(7). In
particular, j(T) C L%, and moreover j(T') gives rise to a subgroup scheme of E;. In
fact, j(7) and j(7a) determine the same subgroup scheme of Li(kr), because T
contains the maximal unramified subtorus of 7. Therefore the discussions from
[Kal3l, §3] about maximal tamely ramified tori and their images in E% apply to T
and carry over to 7. We define, in the notation from ,

(4.2) I, = I(L,j(T),6) C Irr(L').

apartment A gy = Ar,, () of B(L,4, E). Since T is F-elliptic, A consists

We emphasize that, given ¢, 7 and a Whittaker datum for L”, the construction of the
Deligne-Lusztig packet Il ; is natural, and in particular independent of the choice
of ¢ in its equivalence class. Let 1 run through HY(£, 2 — T)/W (L, T)(F)s. Then j
runs through all W (L, T)(F')-equivalence classes of embeddings 7 — L. We define
the compound L-packet of ¢ as 11, := l—ln II,,. Compared to Il , the dependence
on 1 and jo has disappeared, so II, depends naturally on ¢ € ®O(L). It is a set of
irreducible representations of various rigid inner twists L’ of L, i.e.

HL'O - |—|L’ HW(L/)a where H@(L/) - H@ N II'I‘(LI).

Recall that the local Langlands correspondence for tori from [Yu] matches unitary
characters with bounded L-parameters. Together with Lemma [2.1] this implies that

(4.3)  if ¢ is bounded, then II,, consists entirely of tempered representations.

Conversely, if ¢ is not bounded, then 6 is not unitary, and thus by Lemma 11,
does not contain any tempered representation.

To make the naturality of II, more concrete, consider an F-automorphism vy of
L. Let Ly =~V x idw, be an associated L-automorphism of LL (which means that
the actions of v and 7" on the absolute root datum of £ are dual).

Lemma 4.1. The assignments ¢ — I, and (¢,n) — I, intertwine the action of
Loy with the action of 7y, i.e. we have 7 - Hy =iy, and v - Iy y = Hiyop 1a.-
Proof. The set of rigid inner twists of L is parametrized by

Irr(mo(Z(LY)T)) 2 HY(E, 2 — L).

This natural isomorphism intertwines the actions of “vy and v, thus the parametriza-
tion of rigid inner twists is also equivariant under these actions. It is clear from

definition ([2.5) that
(44) v My = I(L,j§(T),0) = T(y(L'),v5(T),7 - 0).
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The LLC for tori is functorial [Yu], so intertwines the actions of v and . Hence
the L-parameter of (7j(T),v - 6) is Yy o ¥ 0 o7 = Py 0 ¢, and the right-hand side
of equals Il. ., 2,.,. Now we combine for all possible j : T — L, or
equivalently for all n € H'(€, Z — T), and obtain the desired ~ - I, = Hipep O

Recall that Langlands [Lan2] defined a natural homomorphism
(4.5) HY(Wp, Z(GY)) = Hom(G/Gse, C*) 1 ¥ = Xy
In [SoXu, Theorem 3.1], we showed that (4.5) is an isomorphism of topological
groups. In (4.5)), the left hand side acts naturally on ®.(G) by (3.15), while the
right hand side acts naturally on Rep(G) by tensoring. In general, it is expected
that a local Langlands correspondence is equivariant with respect to these actions
of the groups in (4.5). By [SoXu, Lemma 3.2], (4.5) restricts to an isomorphism
(4.6) G = x0G).
As we noted before, it is clear from the definitions that the actions of X°(G") and
X°(G) stabilize the depth-zero parts of ®.(G) and Rep(G). Similar to Lemma
it follows immediately from (2.13) that
(4.7) Oy = Xo @Iy i={xyp @7 :m €Iy} Y e X0(GY).

We now analyze the parametrization of IL, in more detail. For reasons that will

become clear in later paragraphs, we assume that £ is an F-Levi subgroup of a larger

reductive F-group G. For the sake of compatibility, we require that the component

groups for ®(G) and ®(L) are constructed with respect to the same finite central

subgroup Z C Z(G). This implies that our rigid inner twists of G and of L are

parametrized by Irr(Z(GY)*1) and Irr(Z(LY)1), respectively. By [Artl, Lemma 1.1],
Z(L\/)WF — Z(GV)WFZ(LV)WF’O.

Via the coverings of complex reductive groups dual to G — G/Z and L — L/Z, this

becomes Z(LY)T = Z(GV)TZ(LV)*°. This gives a short exact sequence

(4.8) 1= (Z(GH*NZL)"°)/Z2(GV)F = 7o (Z(GY)F) = mo(Z(LY)T) — 1.

A similar argument as [KMSW,, Lemma 0.4.9] and [AMS1), Lemma 6.6] shows:

Lemma 4.2. (a) The character (g of Irr(Z(GY)T) is equal to the pullback of (1, €

Irr(Z(LV)) along (4.9).
(b) An F-Levi subgroup L of G is relevant for a rigid inner twist G’ of G if and only
if ker(Cer) contains (Z(GY)t N Z(LYV)T°)/Z(GY)*T.

Recall that the group W (G, L) = Ng(L)/L acts naturally on Irr(L), stabilizing
the subset of non-singular depth-zero supercuspidal representations of L. In ({3.7)),
we specified how

W(G,L) = Nev(LY x Wg)/LY =W (GY,LV)Wr
acts naturally on ®%(L). By Lemma W(GY,LV)WF fixes the characters (g and
Cr- Recall from (2.7) and Proposition that there is a W(G, L) (j7,6)-equivariant
bijection
(4.9) Irr(NL(5T)g,0) — II(L, T, ).
Furthermore, by (2.27)—(2.28]), we obtain a canonical bijection
(4.10) Irr(Ner (5T, 6) <— Tre(E7, 1d).
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On the other hand, the enhanced L-parameters for I, are given by ¢ enhanced
with elements of Irr(S[; ,m). By Clifford theory, the canonical map

. SE
(4.11) 1nd(§’$)n : Irr((S;r)n,n) — Irr(S;r,n)
is bijective. By (3.17)—(3.18]), we obtained a natural bijection
(4.12) Irr((S;“)n, n) +— Irr(EF7, id).

Thus a desired internal parametrization of IL, by Irr(S’;r ) should include a compar-
ison between £ and EXT. Now, consider the extensions from (2.28), (2.34)), (2.36),

0
(B-19). and (3.26):

(4.13)
C o &M W) F)e  ©F o EFT WL, TV
o &1 - W T)F)we C = &7 - W(LY, TV

o & o W) F)e  CF o T - W(LY,T)WE

Recall from Lemmas|3.4]and [2.9| that the extensions in the middle rows of (4.13)) are
the Baer sums of those above and below them. By (3.5 and (3.6)), there is a natural
isomorphism W (£, T°)(F) = W (L", TV)WF, which restricts to an isomorphism

(4.14) WL, T")(F)we = W(LY, T )NE.

From the left-hand side of (4.13)) we obtain three families of extensions, by letting
6 vary over X0(L)#’ for some #'. We showed in §2| that the group

W (Ngs (L), T)(F) . x0(2)0 = W (Na (L), iT) x0Lys

acts naturally on these three families of extensions on the left-hand side of (4.13)).
On the other hand, from the right-hand side of (4.13) we obtain three families
of extensions, by letting @7 run over X(LY)¢, for some ¢f.. We showed in

on the right-hand side of (|
X0(L) = x9(LY) from (4.6), we obtain a natural isomorphism

(4.15)  W(Ng (L), T") () xo(zyp = W Nev (L), TY) o oo

Thus it makes sense to say that (4.15) acts canonically on all extensions in (4.13]).
Recall that we constructed Sg’[x} in (2.34), and Eg’w in ((3.26)).

that W (Ngv (LY), Tv)nwx% (LY )y BCS canonically on these three families extensions
4.13)). From (3.8)), (4.14) and the natural isomorphism

Lemma 4.3. There exists a W (Ngv (LV), Tv)yx%(Lv)(pT—equivaﬂant family of group
1somorphisms
(4.16) Ol Dy gdxer e x0(L) = X(LY)
Proof. By canonicity of , this follows from Propositions and O
By [Kal5l Proposition 8.1], there exists a canonical isomorphism of extensions
1 cx —— g WL, T°)(F)g — 1
(4.17) H Bx F
1 C~ » &7 —— W(LY, TV)WVr —— 1
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Canonicity ensures that it is equivariant for the natural actions of (4.15]). Combined
with the Baer sum expressions for the extensions in (4.13]), we have the following.

Lemma 4.4. Every choice of a ¢° in (#.16)) gives rise to a family of isomorphisms

B(¢0,¢") &y Sy exer x e X0(L) = XO(LY),

which is the Baer sum of (¥ and (* (hence our notation B(¢°,¢*)). This family of
isomorphisms is W(N(;v(Lv),Tv)“;%(LV) L -equivariant.

By (£.9)-(4.12) and Lemma we get W(Ngv(LY), Tv)77 7 -equivariant bijec-
tions

(4.18) (S}, 1) — Irr(E47, id) foryd )Irr(gg Vid) — (L, T, 0).
They combine to the following W (Ngv (L), Tv)nwx% (LV)pp-eduivariant bijection
(4.19) U mshn«— J L7106
o €XO(LV ) 0/ex0(L)0
Proposition 4.5. For all n,[x] as above, fix W(Ngv(LY), Tv)g&v)w -equivariant

choices of ¢° in Lemma and of coherent splittings € as in . Then (4.18])
and (4.19)) for these n,[x] combine to a W(Ngv(LV),TV)Z‘;F—equivariant bijection

I, <— Trr(SY), and a W(Ngv(LY), ™YW -equivariant bijection

XO(LV)
(4.20) U Ha«— U 1S
@' €XO(LY)pr @' €XO(LY)pr

Under this bijection, tempered representations correspond to bounded enhanced L-
parameters.

Proof. By the construction of & in (3.17) and (8.18), Irr(S;}) is the union of the sets

Irr(S},n), where 7 runs through W(LV,TV)Z‘;F -equivalence classes. By definition,
II, is the union of the corresponding packets Il,, = II(L,T,6). Thus (4.18) and

(4.19) combine to give the desired bijections. Recall from earlier that every single

bijection [{.18)) is W (Ngv (L), TV)WE -equivariant. The W (Ngv (L), TV) yo (LvVyor™
equivariance of the choices in the construction ensures that the collection of bijections

IT, <— Trr(S7}) is also W (Ngv(LY), Tv)g{m) -equivariant, and does not depend

on the choices of 7, [z] within their W (Ngv(LY), Tv)g{ 1v)pp-€quivalence classes.
The correspondence between temperedness and boundedness follows from (4.3). O

Since Xy, (L) & (Z(LV)IF)‘(;VF is contained in X°(L) = X°(LV), the union of the
L-packets in ([4.20) forms a collection of Bernstein components in Irr®(L’), for rigid
inner twists L’ of L. Similarly, the collection of enhanced L-parameters for (4.20))
forms a union of Bernstein components in ®2(L’) for the same L’. Proposition
combined with the main result of [Kal3], gives a bijection
(4.21)

0 _ [ (p,p) € ®UAL) : 7 eIn®L):misnon-| . o
Peusp(L)ns = {go supercuspidal [ singular supercuspidal [ TGy (L)ns-
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We will write instances of (4.21)) as

(s p) = m(p,p)  or T (P, pr)

Recall from [Lanll p.20-23] and [Bor, §10.1] that every ¢ € ®(L) determines a
character x, of Z(L ) constructed as follows. One first embeds £ into a connected
reductive F-group L satisfying Eder = Eder, such that Z (/J) is connected. Then one
lifts ¢ to an L-parameter ¢ for L = L(F). The natural projection “£ — LZ(L)
produces an L-parameter @, for Z(L) = Z(L)(F), and via the local Langlands
correspondence for tori, ¢, uniquely determines a character xgs of Z (f/) Then x,,
is given by restricting xs to Z(L). By [Lanl, p. 23], x, does not depend on the
choices made above.

Lemma 4.6. In (4.21)), the Z(L)-character of m(p, p) is precisely x.

Proof. Since all the admissible embeddings j : T — L are L-conjugate, the preimage
of Z(L) under j does not depend on the choice of j. We may denote it by Z7(L). Then
any j restricts to the same bijective embedding j : Z7 (L) — Z(L). By , every
7 € II(L, jT,0) C 1I,(L) admits the central character 0|,y = 0|z, (c)(r), and by
construction 7 is the L-parameter of 6.

Now we follow the procedure in [Lanl] recalled above. There is a unique maximal
torus jT of £ containing JT. By functoriality of the LLC for tori [Yul, ¢ determines
a character of jT( ) that extends 6. Hence @, corresponds to a character of Z(L)
that extends 071, and x, = 07(1)- O

However, the bijections in (4.18]), Proposition and (4.21)) are not entirely
canonical, because they depend on choices of isomorphisms between two exten-

sions in [Kal3l §4.5]. In , one can adjust the bijection by tensoring one side
with a character of W (L, T)(F)e = W(LY,TV)Wr . This corresponds to chang-
ing the coherent splitting ¢; see [Kal3l Definition 2.7.6]. Proposition shows
that there are Inany ways to make the choices for so that the LLC becomes
W (Ngv(LY), TV) Y X0 ( 1v)pp-equivariant. If one is willing to work with more L-packets
(in one W(GY, LV)Wr- orbit) at once, then one can even make W(GY,LV)Wr-
equivariant. In principle, the choices for ¢’s in different W (G, LY)W¥-orbits are
independent. But, of course, we want to align them in a nice way.

Theorem 4.7. Suppose that on every X°(L)-orbit of the datum (jT, 0), we choose

the same ¢O from Lemma and the same € from (2.7) and . The LLC from
Proposition is equivariant with respect to X°(L) and W(Ngv (LV) TV);X{LV)SDT
Proof. In [Kal3, start of §2.7 and Fact 2.7.2], we can take Ng(L,jT)xo(ry9/Lj0+
in the role of ' and W(Ngv(LVY), TV)xo(LV) or
through. Thus this collection of €’s (or rather the ensuing actions of Ny (j7)g on
quﬂ@) are equivariant for W (Ngv (L"), TV)xO(LV) . By Lemma the chosen (%’s
form a W (Ngv(LY), Tv) X0 ( IV )or -equivariant family. Hence Proposition applies.

Suppose that (¢, p') € ®.(L) corresponds to R(LTQ p) Via Proposition 4.5, Take
z € XO(LY) with image y € X°(L) (4.6). Then

Sto=S8k, (Sh)y=(Si), and €T =ger.

in the role of T', and the proof goes
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This gives a family {(2¢,p') : z € X°(LY)} in ®.(L). We need to figure out the
corresponding family of L-representations. Via Lemma p' is translated into

pE Irr(é'(gx},id). Since x is a character of the entire group L, we have

Neiep) (U)o = Nejrp) GT )xoo. and

(4.22) . |
Irr(NEf(kF)(]T)g, X®0)={x®p:pc Irr(N/;f(kF)(jT)@, 0)}.

The condition on ¢° in the theorem means that (2¢, p) corresponds to x®6 € Irr(;5T)
]
®0°

isomorphsm & [:%9 =& 2] from . We can also view x ® p as an element of
Irr (N (5T )20, X © 6), then it is obtamed from p € Irr(Np(57)¢ by tensoring with

x. By [Kal3, Theorem 2.7.7.3] (which uses the condition on €), we have

and to the representation y ® p € Irr(S @ 1d) obtained from p via the natural

L,e ~ ,.L,e
(4.23) X @ E(T.0,0) = BGTx0x0)"
Thus (z¢, p') corresponds to x ® /<c( T9 ») in Proposition O

The equivariance in Theorem can be upgraded when we consider all non-
singular depth-zero supercuspidal representations and all enhanced supercuspidal
L-parameters in Proposition as follows.

Theorem 4.8. The choices in the LLC (4.21]) can be made such that, for all non-
singular supercuspidal depth-zero representations of L, (4.21)) is equivariant with
respect to

W(G, L) x X%(L) = W(GY,LVYWF x x0(LY).
Proof. For a given supercuspidal parameter ¢ € ®°(L), consider the set
(4.24) {(¢/,p) € DUL) : ¢ € XU(LY)p, p € Trx(S )}

from Proposition The W(GY, LV)Wr_stabilizer W(GY, L)Yy )xo(zvy, Of [@.29)

(L )pr BY
construction, other elements of W(G, LY)WF do not map any element of (£.24) to

an element of (4.24). We apply the W (G", LV)ZX{ Ty X X%(LY)-equivariant LLC

from Theorem.to ([@.24), and we extend it W(GY, LY)Wr x X0 (LV) equivariantly

to the W(GY, LV)Wr- orblt of (4.24) and to U W(G,L) Iy (L). Next, we
@' €XO(LY)yp

let ¢ run through a set of representatives for

consists precisely of the elements that come from W (Ngv(LY),TV)w

{¢' € @°(L) : ¢’ supercuspidal} /W (G, LY)WF x X0(LY),
and we carry out the above steps for all those . O

Remark 4.9. The group of unramified characters of L is contained in X°(L), so
Theorem also holds with X,,.(L) instead of X°(L).

Ideally, the LLC from Theorem [4.§] should be equivariant with respect to all F-
automorphisms of £, as conjectured in [Sol3, Conjecture 2] and [Kal6, Conjecture
2.12]. Unfortunately, this seems to be out of reach at the time of writing.



34 MAARTEN SOLLEVELD AND YUJIE XU

5. SOME SUBQUOTIENTS OF THE IWAHORI-WEYL GROUP

The following sections §6]-§8] treat Hecke algebras for non-supercuspidal repre-
sentations of GG, and do not rely on the previous sections. We now slightly adjust
the earlier setup. Let & be a maximal F-split torus in G. Let R(G,.S) be the root
system of (G, S). Let Ag := X, (S) ®z R be the apartment of B(G, F') associated to
S. The walls of Ag determine an affine root system X, and the map that sends an
affine root to its linear part is a canonical surjection D : ¥ — R(G, S).

Let Cy be a chamber in Ag whose closure contains 0. Let A,g be the set of simple

affine roots in ¥ determined by Cjy. The associated set of simple affine reflections
Saff generates an affine Weyl group W,g. The standard Iwahori subgroup of G is
Pc,, and the Iwahori-Weyl group of (G, S) is
(5.1) W := Ng(S)/(Na(S)N POO) >~ Za(8)/(Za(S)N PC’O) x W(G,59).
Note that it acts on Ag = X, () @z R = X (Zg(5)) @z R = Za(S)/Zc(S)cpt @z R,
with Zg(S)/(Za(S) N Pc,) acting by translations, and W(G, S) as the stabilizer
of a chosen special vertex of Cjy. The kernel of this action is the finite subgroup
Z6(S)ept/Zpg, (S), where the subscript cpt denotes the (unique) maximal compact
subgroup. Furthermore, W contains W,g as the subgroup supported on the kernel
of the Kottwitz homomorphism for G. The group Q := {w € W : w(Cp) = Cp}
forms a complement to W,g, and we have

(5.2) W = Waﬁ‘ x €.

Let f be a facet in B(G, F'). Since G acts transitively on the set of chambers of
B(G, F'), we may assume without loss of generality that f is contained in the closure
of Cp. Let 3 be the set of affine roots that vanish on f, and let J := A,q N X5 be
its subset of simple affine roots. Its associated set of affine reflections {s; : j € J}
generates a finite Weyl group Wy, which can be identified with the Weyl group of
the kp-group gfo(kp) with respect to the torus S(kp).

Let Rfﬂ be the set of roots for (G, S) that are constant on f, a parabolic root
subsystem of R(G,S). Let £ be the Levi F-subgroup of G determined by S and
R§. By [Mor2, Theorem 2.1], Pp; := P;N L is a maximal parahoric subgroup of L
(associated to a facet fr, D f) and we have

Pry/Pry = (BNL)/(BNL) B/ B,

Pri/Lioy = (BNL)/(Gior NL) B/Gioy-

Let R; be the image of Xj in R(G,S). Its closure (QR;) N R(G, S) is precisely Rf.
Although Rfc and R; have the same rank, it is quite possible that they have different
Weyl groups. We write

(5.4) Qf = {w eQ: w(f) = f} = {w eQ: wapf C Gf} = Gf/Pf.

(5.3)

~
~

Since P} and f’f depend only on f, they have the same normalizer in G, i.e. the set-
theoretic stabilizer Gj of f. Let QY = Pp;/Pp; = ]5f /B be the point-wise stabilizer
of f in Q. By (5.4), we have

(5.5) Gy/P=Q; and Gj/D = Q;/Q5.

Lemma 5.1. (a) The group Qs = Gj/F; is abelian and finitely generated.

AThe superscript ¢ will become self-explanatory in the next paragraph.
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(b) Suppose moreover that § is a minimal facet in B(G, F), or equivalently that P; is
mazimal parahoric subgroup of G. The group G;/Pf 1s abelian and isomorphic
to a lattice in X.(Z°(G)) ®z R. In particular, it is free of the same rank as
X.(Z2°(G)).

Proof. (a) Recall the Kottwitz homomorphism  for G, which takes values in a
subquotient of the algebraic character group of Z(GY). Since kerk N Gy = P; (see
for example [KaPrl, Propositions 7.6.4 and 11.5.4]), we have Gj/P; = £(Gj). This is
a subquotient of X*(Z(GY)), hence is abelian and finitely generated.

(b) The group under consideration is a quotient of Gj/F;, thus by part (a) it
is abelian and finitely generated. Note that L. = G by the minimality of f, thus
Ppj = P;. For any z € §, the X.(Z°(G)) @z R-orbit of x equals §, and P; equals the
stabilizer of z in G. We define a map ¢ : G;/Pf — X, (Z(G))®zR by g-x = z+1(g),
where the addition takes place in Ag. Since translations by X, (Z°(G))®zR commute
with the action of G on B(G, F'), we can compute

r+t(gy) =99 -z =g-(x+tg)) =z +1tg) +t(g).

This shows that t is a group homomorphism, and by definition its kernel is trivial.
Hence ¢ provides an isomorphism between G}/ ]5f and a subgroup of X, (Z(G)) ®@zR.
The latter is a real vector space, so all its subgroups are torsion-free. On Z(G) C Gy,
the map ¢ boils down to the quotient map

Z°(G) = Z°(G) ) Z°(G)ept = X4 (Z°(G)).

On the other hand, the group of translations t(G) of X,(Z°(G)) ®z R, which arises
from the action of G, contains X,(Z°(G)) with finite index, thus it is a lattice in
X.(Z°(G)) ®z R. Now we have inclusions X, (Z°(G)) C t(Gy) C t(G), where the
outer sides are lattices in X, (Z°(G))®zR, thus the group in the middle is as well. [

The group Ny (W;)/W is isomorphic to
(56) Nw(J) = {w S NW(WJ) : w(J) = J}

Note that €y C Ny (J). The group Ny (J) naturally contains an affine Weyl group
W (J), obtained in the following way. For a € A,g \ J, the reflections in the roots
J U {a} generate a finite Weyl group Wy, C W. Its longest element w j, satisfies

wisa(J) C wjua(JU{a}) = —-JU{—-a}.
Suppose that wjua(J) = —J and let w; be the longest element of W;. Then
(5.7) v(a, J) == winaws = wWiw e

has order two. Such involutions are called an R-elements in [Morll, §2.6]. Let Ajaq
be the set of & € A,g \ J for which there exists an o from the same simple factor
of G, such that both v(«, J) and v(¢/, J) are R-elements. The group

(5.8) Q(J) = {w S Nw(J) : w(Af’aﬂ) = Aﬁaﬁ“}

contains €. By [Morl, Corollary 2.8 and §7], the set Sj.g := {v(a,J) : @ € Ajag}
generates an affine Weyl group Wog(J) in Ny (J) and we have

(5.9) Nw (J) = Wag(J) x Q(J).
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The inverse image of Ny (J) in Ng(S) stabilizes the facet of B(L, F') containing f,
and it normalizes L and P ;. By (5.3)), this induces an action of Ny (J) on

Gi (kr) = Pri/Lso+ = B/Gjo+-

Let 0 be an irreducible cuspidal representation of gf(k:p), also viewed as a repre-
sentation of F; by inflation. As in [Morll, §4.16], we define

(5.10) W(J,0)={we Nw(J) :w-0=0c}.

For any of the groups Gj, ]35, Qy, Q?, we add a subscript ¢ to indicate the subgroup
that stabilizes o. Then, by (/5.5)), we have

(5.11) Gio/P = Qo and Gio/Bo = Q5o /0, = CGio B/ B

If moreover f is a minimal facet, then Lemma (b) applies equally well to Gj ,/ pfya.
Recall that Q? is the point-wise stabilizer of § in €.

Lemma 5.2. Q? is a central subgroup of Ny (J), which intersects the commutator
subgroup of Ny (J) only in {1}. The same holds with W (J, o) instead of Ny (J).

