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Abstract. Let G be a quasi-split reductive group over a non-archimedean local
field. We establish a local Langlands correspondence for all irreducible smooth
complex G-representations in the principal series. The parametrization map is
injective, and its image is an explicitly described set of enhanced L-parameters.
Our correspondence is determined by the choice of a Whittaker datum for G, and
it is canonical given that choice.

We show that our parametrization satisfies many expected properties, among
others with respect to the enhanced L-parameters of generic representations, tem-
peredness, cuspidal supports and central characters. Our correspondence lifts
to a categorical level, where it makes the appropriate Bernstein blocks of G-
representations naturally equivalent to module categories of Hecke algebras com-
ing from Langlands parameters. Along the way we characterize genericity of
G-representations in terms of representations of an affine Hecke algebra.
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Introduction

Consider a quasi-split reductive group G = G(F ) over a non-archimedean lo-
cal field F . Let Irr(G) be the set of (isomorphism classes of) irreducible smooth
G-representations on complex vector spaces. The conjectural local Langlands corre-
spondence (LLC) asserts that Irr(G) is canonically partitioned into finite L-packets
Πφ(G), indexed by L-parameters φ. Some time after the initial formulation in [Bor2],
it was realized that Πφ(G) should be parametrized by the set of irreducible represen-
tations of a finite component group Rφ. These conjectures have motivated a large
part of the study of reductive groups over local fields in past decades, see the survey
papers [ABPS2, Bor2, Kal, Kud, Vog].

This paper establishes a local Langlands correspondence for the most accessible
class of G-representations, those in the principal series. To formulate the result
precisely, we quickly recall some relevant notions.

Let T ⊂ G be the centralizer of a maximal F -split torus in G, or equivalently a
minimal Levi subgroup of G. Then T is itself a torus because G is quasi-split, and
T is unique up to conjugation. Any representation of G that can be obtained from
a smooth representation of T by parabolic induction and then taking a subquotient,
is called a principal series G-representation. These representations form a product
of Bernstein blocks in Rep(G). We denote the set of irreducible principal series
G-representations by Irr(G,T ). We warn that some L-packets contain elements of
Irr(G,T ) and also other elements of Irr(G).

It has turned out that the representation ρπ of Rφ associated to a given π ∈ Irr(G)
is not canonically determined. To specify it uniquely one needs additional input,
namely a Whittaker datum for G. Such a Whittaker datum can be used to normalize
relevant intertwining operators, which then determine exactly how ρπ ∈ Irr(Rφ) is
related to π. For non-quasi-split groups G such a normalization should also be
possible [Kal, Conjecture 2.5], but it is much more involved.

We fix a Borel subgroup B = TU and a nondegenerate character ξ of the unipotent
radical U of B. Then (U, ξ), or rather its G-conjugacy class, is a Whittaker datum
for G. Recall that π ∈ Irr(G) is called (U, ξ)-generic if HomU (π, ξ) is nonzero.

Let WF be the Weil group of F , let G∨ be the complex dual group of G and let
LG = G∨ oWF be the Langlands dual group. In this introduction (but not in the
body of the paper) we realize L-parameters for G as Weil–Deligne representations

φ : WF nC→ LG.

The appropriate component group of such an L-parameter is

Rφ = π0

(
ZG∨(φ(WF nC))/Z(G∨)WF

)
,

and an enhancement of φ is an irreducible Rφ-representation. Let Φe(G) be the
set of enhanced L-parameters for G, considered up to G∨-conjugacy. An element
(φ, ρ) ∈ Φe(G) belongs to the principal series if its cuspidal support is an enhanced
L-parameter for T . More explicitly, that means

• φ(WF ) ⊂ T∨ oWF (or for a G∨-conjugate of T∨ oWF , because φ is only
given up to G∨-conjugacy),
• ρ appears in the homology of a certain variety of Borel subgroups.

We denote the subset of Φe(G) associated to the principal series by Φe(G,T ). For
a given φ it may happen that some enhancements yield elements of Φe(G,T ), while
other enhancements bring us outside Φe(G,T ).
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Our main result is a canonical LLC for principal series representations:

Theorem A. [see Section 7]
The Whittaker datum (U, ξ) determines a canonical bijection

Irr(G,T ) ←→ Φe(G,T )
π(φ, ρ) 7→ (φ, ρ)
π 7→ (φπ, ρπ)

with the following properties:

(a) π(φ, ρ) is (U, ξ)-generic if and only if ρ is trivial and uφ = φ(1, 1) lies in the
dense ZG∨(φ(WF ))-orbit in

{v ∈ G∨ : v is unipotent and φ(w)vφ(w)−1 = v‖w‖ for all w ∈WF }.

(b) π(φ, ρ) is tempered (resp. essentially square-integrable) if and only if φ is bounded
(resp. discrete).

(c) The bijection is compatible with the cuspidal support maps on both sides.
(d) The bijection is equivariant for the canonical actions of H1(WF , Z(G∨)).
(e) The bijection is compatible with the Langlands classification and (for tempered

representations) with parabolic induction.

All Borel’s desiderata from [Bor2, §10] are satisfied. When π is given, φπ is uniquely
determined by (a)–(e) and the local Langlands correspondence for tori.

For non-split quasi-split groups, the vast majority of the groups under considera-
tion here, very little in this directon was previously known. On other hand, for split
groups many instances of Theorem A have been established before:

• Kazhdan and Lusztig [KaLu] proved the bijection and (b,e) for Iwahori-
spherical representations , assuming that G is F -split and that Z(G) is con-
nected as algebraic group. Their starting point is Borel’s description [Bor1]
of those representations, in terms of Hecke algebras.
• Reeder [Ree2] extended [KaLu] to Irr(G,T ) when G is F -split, Z(G) is con-

nected and the residual characteristic p of F is not “too small”. This is
based on work of Roche [Roc1] and includes (a,b,e). We note that here the
Whittaker datum is unique up to G-conjugacy because Z(G) is connected.
• In [ABPS1] a (noncanonical) bijection satisfying (b,d,e) was established for

Irr(G,T ), when G is F -split and p is not too small.
• For quasi-split unitary groups with p > 2 a (noncanonical) bijection was

constructed by the author’s PhD student Badea [Bad].

In all cases, a study of affine Hecke algebras constitutes the largest part of the
argument. Thanks to [ABPS2, Sol5], that technique is now available in complete
generality (even outside the principal series). The main novelties of this paper are:

• The construction of the LLC is canonical and uniform, over all
non-archimedean local fields F and all quasi-split reductive F -groups.
• We can handle generic representations, even when not all Whittaker data

for G are equivalent.
• Our LLC lifts to a categorical level, as follows. For each involved Bernstein

block of G-representations, the LLC comes from a canonical equivalence
between that block and the module category of a certain Hecke algebra
defined entirely in terms of Langlands parameters.
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We will now discuss the content of the paper in more detail, at the same time
explaining parts of the proof of the main theorem.

We start with a Bernstein block Rep(G)s in the principal series, and a progener-
ator Πs thereof. Via [Sol5] Rep(G)s is equivalent to the module category of some
Hecke algebra EndG(Πs)

op, which we analyse in Section 1. We show that EndG(Πs)
is isomorphic to an affine Hecke algebra H(s) (extended with a twisted group alge-
bra), and we determine its q-parameters.

In Section 2 we involve the Whittaker datum, and that enables us to make the
aforementioned isomorphism canonical. In the same way we show that the twist in
the extension part of H(s) is actually trivial, so that it is an extended affine Hecke
algebra H(s)◦ o Γs. Here the Bernstein group Ws associated to Rep(G)s appears as
W (R∨s ) o Γs for a root system R∨s .

A continuation of this analysis yields a useful criterion for genericity in terms
of Hecke algebra modules. Let H(W (R∨s ), qλF ) ⊂ H(s)◦ be the finite dimensional
Iwahori–Hecke algebra from the Bernstein presentation of H(s)◦. Recall that its
Steinberg representation St is given by Tsα 7→ −1 for every simple reflection sα ∈
W (R∨s ). Let det : Ws → {±1} be the determinant of the action of Ws on the lattice
of F -rational cocharacters of T . We extend St to a onedimensional representation
(still denoted St) of H(W (R∨s ), qλF ) o Γs by making it det on Γs.

Theorem B. [see Theorem 3.4]
Suppose that π ∈ Rep(G)s has finite length. Then π is (U, ξ)-generic if and only if
the associated H(s)op-module HomG(Πs, π) contains the Steinberg representation of
(H(W (R∨s ), qλF ) o Γs)

op.

The notion of principal series enhanced L-parameters is worked out in Section 4.
There we also recall the Hecke algebras on the Galois side of the LLC, from [AMS3],
and we compute their q-parameters. Via the LLC for tori we associate to Rep(G)s

a unique Bernstein component Φe(G)s
∨

of Φe(G,T ). That yields an extended affine

Hecke algebra H(s∨, q
1/2
F ). The crucial step to pass from the p-adic side to the Galois

side of the LLC is:

Theorem C. [see Theorem 5.3]

There exists a canonical algebra isomorphism H(s)op ∼= H(s∨, q
1/2
F ).

The above steps make Rep(G)s canonically equivalent to the module category of

H(s∨, q
1/2
F ). In [AMS3], Irr

(
H(s∨, q

1/2
F )

)
is parametrized by Φe(G)s

∨
. We want to

use that, but it does not quite suffice because we also need to keep track of genericity
of representations. Therefore we revisit several constructions from [AMS3], in our
setting of the principal series. The main point of Section 6 is to show that through
all those steps the one-dimensional representation det of (H(W (R∨s ), qλF ) o Γs)

op is
transformed into an analogous representation det for an extended graded Hecke al-

gebra. That enables us to normalize the parametrization of Irr
(
H(s∨, q

1/2
F )

)
, so that

it matches generic representations with the desired kind of enhanced L-parameters.
With that settled the preparations are complete, and the bijection in Theorem A

is obtained as

Irr(G)s ↔ Irr
(
EndG(Πs)

op
)
↔ Irr

(
H(s)op

)
↔ Irr

(
H(s∨, q

1/2
F )

)
↔ Φe(G)s

∨
.

The properties of the bijection Irr(G,T ) ↔ Φe(G,T ), actually a few more than
mentioned already, are checked in the remainder of Section 7.
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Several further research topics are suggested by the above theorems.

• Like in [ABPS1, §17], one would like to show that the LLC is functorial
with respect to those homomorphisms of reductive p-adic groups that have
commutative kernel and commutative cokernel. That should be doable with
the methods from [Sol3]. In particular that can be applied to automorphisms
of G from conjugation with elements of Gad(F ), then it will show how the
LLC changes if one modifies the Whittaker datum.
• Suppose that φ is discrete and Z(G) is compact. It is conjectured in [HII]

that the formal degree of the square-integrable representation π(φ, ρ) equals
dim(ρ) times the adjoint γ-factor of φ (with suitable normalizations on both
sides). While this adjoint γ-factor can be computed as in [FOS2, Appendix
A], it may be difficult to determine this formal degree. The reason is that
one would like to use a type, but sometimes it is not known whether a type
for the involved Bernstein block exists.
• Every L-packet conjecturally supports a stable distribution on G. For L-

packets that are entirely contained in Irr(G,T ), one could try to prove that
the distribution

∑
ρ∈Irr(Rφ) dim(ρ) trπ(φ, ρ) is stable.

• A modern geometric approach to the Langlands correspondence [FaSc, Hel,
Zhu] predicts that the derived category of Rep(G) embeds in a derived cat-
egory of coherent sheaves on a stack of Langlands parameters. It would be
interesting to transfer the obtained natural equivalence

Rep(G)s ∼= Mod
(
H(s∨, q

1/2
F )

)
to a setting with such coherent sheaves, that would establish a part of the
conjectures in [FaSc, Hel, Zhu]. It is reasonable to expect that can be done,

because H(s∨, q
1/2
F ) is constructed from Φe(G)s

∨
and because on the under-

lying cuspidal level the local Langlands correspondence for tori achieves it
already.