Proof. The first claim is shown in [Sol6l, (38)—(39)]. By and the commutativity
of Q5 as in Lemma (a), the commutator subgroup of Ny (J) is contained in Wg-.
By , }; C Q intersects Wag trivially. Hence the intersection of €); with the
commutator subgroup of Ny (J) or of W(J, o) is just the identity. O

For o such that v(a, J) € Sjag MW (J, o), by [Morl, Proposition 6.9], one obtains
a number p, € Z>1, which we will denote instead by ¢, .. We set

Sf,aﬁ,a = {U(Ox, J) € Sf,aﬂ N W(J, U) ' Qo > 1}7
(5'12) Af,aﬁ,a = {a € Af,aff 1 Sq € Sf,aﬁ,a}a
Q(J,0) :={w e W(J,0) : w(Ajaft,o) = Djaft,o}-

Here Sj g o is the set of simple reflections in an affine Coxeter group Wag(J, o). It
is known from [Morll §7] that

(5.13) W(J,0) = Wag(J, o) x Q(J, o).

We warn the reader that €(J,0) need not be contained in Q(J). For any of the
above groups, a subscript L means that they are constructed from L instead of G.
In particular we have the Iwahori-Weyl group Wy, of L and likewise W (J, o).

By [MoPr2, Theorem 6.11] or [Mor2, Theorem 4.5], (F;, o) is a type in the sense
of Bushnell-Kutzko, for a sum of finitely many Bernstein blocks in Rep(G), say
Rep(G), Pyo) Moreover every Bernstein block consisting of depth-zero representations
arises in this way.

Lemma 5.3. (a) The category Rep(L)(pLyf’U) determines (Pr;,0) up to L-conjugacy.
(b) Let W(G, L)o be the stabilizer of Rep(L)p, ;) i Na(L)/L. The natural map
W(J,0)/Wr(J,0) = W(G, L), is an isomorphism.

Proof. (a) Let Irr(L)(p, ; ») be the set of irreducible objects in Rep(L)p, ;). Since
f becomes a vertex in B(L,q, F'), all these irreducible L-representations w are super-
cuspidal and have depth zero [MoPr2, §6]. Each such w has (P j, o) as unrefined
minimal K-type in the sense of [MoPrll, MoPr2]. By [MoPr2, Theorem 5.2], w
determines (Pr,0) up to L-conjugacy.
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(b) Since J and S determine L and Zg(S) C L, every element of

Nw (J) € Na(5)/(Za(S) N Pey)
normalizes L. The natural map W(J,o) — Ng(L)/L has kernel

WL(J,0) = (W(J,0) N NL(5))/(Za(S) N Fe,)-
By definition, W (J, o) stabilizes (PLj,0), so it stabilizes Rep(L)p, ; ,). Thus we
obtain an injection
(5.14) W(J,o0)/W(J,0) = W(G,L),.

Conversely, let w € W(G, L),. By part (a), w stabilizes the L-conjugacy class of
(Prj,0). Hence we can represent w by an element n € Ng(L, Pr ;) that stabilizes
0. Then n(Zg(S) N Pc,) € W(J, o), thus w lies in the image of (5.14) O

6. ¢-PARAMETERS FOR HECKE ALGEBRAS

Consider the Hecke algebra
H(G, P;,0) ={f: G — Endc(Vy) | f(kgk') = o(k)f(g9)o(K') Vg € G, k, k' € B}.
We note that this algebra is sometimes called H(G, "), for instance in [BuKul.

By [Mor2, Theorem 4.5] and [BuKu, Theorem 4.3], its category of right modules is
equivalent to Rep(G)(p, o)-

Theorem 6.1 ([Morl], Theorem 7.12). The algebra H(G, F;,0) has a basis {T,
w € W(J,0)} with T, supported on BwB;. There exist a parameter function qq :
Siaff,c — Z>1, and a 2-cocycle p, of W(J,o) which factors through Q(J, o) =
W(J,0)/Wag(J,0), such that

(6.1) H(G, B,0) = H(Wag(J,0),q40) x C[QJ, 0), ]
Here H(W,g(J,0),q,) denotes an Iwahori-Hecke algebra, C[QU(J, o), 1] is a twisted
group algebra and T,)Ts T;' =T, .1, where sq € Sjairo and w € Q(J,0).

For background on Iwahori—-Hecke algebras and affine Hecke algebras we refer to
[Sol4]. It is known that p, is sometimes nontrivial, see [HeVi, Proposition 4.4]. All
the parameters ¢, (s) are powers of the cardinality qp of kp.

From now on, let ¢ be a non-singular cuspidal representation of Pj/Gjoy =
g7 (kp). Thus, by definition, o is an irreducible constituent of a Deligne-Lusztig

g
representation R f(( F))(Hf) where 7; is an elliptic maximal kp-torus in G7, and 6 is

a non-singular character of 7j(kp). (This is slightly more general than in Section
because 0 is kp-non-singular but we do not require F-non-singularity.) Since we
are dealing with smooth complex G-representations, the values of f; must lie in C.
On the other hand, the techniques used in Deligne-Lusztig theory apply to repre-
sentations of Q-vector spaces, where / is a prime number different from p. We fix
an isomorphism C 22 Qy, so that we can regard Hf as taking values in both fields. Let
gf be the dual group of gf and let s € Qf (F,) be an element in the semisimple
conjugacy class corresponding to ¢5. The non-singularity of 6; means that ngv( s)°
is a torus. Recall that € := 7 (ngv(s)) is a finite abelian group.

In general, a Deligne-Lusztig representation is a virtual representation, but in

our setting, by [DeLu, Theorem 8.3], :i:Rgf(( F))(Hf) is an actual representation for a
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suitable sign +. Moreover, Lusztig [Lus2, Proposition 5.1] showed that :l:RT ((k )) (6)

is a direct sum of mutually inequivalent irreducible cuspidal representatlons which
can be parametrized as o,, where o1 = ¢ and x runs through the characters of

(6.2) Q (gf > )(kF)Gf

Proposition 6.2. The full subcategory of Rep(gf“’(k‘p)) generated by :I:RT((k )) (6;)

is equivalent to Rep(£lg,).

Proof. Let Repy(Gy (kr)) be the category of G (kp)-representations generated by the
objects in the geometric Deligne—Lusztig series determined by s € gfv (Fp). Let H
be the split reductive F,-group dual to H" := ngv(s)o. By the nonsingularity of 6;

and s, both # and H" are tori. By [LuYu, Corollary 12.7] EL there exists a canonical
equivalence of categories

(6.3) Rep,(G7 (kr)) @ Rep, (H )Fmbﬁ)Q

Here 8 runs through a finite set that parametrizes certain kp-forms of H, which
appear in the notation via a Frobenius action Frobg. They correspond to various
rational Deligne-Lusztig series associated to s. The superscript {2, 3 means equi-
variant objects, with respect to a (canonical up to canonical isomorphisms) action
of the subgroup €53 C €)s that stabilizes 3. Since H is a torus, the category
Rep, (’H(Fp)FrObﬂ ) consists precisely of all multiples 7 of the trivial representation
of H(FP)F‘"ObB. An ) g-equivariant structure on such a representation 7 consists of
a collection of morphisms 7 — w - 7 for w running through the appropriate exten-
sion of Q, 3 by H(Fp)pmbﬁ, compatible with the group structure of that extension.
However, since T(H(Fp)FrObﬁ) = id, the extension can be ignored and we only need
morphisms 7 — w - 7 for w € {2, 3. In other words, An ), g-equivariant structure on
T just means that it is upgraded to an 2, g-representation. Thus simplifies to
an equivalence of categories

(6.4) Rep, (G5 (kr)) @ Rep(Q

The representatlon +R (( F))(Gf) generates a unique rational Deligne-Lusztig series

in , and the assoc1ated 3 satisfies {1 g = ng. O

We now analyze the ¢g-parameters in Theorem and express them more explic-
itly. Consider @ € A,g \ J. By the observations in [Morll §3], there exists a unique
facet fo of f, such that the associated parahoric subgroup F;, has set of simple
affine roots J U {a}. The group G7 (kr) = B, /Uy, contains P;/U;, as a parabolic
subgroup Qa(kr) with Levi factor G7(kp) = F;/Gyo+. The quotient Gy o /Gf, 0+
is isomorphic to U, (kr), where U, denotes the root subgroup of Qfoa associated to

a. By [Morll §6.7-6.9], the number ¢, from (5.12) can be computed (whenever
i (kr)

. 9 . . .
defined) from 11r1de;1 (kF)(O'), thus entirely in terms of connected algebraic groups
over finite fields.

5Strictly speaking,[LuYul Corollary 12.7] gives (6.3) with, in addition, fixed cells on both sides,
but one can sum over all cells for G (kr) to obtain the desired (6.3)) as stated.
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d

Recall from s that S defines a maximal kp-split torus in g; , and that 7} s a
maximal kp-torus in G7. By [BrTi, Proposition 5.1.10.b] and [DeBl Lemma 2.3.1],
7 can be lifted to an op-torus in Pfo. We fix one such lift, so that we can view 7
as an op-torus which splits over an unramified extension of F. Since Tj(or) C B
normalizes P and Fj,, hence it normalizes their pro-unipotent radicals Gj o4 and
Gj,,0+- Thus Tj(oF) normalizes Qj.(kr) = Fj/Gj, 0+ and its unipotent radical
Un(kr) = G0+ /Gj, 0+ In particular,

(6.5) a € A\ J can be viewed as a root of Ty,

and it is defined over o because U, is defined over or. This also shows that s, can
be represented in Ngf(kp)(’ﬁ)'
Gs, (kr) . G5 (kF)
Lemma 6.3. (a) :l:RT:(kF; %)= 1ndefa(,fF)(ch).
XEIrr(ng) ’

. . GF (kr) . GF (kr) .
(b) The representations 1nde:a(:F)(oX) and 1nde:a(£F)(ox/) with x # X' € Irr(Qp,)

do not have any irreducible subquotients in common.

2(k
Proof. (a) This follows from the description of :l:R%f((k:)) (6;) above ([6.2]), combined

with the transitivity of Deligne—Lusztig induction as in [DiMil, §11.5].

° (k
(b) By Frobenius reciprocity and the Mackey formula, ind(éc;’( (,I;:)(UX) and

. G5 (kr) . . . . o .
fo .
1nde (kF)(O'X/) can only have common irreducible constituents if o, is isomorphic

to oy or to s, - 0y. We already noted in the paragraph above (6.2) that, by [Lus2|
Proposition 5.1], oy % o,,. Thus the only remaining possibility is if o,/ is isomorphic
to Sq + Oy
Ge(k

By Proposition :tRT:(;:)(Gf) generates a full subcategory C of Rep(Gy (kr))
that is equivalent to Rep({2p,). Suppose s, maps some element of C into C. Then
Sq € Ngf"(kp)(ﬁ) must fix 05, and s, stabilizes C. For w € Qp,, wsaw ™! € W(Gs . T5)
is a reflection associated to a root defined over k. By ellipticity of 7; in Qfo, WSqw ™!
must equal s,. Hence s, commutes with g, and thus the action of s on C =
Rep(ng) is trivial. In particular, s, - oy = oy, which is not isomorphic to o,s. [

Let B be a Borel subgroup (not necessarily defined over kp) of gr,» such that
TiUo C B C Qj . Let L, be the kp-subgroup of g;ﬂ generated by T Uly UU_. Tt
is a twisted Levi subgroup of gf‘;. Let

(6.6) Rz 5 - Rep(Tj(kr)) — Rep(GE, (kr))

denote the Deligne—Lusztig induction functor. By transitivity of Deligne—Lusztig
induction [DiMi, §11.5], there are natural isomorphisms

G (k) LGP (k) o\ GF g7
indo? Bk (1) = Bofco,  Bricsng: ()
~J goa ~/ goa L"a
(6.7) = Rycp(0y) = Rl ro BT £.n5(0F)
J— goa 3 Ea(k )
= Reicop e nd(Z,nm)kp) (0)-

Notice that Lo, N B = T; X Uy, is defined over k.
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Lemma 6.4. There are canonical algebra isomorphisms
g5, -~ . 197, (kF)
Endge () (R7¢g0f) = @Xem(gef) Endge () (indg® .)0%)
~ La(kr)
- @Xelrr(QGf)Endﬁa(kF)(lnd(L NB)(k )Hf)-

Proof. The first isomorphism follows from Lemma By , we obtain

goa ~ goa ‘C‘a( )
Endg" (kF)(RTTCBGf) = Endg;’a(kF)(Rﬁfacgf,acamd(ﬁ mI;B)(k )(Qf))'

By functoriality of R£ COpaLar the algebra Endﬁa(kF)(lndfg(];%))(k )0) embeds in

Endg)ga (kr) (RTfC&BGf)' Let pr, denote the projection

(kr)
(k) O%)
obtained from the first isomorphism in the statement. We have

g; o (kr)
pr RLQCQTQ (A) € Endgo (kF)(lnd "k )O'X> for A € End,_ (kF)(md(ﬁa(mB))(k )Hf).

gO
Endgfa (kr) (RT:%BQ ) — Endgo (kr) (ll’ld fa

By construction, we have

ra _ e
REQCQf,aﬁa (A) o erlrr(ng) erREaCQf,aﬁa (A)’

Ge - . . . . . . .
and pr, R ﬁ?c o £, (A) is invertible if A is so. Since G; is a maximal Levi subgroup

° (k
of G¢ and s, stabilizes oy, we have dim¢ Endg)g (kr) (indeffa( (;:F))gx) = 2. Comparing

o

g
. . f(! . . .
dimensions, we see that @xélrr(ﬂef) pry R/ QjuLo 18 A0 algebra isomorphism

i (kr)
(68) @ Endﬁ (kF) (md(ﬁ (mB))(kF)ef) — @ Endgo (kF) (md (k:F)UX) O

XGIrr(ng) XGIrr(ng)

Using Lemma we can simplify the computation of the parameter function ¢,
from Theorem Recall the notations w s and v(e, J) from (5.7)).

Lemma 6.5. Let a € A\ J be such that wyue(J) = —J. Then:

(a) sq - 05 =05 if and only if v(a,J) -0 = 0.

(b) Suppose that v(e,J) € W(J,0). The parameter ¢sq = q¢o(v(a,J)) equals the
parameter qg o = qg(5a) computed from Tj(kp), 0; and Lo(kF).

2 (k
Proof. (a) By [HoLel Corollary 2.3 and Proposition 3.9], Endgfa (kF)(indg::(;:;)a)

has dimension two if v(«, J) - 0 = ¢ and has dimension one otherwise. By Lemma
. G7 (kF) . . . . Lok

Endg?a (k) (mdef,a(kF)a) is naturally isomorphic to End._ ;) (md(ﬁimg))(kﬂﬂf).

Again by [HoLe], the latter algebra has dimension two if s,-0; = 6; and has dimension

one otherwise.
(b) By the construction of H(Wag(J,0),qs), Ty(a, ) satisfies a quadratic relation

(69) (Tv(a,‘]) + 1)(TU(Q,J) — qma) with Qo0 € 221-
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We can view T, ) as an element of

o - G (kp)
H(P /Gloot B/ Gia 015 0) = HIGE, (kr), Qpalkr), o) = Endge (k) (lndgff,a(;fF)U)

supported on

(Ba \ B)/Gio0t = Pisal}/Gio 01 = Qhalkr)saQtalkr) = G5, (kr) \ Qfalkr).

. (1
Via LemmaM Ty(a,7) corresponds to an element prlRLijCQf . (Ns,), where N, €

Endz, ) (ind(ﬁg(ﬁ%)) (k:p)ef)' The support condition on Ty, ) translates via (6.8) to

supp Ny, C Lo(kp) \ (Lo N B)(kr) = Us (k) Ti(kr)salda(kr).

The standard basis element Ty, of H(Ly(kr), (Lo N B)(kr),0;) also has support
Ua(kr)Tij(kr)salda(kr), and satisfies a quadratic relation

(6.10) (Ts,, + 1)(Ts, — gp,o) = 0 with gp o € R>;.

The elements of H(La(kr), (Lo N B)(kr),0;) with support Ua(kr)Ti(kr)salda(kr)
form a one-dimensional space, so N, = AT, for some A € C*. Comparing and
(6.10), we deduce that A =1 and g5 = @po > 1 or A= —1land ¢ =qpo=1. O

In some cases, the parameters gy, = gy, automatically reduce to 1. The next
result must have been well-known to experts for a long time, but we could not find
a reference, so we record it here for later use.

Proposition 6.6. In the setting of Lemma let ko /kr be a finite field extension
over which « splits, and let Ny i, : Tj(ka) — Ti(kr) be the norm map. Suppose
that s4(0;) = 05 but 05 0 Ny jk, 0¥ # 1. Then qp o = 1.

Proof. This is a statement about the reductive kp-group L,. To compute gg , for
instance as in [HoLe], we only need the derived group L, qer(kr). By the classifica-
tion of quasi-split rank one semisimple groups, L, der is obtained by restriction of
scalars from one of the groups: SLo, PGLs, SUs, PUs. Hence it suffices to consider
these four groups, over an arbitrary finite field that we still call kp.

First we look at SUs(k,/kF), for a quadratic extension k,/kp with non-trivial
field automorphism denoted by z +— Z. In this case,

ﬁ(k‘F) = {ZE S (]{2;()3 X3 = l‘_l_l,l'g = fll’fl},
and s, exchanges x; with z3. Projection to the first coordinate gives an isomor-
phism 7j(kr) = kX. Let x € Irr(kX) be the character corresponding to 6; via this

isomorphism. The condition s,0; = 6; translates to 1 = x(z1)x(71)! = x(z121). On
the other hand,

Nyo g © @' (21) = Ny o (21, 12y 1)) = (2221, 1, (2121) 7).

Thus 6§ o Ny, /i © a¥ =1, and the assumptions of the lemma are not fulfilled.

For PU3(kn/kF), the maximal torus 7j(kr) is isomorphic to k} via (z1,x2,z3) —
xlxgl. The same arguments as for SUs(k,/kr) apply.

Next we consider the split group PGLa(kr). We may identify T;(kp) with {(§9) :
z € kj}. The calculation

L=0i((59))05(sa (§9)7) = 65((§ ,21)) = b(a” ()

shows that again the assumption of the lemma cannot be fulfilled.
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Finally we study SLa(kr), with its maximal torus
Tilkr) ={(5 %) : v € bR} = k.
Writing 6;(( ¥ xgl )) = x(x), we have

1= Gf((g :cgl ))Gf(sa (O 1‘91))_1 = Hf((ag 192)) = X(:E2)'

Since 1 # 6 o o = x, x must be the Legendre symbol of k, its unique order two
character. Now we really have to compute in C[SLa(kFr)]. To do so, we introduce the
following idempotents:

<Ua> - |]€F’_1 erkF ((1):{)7 by = ‘k ’ lzx€k§ X(m) (gmgl)
(U_a) = |kF’71 E(L‘Ek’p (glc (1)) ) T. = px<Ua>'
Note that p, commutes with (U,), (U_,) and s, because x? = 1. The operator Tj,

is a scalar multiple of T, = (Ua)Sapy(Ua). We compute:
T2 = (Us)sapx(Ua ><U )Pxsa(Ua) = <U )sapx(Ua)sa(Ua) = (Ua)x(U-a) (Ua)

= Ua)palkr| ™ Ua) + > Ua)pilkr| ™ (19) (Ua)
= |kr| ™ (Ua)py + k|~ Zekx Pe(Ua) (5757) D (§757) (Ua)
= [kp| T Te 4 ke 71 Y Uiy (75" 0) $a(Ua) = |kp| ™' Te.

Hence T2, € CT,, and the quadratic equation simplifies to
0= (T,, +1)(Ts, — 1).
That means precisely that ¢p o = 1. O
We denote the linear part of an affine root o by Da, and write
(6.11) Ao :={Da: o€ Ajg, v(a,J) € W(J,0)}.

Note that D(Ajafe) C Aje € D(Ajar). By (6.5), Ajs can also be viewed as a set
of op-rational roots of (G, 7). We define the op-torus

(6.12) To = (ﬂaeAf,g keralr)”  C T
In many cases (but not always), 7, is F-anisotropic. Now
(6.13) Go 1= Zg(T5)

is a reductive F-subgroup of G. More precisely, it is a twisted Levi subgroup that
becomes an actual Levi subgroup over every field extension of F' that splits 7.

Lemma 6.7. The group G, is F'-quasisplit and contains the torus T := Zg(T;) as
a minimal F-Levi subgroup.

Proof. By the maximality of 7; in g;, 75 is a maximal unramified torus in G. Since
G becomes quasi-split over a maximal unramified extension of F', 7 is a maximal F-
torus in G. The maximal F-split subtorus 7 of 7 is generated by Z(G) N7, and the
images of the coroots " with o € A, (which are defined over F'), so is contained
in S. Since 7; is the maximal unramified torus in 7, 7; is also the maximal F-split
subtorus of 7. Furthermore, 7; is generated by T,UT;, so T = Zg(T57Ts) = Zg, (Ts).
Hence the centralizer in G, of a maximal F-split torus containing 7, is contained
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in the torus 7, and is itself a torus. At the same time, that centralizer is a Levi
subgroup of G,, so it is a minimal Levi subgroup and a maximal torus. We conclude
that the torus 7 is a minimal F-Levi subgroup of G,. O

Since 7T; is elliptic in g; , and £ is an F-Levi subgroup of G minimal for the
property E? = Q’F, the torus 7; is elliptic in £. Since 7; is the maximal unramified
subtorus of 7, Lemma implies that 7 is an elliptic maximal torus in £ (so we
are back in the setting from §2)). In other words, 7/Z(L)° is F-anistropic. Then 7,
equals the maximal F-split subtorus of Z(£)°.

By Lemma there is a unique apartment of B(G,, F') associated to T and its
maximal F-split subtorus 7, C S. We call that apartment Ap. From the inclusion

(6.14) ATZX*('TS) ®ZRCX*(S) Rz R =: Ag
and the W-invariant metric on Ag, we obtain a projection
(6.15) Asg — Ap C B(G,, F).

Lemma 6.8. The intersection G, N L equals T = Z,(T;).

Proof. Since o lies in the series in Irr(Gy(kp)) parametrized by (7;(kr),05), and
G; (kr) equals Ppj/Lj o4, the op-group T; can be realized in £. Then 7j is a maximal
unramified torus of £, and 7;Z(L£)° is an F-torus in £. Hence
(6.16) Z(L) C Zg(Ty) =T C Zg(T5) N Zg(Z(L)°) = Go N L.
Consequently, G, N L = Zg, (Z(L)°) is an F-Levi subgroup of G,. By definition,
R(L,S) consists of the roots in R(G,S) that are constant on §f. Hence R(L,7j)
consists of roots that are constant on the image of f in Ay via .

For any o = Do/ € Ay, the reflection s of Ag stabilizes QJ and the span of
f. Hence it also stabilizes the orthogonal complement f* of the span of f in Ag. As
' is not constant on f, this is only possible if al;. = 0. Thus R(L,7j) and A;, are

orthogonal: the first is constant on the span of § while the second has - in its joint
kernel. Consequently,

T-Z(L)° = (maeAw ker 0z|7—f)O (maeR(ﬁ,Tf) ker oz|7—f)O
equals 7;Z(L£)°. From this and we deduce that
9o N L = 2g(T5) N Zg(Z(L)°) = Zg(To Z(£)°)
equals Zg(T3Z(L)°) = Zg(Tf) N L="T. O

By the definition of 75, we have R(G,,T;) = QAj, N X*(7f). Since G, is quasi-
split and Zg, (7;) = T, this gives R(Gy, T) = {a € R(G,T) : al;; € QAj,}. Let
Pg,; = G, N P be the parahoric subgroup of G, associated to the image of |
in Ar. Then, similar to , we have Pg,i/Gojo+ = Pri/Tio+ = Tij(kr). In
particular, 6 can be inflated to an irreducible representation of Pg, ;, and we can
consider the Hecke algebra H(Gg, Pg, s, 05). The cuspidal support of the Bernstein
component Irr(Gq) pg, ;.6,) 18 IT(T) Py 1 0;)+ 50 Rep(Go) (pg, ;) 18 @ Bernstein block
in the principal series of the quasi-split group G, .

Proposition 6.9. (a) There exists a canonical bijection between W (J,0)NSjax and
W(0,0;) N (Sjar for Gg), which preserves the q-parameters in Z>.

(b) Part (a) induces an isomorphism between the affine root systems of H(G, F}, o)
and H(Go, Pa, j,05), such that the parameter functions on both sides agree.
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(¢) Part (b) induces an algebra isomorphism H(Wag(J,0),¢s) = H(Wag (0, 65), ).

Proof. (a) It is clear from the definitions of 7, and G, that Aj o for G, is contained
in Aj.g for G. By construction, R(L,S) = R(G,S) NQD(J), and by Lemma

R(L,S)N R(Gy, S) = R(T, S) = 0.

Hence QD(J) N R(G,,S) = @, and the elements of J are constant functions on
A7 N B(Gsders F'). In particular, A,g for G, is contained in A,g \ J for G.

For a € Aja such that wjua(J) # —J, 5o does not stabilize QJ, and hence does
not stabilize the span of § in Ag. It follows that s, cannot stabilize the image of §
in A7, and hence cannot define an element of S; .¢ for G .

For a € Ajag such that Wjo(J) = —J, the proof of Lemma shows that

G (kr) )\ o 95 (kF)
Sq O = 0; <= 54 - RT:(kF) (6f) = R'T:(kF) (%)
G2 (kp) G7 (kr)

— v(J,a) R (05) = RTf(kF) (0;) <= v(J,a) -0 =o0.

Ti(kr)

This provides the required bijection.
(b) The group Wag(J) = (Sjag) is realized in [Morll, Theorem 2.7] as an affine

Weyl group via its action on D(J)* C Ag. On D(J)*, v(e, J) coincides with s,, so

the bijection from part (a) extends to a group isomorphism

(6.17) (W(J,0) 1 Syait) = (W(0,05) ) (Spas for Go))-

The data T;(kr), 0 and L, (kr) used in Lemma (b) are the same for G and for
Go. Hence that lemma implies that g, (v(a, J)) equals gg(s,), where the latter is
computed from (G, Pg, 4, 05).

(c) This is a direct consequence of part (b). O

Propositionsays that H(Wag(J, 0), ¢») is naturally isomorphic to the Iwahori—
Hecke algebra from a Bernstein block of principal series representations of a quasi-
split reductive p-adic group. Hecke algebras and the local Langlands correspondence
for such representations were analyzed in detail in [Sol10].

For a € Aj, we write T, 1= (kera|7;)® C T;, and Gy := Zg(Ta). Then G, is
a Levi subgroup of G, containing 7, so in particular G, = G4(F) is quasi-split.
Furthermore, since « is defined over F', we have

(6.18)  R(GasT) ={B € R(G,T) : Bl € R*a} = {B € R(G, T) : Bl1, € R*a}.

The data Tj(kr), 0; and L, (kr) figuring in Lemma [6.5| can be constructed from G,
equally well as from G, or G. Analogous to Proposition [6.9] this gives the following.

Corollary 6.10. The parameter q,(v(c, J)) = qo(sa) equals the q-parameter for s,
mn H(Ga, PGa,fa Gf)
7. THE HECKE ALGEBRA OF A NON-SINGULAR DEPTH-ZERO BERNSTEIN BLOCK

We continue the conventions from Section [6 in particular, o is a non-singular
cuspidal representation of Q; (kr) = P;/Gjoy- Let 6 be an irreducible representation

of Gij(kr) = ]%/GH)Jr whose restriction to G7 (k) contains o.

Theorem 7.1 ([MoPr2l Mor2]). The pair (1%,(3) is a type for a single Bernstein
block Rep(G)(pf 5 C Rep(G). Moreover (lf’f, ) is a cover of the type (PLVf, ).
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For general results about types and their G-covers, we refer the reader to [BuKul.
For our use, here we record in particular an equivalence of categories

(7.1) Rep(G) 4, 5y = Mod - H(G, B, 6),

where Mod - R denotes the category of right R-modules.
Since F;/F; is abelian by Lemma (a), every alternative ¢’ is isomorphic to Y ®&
for some (not necessarily unique) character x of Q? In particular, the multiplicity

m(d,0) of 6 in indg(a), which equals the multiplicity of o in &, is independent of
the choice of 6. Therefore, we have

(7.2) indg(a) =~ ™99 @ 6 and
& contains o
(7.3) H(Py, Py, 0) = Endp (indp) (0)) = My ) (C) @ @) Cidy,.

& contains o
Recall moreover from [BuKu| that there are natural algebra isomorphisms
- H(G, P,0) = Endg(ind, (o)) = Endg (ind%indg(a)) and
74
H(G, B;,6) = Endg (ind%(&)).

We choose a decomposition of ]?’f—representations

(7.5) indy) (0) = & @ .
By (7.2)) and (7.4)), we see that (7.5 induces an algebra embedding
(76) H(Gv Pfaa—) — ,H(G7Pf70)a

as already noted in [Mor2, p. 150]. The unit element T, of H(G, B, o) can be
identified with ¢ : P — Endc(V;). Let T. € 7—[(]5):, P;,0) be the minimal idempotent
whose kernel is 7 and whose image equals & as in . Then T, € H(G, B, 0) is
the image of the unit element of H(G, Jf’f, o) via .

Let Gjs be the stabilizer of 6 € Irr(pf) in Gy, and let Q(J,6) denote its image in

(7.7) QJ,0) B/ P 2 Q(J,0)0 /) = Q(J,0) /.
Note that by Lemma (b), 2(J, &) is isomorphic to a lattice in X, (Z(G)) @z R.
Theorem 7.2. There are algebra isomorphisms

H(G, B;,6) = T.H(G, P, o)T. 2 H(Wag(J,0), 40) x CIQJ,6), ).

The support of H(G, ]3f, g) is jjf(Waﬂ‘(J,O') X Q(J,&))Pf, and this algebra has a basis
indexed by Wag(J,0) x Q(J, 7).

Proof. The first isomorphism follows from (7.5) and the construction of T.. The
support of T, € H(G, P, 0) is B, /P = QY , which by Lemma is central in

f70’
W (J,o). By the multiplication relations in Theorem m T, commutes with each
T, and hence with H(W,g(J,0),q,). By Theorem we deduce

(7.8) T.H(G, B, 0)Te = H(Wag (J,0), ¢5) x T.CIQ(J, 0), o] Te-
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Here Te(C[Q(J, o), ,uo]Te is isomorphic to the subalgebra of H (G, ]5;, &) supported on
pr(J, &)I:’f = Q(J,&)pf, so it equals H(Q(J,&)pf,ﬁf,c}) and has a basis indexed
by Q(J, &)Pf/Pf = (J, ). This shows the claims about the support and a basis of
H(G,Pf,&). For any g € Q(J,6)P; C Gj, an element T, € H(Q(J, a)]af,f?f,&) with
support If’fgpf is determined by a nonzero element

(7.9) Ty(g) € Homp, (6,9 0)

1

unique up to scalars, and Tg(g)_1 € Homp, f(6’, g~ ' -0) determines an element qu

which is the inverse of Tg. Furthermore, 7, gTh € (CXTgh by uniqueness up to scalars.
We do this for g running through a set of representatives ¢ for Q(J, ). The formula

(7.10) TyT;, = 1o (g, M) Ty,

defines a 2-cocycle ps on Q(J, ). The cocycle relation follows from the associativity
of H(UJ,o)B;, B}, 6). O

Theorem also tells us that the stabilizer of 6 € Irr(]-ﬁ’m) in W(J, U)Q?/Q? is
(7.11) W(J,6) = Wag(J,0) x Q(J,5).

7.1. The supercuspidal case.

To better understand the isomorphisms in Theorem we first assume that the
associated Bernstein block of G consists only of supercuspidal representations. This
happens if and only if f is a minimal facet of B(G, F'). In this case £ = G and
W (J, o) is trivial. We will treat the general case in

Corollary 7.3. Suppose that § is a minimal facet of B(G, F). Then
H(Gv pfa a-) =C [W(‘L OA-)v /’L&] .

Proof. The minimality of § implies that A,g \ J contains at most one element from
each F-simple factor of G. Hence Aj,g is empty and [Wag(J,0)| = 1. By (7.11)),
Q(J,0) equals W (J,5). Now the isomorphism is clear by Theorem O

Note that in the special case where ¢ is moreover regular, a more precise version
of Corollary was already known in [Ohall, Corollary 5.5].
We now make the supercuspidal G-representations arising from (F}, &) more ex-

plicit. Let ¢’ be an irreducible representation of G} whose restriction to Pf contains
¢. By [MoPr2| Propositions 6.6 and 6.8], we know that

(7.12) 7 = indg, (o”)

is an irreducible supercuspidal G-representation, and that every object of Irr(G) (P5)

is of this form for some extension ¢’ as above.
Let G' be the group generated by all compact subgroups of G, or equivalently
the intersection of the kernels of all the unramified characters of G.

Lemma 7.4. Suppose that § is a minimal facet of B(G, F'). Let 11 be an irreducible
subrepresentation of Res&y (7). Then ind%, (1) = ind%(&).
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Proof. By assumption, the image of f in B(G.q, F') is just one point, and by con-
struction G! acts trivially on X,(Z(G)) ®z R. Thus G; N G' = B. We claim that

(7.13) = indg: (5)

is irreducible. The intertwining set of ¢ € Irr(f’f) is defined as
{9 e G: Homﬁfmgpfg,l(&,g -0) # 0}.

It equals the support of H(G, ]5f, &), which by Theorem is Gij . Since Pf equals
Gis N G, the intertwining of & € Irr(pf) in G' equals Pf. This implies the claimed
irreducibility of 7. By the transitivity of induction, we have

(7.14) indg, (r) = indglindg: (6) = ind%((}).

By Frobenius reciprocity, Homgi (71, 7) & Hom]g,f (6,indgf(a’ ) C Hompf(&,a’ ) #

0. Hence this 71 is indeed a subrepresentation of Resgl (7). By the irreducibility of
T, every alternative 7o for 71 is isomorphic to ¢g- 7 for some g € GG. In particular the
choice of 71 does not affect indgl (11). O

Since the supercuspidal Bernstein component Irr(G)( p.6) = Irr - H(G, Pf, &) has
the structure of a complex torus, it is isomorphic to the space of irreducible repre-
sentations of a lattice. This suggests that it is possible to get rid of the 2-cocycle
ts in Corollary It turns out that is indeed the case, at the cost of passing to a
smaller lattice. We write

(7.15) ZW(J,6) :={w e W(J,6) : T,Tyy = T,T, for all v € W(J,5)}.

As a subgroup of a lattice, ZW (J, ¢) is again a lattice. We pick a basis B, and for z =

> mpb € ZW(J,6), we rescale T, to [] T,"*. By (7.15)), this is well-defined. Next
beB beB
we choose a set of representatives w for W (J,6)/ZW(J, ), and we rescale T, =

TyT., = T.T,;. This allows us to make us factor through (W(J, 6)/ZW(J, &))2.
Together with the commutativity of W (J,5) = Q(J, 5), we obtain
(716) Z(C[W(J7 &),M&]) = C[ZW<J70A—)]

By [Morll, §7.13], it is easy to see that ZW(J, ) contains the image in W (.J,5) of
the maximal central F-split torus of G. This image has finite index in the lattice
W (J, &), because it has the same rank by Lemmal5.1[(b). Thus [W(J,&) : ZW (J, )]
is finite.

Let X, (G, T) be the stabilizer of T € Irr(G)(pm) in X,;(G). There is a bijection

(7.17) X (Q)/Xne(G,7) = br(Gig : x = Xx®T
Recall from ((7.13)) that (imd%1 (c}),indg:(V&)) is an irreducible G'-subrepresentation
of 7. As in [Solbl, §2], we define
2.
G: = mxexm(GJ) ker y,
3. e ndGH LY — indG L
G ={geG:g- mdpf (Vz) =ind3Z (Vz)},
G4

T

={geG:g- indg: (6) = ind¢’ (6)}.
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With these notations, [Sol5l Lemma 10.1.b] says that
(7.18) W(J,6)=G)GY,  ZW(J,6) = G2/G*

and C[G2 /G] is a maximal commutative subalgebra of C[W (J, ), us]. Let O(Xn(G)
be the ring of regular functions on the complex algebraic variety X,,,(G). By (7.17)),
we obtain algebra isomorphisms

(7.19) C[ZW (J,6) = C[G2/G"] = O(Xum(G) /X (G, 7)) = O(Irr(G) (6,))
determined entirely by the choice of 7. We write CW (J,5) := G2 /G, such that
there are finite index inclusions of lattices
(7.20) ZW(J,6) C CW(J,6) C W(J,5).
By [Rod, Lemma 1.6.3.1], we know that

(W (J,6): CW(J,6)] =[CW(J,6): ZW(J,5)]

equals the multiplicity of 7 in Resgl(T). For an open subset U C Irr(ZW(J,5)),
let C*"(U) be the algebra of analytic functions on U. The analytic localization of
CIW(J,5), nus) at U is defined as

(7.21) CW(J,6), sl := CIW(J, ), ps] @crzw (a5 (V).

The finite-length modules of this algebra are precisely those finite-length modules
of C[W(J, &), ps], all whose C[ZW (], 5)]-weights belong to U, cf. [Opd, Proposition
4.3]. Similarly, we can define the analytic localization of C[W (J, &), us] with respect

to an open subset U of Irr(CW (.J,5)). We denote this module by C[W (J, ), palE

If U is the full preimage of a subset U C Irr(ZW (.J,5)), then it acquires an algebra
structure via the natural isomorphism

(7.22) CW(J,0), usli" = CIW(J,6), nsltr'

Proposition 7.5. Assume that L = G.

(a) Suppose that the inverse image of U in Irr(CW (J,6)) is homeomorphic to a
disjoint union of d = [CW(J,6) : ZW(J,5)| copies of U. Then the algebras
CW(J,6), uslfy and C*(U) are Morita equivalent.

(b) The algebras CIW (J, &), ps) and C[ZW (J,6)] have equivalent categories of finite-
length modules. The equivalence sends any irreducible C[W (J, &), us]-module to
its central character.

Proof. (a) Write the inverse image of U in Irr(CW (J,6)) as Uy U --- U Uy, where
each U; projects homeomorphically onto U. Then we have

Cl[CW (J,5)] ciz ® C"™MU)=Cc"™U)®---&C"™(Uy),

W (J,6)]
and this is a subalgebra of C[W (J, &), us|{7*. Then we have
N an d N an
(7'23) C[W(Ja O‘), ,U&]U = @ i1 1Ui(C[W(J70)7M6]U 1Uj7
1=

where 1y, denotes the indicator function of U;. The commutator map
(w,v) = T T,Ty ' T, € C*

induces a non-degenerate skew-symmetric bicharacter on W (J,5)/ZW (J, ). It is
trivial on (CW (J,6)/ZW (J,5))?, so it induces an isomorphism

(7.24) W (J,5)/CW(J,5) == Tee(CW (J,5)/ZW (J,5)).
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For each i, j, there is a unique character x;; € Irr(CW (J,6)/ZW (J,&)) such that
Ui = xij ® U;j. Hence there exists a w;; € W(J, ), unique up to CW(J, &), such
that TwilejTﬂjil_ € Cly,. Now ([7.23)) simplifies to

CIW(J,6), w3 =

o W0 T, O (U))1
This algebra is isomorphic to My(C)®cC** (U ), hence Morita equivalent to C*™(Uy),
which is isomorphic to C**(U).

(b) By part (a) and [Opd, Proposition 4.3], the category of those finite-length
C[W (J,6), us]-modules all whose C[ZW (J,&)]-weights belong to U, is equivalent
to the analogous category for C[ZW (J,5)].

We cover Irr(ZW (J, 5)) by a collection of open sets U that satisfy the condition of
part (a). This is possible because every sufficiently small open ball in Irr(ZW (J, 5))
has the required property. Combining the previous observations for all such U, we
find the desired statement for all finite-length modules.

The explicit description of the map on irreducible modules follows from the
construction in part (a), i.e. that preserves C"(U)-weights and hence preserves
C[ZW (J,6)]-weights. O

We indicate a full subcategory of finite-length objects by a subscript fl. By ([7.1]),
Corollary and Proposition the categories

(7.25) Rep(G) 5, 41 Modg - H(G, P;,5) and Repy(ZW(J,5))

are equivalent. However, if ZW (J,6) # W (J,5), then it seems that ([7.25) does not
extend to representations of arbitrary length, because C[ZW (J, 6)] and C[W (J, ), us|
are not Morita equivalent.

7.2. The non-supercuspidal case.

We return to the case where the facet f is not necessarily minimal. Recall that
the group W (G, L) = Ng(L)/L acts on Irr(L) and on the isomorphism classes in
Rep(L). Let W(G, L)s be the stabilizer of Rep(L)(p, ;s) (as in Theorem in
W(G, L). In other words, W(G, L) is the finite group attached to the Bernstein
component II‘I'(L)(PLyﬁa.) as in (|1.4)).

Lemma 7.6. (a) The category Rep(L)(pL,fy&) determines (JE’LJ, ) up to L-conjugacy.
(b) The natural map W(J,6)/Wr(J,6) — W (G, L)s is an isomorphism.

Proof. (a) By Lemma (a), Rep(L) (Ppy3) dAetermines the Ii—conjugacy class of
(Prs,0). The irreducible representations 7 of Pp; such that (Ppj, ) is a type for
Rep(L)(pLyf’&)
only if g - ™ = & for some g € Lj, and in which case g - (Pr,m) = (Pr,6). Hence

are precisely those for which indILsL K contains 6. This happens if and

L. (PL,f, ) is uniquely determined by Rep(L)( 6
(b) Using part (a), this can be shown in the same way as Lemma (b). O
For L as in (j5.3)), Lemma and Corollary hold with L instead of G. Let
W1, be the Twahori-Weyl group of (L, S) and abbreviate CW(J,6) := L3/L'. By
Lemma [5.1| (b), CW(J, ) is canonically isomorphic to a lattice in X, (Z (L)) ®zR.

Lemma 7.7. (a) The affine Weyl group Wog(J,0) is the semidirect product of a
finite Weyl group W (R,) with the normal subgroup of translations T'(J, o).
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(b) The group Wr(J,0) N Wag equals T'(J,0), and can be represented by elements
of Z°(L).

Proof. (a) This is an aspect of the general structure of affine Weyl groups, see for
example [Bou, Chapitre VI.2]. The reference also shows that the group of translations
T(J,0) is generated by the finite root system from this setup.

(b) By Lemma (b) and (5.2), WL(J,0) N Wag is a group of translations. By
part (a) for W,g, the lattice of translations T'(J,0) in W,g is generated by the
elements av(wgl) with « in a finite root system R,. As o takes values in S, all
translations in W,g can be represented by elements of S. We can also represent
them in X, (S), if we identify it with {t(wwy') : t € X.(S)}. Here it is convenient to
use the inverse of a uniformizing element wp of op: this is compatible with [Sol5,
Appendix A] because |@wp!|F > 1. If such an element t(wz') belongs to Wi (J, o),
then it translates Ag in a direction in X,(Z(L)) ®z R. Hence it is orthogonal to
R(L, S), which means that t(w,') € Z°(L).

Conversely, the constructions of Sj.f,, and A ., show that R, consists of roots
of (G,Z(L)°). There o (wp') € Z(L)° for all @ € R,, and T(J,0) C W (J,0). O

By Theorem and [BuKul, §8], H(L,PL,,:,&) embeds in H(G, Pf, 7). We prefer
to use the renormalized version
(7.26) H(L, Pp;,6) — H(G, B, 6)

that respects parabolic induction, as in [Sol2l Condition 4.1 and Lemma 5.1]. The
image of ([7.26]), however, does not depend on such a normalization.

Lemma 7.8. (a) Via (7.26), we have
H(L, Pp;,6) N H(Wag(J,0),¢5) = C[T(J,0)] = C[ZWL(J,5)] N H(Wag (], 0), ¢r)-

(b) The conjugation action of Q(J,5) on H(G, Pf,&), from Theorems and
stabilizes H(L, Pp;,&) and C[ZW(J,5)].

Proof. (a) By Lemma the first intersection is precisely the maximal commu-
tative subalgebra C[T'(J, )] of the Bernstein presentation of H(W,g(J,0),q,). By
Theorem the 2-cocycle pg is trivial on C[T'(J,0)], thus C[T(J,0)] commutes
with H(L, Pp;,6) by Corollary and Lemma Then by Proposition it is
already contained in the image of C[ZWL(J,0)].

(b) By the remark after (5.9), the inverse image of Ny (W) in N¢/(S) normalizes L.
Therefore, conjugation by elements of Q(J, &) (which is well-defined by Theorem [7.2])
stabilizes the image of . Hence conjugation by such elements also stabilizes
the center of H(L, PLj, &), which by is precisely C[ZWL(J,5)]. O

By Lemma (a), H(G, f’f, &) contains the affine Hecke algebra

H(G, Pf, é’)o = H(Waff(J7 0)7 QU)C[ZWL(Ja &)]

= HWag(J,0),00) © C[ZWi(J,6
(7.27) (W ( U)Q)C[T(ng)] [ZWL(J,6)]

=H(W(Ry),4s) ®c C[ZW (], 5)].
By Lemma (b), the action of (J,5) on H(G, ]3f7 &) stabilizes (G, pf’ &)°.

We now introduce a new facet fo C fN B(Gaq, F') as follows. We use the notation
f =[1, ", where ¢ runs through an indexing set for the simple factors of G. For each
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simple factor G* of G such that Ajaff o contains elements from G', we denote by ff,
the facet of B(G") that is contained in Cy and lies in the zero set of Aug \ Afafr,o-
For each simple factor G* of G such that Ajaff o contains no elements from G, we
set f. := f. Finally, we define f, := [, §*.

The finite Weyl group from Lemma [7.7(a) arises as the Wy (.J, 0)-stabilizer of a
special vertex of §,. For the simple factors G* that do not contribute to Wg(.J, o),
this does not pose any condition on the vertex, so we make it more explicit. If G*
contributes to Wag(J, ), let y2 be a special vertex of fi; otherwise, let y¢ be the
barycentre of f*. Then y, = [[, y¢ is a point of the building B(Gaq, F). The set

Aaff,o,ya = {a S Af,aff,a : a<ya) = 0}

is a basis of a finite root system whose Weyl group W,g(J,0),, is isomorphic to
Wag(J,0)/T(J,0). It follows that Ay, = D(Aafr ey, ) is a basis for a root sub-
system R, C R(G,S) with Weyl group W(R,) = Wug(J,0)y,. This R, can be
identified with the root system from the proof of Lemma Let R(G,S)" be a
positive system in R(G,S) containing A, . Using R(G,S)T, we can define stan-
dard parabolic subgroups of G containing Zg(S). Indeed, let @ C G be the parabolic
F-subgroup with Levi factor £ and R(G, S)" C R(Q, S). By Lemma and [Oha2l,
Lemma 3.2 and Proposition 3.3|, there are canonical isomorphisms

(7.28) I (indf, (r)) 2 1§ (indg”(a)) = indgf(&),
which induce canonical algebra isomorphisms

(7.29) H(G, B;,5) = Endg (ind%(&)) = Endg (Ig(ind%: (11))).

The algebra Endg(Ig (indfl 7'1)) in ((7.29) was studied in [Sol5], and later compared
with H(G, B, 0) and with ’H(G,Pf,&) in |Oha2]. Recall from Theorem that
H(G, B, 0) and H(G, ]Sfﬁ) have the same underlying affine Weyl group and the
same ¢-parameters. The group W (J, o)/ Qg acts naturally on the finite root sys-
tem R, underlying the affine root system with basis Aj .t ,, with the subgroup of
translations X, acting trivially. The group

(730) W(G7 L)?T = W(J7 &)/WL(‘L (5’)
from Lemma (b) acts naturally on R,, and this action comes from the action of
W(G,S) on R(G, S). The Weyl group W (Ry) = Wag(J, o)y, acts simply transitively
on the collection of positive systems in R,. Let Ha s be the stabilizer of A, , in
W(J,6) and let T's := Ha 5/Wr(J,6) be the stabilizer of As,, in (7.30). Then
Hp s is complementary to Wag(J, o)y, in W(J, ), and by [Sold, (3.2)] we have
(7.31) W(G, L)a = W(Ra) X Fc}.
Here T'; is the stabilizer of the positive system R} = R(G,S)" N R, or equivalently
of the basis Ay = D(Ag,y, ) of R,.

Let s denote the inertial equivalence class of [L, 7| for Rep(G). Like indg (6),

7

the G-representation II; := Ig(indil(T)) is a projective generator of Rep(G)z
(see for example [Ren]). In fact it is isomorphic to a finite direct sum of copies of
Ig(indﬁl (11)) = indgf(&). Such an isomorphism can be constructed as follows. Write

T= @ LT,
leL/L3
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where L3 is the stabilizer of V;; C V; in L, and [ runs through a set of representatives
for L/L7. Translation by [ gives an isomorphism ind%, (I - 71) = ind¥, (), which
induces to an isomorphism

(7.32) o @ZEL/D& &(indfy (11)).

Via (7.32) and (7-29), we embed H(G, P}, &) diagonally in Endg(Il,). In [Solf,
Proposition 2.2], it is shown how C[X,, (L, 7), ] embeds in Endg(Ils) for a certain

2-cocycle . Combined with [Sol5, Lemma 2.1], one deduces that Irr(L/L3) is a
subgroup of X, (L, T) maximal for the property that its group algebra embeds
naturally in C[Xn(L, 7), ). By (7.32)), we have
(7.33) Hirr(L/LT) i~ Ig(indLl(ﬁ))-
On the other hand, the multiplication action of O(X,(L)) = C[L/L'] on ind%, (1)
gives embeddings

C[L/L'] < Endg(ind%, (1)) < Endg(IL,).
The Weyl group of the root system

(7.34) Ry ={a € Ry :sq4(T) =7}

stabilizes 7. The stabilizer of 7 in W(R,) x I's acts on R, ;, and can be written as
(7.35) (W(Rs) xTs) =W(Rs7) % Ts1,

where I'; ; is the stabilizer of the set of positive roots in R, ;. Along the covering
(7.36) X (L) — Irr(L)(ﬁLm&) X X®T,

every element of W(R,) x I's can be lifted to a diffeomorphism of X,,(L), and the
elements that stabilize 7 can be lifted to Lie group automorphisms of Xy, (L). This
gives rise to a finite group W (L, 7, X, (L)) of diffeomorphisms of Xy, (L); see [Solb}
§3]. It fits into a short exact sequence

(7.37) 1= X0 (L,7) = W(L, 7, X0 (L)) = W(Rs) x5 =1
and contains a subgroup canonically isomorphic to (W(Rg) X I‘(;.)T.
Proposition 7.9. (a) We have the following identifications as vector spaces
Endg(IL) = @leL/L§ C{l} ® H(G, B;,5) @ C[lrr(L/ L))
= O(Xu(L)) @ HW (R,),¢r) ® a CT, ® C[Xn(L,7), ).
YEHA5/WL(J,6)

(b) The linear subspace O(Xn (L)) @ H(W (Rs),qs) is an affine Hecke algebra, and
the conjugation action of Xy (L, 7) C C[Xn (L, 7), 8] /C* on it is given by trans-
lations on O(Xu(L)).