Acknowledgements. The authors thanks Jessica Fintzen and Tasho Kaletha for
interesting discussions about this paper.

1. Hecke algebras for principal series representations

Let F be a non-archimedean local field, with ring of integers oF and let qF be
the cardinality of the residue field. Let | · |F : F → R≥0 be the norm and fix an

element $F with norm q−1
F . Let G be a quasi-split reductive F -group, where we

include connectedness in the definition of quasi-split. Let S be a maximal F -split
torus in G. We write G = G(F ), S = S(F ) etcetera.

Since G is F -quasi-split, the centralizer T of S in G is a maximal F -torus. It is
also a minimal F -Levi subgroup, a Levi factor of a Borel subgroup B of G. The
Weyl group of (G,S) and (G,S) is

W (G,S) = NG(S)/ZG(S) = NG(S)/T ∼= NG(S)/T = NG(T )/T.

This is also the Weyl group of the root system R(G,S).
Let Tcpt be the unique maximal compact subgroup of T and let Xnr(T ) be the

group of unramified characters of T , that is, the characters that are trivial on Tcpt.
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Pick any smooth character χ0 : T → C× and write χc = χ0|Tcpt . Then χc determines
Xnr(T )χ0 and conversely.

We denote the category of smooth G-representations on complex vector spaces by
Rep(G), and the set of equivalence classes of irreducible objects therein by Irr(G).
The set Xnr(T )χ0 = Irr(T )sT (with sT = [T, χ0]T ) is also known as a Bernstein
component of Irr(T ). From Irr(T )sT one derives a Bernstein component Irr(G)s,
where s = [T, χ0]G. It consists of the irreducible subquotients of the normalized
parabolic inductions

IGB (χ) = indGB
(
χ⊗ δ1/2

B

)
with χ ∈ Xnr(T )χ0.

We recall that the Bernstein block Rep(G)s is the full subcategory of Rep(G) made
up by the representations π such that every irreducible subquotient of π belongs
to Irr(G)s. The standard way to classify Irr(G)s is by describing Rep(G)s as the
module category of a Hecke algebra, and then using the representation theory of
Hecke algebras. We do so with the method that provides maximal generality, from
[Hei, Sol5].

We denote smooth induction with compact supports by ind. The T -representation
indTTcpt(χc)

∼= χc⊗C[T/Tcpt] is a progenerator of Rep(T )sT . By the first and second
adjointness theorems,

Πs = IGB
(
indTTcpt(χc)

)
is a progenerator of Rep(G)s. Let EndG(Πs) be the algebra of G-endomorphisms of
Πs, acting from the left on Πs. Then the functors

(1.1)
Rep(G)s ←→ EndG(Πs)−Mod

ρ 7→ HomG(Πs, ρ)
V ⊗EndG(Πs) Πs 7→ V

are equivalences of categories [Roc2, Theorem I.8.2.1]. This is compatible with par-
abolic induction, in the following sense. Let P = MRu(P ) be a parabolic subgroup
of G, where B ⊂ P , M is a Levi factor of P and T ⊂M . The diagram

(1.2)

Rep(G)s → EndG(Πs)−Mod

↑ IGP ↑ ind
EndG(Πs)
EndM (ΠsM

)

Rep(M)sM → EndM (ΠsM )−Mod

commutes, see [Sol2, Condition 4.1 and Lemma 5.1].
The algebra EndG(Πs) was investigated in [Sol5], in larger generality. We will

make it more explicit in the current setting. Since dimχ0 = 1, χ|Tcpt is irreducible
and we may use [Sol5, §10] with E = E1 = C and σ1 = σ|Tcpt = χc. For comparison
with [Sol5] we also note that the group

Xnr(T, χ0) = {χ ∈ Xnr(T ) : χ⊗ χ0
∼= χ0}

is trivial. We write

Ws = StabW (G,S)(sT ) = StabW (G,S)(Xnr(T )χ0) = StabW (G,S)(χc).

This group acts naturally on the complex variety

Ts := χ0Xnr(T ).

by (w · χ)(t) = χ(w−1tw). The theory of the Bernstein centre [BeDe] says that

Z(Rep(G)s) ∼= Z
(
EndG(Πs)

) ∼= O(Xnr(T )χ0)Ws = O(Xnr(T )χ0/Ws).
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The algebra EndG(Πs) contains O(Xnr(T )χ0) = O(Ts) as maximal commutative
subalgebra, and as module over that subalgebra it is free with a basis {Nw : w ∈Ws}
[Sol5, Theorem 10.9].

We note that the inertial equivalence class s for G can arise from different inertial
equivalence classes for T . Namely, the possibilities are wsT = [T,wχ0]T with w ∈
W (G,S). Thus ws = s as inertial equivalence classes for G, but they are represented
by different subsets of Irr(T ). For any w ∈ W (G,S), the G-representations Πs and
Πws = IGB (indTTcpt(wχc)) are isomorphic, see [Ren, §VI.10.1]. That yields an algebra
isomorphism

(1.3) EndG(Πs) ∼= EndG(Πws),

unique up to inner automorphisms of EndG(Πs). In principle that suffices to compare
the functors HomG(Πs, ?) and HomG(Πws, ?) on the level of isomorphism classes of
representations. Nevertheless, we will have to make (1.3) explicit later, and we
prepare for that now.

Proposition 1.1. Let w ∈W (G,S) be of minimal length in wWs. The isomorphism
Πs
∼= Πws can be chosen so that the induced algebra isomorphism (1.3) restricts to

O(Ts)→ O(Tws) : f 7→ f ◦ w−1.

Proof. Let w = sr · · · s2s1 be a reduced expression in the Weyl group W (G,S). Then
each simple reflection sj has minimal length in sjWsj−1···s1s. In this way we reduce
the proposition to the case w = sα for a simple root α ∈W (G,S), with sαsT 6= sT .

Let Gα ⊂ G be the subgroup generated by T ∪ Uα ∪ U−α. As

Πs = IGBGαI
Gα
B∩Gα indTTcpt(χc)

and similarly for Πws, it suffices to work with the reductive group Gα and its Borel
subgroup B ∩ Gα. Equivalently, we may (and will) assume that R(G,S) has rank
one. In this rank one setting, an isomorphism

(1.4) Πs
∼= Πsαs

is exhibited in [Ren, Lemme VI.10.1]. We analyse that construction.
By [Ren, Corollaire VII.1.3]

(1.5) IGB : Rep(T )sT → Rep(G)s is an equivalence of categories.

Let JG
B

: Rep(G) → Rep(T ) be the normalized Jacquet restriction functor with

respect to the opposite Borel subgroup B. As sT 6= sαsT , Bernstein’s geometric
lemma [Ren, Théorème VI.5.1] entails that

(1.6) JG
B
IGBπ

∼= π ⊕ s−1
α · π for all π ∈ Rep(T )sT .

Let prsT : Rep(T )→ Rep(T )sT be the projection provided by the Bernstein decom-
position. From (1.6) we see that

(1.7) prsT J
G
B

: Rep(G)s → Rep(T )sT is the inverse of (1.5).

It follows (slightly varying on the proof of [Ren, Lemme VI.10.1] by using B instead
of B) that (1.4) is determined by the choice of a T -isomorphism

(1.8) prsT J
G
B

Πsαs
∼= indTTcpt(χc).
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Pick a representative for sα in NG(T ). From (1.6) with π = indTTcpt(sαχc) we see that

evaluation at sα in IGB indTTcpt(sαχc) provides an isomorphism of T -representations

(1.9) evsα : prsJ
G
B

Πsαs → s−1
α · indTTcpt(sαχc).

Further we have a canonical T -isomorphism

(1.10)
s−1
α · indTTcpt(sαχc) → indTTcpt(χc)

f 7→ [t 7→ f(sαts
−1
α )]

.

The composition of (1.9) and (1.10) gives us (1.8). Applying (1.5), we obtain (1.4).
The subalgebra O(Ts) of EndG(Πs) arises as IGB

(
O(Ts)

)
, where O(Ts) acts on

indTTcpt(χc)
∼= O(Ts) by multiplication, see [Sol5]. From (1.10) we see that

s−1
α · indTTcpt(sαχc) is naturally isomorphic to the regular representation of O(Ts).

Similarly O(Tws) acts on indTTcpt(sαχc)
∼= O(Tws) by multiplication, and it be-

comes a subalgebra of EndG(Πsαs) via IGB . From (1.6) we see that its action on

s−1
α · indTTcpt(sαχc), obtained via JG

B
IGB , is

s−1
α : O(Tsαs)→ O(Ts)

followed by the regular representation. In other words, the action of f ∈ O(Ts) on
s−1
α · indTTcpt(sαχc) via (1.8) coincides with the action of sα(f) = f ◦ s−1

α ∈ O(Ts) on

s−1
α · indTTcpt(sαχc) via (1.10). Applying the normalized parabolic induction functor

IGB , we find that IGB (f) ∈ EndG(Πs) is transformed into IGB (f ◦ s−1
α ) ∈ EndG(Πsαs)

by (1.4). �

We resume the analysis of End(Πs) with s = [T, χ0]G. Let Rs,µ be the set of roots
α ∈ R(G,S) for which Harish-Chandra’s function µα is not constant on Xnr(T )χ0.
Then Rs,µ is a root system and W (Rs,µ) is a normal subgroup of Ws [Hei, Proposition
1.3]. As explained in [Sol5, §3], we can modify χ0 inside Xnr(T )χ0 so that W (Rs,µ)
fixes χ0. Let R+

s,µ be the positive system determined by the chosen Borel subgroup
B of G. Then

Ws = W (Rs,µ) o Γs

where Γs denotes the stabilizer of R+
s,µ in Ws. Following [Sol5, §3], we use the lattice

T/Tcpt
∼= X∗(Xnr(T )), and the dual lattice (T/Tcpt)

∨ ∼= X∗(Xnr(T )). For α ∈ Rs,µ

let h∨α be the unique generator of T/Tcpt ∩Qα∨ such that |α(h∨α)|F > 1. We put

R∨s = {h∨α : α ∈ Rs,µ} ⊂ T/Tcpt

and we let Rs ⊂ (T/Tcpt)
∨ be the dual root system. By [Sol5, Proposition 3.1]

Rs =
(
R∨s , T/Tcpt, Rs, (T/Tcpt)

∨)
is a root datum with Weyl group W (R∨s ) = W (Rs,µ). Moreover Ws acts naturally
on Rs and Γs is the Ws-stabilizer of the basis of Rs determined by B.

The complex variety Ts is isomorphic to Xnr(T ) via multiplication with χ0. Let
H(s)◦ be the vector space O(Ts)⊗C[W (R∨s )], identified with O(Xnr(T ))⊗C[W (R∨s )]
via Xnr(T )→ Ts. Given label functions λ, λ∗ and q ∈ C×, we build the affine Hecke
algebra H(Rs, λ, λ

∗, q) (see for instance [AMS1, Proposition 2.2] with zj specialized
to q). Via the above isomorphism of vector spaces we make H(s)◦ into an algebra
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which is isomorphic to H(Rs, λ, λ
∗, q). The group Γs acts on H(s)◦ by algebra

isomorphisms:

(1.11) γ(f ⊗ w) = f ◦ γ−1 ⊗ γwγ−1 f ∈ O(Ts), w ∈W (R∨s ).