Proof. (a) By (7.32), we have Endg (1) = M[L 3)(C) ®c H(G, f’f, 7). The elements
leL/ Lf permute the different copies in , and by [Sol5l §2] so do the elements
of Trr(L/L2). Furthermore, by [Sol5, §5.1],

@IGL/U; C{l} ® C[Xue(L,7),b] € O(Xw(L)) ® C[Xne(L,7), 1]



NON-SINGULAR DEPTH-ZERO REPRESENTATIONS 53

embeds in Endg(I1;). This establishes the first equality of vector spaces. By (7.30)),
(7.31) and Theorem we deduce that (as vector spaces)

(G, 11,0) = CIWL(L o) @ HW (Ro)a) 0 €D, CT
We also note that
P cineciewy(,6)= @ C{1}®CILE/L'] = C[L/L'] = O(Xu(L)).
leL/L3 leL/L3

It follows from ) that, also as vector spaces,

ClWy(J, a) /CWL(J 6)] ® Cllrr(L/L3)] = C[Irr(L3 /L?)] ® Cllrr(L/L3)]

>~ Cllrr(L/L?)] = C[Xn (L, 7)].
These observations imply the second equality of vector spaces.
(b) The cross relations between O(X,(L)/Xn: (L, 7)) and Ty, can be found for in-
stance in [Sol4, Definition 1.11]. These are also multiplication relations in
H(Wait(J,0),45)O(Xne (L) / X (L, 7)),

and they show that T, (for a € R,) commutes with O(X(L)/Xn (L, 7))%*. Com-
paring these with the multiplication relations in Endg(Ils) from [Sol5) Corollary
5.8], we deduce that the image of Ty, in C(Xun(L)) ®o(x,.(r)) Endg(Ils) lies in
C(Xn (L)) ® C(Xn(L))Ts,,, where T, is as in [Soldl, §5], and it acts on O(Xy. (L))
just like so. The cross relations for Ts, can be deduced from the expression of T,
in terms of T, (see [Soldl (6.25)]).

Since the action of W(Ry) on Xy (L)/Xn (L, 7) lifts canonically to X,,(L), the
cross relations for T, lift to O(X:(L)). Hence O(X,:(L)) and the Ts, generate an
affine Hecke algebra in the sense of [Sol4l Definition 1.11]. The conjugation action
of Xn (L, 7) is given by [Sol5l (5.16) and Corollary 5.18]. O

The group Irr(L/L3) is embedded in Endg(Ils), hence has two commuting actions
on that algebra: by left and right multiplications. It follows from ([7.33)) that

(7.38) H(G, B;,6) = Endg (1§(ind% (1)) = Endg (IL) 2/ L)t (L/L2),

Since O(Xy(L)/Irr(L/L3)) = C[L2 /L], this is consistent with Proposition
For an open subset U C X,;(L), we define
(739) Endg( )an = End(;( ) ®@(xm(L)) Can(U).

If U is W(L, T, Xn(L))-stable, then this is an algebra, because it can be realized as
(7.40) Endq(TL){" = Enda(Tls) @0, (1)) (krar iy CO(0)W Er2er (L),

and O(Xpn (L)W Em%r (L) s central in Endg(1l,).

Recall that C[L3/L'Y] = C[CW[(J,6)] is a maximal commutative subalgebra
of H(G,p,:,&). For H(G, Pf,c}), analytic localization can be defined similarly as
in (7.21), and there is a variant with Irr(CWy(J,6)) = Irr(L3/L') instead of
Irr(ZW,(J,6)) = Irr(L2/LY). In the situation where we have a W (L, T, X, (L))-
stable U, these two versions of analytic localization agree by , i.e. we have

H(G. B, 0)E Ul = HG, B, o) Ul,2

Let U, be a neighborhood of 1 in Z{nr( ), which covers Irr(L)sL via the operation
@7 from (7.36). (In [Sol5], this U; is called U,,.) We assume that U, satisfies [Sol5l
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Condition 6.3], which means that U is sufficiently small and wU,NU, = & whenever
w e W(L,7,Xn, (L)) and wl # 1. We write U = W (L, 7, X, (L))U,, such that

C(U) = . Lyu, C*(U),
weW (L,7,Xnr (L)) /(L,7,%nr (L)1

where 1x denotes the indicator function of a set X.

Lemma 7.10. For wy,wy € W(L,7,Xn (L)), there is a canonical isomorphism of
vector spaces 1y, vy, Ende(Iljz, )8 Luw,u, = 1w1UT|L§’H(G, Pf’&)?ﬁL; 1w2UT\L;-

Proof. Since wU, NU; = & for w € W(L, 7, Xn (L)) \ W(L, T, Xn:(L))1, we have

Yer(z/23yw,u, EnAdG (Xe) (7 Yer(/ 13 U, = @ Lyyw v, Ende (ILe) {7 Lyguw, U, -
x1,x2€Irr(L/L3)

Here Irr(L/L3)? acts freely, so this space contains

~ Trr(L/L3)?
Ly, Ende (Ie) 7 Luyv, = (Lier(n/ 28y, 0, Enda () e (1) 13 yws U, ) (B

By ([7.40) and (7.38)), we can rewrite the right hand side as

3\2
Liee(L/ 13w v, (Ende (11 )Irr(L/LT) ® Can(U>W(L’T’%m(L)) Lree(L/ 13w U,
(L/28)un U ( LR M i ) Ltee(L/ 22 s

= 1Irr(L/L§)w1U7—,H(G> Pfa &)%T\Lﬁ 1Irr(L/L§)w2UT

H(G, B 0)], Tunr,

Ulys

:1w1U7—\L§ ‘LE}. -

8. HECKE ALGEBRAS FOR NON-SINGULAR DEPTH-ZERO LANGLANDS PARAMETERS

8.1. Preliminaries.

Consider an enhanced supercuspidal L-parameter (¢, p) for a Levi subgroup L of
G. Via (3.15) and the natural isomorphism

:{nr(L) = ((Z(LV)IF)WF)O

from [Hail, §3.3.1], X, (L) acts on ®.(L).
The Bernstein component of ®.(L) containing (¢, p) will be denoted

(8.1) st = Xu(L) - (0,0) = { (2. 0) s 2 € (Z(LY)F)wp)° )

By sV, we are referring to s} considered as an inertial equivalence class for ®.(G).
Recall the cuspidal support map Sc for enhanced Langlands parameters from [AMST],
§7], extended to the setting with rigid inner twists in [DiSc]. It associates, to every
enhanced L-parameter (1,¢) for G, a triple Sc(¢,€) = (L', ¢, €'), where L' C G is
a Levi subgroup and (¢, €') is a cuspidal enhanced L-parameter for L'. The map
Sc preserves 1|1, so in particular sends the depth-zero parameters to depth-zero
parameters (but maybe of other groups). We write

(8.2) D.(G)* :=Sc ' ({L} x sY).

By definition, this is a Bernstein component of ®.(G). If s) consists of depth-zero
enhanced L-parameters, then ®,(G)5" C ®%(G). To ®.(G)¢’, [AMS3, §3] associates
a twisted affine Hecke algebra H(s", qll;/ 2)7 which is a specialization of an algebra
H(sY,z) with an invertible formal variable z. However, [AMS3| works for (normal,
non-rigid) inner twists of G and for enhancements of L-parameters based on the
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component groups introduced in [Art2]. We need to check that [AMS3] also applies
in the current setting.

Lemma 8.1. The construction of H(s",z) in [AMS3, §3] (for an arbitrary Bern-
stein component @e(G)sv) can be adapted so that it also works in our setting with
rigid inner twists of reductive F-groups and component groups 7T0(S(;) for Langlands

parameters . All the results in [AMS3], §3] remain valid for the adapted version of
the twisted affine Hecke algebra H(s",z).

Proof. Essentially, all the arguments in [AMS3, §3] rely on [AMSI], §1-5], [AMS2]
§2-4] and [AMS3], §1-2], which apply to arbitrary (possibly disconnected) complex
reductive groups. The specific setup involving enhanced L-parameters from [Art2]
and the associate groups only appear in the later sections of [AMSI] [AMS3]. A
setting with slightly different enhanced L-parameters works equally well in [AMST],
AMS2| [AMS3], because the arguments with complex reductive groups hardly change.
Therefore it suffices to describe how the complex reductive groups in [AMS3] §3]
must be adapted.

Firstly, consider Arthur’s group S, = ZésvC (), which is obtained by first taking
the image of Zgv(p) in GY.q and then the preimage of that in GVg. In [Artl]
AMST, [AMS3], an enhancement of ¢ is an irreducible representation of m(S,).
Secondly, the group G, := Zésvc(90|Wp) has the property S, = Zg,, (»(SL2(C))) and
is contained in the group J := Zésvc (¢l1,). We make the following substitutions:

setting from [AMS3] §3] setting with rigid inner twists
Sp = levc(SO) S;r = Zav(p)
Gy = Z5y (plwp) Zgv(p(Wr))
(8.3) 7s°
J =25y (Plir) Zgv(e(IF))
GVSC GV
L} = preimage of LY in GV LY

With these substitutions, [AMS3| Proposition 3.4 and Theorem 3.6] (which come
directly from [AMSI]) hold, as also noted in [DiSc]. The groups M and T" in [AMS3]
§3] can be defined in essentially the same way, i.e. M := Zpv(p(Wp)) and T :=
Z(M)°. Then Z(GY)W¥ C T and hence [AMS3, Lemma 3.7] amounts to:

there is a finite covering T — X.:(YG) = X, (GY).

Therefore, we need to replace the group G, x Xn(GY) = Zésvc (oplwp) X Xur(XG)
from [AMS3, (3.9)] by Zav (ps(Wr)). Now all the remaining results in [AMS3], §3]
hold in this new setting with the same proofs. O

We summarize the structure of H(s", q};/ %) below:

e Since sy carries a transitive action of torus (Z(LY)¥ )w, With finite stabi-
lizers, the choice of a base point makes s} into a complex algebraic torus.
e The ring O(sY), of regular functions on the complex algebraic variety sy, is

by definition a commutative subalgebra of H(s", q};/ 2).

e The group W(G, L) =2 W(GY,LVYWF acts on ®.(L) and on the set of Bern-
stein components of ®.(L). Let Wyv denote the stabilizer of ®.(G)*" .
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e There exists a root system Rgv C X*(s)) on which W acts. The choice of
a positive system ij leads to a decomposition Wgyv = W(Rsv) x v, where

(8.4) T = {we W(G,L)* :w(RY) = RS}
e As vector spaces, we have
(8.5) H(s",q}*) = O(sY) ® C[W(Rev)] © CTev],

where s) is made into a complex algebraic torus by the choice of a basepoint.

e The subspace O(s}) ® C[W (Rsv)] is an affine Hecke algebra H(s", qllw/ 2)O as

in [Sol4, Definition 1.11], with complex torus s}, root system Rgv and certain

g-parameters g,v, ¢%v for oV € Ryv. We take q}p as the g-base (so that all

the z;’s from [AMS3], §3.3] are specialized to q;ﬂ).

e The group I'yv acts naturally on H(sv,q};/z)o, and ’H(sv,q}wﬂ) is a twisted
crossed product of H(s", q};/ 2)° and I'sv. In particular C[I'sv] is embedded

in H(s, qllr/ 2) as a twisted group algebra C[I'sv, isv], for a certain 2-cocycle
(8.6) hev : T2, — C*.

Note that H(s", q};/ 2) is not exactly an instance of the twisted affine Hecke algebras in

[AMS3]: those have formal variables as g-parameters, whereas our g-parameters are
real numbers. The quintessential property of H(s", qllp/ 2) is that its irreducible (left)
modules are parametrized canonically by ®,(G)¢"; see [AMS3, Theorem 3.18.a).
Recall from and Theorem that we have an LLC for non-singular super-
cuspidal representations of L, and that it is a bijection onto the appropriate set of
enhanced L-parameters. By Theorem this LLC is X, (L)-equivariant. Hence it

induces a bijection

(8.7) non-singular supercuspidal supercuspidal
Bernstein components in Irr®(L) Bernstein components in ®%(L) [

We write this bijection as sz, — s} .

Let s be 57, viewed as an inertial equivalence class for G, and let Rep(G)s be its
corresponding Bernstein block of Rep(G). The associated Bernstein component of
Irr(G) will be denoted Irr(G)s, and the associated Bernstein component of ®.(G)
will be denoted ®,(G)* . Recall the group Wy := W (G, L)s from Lemma By a
similar argument as in Lemma (a), replacing the stabilizer of § by the stabilizer
of XY(L)# and p, it can be expressed as

(8.8)  Wo=WI(G,L)jrxnr)o, = W(Na(L),jT)x )0,/ W (L, 5T)x,.(1)0.p-
Lemma 8.2. The stabilizer W of Rep(L)s, equals Wev = W (G, LV)gF.

Proof. As observed before Lemma W(G,L); = W, equals the stabilizer of
Rep(L)s, in W(G, L). The equality Wy = W,v follows directly from the W(G, L)-
equivariance of the LLC in Theorem O

Restricting the LLC from Theorem 4.8/ to s and s, we obtain a bijection

(8.9) Irr(L)s, = Irr(L) — O (L)°L.

(Pr.5,6)
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Lemma 8.3. The bijection induces an isomorphism of vector spaces
H(s",q/") — H(G, P,,6)° © C[Ts).
Proof. Firstly, pullback along defines an algebra isomorphism

(8.10) O(s)) = O(Irr(L)(me&)) = O(Irr(L)s, )-
By Corollary [7.3] and Proposition the right hand side is
(8.11) O(Irr(ZWy(J,6))) = C[ZWL(J,6)).

Thus (8.10) and (8.11) give an isomorphism between the maximal commutative
v _1/2 5 ~\o .

subalgebras of H(s",qy ") and H(G, F;,6)°. By Theorem and Lemma this

isomorphism intertwines the actions of W; = W,v, so it extends to an algebra

isomorphism

(8.12) O(s)) x Wyv — C[ZWL(J,5)] x Ws.

By (7.27)), the basis elements T, for w € Wy = W(R,) x I's, provide the following

linear bijection (it is usually not an algebra homomorphism)

(8.13) C[ZWy(J,8)] x W, = C[ZWL(J,5)] @ C[W(R,)] x Ts — H(G, P;,6)° 1 Ts.

Similarly, by the construction (8.5)), there is a linear bijection

(8.14)

O(s) x Wev = (O(s) % W(Rev)) » Tov = H(s", af”) = H(s",q/*)° x Cllav, bov].

To conclude, we compose the inverse of (8.14) first with (8.12]), then with (8.13)). O

8.2. Comparison of ¢g-parameters.

Despite the similarities between (8.13) and (8.14)), Lemmas 8.2/ and [8.3|do not yet

establish isomorphisms
(8.15) W(R,) 2 W(Rsv) and T's =T,v.

To achieve (8.15)), we need to compare the g-parameters of reflections in Wy and Wyv.
More precisely, for (8.15) we need to know which g-parameters are 1 and which are
bigger than 1. By definition, a reflection in I's or I'yv has g-parameter 1. We write

Q/(@, (gf) = Q((b, 9]:) N <W(®, Qf) N Sﬁaﬁ“ for G0>, and
<W(®, Hf) N Sﬁaff for GU> = Waff(@,(gaﬂr) X Q/(Q), Hf)

With these notations, Proposition[6.9says that all information about the g-parameters
for H(G, P, &) is contained in the extended affine Hecke algebra

(8.16) H(War (0,65),q0) x (0,6;) € H(Go, Pa, s, 05).

Even better, Corollary @ says that we only need H(Ga, Pg,j,0;) to determine
go,o for a € Aj,. The complex dual group of G, has maximal torus TV.

The maximal F-split subtorus 7; of 7; and of 7 corresponds to Ty »» which
admits a finite covering from TV'"Wr°. By (6.18), the root system of (Gy,TV)
can be expressed as R(Gq,T)" = {8Y € R(GY,TY) : 8Y|pvwro € R*aV}. By
construction [AMS3, Lemma 3.12], Rsv consists of certain integral multiples mqaa”
of elements oV € R(G,,T)Y = R(GY,TV). Furthermore, G, = 'TGY = G x
Lj(Wp). The algebra H(Wag(0,6;),q9) x @' (0,6;), which is given in terms of the
Iwahori-Matsumoto presentation, can also be written in terms of the Bernstein
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presentation, as in [Lus3, §3] or [Sol4, §1]. This gives g-parameters ¢ , for all
o€ Af,g-

Proposition 8.4. Let o € A;,. The parameter qm,qov for sqv in H(sv,q;ﬂ) 18

equal to qp . Furthermore, g, v is equal to q;,a.

Proof. For the construction of g, v [AMS3, Proposition 3.14], one first passes to
the complex reductive group J, := Zévsc(gp\IF). Next, for each z € X, (L), as
in [AMS3, §3.1], one constructs a graded Hecke algebra from zp, p and G., =
ZévSC(ZSD|WF)- This gives a family of parameters k,v .., from which g, v and
.. ov are obtained (see [AMS3] §3.2]). One does not need the full Jy, it suffices
to consider a Levi subgroup of JJ containing ¢(SL2(C)) and all the root subgroups
from R*aV.
Let k, be as in Proposition Suppose that

(8.17) 05 0 Ny, sk 0 0’ # 1.

By Proposition g6, = 1, which means that qaa = 1 as well because qaa €
[1,90,a). Let Fo/F be the unramified extension of F' with residue field k,. Via the
local Langlands correspondence for tori, (6j,7;) corresponds to @[y, because Tj(F)
is the maximal compact subtorus of 7 (F). The condition is equivalent to
aY(¢p(Ig,)) # 1. By construction, I, stabilizes every root subgroup of GV associated
to a root in R*«". By the description of centralizers of semisimple elements (here of
¢(IF, ), a finite set) from [Ste], a¥(¢(IF,)) # 1 implies that JZ does not contain any
representatives for s,v. But then o does not correspond to a root for the graded
Hecke algebras from [AMS3, §3.1]. Thus s,v only occurs in the R-groups/I'-groups
for those graded Hecke algebras. This implies that ko ., = 0 for all x € X,,;(L), and
thus by [AMS3, Proposition 3.14], we have g,v = ¢’v = 1.

Suppose now that, in contrast to , 05 © Ny, /kp © a¥ = 1. For any lift 3¥ €
R(GX,TV), we have Bv((p(IF,ﬁv» = 1. Set UIFﬁV = H’YGIF/IFJgV U,yﬁv. The gO(IF)—
invariants in this group can be identified with

Zuy, o (p(IF)) = Zuy, (0(Ippv)) = Ugy.

Together with ZU—IF v (p(IF)) = U_gv, this allows us to construct a representative

for sqv in J2. Starting with G instead of GV gives a Levi subgroup J3o of Jg

containing Uy, gv N J2. As explained at the start of the proof, this means that the

parameters gm,qv and gy v can be computed just as well from LG,.

In summary, on the p-adic side, Proposition and Corollary reduce the
computations of gg , and dp ., to the Hecke algebra H(Gas Pg,. 05) for a Bernstein
block in the principal series of a quasi-split reductive group G,. On the Galois

side, we reduced ¢m,ov and g, v to parameters for a Hecke algebra of the form

'H(sv,q}/ 2), computed from “G, instead of “G. Thus we may apply the known

results about principal series representations of quasi-split groups, where the desired
equality of g-parameters follows from [Sol10, Lemma 5.2]. O

Recall from [Morll, Proposition 6.9] that R, = {a € A, @ ¢o(v(a, J)) = go,0 > 1}.
Similarly, by [AMS3, Proposition 3.14], Rv = {maa” : @V € Afva, Gmaav > 1} Thus
Proposition produces a canonical bijection

(8.18) Ry <— Rsv,



NON-SINGULAR DEPTH-ZERO REPRESENTATIONS 59

which gives a group isomorphism

(8.19) W(Ry) = W(Rgv).
Let R:V denote the image of R} under (8.18)), then it induces a group isomorphism
(8.20) Ws/W(Ry) 2 T3 = Tev = Wev /W(Rsv).

Recall the affine Hecke algebra (G, B;, )° from (7.27).

Proposition 8.5. Lemma[8.3 and Proposition induce an algebra isomorphism
H(sv,q;ﬂ)o 5 H(G, B, 6)°.

It is canonical up to:

e inner automorphisms that fiz C[ZW(J, )] pointwise;
e for each short simple root o € R, satisfying q5 , = 1, Ts, can be replaced
with hy Ty, where h), € RY C ZW(J,6).

Proof. On the maximal commutative subalgebras, this isomorphism is given by
(8.10]) and , which are canonical. By construction, the bijection from Lemma
sends T, to Tsav whenever simple roots o and ¥ match via Lemma and
(8.18). By Proposition and the multiplication rules in Iwahori-Hecke algebras,
the linear map H(s", q}; 2)O — ’H(G,P;,(T)O from Lemma is in fact an algebra
isomorphism. The non-canonicity of this isomorphism is limited to automorphisms

of H(G, Pf, 5)° (or equivalently of H(s", qllw/ 2)") that respect the properties used in

the above construction, i.e. automorphisms of H (G, Pf, ¢)° which are the identity on
O(Irr(ZWr(J,6))) = C[ZWL(J,5)]. Such automorphisms were classified in [AMS4]
Theorem 3.3 and its proof]. Indeed, conjugation by any element of

ClZWL(J,6)]" = C* x ZWL(J,5)

is possible, these are the relevant inner automorphisms of H(G, Pf, 6)°. Apart from
this, there is at most one nontrivial possibility for each irreducible component R, ;
of the root system R,. This occurs only when R, ; has type B,, and qg’," o = 1 for the
unique short simple root o € R, ;. Then there is an automorphism such that: (1)
T, is mapped to hyTs,; and (2) Ty, is fixed for all other simple roots § € R,. We
remark that this automorphism could be inner, e.g. when h) /2 € ZWp(J, ). O

8.3. Comparison of 2-cocycles.

We now study how the 2-cocycle fj;v of I'sv corresponds, via the isomorphism
, to a 2-cocycle of I'y coming from Endg(ILs).

Since it is quite difficult to analyze fi;v (inflated to Wyv) for elements that do not
fix points of sY, we shall fix (pp, pp) € Y, and we restrict our attention to Wyv ,, (the
stabilizer of (oy, pp) in W(GY, LVYWF). To classify all irreducible representations of

H(sV, qll/ 2), it suffices to consider the cases with ¢}, bounded; see [AMS3], §2].
Recall from [Hail, §3.3.1] that there is a natural isomorphism

(8.21) Xne(L) = H' (Wp/Ip, Z(LY)'")° = (Z(L)'7) g,

We write
Xu (L)t := Hom(L,Rso) C %,(L) c X°(L)
and we let X,,(LY)" be its image in (Z(LY)'")y,, C X°(LY) under (8.21). To ana-

lyze representations of H(s", qllr/ %) with a central character in Weyv Xy (LY)* ¢y, one
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can localize the algebra with respect to Xpn(LY)¥¢p. The proof of [AMS3, Theorem
3.18] shows that this localization can be described by a twisted graded Hecke alge-
bra H(pp,v = 1, p,T), as in [AMS2] §4] and [AMS3| (3.9)]. This algebra contains
a twisted group algebra C[Wsv ,, ,fsv], which enables us to study hﬁv‘(st#b)z via
the description in [AMSI, Lemma 5.4] and [AMS2, (89)], where C[W,v , , fsv] is ob-
tained as the endomorphism algebra of a certain equivariant local system determined

by (b, pp)-
We need to modify the setup in [AMSI] [AMS2), [AMS3| from inner twists of p-

adic groups to rigid inner twists. The definition of the cuspidal support map for
enhanced L-parameters in this setting can be found in [Sol7, §7] and [DiSc]; for the
other parts of [AMST], [AMS2] [AMS3], there is hardly any difference. Let us work out
the aforementioned local systems in our case. The enhancement p, can be viewed
as a S} -equivariant local system on {0} and (by pullback) on

Lie(Z(LY)Wr) = Lie(Zpv (b)) = Lie(S},).

Let Gt be S, for oy viewed as element of ®(G). Then S, is a quasi-Levi subgroup
(i.e. the centralizer of the connected centre of a Levi subgroup) of G¥;+. We pick
a parabolic subgroup PY° of (Gg;")° with Levi factor (S4,)°, and we write PV :=

V,0 g+ :
P*eS], . Consider the maps

(8.22) {0} €& {(x,9) € Lie(GYH) x GLF - Ad(g e € Lie(PY)} L
{(,gP") € Lie(GYH) x GYF/PY - Ad(g")a € Lie(PY)} £ Lie(GY:H)

where fo(z,g) = (z,gP") and f3(x, gP") = . Let g, be the unique G%;f—equivariant
local system on

{(z,9P") € Lie(G}") x G, /PY - Ad(g~ ")z € Lie(PY)}
such that f5pp = f{pp. The map
fa: {(x,gP") € Lie(G} " )iss x GoF /P : Ad(g ") € Lie(PY)} — Lie(GJ " )rss

restricted to regular semisimple elements|is a fibration with fibre Nv.+(SF,)/S7, .
)

If (p)rss denotes the restriction of gy to the regular semisimple locus, then f3(gp)rss
is a local system on Lie(G )" )ws. By [AMSI, Lemma 5.4], we have

(823) C[Ws\/,tpba hs\/] = End(fS,!(/jb)rss)a

where the endomorphisms are taken in the category of G};;Jr—equivariant local sys-
tems on Lie(G g, )rss- The proof of [AMST], Lemma 5.4] uses that of [AMST, Proposi-
tion 4.5] and [Lusl) §2]. There it is shown that End(f3(gp)rss) is canonically a direct
sum of one-dimensional linear subspaces A,,, indexed by w € Wyv .. By [AMSI],
(45)], an element of A,, corresponds to a family A4 of morphisms of S;fb—equivariant

local systems on Lie(S]

4 )rss as follows:

(8.24) Ag:ppy = @ - py forall v € Ncy,y (S;b) representing w € Wev o, ,

6indicated by a subscript rss
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related by Az, = Ay o (action of n) for all n € S;fb. The multiplication in
End(f5,1(0p)rss) satisfies Ay, - Awy, = Awiws, S0 any choice of a nonzero element A,
in each A,, determines a 2-cocycle f;v and an isomorphism (8.23)) by the relation

(825) A’U)lA’LUQ = hs\/ (w17w2)A’w1’w2'

Multiplying ¢, by z € X°(GY), as in (3.15)), is a symmetry of the entire setup; in
particular, one keeps the same p, and the same A,,. Then (8.25) shows that

(8.26) 1.sv can be chosen to be equal to f,v for z € X°(GY).
Recall from ({3.9)) that

(827)  Wavy, @W(GY,LY)NE =W (Ngv(LY),TV)W. pb/W (LY, 79" .
Via the canonical bijection Irr(&f7,id) — Trr(S7, ,n) from (3.17] 3.17)-(3.18)), we can re-

place p, by a representation p, of &". The conjugation action of Ngv(LY), TV)Z‘;{’H

on &7 is trivial on T Wr_ Thus w_1 pn and w1 py are well-defined representations
for w € W (Ngv (L), TV)WE, .
. . ~ + .
We now vary on - 8.24)) by picking representatives W € NGZj(S«Pb) and fixing

(8.28) Apw:pp— 0 py
for each w € W (Ngv(LY), TV)WE . We impose Ay ar = Apwpy(t) = Ay an(t) for

all t € TV>F. In these terms, (8.25) can be rewritten as

— 1 . .
(8.29) AnﬂhAn,ﬁJg = hsv ('U}l, wg)Amﬁ,lﬁ,Q = hsv (’11}1, wg)Ammn(wlwg wlwg).
Note that wi, wy € W(Negv(LY),TY)WE in (8.29), in contrast to (8.24) and (8.25)).
For suitable choices of the A, 5, the 2-cocycles f;v in (8.25]) and (8.29) coincide, while
in general they are only cohomologous. For book-keeping purposes, we introduce

two further 2-cocycles of W (Ngv (L), TV)WE -

—~ 1 .
h5vyl)n (w1, we) := Ay, wlAn,wQA o and f, (w1, ws) == n(wiwe  W1wW2).
We record that f,, is the 2-cocycle associated to the extension obtained from

1— TV — Nev(LY,TV)},, = W(GY, TV)Nr — 1

by pushout along 7 : ¥+ — C*. Thus (8.29) means bv , = vl or equivalently,
(8.30) fev = hsV,p,, h;l

Although, indeed, all these 2-cocycles depend on various choices of representatives,
their cohomology classes are uniquely determined.

Next we analyze the relevant 2-cocycles of I's, which is hard to do for elements
of I's that do not fix any object of Irr(L)s, . Thus we focus on 7 € Irr(L)s, corre-
sponding to the above (¢p, pp) via Theorem By Proposition it is tempered
and unitary. By Theorem and Lemma we obtain a canonical isomorphism

(8.31) Wer & Wev -

Recall from [Sol5, Theorem 6.11] that a suitably localized version of Endg(Ils) con-
tains a twisted group algebra

(8.32) Cllsr, ).
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We may inflate f, from I's, = W, /W (R,,) to a 2-cocycle of W, . By [Sol3,
(4.13) and proof of Proposition 5.12.a], §; can be constructed via intertwiners of
L-representations

(8.33) w71 — 7 for w € Ng(L) representing w € Wi .

This is quite similar to how ps is defined in f. Unfortunately, in general
(i.e. when L2 # L3 # L2), it is difficult to formulate the link between f, and us
precisely. The 2-cocycle b, can be described further with the construction of 7 a la
Deligne-Lusztig. Let (jT,0, p) be the datum corresponding to (¢p, pp) via Theorem
Recall from that 7 = Hfjf’e’p = (p ® ind%finfg(lw)(j:Rfjr((’ZI;))(Q))e)NL(JT)e.
We also recall from that

(8.34) Ws,r 2 W(Ne(L), jT)9,0/ W (L, jT)o,p-

For g € Ng(L,jT)e, C Gf representing a w € W, ., we recall the isomorphism

g- nfTE 0. = /ijTE 0.9p from - It was canonical up to the choice of €, but
meanwhlle € has been ﬁxed in Theorem [4.8 Thus the choice of an isomorphism as

in boils down to the choice of an isomorphism of Np,(jT")g-representations
(8.35) - p = p.

Recall the canonical bijection Irr(Sem,ld) — Irr(NL(jT 9,0) from ([2.27] . We

denote the preimage of p by pl*! € Irr(&, 2 ]) Then is equlvalent to the choice
of an isomorphism By : g - plrl — pll of Sgﬂ

We may assume that

(8.36) Bgi = By o pll(1) for all I € Nz(§T)e.

—representations, for g € Nq(L, 5T )s,p.

In these terms, b, is given by
(8.37) Bg, By, = U7 (w1, w2) By, g,
for g; representing w; € Ws . For any y € X(G), we have

Hompy, (j7),46 (9 (X®p), x® p) = Homy, (j7),(X® g p, x® p) = Homy, (j1),(9" p: p)-
Hence we can use the same B, for x ® 6 and for §. Knowing this, (8.37) shows that

(8.38) fx@r can be chosen to be equal to §, for x € X(Q).
[]

Since the conjugation action of jT' on & is trivial, g - p[:”] is a well-defined Sé[}x]—
representation for g € W (Ng(L),jT)s,,. We choose a set of representatives w €
Na(L,jT)g,, for W(Ng(L),jT)s,p, and we assume only for [ € jT. (Thus we
are implicitly inflating g, to W(Ng(L), 3T )s,p, and We allow it to be replaced by a
cohomologous 2-cocycle.) Then for wy,ws € W(Ng(L), jT)g,p, - ) becomes

Bus, B, = - (w1, w2) By, = tir (w1, we) B pl® ](m_lwﬂﬁz)

(8.39) L
= - (w1, we) By g, 0(wiws  wiws).

Let us define two 2-cocycles of W(Ng(L), jT)s,, by

_ —_— =1 - -
hﬁ,p[w] (wl,wg) = BwleQB’L/Ull{U/Q and h@(wl,wg) = 9(w1w2 wlwg).
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Note that B is the 2-cocycle associated to the extension &, [z] from (A.1} - Now
gives f, 1] = frlg, or equivalently,

(8-40) fr = b piilly -
The natural isomorphism (4.15]) restricts to
(8.41) W (Ngs (L), Tb)( F)ago = W(Nav (LY), TV )N

This enables us to compare with (| -
Proposition 8.6. There exist zsomorphzsms of extensions of (8.41] - ) by C*:

Gt Srerer, & ggd) S epEr and B(CYCE) gg”gésna,

which contain the similar isomorphisms without subscripts G from (4 . These
isomorphisms do not change if we adjust both 0 and o1 by an element of %O(G).

Proof. For (7, this follows from [Kal5, Proposition 8.1], as in (£.17). The isomor-
phlsm (G exists because both source and target are split by Proposmons 2| and
By Lemmas Im and |_|, the Baer sum of (G and ( is the required isomor-
phlsm B(¢2,¢5)- By (8-26) and (8.38), we can make all the choices invariant under
twisting by X°(G) = X%(GVY). O

We are ready to complete the comparison of the 2-cocycles ;v and §, on Wyv ,, =
W; . Recall that in the above process we have already inflated these 2-cocycles to

(8.42) W(ch@v) T ) tan = W (No (£), T ) (F )iz 0,0
via (8.27) and (8.34).
Theorem 8.7. (a) The following equalities hold in H* (W (Ngv (L), TV )W

hﬁvyﬂn - hg,p[ﬂf]v hn = h@, and hsv = hT,

(b) The 2-cocycles fsv and i, of Wyv o, = W+ are cohomologous.

7,%b,Pb

(CX).'

77<Pbﬂb’

Proof. (a) The isomorphism B (CG, CG) 5. é 5‘” from Lemma translates p;,
into pl*!, because 7 (py, pp) = JTQ ,- By the W(Ngv(Lv) W
of B ((%, (&), the data for Computlng h5 =) match exactly with the data for comput-

ing fsv ,, . Hence any choice of the Am;j in (8.28) corresponds to a choice of the By
in (8.39), and with these choices the 2-cocycles fsv ,, and f, = coincide.

equlvarlance

The isomorphism 51[7% = 5;']0 & from Proposition shows that fg and hn are co-
homologous. By (8.40) and (B.30)), we compute in H*(W (Ngv(LY),TV)WVE C*):

Ul <Pb7Pb’

fev = hﬁv,pnhgl = hs,plwlhg_l = br.
(b) By part (a), tsv and f; are cohomologous 2-cocycles of . By construction,
hev € H*(W(Ngv(LY), TV)T7 ',y CF) arises by inflation from f,v € H?(Wev 4, C*),
and t; € H2(W(Ng (L), T°)(F)u10,,C*) is inflated from b, € H2(W,,, CX).
Hence v and b are cohomologous 2-cocycles, via the isomorphism . O

Recall that the root system R, , from (7.34)) consists of roots o € R, satisfying
Sa(T) = 7. Via (8.18), R, ; corresponds to the root system

Rsv#,b = {ﬂ S Rsv : Sﬂ(gob) = gob}.
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The set of positive roots R;Q% = Ryv o, N R;Lv gives rise to a decomposition

(8.43) Wﬁv#ﬂb = W(Rgv,(,@b) A FSV,Ava where Fﬁv#’b = StabWsV, (R:V,gob)‘

b
This is compatible with (7.35)), thus (8.31]) decomposes into isomorphisms
(8.44) W(Ryr) = W(Rsv,%) and Ts, =T .

Similar to (8.32)), the 2-cocycle v is trivial on W (Rsv o, ) C W (Rsv ), 50 v |,

W ooy)?

factors through (Wev o, /W (Rsv 5,))? = (Dsv 1, ). As a direct consequence of Theo-
rem (b), the group isomorphisms (8.44)) can be lifted to algebra isomorphisms

(8.45) (C[Wﬁv,@b, hﬁv] = (C[Wsﬂ—, hT] and C[Fsvwb, hsv] = C[F&,T, hT]

To a suitable localization of Endg(Ils), in some sense centering on 7, one can asso-

ciate a twisted graded Hecke algebra as in [Sold), §7], say H(R,, Ws -, k7, ;). Here

R is a degenerate root datum involving the root system R, and the vector space
t:= Lie(X, (L)) = X*(Z°(L)) ®z C.

By definition, O(t) is a maximal commutative subalgebra, C[W; ;, i;] is a subalgebra
and the multiplication map

(8.46) O(t) @ CWayr, br] — H(Re, War, KT, )
is a linear bijection. Let H(s", ¢, log(qllw/ 2)) be the twisted graded Hecke algebra
1/2

obtained from H(s",¢;/”) via the reduction procedure from [Lus3] and [Solll §2.1],
centred at ¢p. In the terminology of [AMS3] §3.1], it can be written as

(8.47) H(s", o, log(ay”)) = H(gp, py, 1)/ (x — log(g;/?)).

Let [V be the Lie algebra of LV, so that
Lie((Z(LY)%)w,") = Z()Wr = (X,(2°(L")) 22 C) ™.
By construction, O(Z(IY)Wr) is a maximal commutative subalgebra of (8.47)),
C[Wgv oy, sv] is a subalgebra and the multiplication map
(8.48) O(Z()Wr) @ C[Wav 40y, hev] — H(sY, 06, log(q) )
is a linear bijection.
Proposition 8.8. Proposition and duce an algebra isomorphism
H(ﬁv, (pb,log(q;ﬂ)) AN H(ﬁn Wer, k7, 07).
It is canonical up to:

e inner automorphisms that fix O(t) pointwise;
o twisting by characters of Ws - that are trivial on the subgroup generated by
the reflections s with o € Ry and k7, # 0.

Proof. Recall from (|7.36) and (8.1)) that there are finite coverings
X (L) = Ir(L)g @ x = x®T,
VyIgY © v .
(Z(LV) F)Wp — 5 oz = (29w, Pb)-

It follows that the tangent map of is a linear bijection
(8.49) t— Z(1V)Wr,



NON-SINGULAR DEPTH-ZERO REPRESENTATIONS 65

which by Theorem [.§ and Lemma [8.2]is equivariant for W, , = Wyv o, . In fact it
comes from the isomorphisms

XH(Z(L)°) = XH(Z°(L)WVF = X, (2°(LY)Wr
The map (8.49) induces an algebra isomorphism
(8.50) O(Zz(MWr) 5 O).
The map (8.50) is induced just as well by (8.10)), which is a part of Proposition
For the twisted group algebras in (8.46]) and (8.48|), we take the first isomorphism
in (8.45). Note that the restricted isomorphism C[W (Rsv o, )] = C[W (R, )] is also

induced by Proposition via [Lus3] and [Solll §2.1]. By (8.50)), (8.45)), (8.46) and
(8.48)), we obtain a linear bijection

(8.51) H(s", op, log(gy*)) — H(Ry, Wer, k7, br).

To guarantee that this is an algebra isomorphism, it remains to check that the pa-
rameters for the roots on both sides agree under the bijection R, < Rsv ,, from
(8.18). By [AMS3, Proposition 3.14.a], the parameters of H(s", ¢, 10g(q11v/2)) are ob-
tained from the parameters of H(s ,q}/ 2) via the method of [AMS3], Theorems 2.5
and 2.11 and (2.19)], or equivalently via [Lus3, Theorems 8.6 and 9.3]. In Proposition
we showed that the parameters of H( , qF/ )° match with those of H(G, ]%, 5)°.
Since H(G, ]%,[7)0 C Endg(ILs) by (7.38), all simple reflections in W (R,) have the
same parameters (¢ and ¢*) in each of these three algebras. The parameters k7 for

the roots in H(?i’,T, Ws -, k7, ;) are defined in terms of the parameters for Endg (Ils)
in [Sol5l, §7 and (35)]:

T _ log(qe,a) if X (T) =
(8.52) ha = { log(g5,) if Xa(r) = L
y [Sol5, (95)], g aq9a ( ) and 90.0(q} ,a)* = q;\, @) Thus gives
(8.53) k7 = log(q1/ ) (M@) + Xo(T)A ().
1/2

If we set r = log(q ~) and replace X, by mqa as prescribed in [AMS3] Proposition
3.14], then (8.53|) becomes [AMS3, (2.19)]. Hence &, is also the parameter of « in

H(EV, Vb, log(qiﬂ/ 2)) The non-canonicity in comes from three sources:

(1) Algebra automorphisms of C[I's ;,f,] that stabilize each line Cy for v € T's -.
These are precisely the maps v + x(y)vy where x : I's ; = C* is a character. On
H(R, Ws -, k7, 7), this means twisting by a character of Wy /W (R, ;).

(2) The non-canonicity in Proposition in particular with respect to inner auto-
morphisms of (G, P, &) that restrict to the identity on C[ZW(J,5)]. These ac-
count for inner automorphisms of H(R,, Ws -, k™, ;) that are the identity on O(t).
(3) Proposition [8.5| also allows for some adjustments for short simple roots a € Ry -
satisfying ¢ , = 1, i.e. Ts, may be replaced by Ts hy in H(G, ]5;,&)0. By [Sol5,
(35)], this h\} corresponds to X, in (8.52)). By [Sol5l, Proposition 7.3 and its proof],
we see that T > T, hy translates to

(8.54) Ny, + Xo(T)Ng, in H(R,, Wer, k7, b7).

If X (7) = 1, then this does nothing. On the other hand, if X, (7) = —1, then (8.52))
implies that &7 = 0. As mentioned in the proof of Proposition @ the operation
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T;, — Ts,hy, fixes all generators Ts, where s3 is not W(R,)-conjugate to s,. Hence
(8.54) fixes all N, where 8 € R, . and ki # 0. Consequently, (8.54) gives rise to
a character x of W, that is trivial on I's ; and on all such sg, and the algebra

automorphism induced by (8.54)) is given by twisting by this x. O

Let R;, . be the subset of R, consisting of the roots o with &7, # 0. It is again
a root system, with positive roots R:,J’;. This gives a decomposition

Wer = W(R, ) x T

G,

where I', _ is the stabilizer of RZ;’;. The presentation of twisted graded Hecke alge-
bras, as in [AMS2, Proposition 2.2], shows that we can write

(8.55) H(Rr, Wer, k7, 87) = H(R-, W(R, ), k") x C[T ., b].

o,7?

Proposition allows us to transfer this decomposition to H(sv, Vb, log(q},/ 2)) . More

precisely, let R, , be the subsystem of roots with nonzero parameters and write

Wﬁv#’b = W( ! ) X F;v

5\/7%017

%)
2

Let H(sv,cpb,log(q},/ 2))0 be the graded Hecke algebra built from Z(IV)Wr, R.,

and the parameters for those roots in H(sv, ©b, 10g(q}/ 2)) Then

1/2 1/2\\©o
(856) H(5v7 ©bs IOg(qF/ )) = H(5V7 ®b, IOg(QF/ )) X (C[ {5\/,4,01;’ hSVL
and Proposition respects the decompositions (8.55)) and (8.56)).

9. EQUIVALENCES BETWEEN MODULE CATEGORIES OF HECKE ALGEBRAS

»Pb

Consider a type (Pf, ) for G as in Theorem and recall that it covers the type

(PL,f, o) for L. Let s be the associated inertial equivalence class for G. By [BuKul,
there is an equivalence of categories

(9.1) Rep(G)s = Rep(G)(pfﬁ) = Mod - H(G, pf, &) given by 1 Hompf (6,7),

and likewise Rep(L)(PLyf,a) = Mod - ”H(L,PLJ,&) given by 77, — Homp (6,7L).
Here Mod - H denotes the category of right H-modules. Recall from (7.26) that
H(L,]—C’L,fﬁ) embeds canonically in H(G,Pf,&). By [Sol2, Lemma 4.1], the super-
cuspidal support map Irr(G)s = Irr(G)Pfﬁ — Irr(L)(pL,f’&)/W(G, L);s translates via
to the map

(9.2) Iir - H(G, B, &) — Trr - H(L, Pr;,5)/W(G, L)s,

which sends an irreducible (G, B;, &)-module M to any irreducible H(L, Py ;,&)-
subquotient of M. By Lemma and , the map is well-defined. The
Bernstein presentation of H(G, Fj,)° shows that is essentially the central
character map for H(G, B, ).

Let 7 € Irr(L)s, = Irr(L)( Pry) be a unitary non-singular supercuspidal repre-
sentation of depth zero. Here we mean non-singularity as in Section |2 based on a
F-non-singular character of a torus and slightly more restrictive than requiring o
to be non-singular. Recall the group X, (L) = Hom(L,R~) of positive unramified
characters of L. Our LLC will run through the category Repﬂ(G)ﬂr( Ly whose
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objects are all finite-length G-representations m such that every irreducible subquo-
tient 7’ of 7 has supercuspidal supportﬂ in (L,X}.(L)T). By convention, all our
subcategories of Rep(G) will be full.

Let (X3 (L)7)y be the subset of Irr - H(L, Pr;,5) corresponding to X (L)7 via
for L. Define Modg (y+ (1)), - H(G, pf, ¢) similarly (as Repg(G) . 1),), L-e- its
objects are the finite-length modules M such that every irreducible subquotient of
M maps to W(G, L)s(X{.(L)7)» by (0.2)). There is an equivalence of categories

(9.3) Rep(G)s — Mod - Endg(Il,), 7+ Homg(Ils, 7).

Here II; = IS(HSL) for a progenerator ITL of Rep(L)s,, which gives the analogue
of (9.3) for L. Now X (L)7 corresponds to a set of irreducible representations of
Endy (ITF) that we denote X, (L) ® 7. We define

(9.4) MOdﬂ,%ir(L)QbT - Endg(Hﬁ) = MOdﬂW(G,L)&(%ir(L)@T) - Endg(Hﬁ)
to be the category consisting of the finite-length modules M such that every irre-

ducible Endy (IT¥)-subquotient of M belongs to W(G, L)s(XL(L) @ T).
Recall the graded Hecke algebra H(R,, Ws ;, k7, +) from (8.46). We write

te = Lie(X,(L)) = X*(Z°(L)) ®z R

and let Modg g, - H(ﬁ,ﬂ Ws -, k7,7) be the category whose objects are the finite-
length modules M such that, as an O(t)-module, M has all its irreducible subquo-
tients in tR.

Proposition 9.1. The following categories are canonically equivalent:
(1) Repa(G) s ()7
(’&’U) MOdﬁ,fR - H(’}iﬂ W5,7'7 kT? h’r)
These equivalences are compatible with parabolic induction and restriction.
Remark 9.2. Here parabolic restriction from Rep(G)s to Rep(L)s, means: Jacquet

restriction with respect to the parabolic subgroup of G opposite to (@, L), followed
by projection from Rep(L) to the Bernstein block Rep(L)s, .

Proof. The equivalence between (i) and (ii) follows directly from (9.1)), and
the definitions. It is compatible with parabolic induction and restriction by [Sol2]
Lemma 4.1]. The equivalences between (i), (iii) and (iv), as well as the compatibility
with parabolic induction and restriction, follow from [Sol5, Corollary 8.1]. O

In , the R-linear subspace tg C t corresponds to
2P = (X.(Z2°(LY) @z, R)WVF C Z(1V)Wr.

We put

(9.5) X (LY) :=exp (Z(M)'F) < (((Z(LY)'r)

wi) -

7Supercuspidad supports are only defined up to G-conjugacy, so strictly speaking we mean that
Sc(n’) has a representative in (L, X, (L)7).
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Proposition [8.8| induces an equivalence of categories

(9.6) Modg ¢, - H(R,, Wer, k7, ;) = MOdﬂ,Z([\/)D‘g]F - H(s, %Jog(q;h))‘

By (8.45) and (8.50)), the isomorphism in Proposition precisely matches the
parabolic subalgebras on both sides, so commutes with parabolic induction

and restriction. Composing with (i)—(iv) in Proposition we obtain an
equivalence of categories

(97> Repﬂ(G)xir(L)T = MOdﬁ7Z([v)D\£VF B H(5V7 ®b IOg(Q;«"‘/z))a

which is again compatible with parabolic induction and restriction. Given the alge-
bras, the equivalences and are canonical up to twisting by characters of
W ~, as described in Proposition For the algebras in question, the only further
choices are those of systems of positive roots, which are innocent.

However, there is another source of ambiguity: 7 may be replaced by an Ng(L)-
conjugate representation of L. Composing 7 with conjugation by elements of L does
not matter, so we are looking at w - 7 with w € Ng(L) representing w € W (G, L).
Since the supercuspidal support of an irreducible G-representation is only defined
up to G-conjugacy, Repﬂ(G)err(L)T is equal to Repﬂ(G)x:r(L)wT.

For elements of W -, this does not do anything. Therefore we may adjust w by
an element of W, -, and we may assume that
(98) w(R;’_',T) = Rz—ga,u’)’r'

Proposition 9.3. Let w € W(G, L) be represented by w € Ng(L) and satisfy .
Let w" be the corresponding element of W(GV, LYYW . The diagram

(19.7)
Repﬂ(G)%,Tr(L)T L MOdﬂ’Z([V)ng - H(ﬁva ®b, IOg(Q}Tﬂ))
(9.9) Ad() J’Ad(wv)
(9.7)

Repg (G) ¢+ (Lyar —— Mod H(wVs", wvgpb,log(q};ﬂ))

AOME

commutes, up to isomorphisms of representations of one algebra (resp. group). Here
Ad(wV) is induced by the algebra isomorphism: for [ € O(Z(IV)WF) andv € Wyv
(9.10)

H(s", @, log(q ")) = H(w”s¥, 0¥y, 108(q;/ %)), FNy = (F 0w ™) Nyt

Pb?