That gives rise to a crossed product algebra

H(s) := H(s)◦ o Γs,

which we would like to be isomorphic with EndG(Πs).
For sα with α ∈ Rs,µ simple, and more generally for any w ∈ W (R∨s ), an ele-

ment Nw ∈ EndG(Πs) is constructed in [Sol5, Lemma 10.8 and remarks], it is called

q
−λ(α)/2
F T ′w over there. It can be determined uniquely by the choice of a good maxi-

mal compact subgroup K of G, associated to a special vertex in apartement for T
in the Bruhat–Tits building of (G, F ).

For γ ∈ Γs we have to be more careful, mainly because it need not fix χ0. (The
group Ws fixes χ0 when G is F -split, but the argument in that case does not gen-
eralize to G that only split over a ramified extension of F .) Since Xnr(T, χ0) = 1,
there exists a unique χγ ∈ Xnr(T ) such that γ · χ0 = χ0 ⊗ χγ . Then χγ is fixed by
W (Rs) [Sol5, Lemma 3.5]. The element Jγ from [Sol5, Theorem 10.9] comes from
Aγ in [Sol5, §5]. From [Sol5, start of §5.1] we see that Aγ depends on χγ (which is
unique) and on some

ργ ∈ HomT (γχ0, χ0 ⊗ χγ).

For the latter we have a canonical choice, namely the identity on C. Apart from
that Aγ depends only on the choice of K.

Theorem 1.2. The above intertwining operators NwJγ ∈ EndG(Πs) give rise to an
algebra isomorphism

EndG(Πs) ∼= H(s)◦ oC[Γs, \s],

for a 2-cocycle \s : Γ2
s → C×, suitable Ws-invariant label functions λ : R∨s →

Z>0, λ
∗ : R∨s → Z≥0 and q-base q

1/2
F . This isomorphism is determined by the choice

of a maximal compact subgroup K of G.

Proof. The isomorphism between H(s)◦ and the subalgebra of EndG(Πs) generated
by O(Ts) and the Nw with w ∈ W (R∨s ) is given in [Sol5, Theorem 10.9]. The
operators Jγ (γ ∈ Γs) in [Sol5, Theorem 10.9] coincide with the Aγ ∈ EndG(Πs)
from [Sol5, §5.1]. The multiplication rules for the Aγ are given in [Sol5, Proposition
5.2.a]. As Xnr(T, χ0) = 1, we get

AγAγ′ = \s(γ, γ
′)Aγγ′ γ, γ′ ∈ Γs,

for some \s(γ, γ
′) ∈ C×. By the associativity of the multiplication, \s is a 2-cocycle.

The other parts of [Sol5, Proposition 5.2] also simplify, because χγ is fixed byW (R∨s ).
They show that

AγAw = Aγw and AwAγ = Awγ for γ ∈ Γs, w ∈W (R∨s ).

This implies

(1.12) A−1
γ AwAγ = Aγ−1wγ = Aγ−1AwAγ .

In view of how Nw is constructed from Aw [Sol5, §10], the relation (1.12) entails
A−1
γ NwAγ = Nγ−1wγ . That and [Sol5, (5.2)] show that Γs acts on the image of
H(s)◦ in EndG(Πs) as in (1.11). Combining that with [Sol5, Theorem 10.9] yields
the required algebra isomorphism. �
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An important part of the structure of EndG(Πs) consists of the labels λ(h∨α), λ∗(h∨α)

with α ∈ Rs,µ. Here the eigenvalues of Nsα are q
λ(h∨α)/2
F and −q−λ(h∨α)/2

F . When
we recall the known formulas for these labels, it will be convenient to consider all
α ∈ R(G,S) such that sα ∈Ws.

Suppose first that G is F -split. By [Sol7, Proposition 4.3], α ∈ Rs,µ if and only if
χ ◦ α∨ : F× → C× is unramified. Further, by [Sol7, Theorem 4.4]

(1.13) λ
(
α∨($−1

F )
)

= λ∗
(
α∨($−1

F )
)

= 1.

Now we suppose that G quasi-split but not necessarily split. A special role is played
by pairs of roots in type 2A2n, such that the diagram automorphism permutes the
pair. We settle the other cases before we turn to those exceptional roots.

Let Fα be the splitting field of α ∈ R(G,S) and let f(Fα/F ) be the residual degree
of Fα/F . Assume that α is not exceptional, then the issue can be reduced to (1.13).
Indeed, by [Sol7, §4.2], α ∈ Rs,µ if and only if χ ◦ α∨ : F×α → C× is unramified.
Moreover, by [Sol7, Corollary 4.5]

(1.14) λ
(
α∨($−1

Fα
)
)

= λ∗
(
α∨($−1

Fα
)
)

= f(Fα/F ).

In most cases h∨α = α∨($−1
Fα

) in T/Tcpt, and sometimes α∨($−1
Fα

) = (h∨α)2 in T/Tcpt.
In the latter cases, for instance PGL2(F ),

(1.15) λ(h∨α) = f(Fα/F ), λ∗(h∨α) = 0.

The exceptional cases occur only when Rs,µ has a component of type BCn which
comes from a component of type 2A2n in R(G,S). Consider an indivisible root
α ∈ Rs,µ which comes from two adjacent roots in 2A2n. As explained in [Sol7,
§4.2], the computation of the parameters for this α can be reduced to a quasi-
split group SU3(Fα/Eα). Moreover, since the groups of unramified characters of
SU3(Fα/Eα), U3(Fα/Eα) and PU3(Fα/Eα) are naturally identified, the reductions
from [Sol7, §2] apply to these groups in the strong sense that in these instances
of [Sol7, Proposition 2.4] no doubling or halving of roots can occur. Consequently
the labels for α ∈ R(G,S) are precisely f(Eα/F ) times the labels for α as root for
U3(Fα/Eα).

For U3(Fα/Eα) all q-parameters for principal series representations were com-
puted via types by the author’s PhD student Badea [Bad]. The outcome can be
summarized as follows.

• If Fα/Eα is unramified and χc is trivial on Tcpt∩SU3(Fα/Eα), then α ∈ Rs,µ

and λ(h∨α) = 3, λ∗(h∨α) = 1.
• If Fα/Eα is unramified and χc is nontrivial on Tcpt ∩ SU3(Fα/Eα), then
α ∈ Rs,µ and λ(h∨α) = λ∗(h∨α) = 1.
• If Fα/Eα is ramified, then α ∈ Rs,µ if and only if χ ◦ α∨ : F×α → C× is

nontrivial on o×Eα . (We note that χ2 ◦α∨|o×Eα = 1 because sαχc = χc.) When

this condition is fulfilled, we have λ
(
α∨($−1

Eα
)
)

= λ∗
(
α∨($−1

Eα
)
)

= 1 and

λ(h∨α) = 1, λ∗(h∨α) = 0.

We warn that in [Bad] it is assumed throughout that the residual characteristic of
F is not 2. For unramified characters χ this restriction is not necessary, because in
those cases the Hecke algebras and the parameters were already known from [Bor1].
However, for other χ the tricky calculations in [Bad, §2.7 and §5.2.1] do not work in
residual characteristic 2.
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For F of arbitrary characteristic, the Hecke algebra parameters for U3(Fα/Eα)
can also be determined via the endoscopic methods from [Mœ], see [Sol7, Theorem
4.9]. That shows that the above formulas also apply when the residual characteristic
of F is 2.

2. Whittaker normalization

Unfortunately the isomorphism from Theorem 1.2 is not entirely canonical, be-
cause it depends on a good maximal compact subgroup K of G, and often G has
more than one conjugacy class of such subgroups. Further, it may be expected that
the 2-cocycle \s of Γs is trivial, because G is quasi-split. We will fix both issues
by using a Whittaker datum. Let U be the unipotent radical of B (since all Borel
subgroups of G are conjugate, the choice of B is inessential.) Let ξ : U → C×
be a nondegenerate smooth character, which means that it is nontrivial on every
root subgroup Uα with α ∈ R(G,S) simple. Then the G-conjugacy class of (U, ξ) is
Whittaker datum for G.

Recall that a Whittaker functional for π ∈ Rep(G) is an element of

HomU (π, ξ) ∼= HomG

(
π, IndGU (ξ)

)
,

where Ind denotes smooth induction. We say that π is generic, or more precisely
(U, ξ)-generic, if it admits a nonzero Whittaker functional. It is well-known [Rod,
Shal] that every representation IGB (χ) with χ ∈ Irr(T ) is generic, and that its space
of Whittaker functionals has dimension one. For the upcoming arguments we need
a larger but modest supply of generic representations.

Proposition 2.1. Suppose that R(G,S) and Rs,µ have rank one. Then |Ws| = 2
and by Theorem 1.2 H(s) is an affine Hecke algebra with a unique positive root h∨α.
Let StH(s) be the Steinberg representation of H(s), the unique essentially discrete
series representation with an O(Ts)-weight of the form χ0|α|sF with s ∈ R.

(a) The G-representation Sts := StH(s) ⊗EndG(Πs) Πs is generic.
(b) Suppose that λ(h∨α) 6= λ∗(h∨α). In that case H(s) has a unique essentially discrete

series representation StH(s)− with an O(Ts)-weight of the form χ0|α|ia+s
F where

s, a ∈ R and |α(h∨α)|iaF = −1, see [Sol4, §2.2]. Then the G-representation Sts− :=
StH(s)− ⊗EndG(Πs) Πs is generic.

(c) Suppose that α] ∈ 2(T/Tcpt)
∨ and λ(h∨α) = λ∗(h∨α). Choose a ∈ R as in part (b).

Then IGB (χ0|α|iaF ) is a direct sum of two irreducible subrepresentations. One of
them, say πgs−, is (U, ξ)-generic and the other, say πns−, is not.

(d) The irreducible G-representations in parts (a-c) are unitary.

Proof. (a) As R(G,S) and Rs,µ have the same rank, the equivalence of categories
(1.1) translates “essentially square-integrable” into “essentially discrete series” [Sol5,
Theorem 9.6.c]. In particular Sts is an essentially square-integrableG-representation.
The assumptions of the proposition amount to the assumptions for [Shah, Theo-
rem 8.1]. Part (b) of that result provides the desired conclusion, at least when
char(F ) = 0. The version of [Shah, Theorem 8.1] with char(F ) > 0 was established
in [Lom, Theorem 5.5].
(b) This is analogous to part (a).

(c) It is well-known (see for instance [Sol4, §2.2]) that ind
H(s)
O(Ts)(χ0|α|iaF ) is a di-

rect sum of two onedimensional representations, say πgH(s)− and πnH(s)−. Writing
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π
g/n
s− = π

g/n
H(s)− ⊗EndG(Πs) Πs, we obtain

IGB (χ0|α|iaF ) = πgs− ⊕ πns−.

Since dim HomU

(
IGB (χ0|α|iaF ), ξ

)
= 1, exactly one these direct summands is generic

(which one depends on ξ). By renaming if necessary, we can make πgs− generic.
(d) This holds because these representations are tempered and irreducible [Ren,
Corollaire VII.2.6]. �

2.1. Modules of Whittaker functionals.
For our purposes it is more convenient to analyse a perspective on generic repre-

sentations which is dual to the traditional view. For (π, V ) ∈ Rep(G) let V † be the
smooth Hermitian dual space, that is, the vector space of all conjugate-linear maps
λ : V → C which factor through V → V K for some compact open subgroup K of
G. The Hermitian dual representation π† on V † is defined by

(π†(g)λ)(v) = λ(π(g−1)v) ∀v ∈ V.

Equivalently, π† is the smooth contragredient of the complex conjugate of π. If π is
unitary and admissible, then π† is isomorphic to π via the G-invariant inner product.

Lemma 2.2. If π ∈ Rep(G)s, then also π† ∈ Rep(G)s.

Proof. Let s′ = [M,σ]G be any inertial equivalence class different from s. We may
assume that σ is unitary, so σ† ∼= σ. Let P ⊂ G be a parabolic subgroup with Levi
factor M and let M1 ⊂ M be the subgroup generated by all compact subgroups of
M . Then IGP (indMM1

(σ)) is a progenerator of Rep(G)s
′
, see [Ren, Théorème VI.10.1].

With Bernstein’s second adjointness we compute

(2.1) HomG

(
IGP (indMM1

(σ)), π†
) ∼= HomM

(
indMM1

(σ), JG
P

(π†)
) ∼=

HomM

(
indMM1

(σ), (JGP π)†
) ∼= HomM1

(
σ, (JGP π)†

) ∼= HomM1(JGP (π), σ).

Since [M,σ]G 6= s, JGP (π) does not have any irreducible subquotient isomorphic with
σ or an unramified twist of σ. Hence (2.1) is zero. This means that the component

of π† in Rep(G)s
′

is zero for any s′ 6= s. �

From [BuHe, (2.1.1)] one sees that the Hermitian dual of indGU (ξ) is IndGU (ξ), with
respect to the pairing

IndGU (ξ)× indGU (ξ) → C
〈f1, f2〉 =

∫
U\G f1(g)f2(g)dg

.

Hence there is a natural isomorphism

(2.2) HomG

(
π, IndGU (ξ)

) ∼= HomG(indGU (ξ), π†).

By Lemma 2.2 and (1.1), the right hand side is isomorphic with

(2.3) HomEndG(Πs)

(
HomG(Πs, indGU (ξ)),HomG(Πs, π

†)
)
.

Thus any nonzero Whittaker functional for π yields a nonzero element of (2.3).
This prompts us to analyse HomG(Πs, indGU (ξ)) as EndG(Πs)

op-module. By [BuHe,
Theorem 2.2] there are canonical isomorphisms of T -representations

(2.4) JG
B

indGU (ξ) ∼= indTU∩T (ξ) = indT{e}(triv).
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From that we compute

(2.5) HomG

(
Πs, indGU (ξ)

)
= HomG

(
IGB (indTTcpt(χc)), indGU (ξ)

) ∼=
HomT (indTTcpt(χc), J

G
B

indGU (ξ)
) ∼= HomT (indTTcpt(χc), indT{e}(triv)

)
.

The Bernstein decomposition of Rep(T ) entails that only the part of indT{e}(triv) on

which Tcpt acts according to χc contributes to the right hand side. Hence (2.5) is
naturally isomorphic with

(2.6) HomT

(
indTTcpt(χc), indTTcpt(χc)

) ∼= HomTcpt(χc, indTTcpt(χc)
) ∼= indTTcpt(χc).

This vector space contains a canonical unit vector, namely χc ∈ indTTcpt(χc) or equiv-

alently 1 ∈ O(Ts). We use the boldface to indicate that it is an element of (2.6),
not of EndG(Πs).

We want to normalize our intertwining operators Nw so that they act on 1 in an
easy way. Any f ∈ O(Ts) ∼= indTTcpt(χc) can be regarded as element of EndG(Πs),

namely IGB applied to multiplication by f . The action of that on (2.6) is again
multiplication by f . Thus (2.23) is free of rank one as O(Ts)-module, and 1 forms
a canonical basis.

Let C(Ts) be the field of rational functions on Ts, the quotient field of O(Ts). It
follows from Bernstein’s geometric lemma [Ren, Théorème VI.5.1] that

(2.7) EndG
(
IGBC(Ts)

) ∼= EndG
(
IGBO(Ts)

)
⊗O(Ts) C(Ts),

see [Sol5, Lemma 5.3]. The natural isomorphisms (2.5) and (2.6) extend to

(2.8) HomG

(
IGBO(Ts), indGU (ξ)

)
⊗O(Ts) C(Ts) ∼= C(Ts),

and as module over (2.7) this is an extension of scalars of (2.6). The advantage of
this setup is:

Proposition 2.3. Theorem 1.2 extends to an algebra isomorphism

EndG
(
IGBC(Ts)

) ∼= (C(Ts) oW (R∨s )
)
oC[Γs, \s].

Proof. This is a direct consequence of Theorem 1.2 and §5.1 (in particular Corollary
5.8) of [Sol5]. �

In Proposition 2.3 the basis elements of C[Γs, \s] are the same Jγ = Aγ as in
Theorem 1.2. The basis elements of

C[W (R∨s )] ⊂ EndG
(
IGBC(Ts)

)
are the Tw from [Sol5, Proposition 5.5], which are expressed in terms of the Nw

in Lemma 10.8 and the preceding remarks of [Sol5]. Proposition 2.3 enables us to
analyse the actions on (2.6) and on (2.8) more explicitly.

For w ∈W (R∨s ), γ ∈ Γs and f ∈ O(Ts):

(2.9)
f · TwJγ = 1 · fTwJγ = (1 · TwJγ) · (J−1

γ T −1
w fTwJγ)

= (1 · TwJγ) · (f ◦ wγ) = (f ◦ wγ)(1 · TwJγ)

in (2.8). Notice that 1 · Jγ must be invertible in O(Ts), because Jγ is invertible in
EndG(Πs).

We write θnα for θnh∨α , where n ∈ Z and α ∈ R∨s . We also abbreviate

qα = q
(λ(h∨α)+λ∗(h∨α))/2
F and qα∗ = q

(λ(h∨α)−λ∗(h∨α))/2
F .
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Proposition 2.4. For each simple root h∨α ∈ R∨s there exists nα ∈ Z such that
1 · Tsα = −θnαα in (2.8).

Proof. The operators Nsα ∈ EndG(Πs) and Tsα arise by parabolic induction from
the analogous elements for the Levi subgroup Gα of G generated by T ∪ Uα ∪ U−α.
Hence it suffices to work in Gα, which means that we may assume that R(G,S) and
Rs,µ have rank one.

First we consider the cases where qα∗ 6= 1, or equivalently λ(h∨α) 6= λ∗(h∨α). From
[Sol5, (5.19)] we know that Tsα(qα − θ−α)(qα∗ + θ−α) ∈ EndG(Πs). Hence we can
write

1 · Tsα = f1(qα − θ−α)−1(qα∗ + θ−α)−1 with f1 ∈ O(Ts).

The relations T 2
sα = 1 and (2.9) imply that

1 = (1 · Tsα) sα(1 · Tsα) =
f1 sα(f1)

(qα − θα)(qα∗ + θα)(qα − θ−α)(qα∗ + θ−α)
.

It follows that there exist ε ∈ {±1} and nα ∈ Z such that

f1 = εθnαα(qα − θ±α)(qα∗ + θ±′α),

for suitable signs ±,±′. Equivalently

(2.10) 1 · Tsα = εθnαα

( qα − θα
qα − θ−α

)η( qα∗ + θα
qα∗ + θ−α

)η′
=: εθnααf2,

where η, η′ ∈ {0, 1}.
Under our assumption α] ∈ 2(T/Tcpt)

∨ and sα fixes any χ ∈ Xnr(T ) with χ(h∨α) =
−1. Notice that f2(χ) = 1 whenever θα(χ) ∈ {±1}. As in [Sol5, 10.7.b] define

(2.11) εα =

{
1 if IGB (evχ)Tsα = −IGB (evχ),
0 otherwise.

By [Sol5, Lemma 10.8]

(2.12) q
λ(h∨α)/2
F Nsα + 1 = (Tsαθ−εαα + 1)(θαqα − 1)(θαqα∗ + 1)(θ2α − 1)−1

belongs to EndG(Πs). In particular

(2.13) 1 · (qλ(h∨α)/2
F Nsα + 1) =

(εθ(nα−εα)αf2 + 1)(θαqα − 1)(θαqα∗ + 1)

θ2α − 1

lies in HomG

(
Πs, indGU (ξ)

) ∼= O(Ts). Specializing the numerator of (2.13) at χ′ with
θα(χ′) = 1 gives (ε+ 1)(qα − 1)(qα∗ + 1). Since qα > 1 and (2.13) has no poles, this
implies ε = −1.

Let Gder be the derived group of G and write sder = [χ|T∩Gder
, T ∩ Gder]Gder

. By
construction H(sder) is the subalgebra of H(s) generated by C[T ∩Gder/Tcpt ∩Gder]
and Nsα . From [Sol4, §2.2] we recall that StH(s) : H(s)→ C is given on H(sder) by

StH(s)(Nsα) = −q−λ(h∨α)/2
F , StH(s)(θnα) = q−nα .

From Proposition 2.1.a,d we know that

HomG(Sts, IndGU (ξ)) ∼= HomG(indGU (ξ),Sts) has dimension 1.

As in (2.3), any nonzero Whittaker functional yields a surjection

HomG(Πs, indGU (ξ)) ∼= O(Ts)→ StH(s).
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This is an O(Ts)-module homomorphism, so up to rescaling it must be evaluation
at χSt, the unique O(Ts)-weight of StH(s). Since H(W (R∨s ), qλF ) acts on StH(s) via
the sign representation,

(2.14) θx · (qλ(h∨α)/2
F Nsα + 1) ∈ ker(evχSt) ∀x ∈ T/Tcpt.

For x = 0 we can make that more explicit with (2.12):

(2.15) 1 · (qλ(h∨α)/2
F Nsα + 1) = (θ0 − θ(nα−εα)αf2)(θαqα − 1)(θαqα∗ + 1)(θ2α − 1)−1

=
(qα − θ−α)η(qα∗ + θ−α)η

′ − θ(nα−εα)α(qα − θα)η(qα∗ + θα)η
′

(qα − θ−α)η(qα∗ + θ−α)η′
(θαqα − 1)(θαqα∗ + 1)

(θ2α − 1)

When η = 1, this reduces to

(qα − θ−α)(qα∗ + θ−α)η
′ − θ(nα−εα)α(qα − θα)(qα∗ + θα)η

′

(qα∗ + θ−α)η′
θα(θαqα∗ + 1)

(θ2α − 1)
.

Evaluation at χSt sends this element to

−qεα−nαα (qα − q−1
α )(qα∗ + q−1

α )η
′
q−1
α (q−1

α qα∗ + 1)

(qα∗ + qα)(q−2
α − 1)

6= 0.

That contradicts (2.14), so that η must be 0.
We recall from [Sol4, proof of Theorem 2.4.c] that StH(s)− is given on H(sder) by

StH(s)−(Nsα) = −q−λ(h∨α)/2
F , StH(s)−(θnα) = (−q−1

α∗ )n.

By Proposition 2.1.b,d,

HomG(Sts−, IndGU (ξ)) ∼= HomG(indGU (ξ),Sts−) has dimension 1.

As above, this gives a surjection

HomG(Πs, indGU (ξ)) ∼= O(Ts)→ StH(s)−,

which (up to rescaling) is evaluation at the O(Ts)-weight χSt− of StH(s)−. Then
ker(evχSt−) contains

(2.16) 1 · (qλ(h∨α)/2
F Nsα + 1) = 1 · (Tsαθ−εαα + 1)(θαqα − 1)(θαqα∗ + 1)(θ2α − 1)−1

=
(
θ0 − θ(nα−εα)α(qα∗ + θα/qα∗ + θ−α)η

′)
(θαqα − 1)(θαqα∗ + 1)(θ2α − 1)−1

=
(qα∗ + θ−α)η

′ − θ(nα−εα)α(qα∗ + θα)η
′

(qα∗ + θ−α)η′
(θαqα − 1)(θαqα∗ + 1)

(θ2α − 1)
.

When η′ = 1, (2.16) simplifies to

(qα∗ + θ−α − θ(nα−εα)α(qα∗ + θα))
(θαqα − 1)θα

(θ2α − 1)
.