Proof. Since we only have to consider G-representations up to isomorphism, the left
hand side of the diagram reduces to the identity map. Condition implies that
=R"

wvﬁvvw\/@@b

(9.11) w'(RS )
via (8.19)). Therefore, (9.10) is an algebra homomorphism (while bijectivity is clear).

First we treat the case w € W(G, L)s. By (8.8), we can represent W (G, L)s in
Na(L,T)s, thus we may assume that w € Ng(L,T)s. We will use the notations for
analytic localization as discussed around (7.40)). In Proposition[9.1](iv), the identity
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Ad(w) on Repg(G) xt.(1)r corresponds to the composition of the canonical bijections

MOdﬁ,tR - H(ﬁfm W5,7—7 ]{77-7 uT) — MOdﬂyxjr(L)lUr - EndG(H )anlUT
— Mod . 4 Endg (IL,)¢7
(9.12) A,W (L,7,Xnr (L)) X4 (L) ~

a

— MOdﬂ,w.’{Xr(L) - 1wU.rEndG( 5)U 1wUT
— MOdﬂ,t]R - H(,]?"LUTa st,wﬁ kw’r’ hw‘r)-

The first and last maps in are induced by analytic localization, see [Sol5,
Lemma 7.2 and Proposition 7.3|, so they do not change anything on the level of
modules up to isomorphism. The second and third maps in follow from [Sol5l,
Lemmas 6.4 and 6.5]. By the proof of [Sol5, Lemma 6.4], their composition

Modg y+ (1) 1v- Enda(Ils) i7" 1y, — Mody 2+ (1) Lwv, Enda (1) {7 1wy,

is given by M — Ad(7T,)M with T, as in [Sol5, §5.2]. By [Sol5, Proposition 7.3]
and the definition of the elements A7, A7 [Sol5l §6.1] and 7.7 [Sol5, Lemma 6.10],

ToNINJ Tyt = NYT NPT € H(Ruwr, Wewr, K7, hur)

wrw wvw

for all standard basis elements N € C[I's ;, ;] and N € C[W (R, ;)] ﬁ We conclude
that the composition of the maps in is given by push forward along the algebra
isomorphism: for f € O(t) and rv € W, ;,

(9.13)

H(,ﬁ/ﬂ WB,Ta kT? hT) — H(ﬁ)’wﬁ Wﬁ,wﬂ'a kwT: th)v fNTN'U = (f o w_l)Nwrwlewafl .

Next we need to transfer this along (9.7) to the right-hand side of the diagram.

Proposition translates (9.13)) into the algebra isomorphism (9.10), thus indeed
9.13)

the right-hand side of the diagram is given by push-forward along (9.13
Let w € W(G, L)\ W(G, L)s. Conjugation by w induces an algebra isomorphism

(9.14) Ad(w) : H(G, By, &) — H(G, Pyj, 5), f+ foAd(w) ™" = [g+ flw ' gw)].
It interacts with the left column of diagram as

(9.1) oA
L MOdﬂ,(xir(L)T)’H - H(G, Pf,o')

Repa(G) s (1yar Modg gzt (1) - H(Gs Pag, 06)
In terms of Theorem for a simple reflection s, sends Ty, € H(G, Pf, o)
to Ts,,,,, where s, is a simple reflection inAW(wJ, wao) by . Similarly, Ad(w)
sends a standard basis element 7', € H(G, B, ), where v € Q(J,5), to Tyypy1 €
H(G, Pgj, wd). (Note that this imposes a normalization on T},.,,-1, just as we chose
a normalization of T in the proof of Theorem [7.2) . It follows that on C[L3/L'] =

O(Irr(CW(J,6))), embedded in H(G, Pf, via (7.26), Ad(w) restricts to
(9.15) O(Irr(CW(J,6))) — O(Ier(CWL(J, w5))) : fr fow ™.

8For N7 _1, this involves a choice of normalization, but the freedom in that choice is equivalent

wow

to the freedom we already had in defining N, .
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Recall from (7.32) that II, = indgf(&)[L:Li] and from (7.29) that Endg(Il;) =
Mz, Lg]((@) ® H(G, I:’f, ). In this way, (9.14]) induces an algebra isomorphism
(9.16) Ad(w) : Endg(IT;) — Endg(ILys).

Proposition gives a more precise description of how H(G, f’;, &) is embedded in
Endg(Il;). Thus the property Ad(w)T, = Tyt for w € W(J,5) remains valid
in (9.16). Upon analytic localization as i, Lemma shows that
is already given by a localized version of (9.14). Therefore, (9.15) shows that the
localized version of agrees with the algebra isomorphism (9.13), only with ws
instead of s on the right-hand side. We conclude as in the case w € W (G, L), with
the same argument as following . O

Proposition allows us to combine the equivalences of categories from and
(9.7) into the following cleaner statement.

Theorem 9.4. There exist the following equivalences of categories
(9.17) Repp(G)s 2 Modyg - Endg(IL) = Modg - H(s”, qi%),

induced by Propositions and[8.8. These equivalences are compatible with parabolic
induction and restriction ).

Proof. The first equivalence is just restricted to objects of finite length. By
[Sol5l Corollary 8.1], this induces the equivalence between (i) and (iv) in Proposition
[0.1] From another viewpoint, the first equivalence in this theorem is obtained from
(i)—(iv) in Proposition [9.1| by taking the direct sum over all unitary representations
7 in Irr(L)s, /W(G, L)s.

In , we can take the direct sum over all unitary representations 7 in Irr(L)s, ,
or equivalently over all bounded (v, pp) € Pe(L)*:. The summands indexed by 7
and 7’ that differ by an element w € W (G, L); = W are identified via Proposition
and dividing out those relations recovers Repg(G)s from the left-hand side of
. On the right-hand side of , we can reduce to a direct sum over (@p, pp)

V

up to conjugation under W (G, L")y " = Wev, which brings us to
_ v 1/2
(918) @(Sﬂbaﬂb)E@Zﬁ,dd MOdﬂ7Z([\/)D‘£VF H(5 ) Pbs IOg(QF )) /st,

where the subscript bdd stands for bounded. It was already shown in Proposition
and that all steps so far respect parabolic induction and restriction.

We claim that is equivalent to Modg - H(s", qllp/ 2) via an equivalence that
respects parabolic induction and restriction. Finite-length modules M for any alge-
bra can be decomposed along central characters: for each central character y, one
takes M, to be the maximal submodule of M such that all irreducible subquotients
of M, admit central character x. In particular we have, in the notation of ,

v 12y A v 1/2
Modg - H(s qp ) = @(‘vapb)epz,lédd/wsv MOdﬁ,fﬁr(Lv)(%»Pb) - H(s A )-

For a suitable action of Wyv, the right-hand side can be rewritten as

v 1/2
010) B Moy - Al W

9Parabolic restriction in the sense of Remark
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By construction w" € W,v acts trivially on summands indexed by w"-fixed (¢}, pp).
By [AMS3,, Proposition 3.14.a, Theorem 3.18.a], there is a canonical equivalence

12y A 1/2
v~ H(S Vo) = Mody 7 @yWr - H(s", b, log(gy "))

By [AMS3] Theorems 2.5.b and 2.11.b], this equivalence commutes with parabolic
induction and restriction. For Hecke algebras, parabolic restriction is right adjoint
to parabolic induction (which is just Frobenius reciprocity for algebras). By the
uniqueness of adjoint functors, also commutes with parabolic restriction.

Via (9.20)), (9.19) becomes

(9.21) @m,pb)wi@dd Mod,  ywi - H(s", ¢y, log( i) [Wev.

(9.20)  Mody .+ 1y

By [Lus3l §7], or by an argument analogous to the analysis of in the proof of
Proposition we deduce that the action of Wyv in reduces to the cases for
which holds, where it is none other then Ad(w") from Proposition This
proves the claim we made after . [

Remark 9.5. We warn the reader that Theorem does not imply that Endg(I15)

and H(s", q F/ ) are Morita equivalent. We really need the restriction to finite-length
modules, because those can be decomposed along central characters. The difficulties
(or even obstructions) to extend such equivalences of categories to representations

of arbitrary length stem from ([7.25]).

Let B(G),s be the collection of inertial equivalence classes for G whose supercusp-
idal representations are non-singular, and define the subset B(G)Y by the additional
condition that the supercuspidal representations have depth zero. This B(G)2, is a
finite set because: G has only finitely many conjugacy classes of Levi subgroups L;
each such L has only finitely many orbits of facets fz, in its Bruhat—Tits building;
and each of the groups PL,f has only finitely many irreducible representations that
come from its finite reductive quotient. We write

Repo(G)ns = Hse%(G)%S Rep(G)s

for the category of G-representations whose cuspidal support consists of non-singular
depth-zero representations. Since the index set is finite, the direct product is also a
direct sum. We recall that X°(G) acts on Rep®(G),s by tensoring.

Theorem 9.6. The equivalences (9.17)) induce equivalences of categories
(9.22) Repﬁ(G @ Modg - Endg(I1 @ Modg - H(s ,qllp/z),
s€B(G)Y, s€B(G)Y,

which are compatible with parabolic induction and restriction.
The group X°(G) = X°(GY) acts canonically on all three terms, and the equiva-
lences are equivariant for these actions.

Proof. The equivalences of categories follow directly from Theorem Next we
decompose Rep’(G),s into X(G)-stable pieces. Let Rep(G); be the sum of the
categories Rep(G)( i)’ where & runs over all F-non-singular representations of Pf.

This category is stable under twisting by X°(G), because every x € X°(L) is trivial
on Gjo4 = ker(F; — G7(kr)). For an inertial equivalence class s = [L, 7], we write
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s < f if Rep(G)s has the form Rep(G)(pfﬁ) as in Theorem n so that Rep(G); =
@D.~; Rep(G)s. In this context, Theorem [9.4] gives equivalences of categories

(9.23)  Reps(G)(p;.0) Q@Hfl\/[odﬁ Endg(IT —>@ Modg - ,q;/Q).

Take x € X°(G). Let xu|x| be its polar decomposition, where |x| € X1 (G) =
Hom(G,R~g) and x, € X°(G) has image in S' € C*. Then [L, x4 ®7]g = XuS = X5,
and the construction of Il = Ig(HSL) = Ig(indflT) shows that IL, , is equal to
X @Iy = x4 ®1IL5. The relation between Endg(Il;) and Endg(I1,,s) is best described
with the following isomorphism from [Sol5, Corollary 5.8]:

(9.24) Endg (I1s) QO(%ne (L)) C(Xur(L)) = C(Xn(L)) @ CIW (L, 7, Xn: (L)), i),

where C(X,:(L)) denotes the field of rational functions on X, (L), and X, (L) is
identified with the family of L-representation {z ® 7 : z € X, (L)}. The twisted
group algebra C[W (L, 7, X, (L)), ] is spanned by operators NN,,, which may have
poles on X,;(L). Since tensoring with y is a symmetry of the entire setup, these
operators N, can be constructed in exactly the same way for y,s. Then there is a
canonical algebra isomorphism

Ende(Ily,s) @0(x,(1)) C(Xnr(L)) = Enda(Ils) @0, (1)) C(Xnr(L))
wa = (f o ®X)Nw7
where f € C(Xn (L)), w e W(L, 7, X0 (L)) = W(L, xu @ T, ¥ (L)) and ®x is to be

interpreted as the family z ® 7 — |x|z ® xu7 for z € X, (L). The poles of N,’s on
both sides match, thus ((9.25) restricts to an algebra isomorphism

(9.25)

(9.26) Endg(IL,,,s) — Endg(1L).

Pullback along ((9.26)) is thought of as tensoring modules with y, and this gives the
action of X(G) on the middle term in (9.23). For 7 € Rep(G)s, by (9.3), the first

arrow in ((9.23)) sends x ® T to
Homg (I, 5, x ® m) = Homg(xy ® IIs, x ® m) = Homg(x ® I, x @ 7).

The right-hand side is the vector space Homg(Ils, 7) with the Endg(Ils)-module
structure adjusted by , thus it is equal to x@Homg (I, 7) € Mod-Endg (I1,5).
This shows that the first equivalence in is X9(G)-equivariant.

The second arrow in will be treated in three steps. First we pass to
Modg g - ]HI(7~€T, W+, k7, 87), as in Proposition More precisely, we take a direct
sum of such categories, first over s < f and then over unitary 7 € Irr(L)s, modulo
Ws. The equivalence

(9.27) @ Modg - Endg (1T —>@ Modg ¢, - H(R™, Wer, k7, 1)

is described in the first two lines of (9.12); see [Sol5, (8.1)]. Here the steps involving
analytic localization are innocent, and it boils down to the algebra isomorphism

(9.28) H(Ry, Wer, k7, i),y — 1o, Ende () 1y,

from [Solbl, Proposition 7.3], written in the notation of (9.12)). On C[W; ;,t], this
isomorphism is given by the same formula (independent of twisting by x) for any 7,
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and it sends any f € O(t) to f olog,, where log (2 ® 7) := log(z). Similar to ®x,
we have the map

® lOg |X| : logT(UT) — IOgXuT(XUUT) = logT(UT)'

We claim that there is a commutative diagram of algebra isomorphisms

H(,]équ7 WXuS,Xu’T) kX”Tv hqu) B— H(ﬁﬂ Ws,Ta kT? hT)Cm

an
logXuT(XUUT) IOgT(U"')

(9.29) |e= |e=

£ 1y, Endg (TT,)31,

1X’LLUT EndG (HXuﬁ);ZUl)(uUT

where the upper horizontal map is given by
(9:30)  fNw = (f o®log|x|)Ny for f € C"(log,, (xuUr)), w € Wsr =Wy s x,r

Indeed, the only thing left to show is that the 2-cocycles - and - match, which is
guaranteed by (8.38) and Proposition We define the XY(G)-action as pullback

along ([9.30), and thus (9.27) is X°(G)-equivariant.

Next we consider the equivalence of categories
DT T ~ 1/2
(9.31) EBM Modg g, - H(R™, Wy, k7, ) = @w Mods - H(s", ¢y, log(g})),

where s and 7 run through the same set as in (9.30]), and (¢p, pp) corresponds to
7 via Theorem This follows from Proposition We claim that there is a

commutative diagram of algebra isomorphisms

H(RY, Wy K7, ) B0 H(Rr, W, k7, 51)
(932) J’Proposition B3 J’Proposition B3

1/2 1/2
H (xus”, Xup, log(qy %)) —— H(s", gp, log(q”))
where the second row is given by

(9.33) N = (fo®log|x|)Nyv for f € O(Z(1V)WF) and w" € Wev .

Theorem [4.8] guarantees that Y, and x,5" correspond to x,7 and X5, respec-

tively, as desired. By xu, |x| € X°(G"Y) and (8.26]), we have that (9.33)) is an algebra
isomorphism. Commutativity of the diagram is clear from the formulas for the maps

in question. This proves that (9.31)) is equivariant for X°(G) = X°(G"Y), where on
the right we let X°(G") act via pullback along (9.33]). The equivalence of categories

(9.34) @, Mods - H(s", s, log(q)%)) = @Hf Modg - H(s", q}/?)

was shown in the proof of Theorem see (9.18]). It then boils down to several
applications of the following equivalence of categories

1/2\\ ~ 1/2
(9.35) MOdﬂ7Z([V)H‘£vF - H(sv,gpb,log(qF/ ) = Modg x+ (1v)(0p.00) H(sv,qF/ )

from [AMS3] Proposition 3.14.a and Theorem 3.18.a]. This is analogous to the
equivalence of categories in ((9.27). Using analytic localizations as in ({9.29)), one can
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show that there is a commutative diagram

1/2 (9.35) 1/2
Modﬂ,Z([v)D\ng - H(sv,cpb,log(qp/ )) ———— Modg - H(ﬁv,qF/ )

(9.36) 9_3% l

-9.35
MOdﬂ,Z(IV)D‘g’F - H(Xuﬁva Xufbs 10g(q11w/2)) Modg - H(Xuﬁ\/’q;vﬂ)

where the right vertical arrow is pullback along the following algebra isomorphism
from [Sol6} (19)]: for f € O(xus)) and w € Wev = W,4v,

(9.37) H(xus", qi/%) = H(s", q?) is given by fNyv 5 (f o @x)Nyv.

Let x € X°(GY) act on the right-hand side by pullback along (9.37)), and thus ([9.34))
is X9(GVY)-equivariant. 0

10. AN LLC FOR NON-SINGULAR DEPTH-ZERO REPRESENTATIONS

10.1. Construction.

The right-hand sides of Proposition Theorems [9.4] and [9.6] concern Langlands
parameters, but only cuspidal L-parameters for Levi subgroups of rigid inner twists
of G. We also need to consider non-cuspidal enhanced L-parameters (see for example
[AMS3]) when parametrizing the irreducible modules (or the standard modules) of
the relevant Hecke algebras. Note that [AMS3] considers only left modules, in this
article we will need to consider right modules at some point. In preparation for this,
we study how the cuspidal support map from [AMSI] behaves with respect to taking
contragredients of enhancements of L-parameters.

Lemma 10.1. Let (¢, p) € ®(G). Suppose that Sc(p, p) is represented by (L, L., pr)-

(a) Sc(p,pY) is represented by (L, oL, pY).

(b) Consider inertial classes s} = Xn(L)(¢1,p1) and 577 = Xu(L) (o1, p}) for
®.(L). Let sV and 5V°P be the corresponding inertial classes for ®.(G). Then

D(G)" = {(0,0") : (¢, p) € P(G)*"}.

Proof. (a) By [AMSI] Definition 7.7], the construction of Sc boils downs to cuspi-
dal supports for local systems supported on unipotent orbits in complex reductive
groups, for which the compatibility with contragredients follows from the character-
ization in [AMSI, Theorem 5.5.a] (see also [DiSc, Theorem 2.5.3]).

(b) This follows from part (a). O

We now parametrize irreducible modules in Theorem [9.4] by enhanced L-parameters.

Theorem 10.2. There is a canonical bijection
(10.1) Irr - H(sY, q)%) = @.(G)*".

Proof. We need to modify the bijection from J[AMS3, Theorem 3.18.a], which only
concerns left modules, and adapt it for irreducible right modules. The equivalence
between Modg - H(s", qllm/ 2) and established in the proof of Theorem m works
both for left and for right modules. Hence it suffices to modify [AMS3, Theorem
3.18.a] for

1/2 1/2
II'I'Z([V)DZVF - H(Sva(ﬁbaIOg(QF/ )) - MOdﬂ7Z([\/)D‘£VF - H(Sva(ﬁbalog(QF/ ))
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Then [AMS3] Theorem 3.18] reduces to [AMS3, Theorem 3.8], and the set of en-
hanced Langlands parameters <I>,3(G)Hv reduces to those with cuspidal support in
(LY, 25(LY) (v, pv), denoted B (G)IF(-)pre)]

For any (p,p) € @e(G)[err(Lv)(‘%pb)}, there is a unique z € X, (L) such that
o|lwp = z¢p|w,. This z has a unique logarithm

(10.2) t, := log(z) = log(¢(Frobp)gy(Frobp) 1) € Z(1IV) ' .
Let dy : slp(C) — Lie(GY) be the tangent map of ¢[gy,(c). Write Ny, := do((§4))-

By [AMS3], Theorem 3.8], we can associate to (¢, p) a left H(s", ¢p, log(qll;ﬁ))—module

M(go, 0, log(qll;/z)). By [Sol9, Proposition 3.3], it can be expressed as

(10.3) M (. p,log(a®)) = sgn* My, 1.~ tog(ar) /2.

where sgn denotes the sign automorphism of the algebra H(s", ¢y, r), with an inde-
terminate r instead of log(q},/ 2). We will modify this left module in several steps.
By definition, H(s", pp,r) = O(Z(IV)WF) @ C[Wev i, bsv] ® Clr] as vector spaces;
moreover, sgn|exzvywr)y = id|pz@vyWr), sgn(r) = —r, and sgn(Ny) = sgn(w) Ny
for w € Wsv ,,. The sign character of Wyv
extends the sign character of the Weyl group W (R,v o, ). This constitutes a slight
improvement, already used in [Soll(, §6.2], on an alternative sign character from
[AMS2l [AMS3, [Sol9]. As shown in [Soll0} after (6.16) and §7], this minor modifica-
tion does not affect any of the good properties established in [AMS2, [AMS3] [Sol9].
By [AMS2, Theorem 3.11] and [AMSS3, Theorem 3.6], M (p,p,log(q)”)) is the
unique irreducible quotient of the standard module

is defined as det |y (5 vywp), which

12\ ~ oo
(10.4) E(p, p,log(q}*)) = sgn ENg o~ 1og(ar) /2.0
By [AMS2, Lemma 3.6.a] and [AMS3, (1.17)], we can write
20\ ~ ,
(10.5) E(p. plog(qyl?)) = Homyy(s,) (9,580 Ex, 1.~ tog(ar)/2)-

Since we have used a sign character different from previous literature, we hereby
specify that we use the right-hand side formulas of (10.3)), (10.4) and (10.5)) to define
the respective left-hand sides. These are still left modules, to obtain an analogue for
right modules, we recall from [AMS2] (5), (14)] the following canonical isomorphism
for the opposite algebra of H(s", ¢, r): for f € O(Z(1IV)WF)® C[r] and w € Wev 05

(10.6) H(s", pp, )P — H(sYP, @p,r) is given by fN, +— N, 1f.

Here 5V°P comes from 5ZOP as in Lemma Applying the above discussions to

5% instead of sV, we obtain the standard left H(s"P, ¢, r)-module

1/2 *
E(p,p",log(q}/")) = Hom, s+ (0", 580" EN, 1,,,~ log(ar)/2)

m0(SE)

(10.7)
= (p@sgn*En, 1, —1og(ar)/2)

It has a unique irreducible quotient M (gp, pv,log(q}/ 2)) Via (10.6)), we can also

view E (¢, p", log(qll,/2)) and M (¢, p", log(qfl,/z)) as right modules for H(s", 3, ) or

H(sv, Vb, log(qll;/ 2)) To emphasize this point of view, we shall add a superscript op

10T his 52‘)’7 is associated to a rigid inner twist of L, not necessarily to L, but at the moment we
are only working in “G where it does not matter.
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and we replace p¥ by p (in the notation only, so it remains ((10.7) as a vector space).
This procedure does not change the O(Z(IY)Wr)-weights of E (¢, p", log(q};ﬂ)), so

E(p, p,og(al "), M(p,p,log(q)/*))” € Mod, v wr - H(s", on.log(qy?)).

By [AMS3, Theorem 3.8], (¢, p) — M (¢, p, log(q}w/z))(m gives the desired bijection

(10.8) q)e(G)[xm(Lv)sob,pb] N IrrZ([\/)WF “H(sY, o, log(q}/Q)),
R

Let E(p, p, q};/ 2)"p and M (¢, p, qllp/ 2)°p be the corresponding modules obtained from

the equivalence of ([9.18) with Modg - H(s", qlly/ 2). Thus by (10.8), we obtain a map

(109) (G = Iir- H(s", ") given by (p.p) — M(p.p.a/)™.
Again, by [AMS3, Theorem 3.18.a], (10.9)) inherits the bijectivity of (10.8]). O

We remark that in (10.7)), the second line fits better with the parametrization of
Deligne-Lusztig packets in (2.7]). By Theorems and we obtain bijections

Y

(10.10) Irr(G)s — Trr - Endg(Tly) — Trr - H(s", g3 %) «— 3.(G)°".
On the appropriate subsets, we can describe these bijections more precisely using
Propositions and i.e. we have

(10.11) Irr(G)xgr(L)T = Iyt (yer - Endg () — Trry, - H(R,, Wer, k7, ;) —

+ (LY
Irrz([v)ﬂ‘{f"F - H(s, @b,log(q};ﬂ)) e Irgg ) - H(s", q;/2) O ()X (L) Pn)],

We abbreviate the bijection between the outer sides of ((10.10f) or (10.11)) as

(10.12) Irr(G)s +— ®(G)° given by T (o, pr) and 7 (i, p)<(e, p).
In the proof of Theorem [10.2] we constructed a standard module

(10.13) E(p,p, q;ﬂ)"p € Modg - ’H(sv,qll;ﬂ).

Let 7 (¢, p) € Rep}(G)ns be its image via Theorem

Lemma 10.3. In , the map © — @, is canonical.

Proof. The remarks after and Proposition show that the non-canonicity in
the construction of comes from four sources:

(i) On the supercuspidal level, i.e. for Irr(L)s, , where the non-canonicity only comes
from the enhancements.

(i) Choices of systems of positive roots in the construction of the various algebras.
But since all positive systems in a finite root system are associate under the Weyl
group, these choices do not affect the L-parameters up to conjugacy.