Evaluation at χSt− results in

(−q−1
α∗ )nα−εα(qα − q−1

α∗ )(−q−1
α∗ qα − 1)q−1

α∗
q−2
α∗ − 1

.

This is nonzero because qα ≥ qα∗ > 1. But then (2.16) does not lie in the kernel of
evχSt− , a contradiction. Therefore η′ must be 0.
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Now we consider the cases with qα∗ = 1, or equivalently λ(h∨α) = λ∗(h∨α). Then
we can omit all factors qα∗ + θ±α, and we can replace θ2α − 1 by θα − 1. The above
argument with StH(s) still applies, and shows that η = 0. �

For the moment we continue to work in Gα. Assume that α] ∈ 2(T/Tcpt)
∨ and

λ(h∨α) = λ∗(h∨α). The onedimensional H(s)-representation πgH(s)− from Proposition

2.1.c extends canonically to a representation of H(s) + TsαH(s), because Tsα does
not have a pole at |α|iaF . In particular πgH(s)− determines a character of the order

two group 〈Tsα〉. We define

(2.17) εα =

{
1 πgH(s)−|〈Tsα 〉 = triv,

0 πgH(s)−|〈Tsα 〉 = sign.

This complements the definition of εα when α] ∈ 2(T/Tcpt)
∨ and λ(h∨α) 6= λ∗(h∨α),

see (2.11). Together these provide a function

(2.18) ε? : {h∨α ∈ R∨s simple, α] ∈ 2(T/Tcpt)
∨} → {0, 1}.

Lemma 2.5. (a) The function (2.18) is Γs-invariant.
(b) Take α in the domain of ε? and let nα be as in Proposition 2.4. Then nα − εα

is even.

Proof. (a) For γ ∈ Γs, represented in NG(T ), we have γGαγ
−1 = Gγ(α) and

JγTsαJ−1
γ = Tsγ(α) . Further

Ad(γ)IGαB∩Gα(χ0|α|zF ) ∼= I
Gγ(α)
B∩Gγ(α)(χ0|α|zF ) for any z ∈ C.

When λ(h∨α) = λ∗(h∨α), we apply this with z = ia. We note that IGGαB(πgs−) is generic

while IGGαB(πns−) is not. As IGGαB(πgs−) = IGGγ(α)BAd(γ)(πgs−), we conclude that πgs−
for Gγ(α) is obtained from πgs− for Gα by Ad(γ). Hence εγ(α) = εα.

When λ(h∨α) 6= λ∗(h∨α), the same argument works with the irreducible represen-

tation IGαB∩Gα(χ0|α|iaF ).

(b) Suppose that λ(h∨α) 6= λ∗(h∨α). Recall from the proof of Proposition 2.4 that
εf2 = −1. Specializing the numerator of (2.13) at χ with θα(χ) = −1 gives

(−(−1)nα−εα + 1)(−qα − 1)(−qα∗ + 1) = ((−1)nα−εα − 1)(qα + 1)(1− qα∗).
Again this must be 0 by (2.13). Using qα∗ 6= 1 we find that nα − εα is even.

Suppose that λ(h∨α) = λ∗(h∨α) and πgH(s)−|〈Tsα 〉 = triv. By Proposition 2.1.d, any

Whittaker functional for πgH(s)− gives a surjection

HomG(Πs, indGU (ξ)) ∼= O(Ts)→ πgH(s)−.

As O(Ts)-module homomorphism it is (up to scaling) evaluation at χ− := χ0|α|iaF ,
a character such that θα(χ−) = −1. Then ker(evχ−) contains

1 · (Tsα − 1) = −θnαα − θ0,

so nα is odd. Recall that εα = 1 in this case.
Suppose that λ(h∨α) = λ∗(h∨α) and πgH(s)−|〈Tsα 〉 = sign. Then ker(evχ−) contains

1 · (Tsα + 1) = −θnαα + θ0,

so nα is even. Here εα = 0, so again nα − εα is even. �
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2.2. Normalization of intertwining operators.
With Lemma 2.5.a, we can extend ε? to a Ws-invariant function on {h∨α ∈ R∨s :

α] ∈ 2(T/Tcpt)
∨}. In [Sol5], εα was only defined when λ(h∨α) 6= λ∗(h∨α), implicitly

saying that it is 0 otherwise. We can just as well use εα for any simple h∨α with
α] ∈ 2(T/Tcpt)

∨, Lemma 2.5.a ensures that all the computations from [Sol5] remain
valid. In particular we can now (re)define Nsα ∈ EndG(Πs) by

(2.19) q
λ(h∨α)/2
F Nsα + 1 = (Tsαθ−εαα + 1) (θαqα − 1)(θαqα∗ + 1)(θ2α − 1)−1

for any simple h∨α with α] ∈ 2(T/Tcpt)
∨. The analogous formula when α] 6∈

2(T/Tcpt)
∨ is slightly simpler:

(2.20) q
λ(h∨α)/2
F Nsα + 1 = (Tsα + 1) (θαqα − 1)(θα − 1)−1.

Recall that the isomorphism in Theorem 1.2 was determined by the choice of a
good maximal compact subgroup K of G, associated to a special vertex in aparte-
ment for T in the Bruhat–Tits building of (G, F ).

Lemma 2.6. The good maximal compact subgroup K can be replaced by a G-
conjugate, such that the isomorphism in Theorem 1.2 satisfies, for all simple roots
h∨α ∈ R∨s :

1 · Tsαθ−εαα = −1 and 1 ·Nsα = −q−λ(h∨α)/2
F 1.

Proof. Recall the integers nα from Proposition 2.4. We will tacitly put εα = 0
when α] 6∈ 2(T/Tcpt)

∨. Select y in HomZ(ZRs,Z) so that 〈y, α]〉 = nα − εα for

every simple root α] ∈ Rs. By Lemma 2.5.b y can be extended to an element
of HomZ((T/Tcpt)

∨,Z) = T/Tcpt, which we still denote by y. The automorphism
Ad(θy) of H(s)◦ extends uniquely to an automorphism of H(s)◦⊗O(Ts) C(Ts), which
satisfies

(2.21) Ad(θy)(Tsαθ−εα) = Tsαθsα(y)−yθ−εα = Tsαθ(−nα)α.

By Proposition 2.4

(2.22) 1 ·Ad(θy)(Tsαθ−εαα) = −1.
For any representative yG of y in T , K ′ = Ad(yG)K is another good maximal com-
pact subgroup of G. If we replace K by K ′, then we must replace the representatives
w̃ ∈ K for w ∈ W (G,S), which are used in the constructions behind Theorem 1.2,
by representatives in K ′. Which choice in K ′ does not matter, we take

Ad(y−1
G )w̃ = w̃w−1(y−1

G )yG ∈ K ′.
For a simple root, that means

Ad(yG)s̃αTcpt = s̃α (h∨α)〈y,α
]〉 ∈ NG(T )/Tcpt.

According to [Hei, Proposition 3.1], the effect of this replacement on Tsα is left

composition with sα(θ
−〈y,α]〉
α ) = θ

〈y,α]〉
α or equivalently right multiplication with

θ
−〈y,α]〉
α . In view of (2.21), the effect of Ad(y−1

G ) on H(s)◦ is precisely Ad(θy).
By (2.22), the new element T ′sα = Tsαθ〈y,α]〉α has the same εα as before, and nα

has become εα. Now (2.22) says that 1 · T ′sαθ−εαα = −1. The equations (2.19) and
(2.20) for the new elements N ′sα become

q
λ(h∨α)/2
F N ′sα + 1 = (T ′sαθ−εαα + 1)(θαqα − 1)(θαqα∗ + 1)(θ2α − 1)−1
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In view of (2.22), this implies

1 · (qλ(h∨α)/2
F N ′sα + 1) = 0 ∈ C(Ts).

Equivalently, we obtain 1 ·Nsα = −q−λ(h∨α)/2
F 1. �

From now on we choose K as in the statement of Lemma 2.6. For w ∈ Ws let
det(w) be the determinant of the action of w on (T/Tcpt)⊗ZR. Then det : Ws → R×
is a quadratic character extending the sign character of W (R∨s ).

For γ ∈ Γs we write 1 · Jγ = zγθxγ with zγ ∈ C× and xγ ∈ T/Tcpt. Consider the
operators

Nγ = det(γ)z−1
γ θ−xγJγ ∈ EndG(Πs).

From (2.9) we see that

(2.23) 1 ·Nγ = det(γ)1 γ ∈ Γs.

Theorem 2.7. The operators NwNγ, for w ∈W (R∨s ) with K as in Lemma 2.6 and
Nγ with γ ∈ Γs as above, provide an algebra isomorphism

EndG(Πs) ∼= H(s)◦ o Γs = H(s).

Given the Whittaker datum (U, ξ), this isomorphism is canonical.

Proof. By direct computation, using Lemma 2.6:

(2.24) 1 · Tsαθ−εαα = −det(γ)zγθsα(xγ).

A similar computation shows that

(2.25) 1 · Tsγ(α)θεαγ(α)Jγ = −1 · Jγ = −det(γ)zγθxγ .

As JγTsαθ−εαα equals Tsγ(α)θεαγ(α)Jγ , (2.24) and (2.25) are equal, and we deduce

that sα(xγ) = xγ . Hence xγ is fixed by each such sα, and by the entire group
W (R∨s ).

Now we check that the Nγ satisfy the desired relations. It is easy to see that

1 ·Nγγ̃ = det(γγ̃)1 = det(γ) det(γ̃)1 = 1 ·NγNγ̃ ,

NγfN
−1
γ = JγfJ

−1
γ = f ◦ γ−1 f ∈ O(Ts),

NγTsαN−1
γ = z−1

γ θ−xγJγTsαJ−1
γ θxγzγ = θ−xγTsγαθxγ = Tsγα .

The first two of these relations imply that

Nγγ̃ = NγNγ̃ for all γ, γ̃ ∈ Γs.

We deduce that, with respect to the given O(Ts)-basis, EndG(Πs) becomesH(s)◦oΓ.
Any two isomorphisms of this kind differ by an automorphism ψ of H(s)◦ o Γs.

Since the subalgebra O(Ts) is mapped naturally to EndG(Πs), ψ is the identity on
that subalgebra. Hence ψ extends to an automorphism of the version of H(s)◦ o Γs

with C(Ts). Then (2.9) entails that ψ multiplies each basis element TwNγ by an
element of O(Ts). Combining that with Lemma 2.6 and (2.23), we find that ψ is the
identity. �

Theorem 2.7 shows in particular that the 2-cocycle \s from Theorem 1.2 becomes
trivial in H2(Γs,C×).

Recall from page 7 that s can also arise from wsT = [T,wχ0]T for any w ∈
W (G,S). To compare all these cases, it suffices to consider one w from every left
coset of Ws = StabW (G,S)(sT ).
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Proposition 2.8. Let w ∈W (G,S) be of minimal length in wWs.

(a) The isomorphism Πs
∼= Πws from [Ren, §VI.10.1] can be normalized so that it

sends 1 ∈ HomG(Πs, indGU (ξ)) to 1 ∈ HomG(Πws, indGU (ξ)).
(b) In that situation the induced algebra isomorphism EndG(Πs) ∼= EndG(Πws) is

given by f 7→ f ◦ w−1 for f ∈ O(Ts) and Nv 7→ Nwvw−1 for v ∈Ws.

Proof. (a) The isomorphism of G-representations

φw : Πws
∼−→ Πs

from Proposition 1.1 induces a map

(2.26) O(Ts) ∼= HomG(Πs, indGU (ξ)) −→ HomG(Πws, indGU (ξ)) ∼= O(Tws)

and a compatible algebra isomorphism

Ad(φ−1
w ) : EndG(Πs)→ EndG(Πws).

In view of (2.4)–(2.6) and Proposition 1.1, (2.26) must be f 7→ f ◦ w−1 followed by
multiplication with some element of O(Tws).

Like in the proof of Proposition 1.1, we reduce to the case where R(G,S) has rank
one, w = sα is a simple reflection and sαsT 6= sT . We represent sα in the maximal
compact subgroup K from Lemma 2.6. Consider χc ∈ indTTcpt(χc) and

1 ∈ HomG(Πs, indGU (ξ)) ∼= HomT

(
indTTcpt(χc), indT{e}(triv)

)
.

Recall from (2.5) that here the isomorphism is given by JG
B

and the natural trans-

formation id→ JG
B
IGB . By definition JG

B
(1)χc = χc. We want to determine

(2.27) JG
B

(1)JG
B

(φsα)(sαχc) ∈ JGB indGU (ξ),

where sαχ is considered as element of indTTcpt(sαχc) ⊂ JG
B

Πsαs. From (1.6) we see

that JG
B

(φsα) on indTTcpt(sαχc) equals

sα ◦
[
JG
B

(φsα) on s−1
α · indTTcpt(sαχc)

]
◦ s−1

α .

Similarly JG
B

(1) on sα · indTTcpt(χc) equals

sα ◦
[
JG
B

(1) on indTTcpt(χc)
]
◦ s−1

α .

Now we can compute (2.27). First sαχ is mapped to χc by s−1
α , then (1.8)–(1.10)

show that JG
B

(φsα) sends that to χc ∈ indTTcpt(χc). Applying JG
B

(1) returns χc ∈
indT{e}(triv) and finally the action of sα yields sαχc. Hence

JG
B

(1)JG
B

(φsα)(sαχc) = sαχc = JG
B

(1)(sαχc),

where the second 1 comes from Πsαs. In view of (2.5) and (2.6), that implies

JG
B

(1)JG
B

(φsα) = JG
B

(1) and 1 ◦ φsα = 1.

(b) Since w has minimal length in wWs, it also has minimal length in wW (Rs,µ). Ac-
cording to [AMS3, Lemma 2.4.a], w(R+

s,µ) ⊂ R(B,S). By the W (G,S)-equivariance

of Harish-Chandra µ-functions also w(R+
s,µ) ⊂ Rws,µ, and therefore w(R+

s,µ) = R+
ws,µ.

The proof of part (a) shows that (2.26) equals f 7→ f ◦ w−1. With the rough
description of the H(s)-action on HomG(Πs, indGU (ξ)) from (2.9) we deduce that
Ad(φ−1

w ) sends each Nv ∈ H(s) to Nwvw−1 times an element of O(Ts∨). The more
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precise descriptions from Lemma 2.6 and (2.23) show that in fact Ad(φ−1
w )Nv equals

Nwvw−1 for any v ∈Ws. �

3. Characterization of generic representations

We want to parametrize Irr(G,T ) so that the generic representation correspond to
the expected kind of enhanced L-parameters. To that end a simple characterization
of genericity in terms of Hecke algebras will be indispensable.

We start with a complete description of HomG

(
Πs, indGU (ξ)

)
as rightH(s)-module.

Let H(W (R∨s , q
λ
F ) ⊂ H(s)◦ be the finite dimensional Iwahori–Hecke algebra spanned

by the Nw with w ∈ W (R∨s ). The Steinberg representation of H(W (R∨s , q
λ
F )) is

defined by

(3.1) St(Nsα) = −qλ(h∨α)/2
F for simple h∨α ∈ R∨s .

We extend this to a representation St of

H(Ws, q
λ
F ) := H(W (R∨s ), qλF ) o Γs

by St(NwNγ) = St(Nw) det(γ). Notice that this formula equally well defines a

representation of the opposite algebra H(Ws, q
λ
F )op.

Special cases of the next result were established in [ChSa] (for the Iwahori-
spherical Bernstein component of a split group) and in [MiPa] (for principal rep-
resentations of split reductive p-adic groups, with some extra conditions).

Lemma 3.1. There is an isomorphism of H(s)op-representations

HomG

(
Πs, indGU (ξ)

) ∼= ind
H(s)op

H(Ws,qλF )op
(St).

Proof. Let w ∈W (R∨s ) and γ ∈ Γs. By Lemma 2.6 and (2.23)

1 ·NwNγ = 1 · St(NwNγ) ∈ HomG

(
Πs, indGU (ξ)

)
.

As vector spaces

H(s) = O(Ts)⊗H(Ws, q
λ
F ).

Further HomG

(
Πs, indGU (ξ)

)
is isomorphic to O(Ts) as O(Ts)-module, with basis

vector 1. Hence

ind
H(s)op

H(Ws,qλF )op
(St) → HomG

(
Πs, indGU (ξ)

)
h⊗ 1 7→ h · 1

is an isomorphism of H(s)op-modules. �

The criterium (2.2)–(2.3) for genericity can be put in a more manageable form
with Lemma 3.1. For any π ∈ Rep(G)s:

HomG(π, IndGU (ξ)) ∼= HomG(indGU (ξ), π†)

∼= HomEndG(Πs)op
(
HomG(Πs, indGU (ξ)),HomG(Πs, π

†)
)

∼= HomH(s)op
((

ind
H(s)op

H(Ws,qλF )op
(St)

)
,HomG(Πs, π

†)
)

(3.2)

∼= HomH(Ws,qλF )op
(
St,HomG(Πs, π

†)
)
.

Corollary 3.2. A representation π ∈ Rep(G)s is (U, ξ)-generic if and only if the
H(Ws, q

λ
F )op-module HomG(Πs, π

†) contains St.
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In this corollary the effect of π 7→ π† on H(s)op-modules is not obvious, we analyse
that in several steps. With the *-structure and the trace from [Sol1, §3.1],

(3.3) H(Ws, q
λ
F ) = H(W (R∨s ), qλF ) o Γs

is a finite dimensional Hilbert algebra, so in particular semisimple.
Recall that a standard G-representation is of the form IGP (τ ⊗χ), where P = MN

is a parabolic subgroup of G, τ is an irreducible tempered M -representation and
χ : M → R>0 is an unramified character in positive position with respect to P . By
conjugating P and M , we may assume that T ⊂M .

Lemma 3.3. Suppose that τ ∈ Rep(M)[T,χ0]M . Then IGP (τ ⊗ χ) ∈ Rep(G)s and

HomG

(
Πs, I

G
P (τ ⊗ χ)†

) ∼= HomG

(
Πs, I

G
P (τ ⊗ χ)

)
as H(Ws, q

λ
F )op-modules.

Proof. The representation IGP (τ ⊗χ) has cuspidal support Sc(τ)⊗χ|T ∈ [T, χ0]T , so

it belongs to Rep(G)[T,χ0]G . By [Ren, IV.2.1.2]

IGP (τ ⊗ χ)† ∼= IGP ((τ ⊗ χ)†) ∼= IGP (τ † ⊗ χ†).

Since χ is real-valued and τ is unitary [Ren, Corollaire VII.2.6], the right hand side
is isomorphic with IGP (τ ⊗ χ−1). Consider the continuous path

[−1, 1]→ Rep(G)s : t 7→ IGP (τ ⊗ χt).

Via the equivalence of categories (1.1), we obtain a continuous path in Mod(H(s)op).
Modules of a finite dimensional semisimple algebra are stable under continuous de-
formations, so

HomG

(
Πs, I

G
P (τ ⊗ χ)†

) ∼= HomG

(
Πs, I

G
P (τ ⊗ χ−1)

) ∼= HomG

(
Πs, I

G
P (τ ⊗ χ)

)
as H(Ws, q

λ
F )op-modules. �

We are ready to establish a useful characterization of genericity, without Hermi-
tian duals. The next result is formulated for finite length representations, but we
believe it is also valid without that condition. To study it for arbitrary representa-
tions in Rep(G)s one probably needs Hermitian duals of modules over affine Hecke
algebras.

Theorem 3.4. Suppose that π ∈ Rep(G)s has finite length. Then π is (U, ξ)-generic
if and only if HomH(Ws,qλF )op

(
HomG(Πs, π),St

)
is nonzero.

Proof. Since π has finite length, we can form it semisimplification πss. Then π†ss
is the semisimplification of π†. By (3.3) the module category of H(Ws, q

λ
F )op is

semisimple. In particular

(3.4) HomH(Ws,qλF )op
(
St,HomG(Πs, π

†)
)

does not change if we replace π† by π†ss. Since we only need semisimplifications of
modules here, we may pass to the Grothendieck group of finite length representations
in Rep(G)s. The standard modules in Rep(G)s form a Z-basis of that Grothendieck
group. Indeed, that is a consequence of the Langlands classification [Ren, Théorème
VII.4.2] and the property that the irreducible quotient of a standard module is the
unique maximal constituent in a certain sense [BoWa, §XI.2].
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For each such standard module we have Lemma 3.3, and hence the conclusion
of Lemma 3.3 extends to the entire Grothendieck group of the finite length part of
Rep(G)s. In particular

HomG(Πs, π
†) ∼= HomG(Πs, π

†
ss)
∼= HomG(Πs, πss) ∼= HomG(Πs, π)

as H(Ws, q
λ
F )op-modules. Hence the vector space (3.4) is isomorphic with

HomH(Ws,qλF )op
(
St,HomG(Πs, π)

)
.

By the semisimplicity of the involved algebra, this has the same dimension as

(3.5) HomH(Ws,qλF )op
(
HomG(Πs, π),St

)
.

We conclude by applying Corollary 3.2 to (3.4) and (3.5). �

From Theorem 3.4 it is easy to prove an analogue of the uniqueness (up to scalars)
of Whittaker functionals [Rod, Shal] in the context of Hecke algebras. Let M be
a standard Levi subgroup of G and write sM = [T, χ0]M . Via parabolic induction
H(sM ) ∼= EndM (ΠsM ) becomes a subalgebra of H(s) ∼= EndG(Πs). In fact the
constructions in [Sol5, §10.2] show that H(sM ) is a parabolic subalgebra of H(s),

in the sense of [Sol2, p. 216]. The functor ind
H(s)op

H(sM )op corresponds to parabolic

induction from M to G, see [Roc2, Proposition 1.8.5.1].

Lemma 3.5. Let V be an irreducible H(sM )op-module. Then

dim HomH(Ws,qλF )op
(
ind
H(s)op

H(sM )opV,St
)
≤ 1.

Proof. By the Bernstein presentation of H(s)op we can simplify the module:

Res
H(s)op

H(Ws,qλF )op

(
ind
H(s)op

H(sM )opV
)

= ind
H(Ws,qλF )op

H(WsM
,qλF )op

(
Res

H(sM )op

H(WsM
,qλF )op

V
)
.

With Frobenius reciprocity it follows that

(3.6) HomH(Ws,qλF )op
(
ind
H(s)op

H(sM )opV,St
) ∼= HomH(WsM

,qλF )op(V,St).

This reduces the lemma to the case M = G, which investigate next.
As H(s) has finite rank as module over its centre, V has finite dimension. Hence

V contains an eigenvector for O(Ts), say with character t. Then

0 6= HomO(Ts)(t, V ) ∼= HomH(s)op
(
ind
H(s)op

O(Ts) (t), V
)
,

so V is a quotient of ind
H(s)op

O(Ts) (t). For multiplicities upon restriction to the finite

dimensional semisimple subalgebra H(Ws, q
λ
F )op, that means

(3.7) dim HomH(Ws,qλF )op(V,St) ≤ dim HomH(Ws,qλF )op
(
ind
H(s)op

O(Ts) (t), St
)
.