(iii) Twisting by characters of W, » that are trivial on the subgroup generated by
the reflections s, where a € R~ and k], # 0, as in Proposition By and
, this can be translated to a character twist of the twisted group algebra part
of ]I-]I(sv, ©b, log(qllm/z)). By the construction of E(gp, 0, log(qllw/Q)) (as in the proof of
Theorem and [AMS2, Lemma 3.18], the twisted group algebra in a twisted
graded Hecke algebra only affects the enhancements of the parameters for the irre-
ducible or standard modules. Hence these character twists only affect p, not .
(iv) Normalizations of the various 2-cocycles. Choices have to be made both on the
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supercuspidal level (see especially Lemmas and and on the non-supercuspidal
level (namely in Proposition . Often we do not know a natural choice. For
the same reason as in point (iii), this affects the enhancements p, but not the L-
parameters @. g

Combining (|10.12f) over blocks gives the following.
Theorem 10.4. The equivalences (9.22) and (10.1) induce a bijection between

o the setIrr?(G) s of irreducible depth-zero G-representations with non-singular
cuspidal support; and
o the set ®Y(G),s of depth-zero parameters in ®.(GQ), whose cuspidal support
is supercuspidal, i.e. trivial on SLa(C).
For any L-parameter ¢ € ®(G), the set of non-singular depth-zero representations
in the L-packet I1,(G) = {m € Irr(G) : or = ¢} is determined canonically.

Proof. By , if we take the union over all Bernstein blocks Rep(G)s of the indi-
cated kind, then sV runs precisely once through all inertial equivalence classes of the
indicated kind for ®.(G). Hence the union of gives the required bijection.
The statement about the L-packets follows from Lemma [10.3] O

Remark 10.5. We warn the reader that, for (p,p) € ®%(G),s, maybe not all
enhancements p’ of ¢ lead to cuspidal supports that are trivial on SLy(C). Hence the
L-packet II,(G) need not consist entirely of non-singular depth-zero representations;
its other members fall outside the scope of this paper.

10.2. Properties.

We now show that our local Langlands correspondence for non-singular depth-zero
representations enjoys several nice properties, including those desired by Borel [Bor)
§10]. Recall from that X°(GVY) acts naturally on ®%(G),s. In the following,
we label the bijection in Theorem as

(10.14) 1% (G) s +— PUG)ns

Lemma 10.6. The map (10.14)) is equivariant for the canonical actions of X°(G) =
xX%(GY). Similarly, the map (o, p) — 7 (p, p) from (10.13)) is X°(G)-equivariant.

Proof. By Theorem it suffices to prove that the maps
0 v o 1/2
DY(G)ps — |—|se‘/B(G)9LS Repy - H(sY,qx")

1/2 1/2

given by (¢, p) — M (¢, p, gz ") and (¢, p) — E(p, p, g7~ )°P are equivariant for the
X%(GV)-actions from (3.15)), (9.36)), (9.37)). This follows from [Sol6, Lemma 2.2]. [

Cuspidality for enhanced L-parameters was introduced in [AMS]1], §6], generalizing
earlier works of Lusztig.

Proposition 10.7. In (10.14)), 7 is supercuspidal if and only if (¢r, pr) is cuspidal.
In this case, (10.14) coincides with (8.14]) and with [Kal2| [Kal3].

Proof. Since w € Rep(G), Py, Atises via parabolic induction from Rep(L) p, L) e

know that 7 is supercuspidal if and only if L = G. On the other hand, any (¢, p) in
Theorem has cuspidal support in ®.(L), for some Levi subgroup L C G, so it
is cuspidal if and only if L = G.
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Suppose now that L = G. Then H(s", qllp/ 2) reduces to O(sy), while the isomor-
phism of twisted graded Hecke algebras in Proposition reduces to

H(s", op,log(g)”)) = O(Z(1)VF) — H(Ry, War, k7, 1) = O(1).

This 1somorphlsm is simply (8.50] -, which is induced by the tangent map of Irr(L)s, —
®.(L)°L at 7. By [Solf, (2.25)], we have Endp(IIF) = O(Xu (L)) % C[Xne(L, 7), b
Consider the sequence from (10.11)):

(10.15)  Irr(L)ys (), — Irrx:rr(L)(@T-EndL(HsL) — Irre,-O(t) —

+(7V
Irrz([V)KVF'O(Z([V)WF) = Ity (1y,,-0(52) = D (L)Fwr (B o0]
We start on the right-hand side with (2, pp) for any z € X (LY) & X, (L). Its im-

age in Irrxrfr(Lv)%—O(ﬁz) is again (zpyp, pp). In IrrZ([v)ng—(’)(Z([V)Wp) o Z([V)§VF,

this becomes log(z) and in Irry,-O(t) = tg, it also maps to log(z). From there to
Irrxxr(L)(@T—EndL(Hf) = Iyt (1) O(Xne (L)) x ClXne(L, 7). br],

we apply [Sol5, (8.1) and Corollary 8.1]. By [Sol5, Lemmas 6.4 and 6.5 and Propo-

sition 7.3], log(z) is mapped to ind I(ldL ((HL)g( ). Since 7 is our basepoint, this irre-

ducible module corresponds to z ® 7 € Irr(Endy (II})) in the notation of (9.4). In
the conventions of Proposition the leftmost bijection in (10.15]) sends z ® T to
z ® T, but now as an element of Irr(L)s,. Thus (10.15) is just z @ 7 — (z¢p, pp),
which by Theorem agrees with . (]

Let £ev(G) be a set of representatives for the Levi subgroups of G (i.e. the F-
Levi subgroups of G) modulo G-conjugation. Then £ev(G) also represents the G-
conjugacy classes of G-relevant L-Levi subgroups of “G by [Sol6, Corollary 1.3].

Lemma 10.8. The cuspidal support maps and (10.14)) form a commutative diagram

IrrO(G)nS — V(G s
4 Sc 4 Sc .
|—|L6£eu( Q) Irrcusp( )nS/W(G7 L) — |_|L6£eu (G) (bgusp( )nS/W(va LV)WF

Proof. By Proposition and Theorem the maps from Theorem on the
cuspidal level are equivariant for W (G, L) = W(GY,LY)W¥. In particular, the
bottom line of the diagram is well-defined and bijective.

Suppose that (¢, p) € CIDE(G)"’v C ®Y(Q),s has cuspidal support (L, ¢r,, pr). Recall
from [AMS3, Lemma 2.3] that

(10.16) Z(H(s",q%)) = O(s} /Wev) = O(s])Vs" = H(sY, g )"+

By [AMS3], Theorem 3.18.a], the left H(s"P, q;/Z)—module M(p,pY, qF/ ) admits cen-

tral character Wyvor (¢, p¥). Then the construction of M (¢, p, q}/ 2)"p in the proof of

Theorem shows that it admits the same central character Wyvor (o1, p¥). Chang-
ing the notation from (sV°P, p¥) to (s¥,p) means that this central character must

now be written as Wyv(¢r,pr). This and (10.16)) imply that M (yp, p, q}/2)°p is a
constituent of

H(sV ! ”) :
d " qf/z)(SOLaPL) = ind

H(sV g/ 1/2
( o )M(solana(,IF/ )Op

H(sY,qp?)
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By the compatibility with parabolic induction in Theorem [9.4) we know that 7 (¢, p)
is a constituent of Ig (oL, pr). By Proposition (oL, pr) € Irr(L) is super-
cuspidal, thus it represents the cuspidal support of 7 (¢, p). O

In the following, we shall use the notion of temperedness for modules of twisted
graded Hecke algebras as in [Sol5, Definition 9.2].

Lemma 10.9. In (10.14), 7 € Irr%(G) s is tempered if and only if . € ®°(G) is
bounded.

Proof. We keep track of what happens to temperedness in , starting with
m(p,p) € Irr(G)s on the left. By [Sol5l Proposition 9.5.a], w(p,p) is tempered
if and only if M(p,p) € Irry,-H(R™, Ws.+,k7,;) is tempered. The isomorphism
from Proposition 8.8 respects the maximal commutative subalgebras and the sets of
positive roots for these twisted graded Hecke algebras, so it preserves temperedness.
By JAMS3| Theorem 3.8.b and 3.18.b], the last two maps in match tempered

irreducible modules with bounded enhanced L-parameters. O

Recall that a G-representation is called essentially square-integrable if its restric-
tion to Gger is square-integrable. The corresponding notion for modules of Hecke
algebras is essentially discrete series; see for example [Solb, Definition 9.2].

Lemma 10.10. In (10.14)), 7 € Trt%(G),s is essentially square-integrable if and only
if ox € ®0(G) is discrete.

Proof. Again we trace through (10.11)), starting with 7(p,p) € Irr(G)xL(L)r' By
[Sol5l Proposition 9.5.b,c|, 7(¢, p) is essentially square-integrable if and only if
(10.17) tk Ry, = rtk X(G, L),

where (G, L) denotes the set of nonzero weights of the maximal F-split subtorus
of Z°(L) acting on Lie(G). As with temperedness, the algebra isomorphism from
Propositionpreserves “essentially discrete series”. Condition (10.17]) is equivalent

to the condition that
rk R, = dimg Xpe(L) — dimg X (G) = dim t — 1k X*(Z°(G)),
which is then equivalent to the condition that
(10.18) rk Rev ,, = dime Z(1V)WF — dime Z(g¥)WVr.
By [AMS3, Lemma 3.7], we can express the right-hand side of as dim¢(7),
where T is as in [AMS3, §3.1]. Thus 7(¢p, p) is essentially square-integrable if and

only if M(go, 0, log(q}pﬁ)) € Irr—H(sV, Vb, log(qllp/z)) is essentially discrete series and
tk Rgv o, = dimc (7). By [AMS3, Theorem 3.18.c], the combination of the latter
two conditions is equivalent to the discreteness of (. l

Recall from [Lanll [Bor] that every ¢ € ®(G) canonically determines a character
Xy of Z(G). To better utilize the cuspidal support map for enhanced L-parameters
in the proof of the following Proposition we will also need the perspective of
L-parameters as Weil-Deligne morphisms

(10.19) Y:WpxC—Lta
More explicitly, given ¢ : Wx x SLa(C) — G, we define 9 by

(10.20) blw,2) = p(w, (M7 0V GD).
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It is well-known that v determines ¢ up to GV-conjugacy, see for instance [GrRel,
Proposition 2.2].

Proposition 10.11. In (10.14)), the central character of 7 is Xy, -

Proof. Let (p, p) € ®%(G),s and let (L, @1, pr) be (a representative of) its cuspidal
support. By Lemma 7(pr, pr) € Trrd . (L) represents the cuspidal support

cusp
of m = mw(¢,p). Then 7(p,p) is a subquotient of Ig 7(pr, pr); moreover, mw(p,p)
and (L, pr) admit the same Z(G)-character, i.e. the restriction to Z(G) of the
Z(L)-character of 7(¢r, pr), which by Lemma [4.6/is equal to

(10.21) Xerlzc) = 0lz(c)-

The construction of x, from [Lanll Bor] is recalled just above Lemma Let
G — G be an embedding such that Gyer = Gaer and Z (G) is connected. Let ¢ € @(G)
be a lift of ¢. The image ¢, € ¢(Z(G)) of ¢ determines a character x; of Z(G),
and by definition x, = Xg|z(q)-

We now consider 1 as in . Similarly, we define ¥, and 1&, in terms of ¢,
and @. By [AMSI| Definition 7.7 and (108)], ¥ |w, = ¥r|w, thus ¢ and ¢, differ
only on the unipotent elements u, := v(1,1) and wu,, =1 (1,1). The lift ¥ of ¢

gives rise to a lift ¥, : Wp x C — LG of ¢y, defined by
drlwe =¥lw, and Yrlc=le.

The map “G — L'Z(G) dual to Z(G) — G divides G, out, in particular ¥(C) and
1/;L((C) belong to its kernel. Hence 1, € ©(Z(@)) is equal to the image @L,Z of ¢y, in
©(Z(@)). In other words, 1, and 1y, . determine the same character of Z(G).
Consider the maximal torus 7 = TZ(G) of G. Since ¢ and 7 have image
in LT, ¢y, has image in “T. By the functoriality of the LLC for tori [Yul, ¢y,
determines a character of T that extends the character 6 of T' determined by 7, or
¢r,. Hence the character xz of Z(G) determined by 1), = &L,z (or equivalently by
¢-) extends 0| z()). We conclude that x,, is equal to 0| z(¢), which by is also
the Z(G)-character of 7(yp, p). O

Next we investigate the compatibility between our LLC and parabolic induction.
Let P = MU be a parabolic F-subgroup of G, with unipotent radical & and Levi
factor M. Suppose that ¢ € ®°(G) factors through “M. Then we can compare
representations of G and of M associated to enhancements of ¢, via normalized
parabolic induction. However, there is an obstruction to doing this nicely, given by
a function € from [Lus4l §1.16] in a setting with graded Hecke algebras. As in the
discussion before [AMS3, Lemma 3.19], € can be interpreted as a function

e(p.a)l?) = elty, —log(ar)/2),

where ¢, is as in ([10.2), computed in a setting from H(s", ¢, ).

Lemma 10.12. Let (¢, pM) € ®%(M),s and let 7™ (p, pM) € Trr(M) be its image
under (10.14)) for M.
1/2

(a) Suppose that €(p,qr ") # 0. There is a canonical isomorphism

o0 = D, Homgyrs (0, p) © ().
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where the sum runs through all p € Irr (7‘(’0(5 )) such that Sc(p, p) and Sc(p, pM)
are GV -conjugate.
The multiplicity of w(p,p) in IG aMst(p, pM) is dim Homsgu (p,p™), and
7(p, p) already appears this many tzmes as a quotient ofI M (p, pM).
(b) Suppose that ¢ is bounded. Then e(go, ) #0, ™™ (¢, pM) = 7M5t(p, pM) and
m(p,p) = 7 (p, p), thus

157 (e, p™) = €D Homgyr(p, ™) @ (0, p).
Proof. (a) [AMS3, Lemma 3.19] gives this for left H(sv,q},/ 2)—modules, only with

Homsgu (pM,p) instead of HOHISMJr (p,p™). The constructions in Theorem W
172

translate this to our right H(s", ¢;/~)-modules. Then the isomorphism becomes
. HsV.a?) & 1/2v0p ~ /2
de( Xz:Fl/Q)EM(% g )P @ HomSM+ p") @ E(p, p,qi ")

~ 1/2
~ @p Homsgu (p,pM) & E(cp,pv qF/ )P

Theorem M allows us to transfer statements from Modg-H(s", q}w/ 2) to Repd(G)ns
(b) The boundedness of ¢ implies that ¢, = 0. By [Sol9, Lemma B.3] EL we
know that e(t,, —log(qr)/2) # 0. The equalities between irreducible and standard

H(sY, @p, qF/ )- modules come from [Sol9, Proposition B.4.a], and via Theorem .
they can be carried over to the corresponding results about G-representations. [

Next we verify compatibility of Theorem with the Langlands classification
for p-adic groups as in [Kon, Ren]. We briefly recall the statement. For every
7 € Irr(G), there exists a triple (P, 7, ), unique up to G-conjugation, such that:

e P = MU is a parabolic subgroup of G;

o 7 € Irr(M) is tempered;

e the unramified character v € X (M) is strictly positive with respect to P;

e 7 is the unique irreducible quotient of the standard representation IS (r @ v).
These constructions provide bijections between:

e the set of triples (P, 7,v) as above, up to G-conjugation,

e the set of standard G-representations, up to isomorphism,

o Irr(G).
Note that in the above setting, 7, IIG3(7'®1/) and 7®v have the same cuspidal support.
Hence 7 lies in Irr? (@), if and only if 7 ® v lie in Irr®(M),s.

Similarly, there is a Langlands classification for L-parameters in [SiZi]. For every
p € ®(G), there exists a parabolic subgroup P = MU of G, such that ¢ factors
through “M and can be written as ¢ = z¢y, where ¢, € ®(M) is bounded and
z € X1 (M) is strictly positive with respect to P. This gives a bijection between
®(G) and such triples (P, ¢y, 2), up to GY-conjugacy (see [SiZi, Theorem 4.6]). The
strict positivity of z implies that

(10.22) Zev(p(Wp)) = Zyv (9(Wp)) and S} = SM.

For any enhancement p € Irr (WO(S;{ )), the construction of the cuspidal support of
(¢, p) reduces to a construction in Zgv(p(Wr)), with ¢[gr,(c) and p as input (see

HThe element t,, is called g in [Sol9)]
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for example [AMSI], §7]). Therefore, (¢, p) € ®c(M) has the same cuspidal support
as (p, p) € ®c(G). In particular, (@, p) € ®Y(G)ys if and only if (¢, p) € PO(M ).
Now, let (¢, p) € ®Y(G)ns and write p = zp, € ®(M) as in [SiZi, Theorem 4.6].

Proposition 10.13. (a) 7 (¢, p) is isomorphic to 15 7 (p, p) = 1 (227 (¢4, p)).

(b) 7t(¢p,p) is a standard G-representation in the sense of Langlands, and (i, p)
18 its unique irreducible quotient.

(¢) Every standard representation in Rep®(GQ)ns arises in this way.

Proof. (a) Since z € (Z(M"Y)'¥)w ., we have S}t =S}, and p can be viewed as an
enhancement of ¢, € ®(M). By Lemmas and [10.12] (b), we have

M,st(

™ (0, p) = 2 @ 7 (pp, p) = 2z @ T (4, p) = T, p).

By [Sol9, Lemma B.3], e(@,q};ﬂ) = €(t,, —log(qr)/2) is nonzero. By and
Lemma (a), we have 7%(y, p) = 15 7™ (¢, p) = 1% (¢, p).

(b) By Lemma m 7™ (¢p, p) € Irr(M) is tempered, and by construction, z €
XL (M) is strictly positive with respect to P. Hence 7% (¢, p) = 1G(z @ 7™ (¢p, p))

is a standard G-representation. By [Sol9, Proposition B.4.c|, M(go,pv, log(qll;/Z)) is
the unique irreducible quotient of E(gp, oY, log(qll;/ 2)), in the category of left modules
for H(s"°P, apb,log(qll;ﬂ)). By (10.6), (10.7) and (10.9), the same holds for

M(p,p,qp®) and E(p, p,q*) € Modq - H(s", q}%).
Then by Theorem 7(p, p) is the unique irreducible quotient of 75(y, p).

(¢) Let 1% (7 @ v) be a standard representation in Rep®(G),s. Then 7 € Irt® (M),
is tempered, thus by Lemma or € (M) is bounded. The strict positivity of
v agrees with the notion in [SiZi], because the same parabolic subgroup P C G is
used on both sides. Hence (P, p,,v) is a triple as in [SiZi, Theorem 4.6]. By part
(a), we have (v, p;) 21 (v @ (7, pr)) =18 (v @ 7). O

Finally, we deduce a corollary of our results on the p-adic Kazhdan—Lusztig con-
jecture from [Vog, Conjecture 8.11]. It expresses the multiplicity of an irreducible
representation in a standard representation as the multiplicity of a local system in
a perverse sheaf, both arising from enhanced L-parameters.

Corollary 10.14. The p-adic Kazhdan—Lusztig conjecture holds for RepO(G)nS.

Proof. This follows from Theorems and in combination with [Sol9, §5] (in
particular the proof of [Sol9, Theorem 5.4]). O

APPENDIX A. SPLITTINGS OF SOME EXTENSIONS ON THE p-ADIC SIDE

In we will need generalizations of some results in The extensions (2.33]),
(2.27) and (2.35) can also be constructed with Ng(L) instead of L, giving

1= T — Ngo(L',T)p o) = W(Ngs (L), T')(F)g e — 1,
(A1) 1T — Ng(L,jT)g — W(Ngs (L), T°)(F)o g — 1,
1T = (T W(Ng (L), T°))a(F)g — W(Ngs (L), T')(F)g e — 1.
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Pushout along 6 : T — C* gives extensions containing (2.34)), (2.28)) and (2.36) resp.

1 = C© = & & W(NG (L), T)Flop — 1,
(A.2) 1 - ¢ — 5“ — W(Ng (L), T) Flow — 1,
1 = C = & m = W(Ng (L), T)(Flgn — 1.

Arguments in [Kal5, §8] are written for extensions of finite groups by tori, they also
apply to (A.1) and (A.2]). Thus, similar as in Lemma we conclude:

Lemma A.1. In (A.1) and (A.2), the middle extension is the Baer sum of the
other two.

The first extensions in (A.l) and (A.2) have the following analogues without
restricting to the stabilizer of [z] € HY(E,Z — T):

1= T — N (L2, T)g — W(Ngs (L), T’)(F)g — 1,
1= C* = &) — W(Ng (L), T")(F)g — 1.

(A.3)

We have the following analogue of Proposition [2.10
Proposition A.2. The extension 5([9),0 from (A.3)) splits.

Proof. As in Proposition it suffices to construct a setwise splitting of ([2.38]),
which upon pushout along 6; : 75(kr) — C* becomes a groupwise splitting of

(A.4) 1—C* = 5&,% — W(Ngs (L), T5) (kr)o, — 1.

As the notation ng go suggests, this extension is the analogue of EgG for the finite
b y b

reductive groups G, (kr), £y (kr) and Tj(kr). By a standard argument analogous

to that in the proof of Proposition one reduces further to the cases where G/

is simply connected and absolutely simple. From the proof of Proposition [2.10] we

recall the groups £, ; C L';i and Zge (L, 4e,)° C Zgg( Z,der)Jr7 the embedding (2.42)

and the extension

(A.5) 1— T,z(kF) — NLL('EJ‘)(]{F)@T — W(ﬁyl,T )( )ef — 1,
We write the pushout of the extension (A.5) along 6; as
(A.6) 1—C*— sg o WL, Tri)(kr)e, — 1.

Let W(Zgs (L, der) 5 Z(L5)°)s; be the image of W(Ngo (ﬁo) j)p;, under ) fol-
lowed by projection onto the first factor. Similar to and (| -, we construct
(A.7)

1 — Z(L,)°(kr) — NZgo( © )t +(2(L£y)°)(kr)o;, — W(Zg; (ﬁ;der)—'—,Z(ﬁ;)o)gf =1,
whose pushout along 6; gives

(A.8) 15 C*— ng,ZQE (o

y,der

o = W(Zgg (L5 der) ™ Tri) (kr)o; — 1.

We claim that it suffices to construct setwise splittings of (A.5) (for each i) and

of (A.7), such that upon pushout along 6; they become groupwise splittings of

(A.6) and (A.8). More precisely, in this case 6;; extends to N+ (7)(kr)e, and
Y,

hence to Ng, ;«r(7;:)(kr)s;. Doing this for all 7 gives us an extension of 0; from
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(ﬁﬂﬁ;der)(k‘}?) to Hz N[:yymp('ﬁ,i)(kp)gf. Similarly, ef,Z = 9?|Z(£§)°(kp) extends to
Nz (s, yxr(Z(L5)°)(kr)s;. These extensions combine to a character 0f+ of
v ,der

Nzgg(c;’der)xr(z(ﬁg(})o)(kfv)ef X I1; Neyoxr (Tr0) (kF)e;
{(z,z71) : z € (Z(L5)° N ‘ij,der)(kF)} ’

which extends ;. Since Nge (Ly, 7;)(kr)e; embeds in (A.9), we obtain an extension
of 0; in (2.38). This gives a groupwise splitting of and hence our claim.

By (2.18), W ( v 7})9)c is a semidirect product of a normal subgroup and a com-
plementary part that embeds in X*(7;)/ZR(G;,T;). By the simplicity of G;, that
complement is cyclic or isomorphic to the Klein four group. The group W(EZ, Tf)gf
embeds in W(Gy,Tj)g;- By the non-singularity of 0;, we know that W(Ly,T})e, in-
tersects the reflection subgroup of W(Gy, Tj)e, trivially. Hence

(A.10) WLy, T;i)e, embeds in X*(7;)/ZR(G,, T;).

By the simplicity of G, the right hand side of (A.10)) is either cyclic or isomorphic
to the Klein four group.
By the classification of irreducible root systems and parabolic subsystems, one de-

duces that each £, ; is either simple or a direct product of simply connected groups
of type A,_1. This leads to three cases of (A.5) and (A.6), treated below.

(A.9)

Case A. Ly; is a product of d > 1 simple factors M; of type An,_1, permuted
transitively by Ngo (Ly)(kr)o; x Wp.

All these M,’s are isomorphic to SL,,. Let Frob? be the smallest power of Frob that
stabilizes all the M;’s (or equivalently one of them). Then Frob? acts on M; as
raising to the q%/—th power composed with an elliptic element F)q of W(A,_1) = 5,
(by classification and by the ellipticity of 7;). Every elliptic element of S, is an n-
cycle, and by adjusting the coordinates in M; = SL,, we can achieve that Fy € GL,
is the product of the matrix of the permutation (12...n) with a scalar matrix.

By , the group W (Ly, Tji)e, comes from at most two simple factors M;
of L, ;. By the transitive action on the set of simple factors of L, ;, each such M;
contributes the same number of elements to W (L, , T7i)9f. If £,; has two simple
factors which both contribute, then is not cyclic, which implies that G, has
type Da,. But in this case, the elements of W ( s ’7})9f outside its reflection subgroup
do not come from any type-A Levi subgroup of G;. Indeed, the Weyl group of a
maximal type-A Levi subgroup of G is S2,, but any expression of an element of
W (Gy, Ti)e; outside its reflection subgroup contains some of the sign reflections in
W (Day,) 22 Sop, x {41}, This shows that W(Ey,i,fi)gf is trivial.

Consider two simple factors M1, M3 of L, ;. The Dynkin diagram of M; x Ms
embeds into a connected type-A sub-diagram J of the Dynkin diagram of Gy In
the Weyl group generated by J, we can find an element of Ng. (Ly,;) that exchanges

My with My and stabilizes the other M;’s. Hence W(E;i,’T,i)gf surjects onto Sy
(viewed as the permutation group of the set of simple factors M;).