By the presentation of H(s), ind
H(s)op

O(Ts) (t) ∼= H(Ws, q
λ
F )op as H(Ws, q

λ
F )op-modules.

Hence the right hand side of (3.7) is 1. �
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4. Hecke algebras for principal series L-parameters

Fix a separable closure Fs of F and let WF ⊂ Gal(Fs/F ) be the Weil group. Let
IF be its inertia subgroup and pick a geometric Frobenius element FrobF of WF . Let
G∨ be the complex dual group of G and let LG = G∨ oWF be the Langlands dual
group. Let Φ(G) be the set of L-parameters φ : WF × SL2(C) → LG, considered
modulo G∨-conjugacy.

For an L-parameter φ we have the component group Rφ = π0(ZG∨(φ)/Z(G∨)WF )
– this is the appropriate version because G is quasi-split. We define a (G-relevant)
enhancement of φ to be an irreducible representation of the finite group Rφ. Com-
pared to [AMS1], the quasi-splitness of G allows us to focus on the enhancements
whose Z(G∨sc)-character is trivial, and that eliminates the need to consider the
centralizer of φ in G∨sc. We denote the set of G∨-conjugacy classes of enhanced
L-parameters for G by Φe(G).

Recall [AMS1] that there exists a notion of cuspidality and a cuspidal support
map Sc for enhanced L-parameters. The map Sc associates to each (φ, ρ) ∈ Φe(G)
a F -Levi subgroup L of G and a cuspidal enhanced L-parameter for L (unique up
to G∨-conjugation). We say that (φ, ρ) is a principal series L-parameter if Sc(φ, ρ)
is an enhanced L-parameter for T (or a G-conjugate of T ). In that case Sc(φ, ρ)
is unique up to NG∨(T∨ o WF )-conjugacy. In other words, Sc(φ, ρ) as element of
Φe(T ) is unique up to conjugacy by NG∨(T∨ oWF )/T∨.

For the maximal torus T , the dual group T∨ is a complex torus. In particular any
L-parameter for T is trivial on SL2(C) and has trivial component group. Hence an
element of Φe(T ) is just the T∨-conjugacy class of a homomorphism χ̂ : WF → LT .
Every element of Φe(T ) is cuspidal, because T has no proper Levi subgroups.

To describe principal series (enhanced) L-parameters more explicitly, we consider
an arbitrary (φ, ρ) ∈ Φe(G). We want to determine Sc(φ, ρ) = (L,ψ, ε). By con-
struction

(4.1) ψ|IF = φ|IF and ψ
(

FrobF ,

(
q
−1/2
F 0

0 q
1/2
F

))
= φ

(
FrobF ,

(
q
−1/2
F 0

0 q
1/2
F

))
.

In order that L = T , it is necessary that φ
(

Frob,

(
q
−1/2
F 0

0 q
1/2
F

))
∈ T∨FrobF and

φ(i) ∈ T∨i for all i ∈ IF . The group H∨ := ZG∨(φ(WF )) is reductive and

Rφ = π0

(
ZG∨(φ)/Z(G∨)WF ) equals π0

(
ZH∨

(
φ(SL2(C))

)
/Z(G∨)WF

)
.

This group is a quotient of

π0

(
ZH∨

(
φ(SL2(C))

)) ∼= π0

(
ZH∨(uφ)

)
,

where uφ = φ
(
1, ( 1 1

0 1 )
)
. Thus we can regard ρ as an irreducible representation of

π0

(
ZH∨(uφ)

)
. Let (M∨, uψ, ε) be the cuspidal quasi-support of (uφ, ρ) for H∨, as in

[AMS1, §5]. Then ψ is the L-parameter determined (up to conjugacy) by (4.1) and
uψ, while ε is as above and L∨ = ZH∨(Z(M∨)◦).

For L∨ = T∨ we need M∨ = T∨, which implies that uψ = 1. There is an

explicit criterium for Sc(uφ, ρ) = (T∨, 1, ε) with arbitrary ε, as follows. Let BuφH∨ be
the variety of Borel subgroups of H∨,◦ that contain uφ, it carries a natural action of
ZH∨(uφ). Let ρ◦ be any irreducible constituent of ρ|π0(ZH∨,◦ (uφ)). Then the criterium

says: ρ◦ appears in the action of π0(ZH∨,◦(uφ)) on the (top degree) homology of BuφH∨ .
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Summarising, we found the following necessary and sufficient conditions for (φ, ρ) ∈
Φe(G) to be a principal series enhanced L-parameter:

(i) φ
(

FrobF ,

(
q
−1/2
F 0

0 q
1/2
F

))
, φ(i) ∈ T∨ oWF for any i ∈ IF ;

(ii) ρ◦ appears in H∗
(
BuφH∨

)
where H∨ = ZG∨(φ(WF )).

We note that under these conditions Sc(φ, ρ) does not depend on uφ or ρ. Moreover

it equals Sc(φ, triv), because Htop
(
BuφH∨

)
is a permutation representation of Rφ (with

as permuted objects the irreducible components of BuφH∨), and that always contains
the trivial representation. With this in mind, we call φ ∈ Φ(G) a principal series
L-parameter if (i) holds.

Recall from [Hai, §3.3.1] that there is a natural isomorphism

(4.2) Xnr(G) ∼=
(
Z(G∨)IK ,◦

)
Frob

,

that the group of unramified charactersXnr(T ) is naturally isomorphic to (T∨,IF )◦WF
.

We will sometimes identify these groups and write simply Xnr(T ). We note that
(T∨,IF )◦WF

acts on Φ(T ) by

(zχ̂)|IF = χ̂|IF , (zχ̂)(FrobF ) = z(χ̂(FrobF ))

for z ∈ (T∨,IF )◦ and χ̂ ∈ Φ(T ). A Bernstein component of Φe(T ) = Φ(T ) is by
definition one Xnr(T )-orbit in Φ(T ). We will usually write this as s∨T = Xnr(T )χ̂ for

one χ̂ ∈ Φ(T ). It gives rise to a Bernstein component Φe(G)s
∨

:= Sc−1(T, s∨T ) in the
principal series part of Φe(G).

Next we make the extended affine Hecke algebra H(s∨, z) from [AMS3] explicit.
The maximal commutative subalgebra of H(s∨, z) is O(s∨)⊗C[z, z−1], where z is a
formal variable. In this context we prefer to write Ts∨ for s∨, to emphasize that it is
a complex torus (as a variety, in general it does not have a canonical multiplication).

The group NG∨(T∨ oWF )/T∨ acts naturally on Φ(T ), by conjugation. Let Ws∨

denote the stabilizer of s∨ in NG∨(T∨ o WF )/T∨. Although Ws∨ need not be a
Weyl group, it always contains the Weyl group of a root system. Namely, consider
the group J = ZG∨(χ̂(IF )), with the torus (T∨,WF )◦ and the maximal torus T∨.
According to [AMS3, Proposition 3.9.a and (79)], R

(
J◦, (T∨,WF )◦

)
is a root system

and Ws∨ acts naturally on it. Moreover [AMS3, Proposition 3.9.b] says that for a
suitable choice of χ̂ in Ts∨ the set of indivisible roots

R
(
J◦, (T∨,WF )◦

)
red

equals R
(
ZG∨(χ̂(WF ))◦, (T∨,WF )◦

)
red
.

For such a choice of a basepoint χ̂ of Ts∨ ,

W ◦s∨ := W
(
R(J◦, (T∨,WF )◦)

)
is a normal subgroup of Ws. Let R+

(
J◦, (T∨,WF )◦

)
be the positive root system

determined by the Borel subgroup B∨ of G∨. Then Ws∨ = W ◦s∨ o Γs∨ , where Γs∨

denotes the stabilizer of R+
(
J◦, (T∨,WF )◦

)
in Ws∨ .

The root system forH(s∨, z) will essentially be R
(
J◦, (T∨,WF )◦

)
, but we still need

to rescale the elements [AMS3, §3.2]. We note that the inclusion (T∨,WF )◦ → T∨

induces a surjection

pr : R(J◦, T∨) ∪ {0} → R
(
J◦, (T∨,WF )◦

)
∪ {0}.

In [AMS3, Definition 3.11], positive integers mα for α∨ ∈ R
(
J◦, (T∨,WF )◦

)
red

are
defined, as follows.
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• Suppose that pr−1({α∨}) meets k > 1 connected components of R(J◦, T∨).
These k components are permuted transitively by FrobF . Then mα equals
k times the analogous number m′α obtained by replacing F by its degree k

unramified extension (or equivalently replacing FrobF by FrobkF ).
• Suppose that pr−1({α∨}) lies in a single connected component of R(J◦, T∨).

Then mα is the smallest natural number such that ker(mαα
∨) contains the

kernel of the canonical surjection

(4.3) (T∨,WF )◦ → (T∨,IF )◦WF
∼= Xnr(T ).

In fact it is easy to identify the kernel of (4.3) as

(T∨,WF )◦FrobF
:= (T∨,WF )◦ ∩ (1− FrobF )T∨,IF .

Lemma 4.1. The number mα equals f(Fα/F ), where WFα is the WF -stabilizer of
a lift of α∨ to R(G∨, T∨).

Proof. The mα can be related to the structure of the F -group G. Let Gα be the
F -simple almost direct factor of G such that pr−1({α∨}) consists of roots coming
from G∨α. Write Gα = ResEα/FHα, where Hα is absolutely simple. The injection

Gα → G induces a surjection LG→ LGα which does not change α∨
(
(T∨,WF )◦FrobF

)
.

Knowing that, the first bullet above says that mα equals f(Eα/F ) times the number
m′α for Hα(Eα).

Let Tα be the maximal torus of Hα with ResEα/FTα = T ∩ Gα. The Weil group
WEα acts on the irreducible root system R(H∨α, T ∨α ), and the set of orbits is in
bijection with the irreducible component of R(J◦, (T∨,WF )◦) containing α∨. Let
WFα be the WEα-stabilizer of an element α′∨ ∈ R(H∨α, T ∨α ) that corresponds to α∨.
Then α∨ = α′∨|

T
WFα
α

.

Suppose that the elements of WEαα
′∨ are mutually orthogonal, which happens

in most cases. From the definitions we see that∣∣α∨((T∨,WF )◦FrobF

)∣∣ = f(Fα/Eα).

Here the relevant elements of (T∨,WF )◦FrobF
are the powers of

(1− FrobF )t where (Frobnα′∨)(t) = exp(2πin/f(Fα/Eα)).

We find m′α = f(Fα/Eα) and mα = f(Fα/F ).
Next we consider the cases where the elements of WEαα

′∨ are not mutually or-
thogonal. Classification shows that R(H∨, T ∨α ) has type 2A2n and

|WEαα
′∨| = [Fα : Eα] = 2,

so that Hα,ad
∼= PU2n+1(Fα/Eα). Direct computations show that:

• When Fα/Eα is ramified, m′α = 1 and mα = f(Eα/F ) = f(Fα/F ).
• When Fα/Eα is unramified, m′α = 2 and mα = 2f(Eα/F ) = f(Fα/F ). �

Lemma 4.1 and [AMS3, Lemma 3.12] yield the precise definition of the root system
for H(s∨, z):

Rs∨ =
{
mαα

∨ : α∨ ∈ R
(
J◦, (T∨,WF )◦

)
red

}
.