We take a closer look at the reflections in this Sy. It suffices to consider the trans-
position sz that exchanges M; and Mj. The Levi subgroup of G generated by J is
simple of type A, and it contains finite covers of M; and My as Levi subgroups. In

terms of the coordinates of M; = SL,,, s12 is the product of n commuting reflections
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Sa, permuted cyclically by F4 and each sending one coordinate for M; to one co-
ordinate for M. Since s, fixes 6; and the two coordinates exchanged by a have no
relations (like they would in SLy), we have (a”,6;) = 0. Let §, be a Tits lift of s,
with respect to some pinning [Tits, §4]. This element is canonical up to the image of
aV, and (aV, 05) = 0 implies that 5, becomes canonical after pushout along 6;. Set

n—1

= Frobd/m§aFrob_d/m and §q9:= H ]

SFrobd/m(a) : m=0 SFrobd/m(a) )

Then 52 is fixed by Frob? and
n—1 72 /
(A.11) =11 _, Frob™("(-1)) € ker(6y)n Z(Ly5)"

SO 5%2 becomes trivial upon pushout along ¢;. The same construction can be carried
out for any simple reflection s; ;41 in Sq. By the length-multiplicativity of Tits lifts
[Spr, Proposition 9.3.2] these §; ;41 give rise to a map

)Frobdl

)

(A.12) Sa— (L
which by yields a homomorphism S; — 6’3% cty

Recall that d’ is at most the order of the action (5f Frob on g; , SO it is at most
3. By the assumptions of case A, every simple factor of L, ; lies in a Frob-orbit
consisting of precisely d’ many of the M,’s. The centralizer of Frob in Sy is a
semidirect product of two subgroups:

(i) the normal subgroup N (Sg, Frob) generated by the cycles of Frob,
e.g. ((123), (456)) if Frob acts by (123)(456);
(ii) a subgroup I'(Sg,Frob) = Sy that permutes the various Frob-orbits of
M;’s (where the coordinates of each M, are ordered in a cycle given by Fjy),
e.g. (14)(25)(36) if Frob acts by (123)(456).
We order the M;’s so that each Frob-orbit forms one string of consecutive entries.

Then the set of those 5, (as above) such that s, only permutes one Frob-orbit, can
be constructed in a Frob-equivariant way. This allows us to make the image of
N (S4, Frob) under Frob-invariant.

A transposition h in I'(Sg, Frob) is formed of a product of d'n commuting reflec-
tions, each of the form Frob™s,Frob™ = spgpm(q). Analogous to the construction
of 3, above, we can construct a Frob-invariant lifting i of h. Using these h, we can
make the image of I'(Sg, Frob) under Frob-invariant.

This provides the desired lift of Sgro, which gives a splitting of .

Case B. Ly, is Frob-stable and W (Ly;, Tj;)e; = {1}-
Now W(E;;Z-,T,i)af injects into the group of diagram automorphisms of L, ;. If
W(E;i, Ti.i)e; is cyclic, then there exists a splitting of . This group can only
be non-cyclic if £, ; has type D, and W(Ng; (Ly,i), T})e; surjects onto the group of
outer automorphisms Out(Dy4) = Ss.

We represent 6;; by an element GNM of the fundamental alcove for W,g(Dy) in
X*(T;;)@zR. Then the stabilizer of f; ; in W (Dy) x Out (D) is isomorphic to the sta-
bilizer of 6; ; in X*(T;,i) X Aut(W(Dy)). The aforementioned shape of W(ﬁ;i, Ti.i)o;
implies that it is generated by elements that stabilize the fundamental alcove. The
regularity of 6;; gives the regularity of éf’i, in the sense that it does not lie on
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any hyperplane in the affine Coxeter complex. Thus VV(E;r i+ Ti,i)e; 1s isomorphic to

the group Out(Dy) of diagram automorphisms, which we view as a subgroup of
W(Dy) x Out(Dy).
Next we show that W (L. T;.:)(kr)g; is cyclic or that (A.6) splits. If Frob acts on

Y
Ly ; by an outer automorphism, then Out(D,)°P is cyclic of order 2 or 3. Suppose

Frob acts on L, ; by an inner automorphism. Its image in W (Dy) is elliptic because
7. is elliptic. The elliptic elements in W (Dy) = Sy x {£1}* are easily classified:

(i) a product of two disjoint 2-cycles in Sy times one sign change in both cycles,
e.g. (12)(34)ereq,
(ii) a 3-cycle in Sy times two sign changes, of which one outside the 3-cycle, e.g.
(123)€1 €4,
(iii) the central element —1 = €1€g€3¢€4.
Elliptic elements of the first two kinds do not commute with the whole group
Out(Dy). For such Frob, W(E;i,ﬁi)(krp)gf is a proper subgroup of Out(Dy), and
hence cyclic. Suppose that Frob acts via a lift of —1 € W (Dy) to L';l The character
lattice

X(Tii) = {z € Z* : 11 + w2 + x5 + 4 is even}

is spanned by the standard basis {e; — ez, €2 — €3, €3 — €4, €3 + €4} of the root sys-
tem D4. Here ey — e3 is the central node in the Dynkin diagram of type D4. The
given Frob-action implies that 7;;(kr) is a direct product of 4 copies of the unitary
group Uj(kp), where the cocharacter lattice of each copy is spanned by one of the
simple roots. Accordingly, the character ;; has four coordinates, each a character of
Ui(kr). Since 6;; is stable under Out(Dy), its coordinates associated to the simple
roots e; — eg, e3 — e4 and ez + e4 are equal. The cocharacters Z(ea — e3) are fixed
by Out(Dy), so we may ignore them in our analysis. Then we are in a situation like
Case A, with three simply connected groups of type A; permuted transitively by
W(‘C;}—,i?’]}»i)ef' Same as in Case A, we produce liftings 5, and 512, which combine

to a splitting of (A.5).

Case C. Ly; is Wg-stable and W(Ly;, Ti)e; # {1}

Cases I-V in the proof of Proposition [2.10 show that

W(ﬁz_ﬂa T,i)ef = W(Ey,ia T,i)@f X N,

where N = {1} unless L;j; has type D, (case IV) in which case N may have two
elements. In case IV, the proof of Proposition [2.10| already gives a W(E;Z-, Tii)o;-
equivariant splitting on W (L, , ’7',1')(l<:F)(;f in (A.5). It remains to find a splitting for
N, when its kp-points have order two. Since NN is cyclic, its generator €, can always
be represented by an element of N+ (7;;)(kr)e, whose order reduces to two upon

Y,

pushout along 6.

Now that we have treated the case of (A.5), we next treat (A.7)) and (A.8]). Since
the Frob-action on 7; came from Aut(Lj), Frob acts on Z(Ly) and on Zgs ( Z’der)J“
just via the automorphism used to define Q; as a kp-group. In particular, Z (EZ)O is
a maximal, maximally kp-split torus of Zg;( ” dor)’- Let H be the simply connected
cover of Zge (L) 4,)° and set H* :=H xT'z. The Frob-action on Zgs (ﬁ;,derﬁ lifts
canonically to H ™, making it a kp-group. Let T3 be the inverse image of Z (£y)° in
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‘H. We choose a Frob-stable Borel subgroup B = TyUy of H and enhance (7, B) to
a Frob-stable pinning of H. Without changing the group H* (kr), we may replace
I'z by the isomorphic (Frob-stable) subgroup of Aut(#) that stabilizes the chosen
pinning. Via the canonical map H — Zg; (Efy’ der)”» we may pull back 6; to a character
0+ of T3;. We can obtain from the extension

(A.13) 1 = Tu(kr) = Ny+(Tr)(kr)o,, — W(H+,TH)(ICF)9H —1
in two steps, i.e. first we push out along 6 to produce the extension
(A.14) 1= CX = &) 5 = W(HT, T)(kr)e,, — 1,

which we then pull back along
W (Zgs (L ae) ™5 Z(L£5)°) (kE)g, — W(HT, T (kr)oy,

Hence we may replace (A.7) by (A.13)), and we need to find a splitting of (A.14]).
Note that 63, can be an arbitrary character of 73 (kr), the non-singularity of 6; for

L; does not impose restrictions on 6; for Z(Ly)°.

By [Kal3l, §2.7], the H(kr)-endomorphism algebra of indg((: o ))(6’7.[) is the twisted
group algebra C[W(H, Tx)(kF)s,,. 11| associated to the extension Sg%H. Let &y :
U(kr) — C* be a non-degenerate character. By adjointness of parabolic induction

and restriction for finite reductive groups [GeMa), Proposition 3.1.10], we compute

Homy .y (&, ind g (( ))(HH)) HomH(kF)(md (§H) ind}} ))(9H))

= Hom,, () ( *Rj3 mdu((kF))(fH), 03).
By [DLM, Theorem 2.9], the right hand side of (A.15]) simplifies to

Horngs, (i (ind {55 (€1), 03¢) = Hom,y (€, 0n) = C.

H(kF)

Therefore, &3, appears in ind 4 Blkr) (%) with multiplicity one. We fix a nonzero vector

ve € ind (( r ))(97.[) on which U(kp) acts via the character . Every element of

(A.15)

Endsy(,p (ind o) (030)) = CIW (H, Toe) (k) ]

sends ve to the &y-weight space of U(kp), which is Cve. Thus for every w €
W(H, T)(kF)s,,, there exists a unique lift @ € SgHH C EndH(kF)(indg((:;)(GH))
that fixes ve. The collection of these w gives a group homomorphism

W(H,TH)(’CF)G'H — ggH,H - ggH,H+

that splits a part of . The only elements of I'; that appear in are those
that stabilize the orbit W (H, Ty )(kr)8y and are fixed by Frob. Therefore, we may
assume without loss of generality that I'y = F?%(H,TH)(’CF)H%‘

Since I'z stabilizes the pinning, the Whittaker datum (U (kr),&y) can be chosen
so that it is fixed by I'z. For example, if the pinning gives isomorphisms U, = G,
for simple roots «, defined over a finite field extension &’ of kp, then we can take
&u((za)a) =€ (X, ®a) where z, € K/, for a nontrivial additive character ¢ : k& —

C*. Then vg is also an element of v - ind (( )) (f%) on which U(kr) acts by the

character £y.
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By [Kal3, §2.7], the H T (kp)-endomorphism algebra of my+ := indg(zgkf )(97{) is

isomorphic to the twisted group algebra C[W (H™, T3 )(kr)s,,, in] associated to the

extension (A.14]). Moreover

(A.16) T+ = @ o, v indg((:F)(GH) as representations of H(kp),
yelz

F)

g((: 5 )) (03 ) is identified with the subset of w4+ consisting of functions sup-
ported on yH (kr). Hence the &-weight space of U (kp) in myy+ is @, e, ma+ (7)Cre.
The elements of EgH’HﬂL C CIW(HY, Tr)(kr)oy, 11] = Endy+ () (my+) permute
the terms in the decomposition (A.16]), according to their images in I'. Take w €
W (H™, Tw)(kr)e,, and write it as w = ywy with v € Tz and wy € W(H, T ) (kr)o,, -
Let w € Sgﬂ 4+ be the unique lift of w that sends ve € indg((,i€ ; )) (03) to ve as an

element of ~ - indg((: - )) () in (A.16]). Consider

where 7-ind

1\ ~ . T H(k — . H(k
T+ (77 1)w € HomH(kF)(1ndB((k§))(9H),7 L. mdB((klf)) (GH))

All maps of this form fix ve, thus the composition of two such maps also fixes vg.

This implies that w0 = wov for all w,v € W(HT,Ty)(kr)g,,, thus providing the
required splitting of (A.14)). O

APPENDIX B. SPLITTINGS OF SOME EXTENSIONS ON THE (GALOIS SIDE

For applications in §8.3] some parts of §3.2|need to be generalized to larger groups.

In the extensions (3.25)), (3.17) and @ , we can replace L by Ngv (L"), giving
(B.1)
1. :CV’+ _ (Nev (LY, T) ) gy . — W (Ngv (LV),TV)%V\;77 — 1,
1= TV = preimage of Zy_, (1v)(¢)y in G¥ = W(Nev(LY), TV) g5, — 1,

PN
1= TVt — (T W(Nev (1Y), T)WF) TP oy (Ngw (1Y), TV)WE 1.

eT,n

Analogous to (A.1))-(A.2)), pushout along 1 : TV:T — C* gives three new extensions,
which contain (3.26), (3.18]) and (3.22]), respectively:

1 - C* — SS’ET — W(Ngv(LY), TV)Wr — 1,

oT,M
(B.2) 1 - C — &L — W(0lNev(LY),T)NE — 1,
1 = C = &8 — W(Nev(LY),TV)E — 1.

As in Lemmas and the proof of Lemma [3.4] only uses [Kaldl, §8] and hence
applies to the above extensions as well. Therefore we have the following.

Lemma B.1. In (B.1) and (B.2)), the middle extension is the Baer sum of the other
two, in the category of N ,-groups.
The analogue of Proposition for these extensions is the following.

Proposition B.2. The extension SSZZT splits.

Proof. The first part of the (long) proof consists of several simplifying steps, which
allow us to reduce certain concrete cases to the case of simple groups, which will be
treated by explicit arguments. As at the start of the proof of Proposition [3.5] we
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can reduce to the case where I acts trivially on G, and thus we may replace ¢ by
the single element ¢(2p). Since

W(NGV (LV)7 TV)QDT - W(NGV (LV)7 Tv)go(zp)a

the required equivariance is automatic once we have constructed a splitting in this
simplified setting.

As before, 1 factors through (TV/Z(GV))WF, and the first extension in can
be obtained by push out the following along n
(B.3)
1= (TV/Z(GV)WF = (Ngv (LV,TV)/Z(GV))Z;)7H—> W (Ngv(LY), TV)Z@M% L.
The extension is the direct product of analogous extensions for the F-simple
factors of GG. Therefore we may assume that G is F-simple and simply connected.

Now GV is the direct product of its simple factors, and they are permuted transi-
tively by W . Hence we can replace GV by one of its simple factors and W g by the
subgroup stabilizing that factor, without changing . This allows us to reduce
further to the cases where G is simple.

By [Ste], similar to the discussion for finite reductive groups near , we
know that W(GV,TV)w(zF) is a semidirect product of a normal subgroup and a
complementary part that embeds into X,(TV)/ZR(GY,T"). By the simplicity of
GV, this complement is either cyclic or isomorphic to the Klein four-group. The
group W(LY,TV) () embeds into W (G, T") (). By the non-singularity of 6,

W (LY, TV) intersects the reflection subgroup of W(GY, TV) trivially. Hence

e(rr) (rr)

(B.4) WL, TV) embeds in X, (TY)/ZRY(GY,T").

)

By the simplicity of GV, the right-hand side of (B.4)) is either cyclic or isomorphic
to the Klein four-group. Recall from (3.28)) that 7 factors through (TV/Z(LY))WF.
Hence (B.3)) can be replaced by
(B.5)

\\% w
L= (TY/Z(L)WF = (Nev (LY, TV)/Z(LY) oy = W(Nev (LY), TY) 0 = 1,

and we need to show that this extension splits upon pushout along . We decompose
(B.6) X.(TV)®zR=X.(Z(LV)°) @zR @ P Xu(Li nT") @z R,

where L runs through the W(Ngv (LV),TV)Z‘(’;“;P ) % Wp-orbits of simple fac-

tors of LY. Accordingly, the character 7 decomposes as a product of characters

n;. Let P denote the image of W (Ngv (LV),TV)Z‘(’; ), 0 the orthogonal group of

X.(Z(LV)°) ®z R, and write T;Y := TV N LY. The decomposition gives rise to
an embedding of (B.5)) in the product of the extensions 1 -1 — P — P — 1 and

Wr
W(ZF)JH

Wr
=W =1

(B.7) 1 (1) /Z(L)WVF — (Nev (LY, TV)/ Zev (LY) N Nev (LY, TY))

where i runs through the same index set as in , and

Wi = W(Ngv(LY), TY) ) /W (Zev (L) N Nev (LY ), T ) (09 -
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It suffices to construct, for each i, a splitting of (B.7)) which becomes a group ho-
momorphism upon pushout along 7;:

(B.8) 1-C* — S?;;"CT; — WQX,F — 1.

Alternatively, we may directly construct a groupwise splitting of (B.§]), i.e. in this

case 7; extends to (Ngv(Liv,Tiv)/Z(Liv))x;) ;- and hence to (NGv(Liv,ﬂv))Z‘(’;;) »

Thus n =[], n; extends to (Ngv (LY, TV)):‘(]ZI;) , and we are done.

By classification of irreducible root systems and parabolic subsystems, LY /Z (L))
is simple or is a product of adjoint groups of type A. This leads to three cases
(A,B,C), treated separately below, in which we construct such a splitting (B.7).

Case A. LY is a product of d > 1 type A,_1 simple factors M;, which are permuted
transitively by Ngv (Lv)r(/;) X Wg.
All M;’s are isomorphic to PGL,, (C). Recall that the W p-action is given via elements
of Npv(TV) x Wy and that Ip acts trivially. Let Frob% be the smallest power of
Frobp that stabilizes any (or equivalently all) of the M;’s. Then Frob%/ acts as
an elliptic element F4 on each M;. Every elliptic element in S, is an n-cycle. By
adjusting the coordinates in each M; = PGL,(C), we can make F4 the product of
the matrix of permutation (12...n) with a scalar matrix.

By , the group W(L;/,TZ-V)@(ZF) arises from at most two simple factors M;
of LY. By the transitive action on the set of simple factors of L}, each such M;
contributes the same number of elements to W (L}, T;) (). If L; has two simple

(2

factors that both contribute, then is not cyclic, thus GV has type Ds,. But in
this case, the elements of W (G", Tv)g,(l ) modulo its reflection subgroup do not come
from any type-A Levi subgroup of GV. More precisely, when one expresses elements
of W(GY, T V)w(z ) outside its reflection subgroup in terms of simple reflections, one
must use some of the sign reflections in W (Da,) = Sa, x {£1}?". However, the
Weyl group of a maximal type-A Levi subgroup of GV is Sy,. This shows that
W(L;/, Tiv)@(zF) is trivial.

Consider two simple factors Mi, My of LY. The Dynkin diagram of M; x My
embeds into a connected type-A subdiagram J of the Dynkin diagram of GV. In the
Weyl group generated by J, we can find an element of Ngv (L") that exchanges My
and My and stabilizes the other M;’s. Hence W (Ngv (L"), T") (., surjects onto Sy,
the latter viewed as the permutation group on the set of simple factors M;. We now
take a closer look at the reflections in this Sy. It suffices to consider the transposition
s12 that exchanges M; and M. The Levi subgroup of GV generated by J is simple
of type A, and it contains finite covers of M; and My as Levi subgroups. In terms of
the coordinates of M; = PGL,,(C), s12 is the product of n commuting reflections s,
permuted cyclically by F)4 and each sending one coordinate for M; to one coordinate
for Ms. Since s,, fixes p(1r) and the two coordinates exchanged by « have no relations
(like they would in PGLy(C)), we have a¥(p(1r)) = 1 and oV (C*) C Zgv(p(ir)).
Let §, be a Tits lift of s, with respect to some pinning [Tits]. We set

SFm(a) i= FY'5,F,™ and 3i9:= Hm:O SFm(a)-
Then 515 is fixed by F4 and

=1, (Fra)(=1) € Z(L")™,
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The same construction can be carried out for any simple reflection s; ;41 in S4. By
the length multiplicativity of Tits lifts [Sprl Proposition 9.3.2], this extends to a
group homomorphism

(B.9) Sq— (Nev (LY, TY)/Zav (1Y) ™.

Recall that Fy = Frob% for some d’ > 1. This d’ is at most the order of the action of
Frobr on GV, thus it is at most 3. By the assumptions in case A, every simple factor
of LY lies in a Frobp-orbit consisting of precisely d’ of the M;’s. The centralizer of
Frobg in S; is a semidirect product of two subgroups:

(i) the normal subgroup N(Sg, Frobr) generated by the cycles of Frobp, and
(ii) a subgroup I'(Sy, Frobg) = S;/¢ that permutes the various Frobg-orbits of
M;’s (where the coordinates of each M; are ordered in a cycle given by Fjy).

We order the M;’s so that each Frobg-orbit forms one string of consecutive en-
tries. Then the set of those 3, (as above) such that s, only permutes one Frobp-
orbit, can be constructed in a Frobpg-equivariant way. This allows us to make the
image of N(Sg, Frobg) under Frobp-invariant.

A transposition v in I'(Sy, Frobp) is given by a product of d'n commuting reflec-
tions, each of the form Frob’s,Frob,™ = SFroby (a)- Analogous to the construction
of 5, above, we can construct a Frobp-invariant lifting 4 of . Using these 7, we
can make the image of I'(Sg, Frobp) under Frobg-invariant. This provides the

desired lift of ngbF , which gives a desired splitting of (B.7).

Case B. L} is Wg-stable and W (L], T;') 50,y = {1}

W, injects into the group of diagram automorphisms of LY. If W; is cyclic, then
there exists a splitting of along 7;; and W; can only be non-cyclic if LY has
type Dy and W (Ngv(LY), TV) ) surjects onto the group of outer automorphisms
Out(D4) =~ ;.

We represent ¢(1r) by an element ¢, of the fundamental alcove for W,g(Dy) in
X.(TV) ®z R. Then the stabilizer of ¢(1r) in W (Dy) x Out(Dy) is isomorphic to
the stabilizer of ¢, in X, (TV) x Aut(W (Dy)). The structure of W; implies that it
is generated by elements that stabilize the fundamental alcove. The regularity of 0;
gives the regularity of ¢,, in the sense that it does not lie on any hyperplane of the
affine Coxeter complex. Thus W; is isomorphic to the group Out(Dy) of diagram
automorphisms, which we view as a subgroup of W (Dy) x Out(Dy).

We next show that Wl-FrObF is cyclic or that splits. If Frobg acts on L} by
an outer automorphism, then Out (D4)°PF is cyclic of order 2 or 3. Since Frobp
acts on LV by an inner automorphism, its image in W (Dj) is elliptic because T is
elliptic. The elliptic elements in W (D) = Sy x {£1}* are easily classified:

(i) a product of two disjoint 2-cycles in Sy times one sign change in both cycles,
e.g. (12)(34)ereq;
(ii) a 3-cycle in Sy times two sign changes, of which one outside the 3-cycle, e.g.
(123)e1€q;
(iii) the central element —1 = €1€z€3¢€4.

o(r

Elliptic elements of the first two kinds do not commute with the whole group
Out(Dy). For such Frobp, WITPF is a proper subgroup of Out(D4) and hence cyclic.

2

Suppose now that Frobp acts via a lift of —1 € W(Dy) to Npv(TV). In this case,

we need to use 7;. The group TZ»V’FrObF consists of the elements of order < 2 in T.”.
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Since we divided out Z (L"), we may take L} = PSOg(C) with T}” being the maximal
torus on the diagonal, i.e.

Ty = {diag(t1, ta, b3, ta, t5 ', 131,85 1771) 1 8, € C*Y.

We write an arbitrary ¢ € T)Y as t = (t1, t2, t3, t4). In this notation, 7,"""°"" & {41}
is generated by

(-1,1,1,1),(1,-1,1,1),(1,1,-1,1),(1,1,1,-1) and (v/—1,vV—1,v/—1,V/-1).

The element €4 € Out(Dy) stabilizes the character n; of Tiv’FrObF if and only if

ni(ea(v/=1, V=1,V=1,V=1)) = ns(v/=1, V=1, V=1, —v/=1)
= ni(V=1,V/=1,V=1,v/=1) ni(1,1,1,-1)

equals 7;(v/—1,v/—1,v/—1,v/—1), or equivalently 7;(1,1,1,—1) = 1. The element ¢4
can be lifted to an element of the subgroup of POg(C) that changes only the fourth
and fifth coordinates (corresponding to only the fourth coordinate of T,). Since
—1 € W(D4) acts on the coordinates of T separately, this lift of 4 can be adjusted
by some element (1,1,1,¢4) € T,Y to make it into a Frobp-invariant lift, say as. Then

a3 € {(1,1,1,t4) : t4 € CX}TPr = ((1,1,1,-1)) C kern;.

By construction, a4 is canonical up to {(1,1,1,t4) : t; € C*}°Pr thus upon
pushout along 7; it becomes unique. Via conjugation by order 3 elements of Out(Dy),
we also obtain canonical lifts of the other order 2 elements of Out(Dy). By their
canonicity, these lifts combine to a splitting of .

Case C. Lj is Wg-stable and W (L}, T;') o) # {1}

1071

Cases [-V in the proof of Proposition [2.10] show that
Wi = W(Lg/afiv)go(ur) X N,
where N = {1} unless L} has type D,, (case IV), in which case N may have two
elements. In case IV, the proof of Proposition provides a W (Ngv (L"), Tv)w(zF)—
equivariant splitting on W(Ly, TV N L)) in (B.§). It remains to construct a
splitting for N, which has order two. Since it is cyclic, its generator €, can be
represented by an element of
w
(Ng\/ (LY, TV)/ZGv(LZ-V) N Ngv(LV,TV))w(;;),
whose order reduces to two upon pushout along 7. U

INDEX OF NOTATIONS
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