This root system is endowed with an action of Ws∨ . Hence Ws∨ also acts on the
resulting root datum from [AMS3, §3.2]:

Rs∨ =
(
Rs∨ , X

∗((T∨,IF )◦WF

)
, R∨s∨ , X∗

(
(T∨,IF )◦WF

))
=
(
Rs∨ , T/Tcpt, R

∨
s∨ , (T/Tcpt)

∨).
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The label functions λ, λ∗ for H(s∨, z) are determined in [AMS3, Proposition 3.14].
Suppose first that the elements of WEαα

′∨ are mutually orthogonal (in the notation
from the proof of Lemma 4.1), and that the same holds for α∨/2 whenever α∨/2
can be lifted to R(G∨, (T∨,WF )◦). In these non-exceptional cases

(4.4) λ(mαα
∨) = λ∗(mαα

∨) = mα = f(Fα/F ).

If in addition mαα
∨ ∈ 2X∗

(
(T∨,IF )◦WF

)
= 2(T/Tcpt), then we can get the same

Hecke algebras with mαα
∨/2 instead of mαα

∨, and

(4.5) λ(mαα
∨/2) = mα = f(Fα/F ), λ∗(mαα

∨/2) = 0.

We call the remaining cases exceptional, these occur only when R(G∨, T∨) has a
component of type 2A2n and α∨ or α∨/2 comes from two non-orthogonal roots that
are exchanged by the diagram automorphism. As noted in the proof of Lemma
4.1, Hα,ad

∼= PU2n+1(Fα/Eα). The groups PU2n+1(Fα/Eα), SU2n+1(Fα/Eα) and
U2n+1(Fα/Eα) give the same root system, the same unramified characters and the
same groups (T∨,WF )◦. Hence the relevant data for Hα can be reduced (via its
derived group) to those for U2n+1(Fα/Eα), and it suffices to continue the analysis
in the latter group.

For U2n+1(Fα/Eα) all the labels were computed in [AMS4, §5]. For convenience
we provide an overview, where we remark that the labels from [AMS4] still have to
be multiplied by f(Eα/F ) to account for the restriction of scalars Gα(F ) = Hα(Eα),
as in the proof of Lemma 4.1. We write α∨ = α′∨ + α′′∨, where α′∨ and α′′∨ are
non-orthogonal roots in A2n exchanged by the diagram automorphism.

• Fα/Eα unramified and χ̂(WEα) ⊂ Z(GL2n+1(C)) oWEα . Then λ(α∨) = 3
and λ∗(α∨) = 1.
• Fα/Eα unramified and χ̂(WEα) 6⊂ Z(GL2n+1(C)) o WEα . Here we need
χ̂(WEα) to fix Uα∨ pointwise for α∨ ∈ Rs∨ . Under that condition λ(α∨) =
λ∗(α∨) = 1.
• Fα/Eα is ramified. When χ̂ ◦ α∨ : Fα → C× is conjugate-orthogonal, α∨ /∈
Rs∨ . Otherwise χ̂ ◦ α∨ is conjugate-symplectic, then α∨ ∈ Rs∨ and λ(α∨) =
λ∗(α∨) = 1. Equivalently, using α∨/2 as root:

(4.6) λ(α∨/2) = 1, λ∗(α∨/2) = 0.

The algebra H(s∨, z) has a subalgebra H(s∨, z)◦, whose underlying vector space is

O(Ts∨)⊗ C[z, z−1]⊗ C[W ◦s∨ ].

It is isomorphic to the affine Hecke algebra H(Rs∨ , λ, λ
∗, z), for suitable label func-

tions λ, λ∗. The identification of the vector spaces comes from the elements Nw ∈
H(Rs∨ , λ, λ

∗, z) and the bijection

(4.7) (T IF )◦WF
→ Ts∨ : t 7→ tχ̂.

Theorem 4.2. There is a canonical algebra isomorphism H(s∨, z) ∼= H(s∨, z)◦oΓs∨.

Proof. By design H(s∨, z) is free as H(s∨, z)◦-module, with a basis indexed by Γs∨ .
More precisely, by [AMS3, Proposition 3.15.a] the actions of Γs∨ on Rs∨ , Ts∨ and
O(Ts∨) naturally induce an action of Γs∨ on H(s∨, z)◦. For every γ ∈ Γs∨ , that
yields an element of H(s∨, z), unique up to scaling.

For the Langlands parameters under consideration, the sheaf qE from [AMS1,
AMS3] is just the constant sheaf with stalk C on the point 1 ∈ T∨. It follows that
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there is canonical choice for the map qbγ from [AMS3, (90)], namely the identity.
Then γ 7→ qbγ is multiplicative, the scalars λγ,γ′ in the proof of [AMS3, Proposition
3.15.b] reduce to 1 and C[Γs∨ ] embeds in H(s∨, z) as the span of these qbγ . With
this in place, [AMS3, Proposition 3.15.a] provides the desired statement. �

Next we specialize z to q
1/2
F , that yields the algebra

(4.8) H(s∨, q
1/2
F ) = H(s∨, q

1/2
F )◦ o Γs∨

∼= H(Rs∨ , λ, λ
∗, q

1/2
F ) o Γs∨ .

We note that here the isomorphism depends on the choice of the basepoint χ̂ of Ts∨ .

From (4.8) we see that the centre of H(s∨, q
1/2
F ) is O(Ts∨)Ws = O(Ts∨/Ws∨). The

main use of the algebras (4.8) lies in the following result.

Theorem 4.3. [AMS3, Theorem 3.18] There exists a canonical bijection

Φe(G)s
∨ → Irr

(
H(s∨, q

1/2
F )

)
(φ, ρ) 7→ M̄(φ, ρ, q

1/2
F )

such that:

(a) M̄(φ, ρ, q
1/2
F ) admits the central character Ws∨ φ̃ ∈ Ts∨/Ws∨, where φ̃|IF = φ|IF

and φ̃(FrobF ) = φ
(
FrobF ,

(
q
−1/2
F 0

0 q
1/2
F

))
.

(b) φ is bounded if and only if M̄(φ, ρ, q
1/2
F ) is tempered.

(c) φ is discrete if and only if M̄(φ, ρ, q
1/2
F ) is essentially discrete series and the

rank of Rs∨ equals the F -split rank of T /Z(G).
(d) The bijection is equivariant for the canonical actions of Z(G∨)IF ∩ (T∨,IF )◦.

We note that in [AMS3] the canonicity is obtained in a slightly weaker sense, by

interpreting the subalgebra of H(s∨, q
1/2
F ) spanned by the Nγ with γ ∈ Γs∨ as the

endomorphism algebra of a certain perserve sheaf [AMS3, (30)]. We got rid of that
subtlety in the proof of Theorem 4.2.

For part (d) we recall that any element t ∈ Z(G∨)IF determines a weakly unram-
ified character of G [Hai, §3.3.1], and that character is trivial on Tcpt if and only if
t ∈ (T∨,IF )◦. To t ∈ Z(G∨)IF ∩ (T∨,IF )◦ we associate the automorphism

xNw 7→ x(t)xNw x ∈ T/Tcpt, w ∈Ws∨

of H(s∨, q
1/2
F ), where x is regarded as function on Ts∨ via (4.7). The action of t on

Irr
(
H(s∨, q

1/2
F )

)
is composition with the above automorphism.

5. Comparison of Hecke algebras

We start with a Bernstein component sT for T . Recall that this is just a Xnr(T )-
coset in Irr(T ). The local Langlands correspondence for tori [Lan2, Yu] associates
to sT a Xnr(T )-orbit in Φ(T ), that is, one Bernstein component s∨T in Φe(T ).

From [ABPS2, Proposition 3.1] we know that there is a natural group isomorphism

(5.1) NG(T )/T ∼= NG∨(T∨ oWF )/T∨.

By the naturality of the LLC for tori, the action of NG(T )/T on Irr(T ) is turned into
the conjugation action of NG∨(T∨ oWF )/T∨ by (5.1) and the LLC. In particular
Ws = StabNG(T )/T (sT ) is naturally isomorphic to Ws∨ = StabNG∨ (T∨oWF )/T∨(s∨T )

via (5.1).
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Lemma 5.1. There exists a natural bijection between R∨s and Rs∨, which preserves
positivity.

Proof. Pick any χ ∈ sT .
By construction R∨s consists of positive multiples of the α∨ ∈ R(G,S)∨ for which

α ∈ Rs,µ. Similarly Rs∨ consists of positive multiples of the α∨ in

R
(
ZG∨(χ̂(IF )), T∨,WF ,◦

)
red
⊂ R

(
G∨, T∨,WF ,◦

)
red
∼= R(G∨, S∨)red

∼= R(G,S)∨red

for which χ̂(IF ) fixes Uα∨ or U2α∨ in ZG∨(χ̂(IF )). Since both R∨s and Rs∨ are
reduced root systems, this means that there exists at most one bijection R∨s → Rs∨

which scales each root by a positive real number. Positivity in R∨s is determined by
B and positivity in Rs∨ is determined by B∨, so such a bijection would automatically
preserve positivity of roots.

It remains to check that for R∨s and Rs∨ the same elements of R(G,S)∨red are
relevant. For the non-exceptional roots we know from (1.13)–(1.14) that α ∈ Σs,µ if
and only if χ ◦ α∨ : F×α → C× is unramified. Via the LLC for tori that becomes:

α∨ ◦ χ̂ : WFα → CoWFα restricts to the identity on IFα .

In this setting the roots in the associated WF -orbit in R(G∨, T∨) are mutually or-
thogonal, permuted by WF and fixed by WFα . Hence α∨ ◦ χ̂(IFα) fixes Uα∨ point-
wise, which means that α belongs to R

(
ZG∨(χ̂(IF )), T∨,WF ,◦

)
red

. This argument

also works in the opposite direction, so α∨ ∈ Rs∨ and only if α ∈ Rs,µ.
For the exceptional roots α∨ with sα ∈ Ws

∼= Ws∨ , we saw on page 10 and after
(4.5) that on both sides the issue can be reduced to a unitary group U2n+1. From
the list of cases at the end of Section 1 it is clear that if U2n+1 is unramified, α∨ is
relevant for R∨s if and only if it is relevant for Rs∨ .

When the involved group U2n+1 only splits over a ramified extension, we need
to check one more detail to arrive at the same conclusion. Namely, if α∨ ◦ χ̂ :
WEα → C× is conjugate-orthogonal (respectively conjugate-symplectic) then χ◦α∨ :
o∨Eα → C× must be trivial (respectively of order two). This is exactly [GGP, Lemma
3.4]. �

Lemma 5.1 implies that the isomorphism (5.1) restricts to W ◦s
∼= W ◦s∨ . We choose

a W ◦s∨-invariant base point χ̂0 of s∨T as in Section 4. We use the image χ0 of χ̂0

under the LLC as basepoint of sT . By the aforementioned equivariance of the LLC
for tori, χ0 is invariant under W ◦s .

Recall that h∨α ∈ R∨s generates Qα∨ ∩ T/Tcpt. The element mαα
∨ does not

necessarily generate Qα∨ ∩ T/Tcpt. However, since Rs∨ is part of the root datum
Rs∨ , mαα

∨ is at most divisible by 2 in T/Tcpt (namely when it is a long root in
a type C root system). For a better comparison, we replace mαα

∨ by mαα
∨/2

whenever that is possible. That option was already taken into account in Section 4.
We denote the new multiple of α∨ by m̃α and we write

R̃s∨ =
{
m̃αα

∨ : α∨ ∈ R(J◦, T∨,WF ,◦)
}
.

Now Lemma 5.1 entails that the isomorphism

(5.2) X∗(Ts) ∼= X∗(Xnr(T )) ∼= T/Tcpt
∼= X∗

(
(T∨,IF )◦WF

)
,

induced by the LLC for tori, sends R∨s bijectively to Rs∨ .

Lemma 5.2. For any α ∈ Rs,µ: λ(h∨α) = λ(m̃αα
∨) and λ∗(h∨α) = λ∗(m̃αα

∨).
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Proof. For the non-exceptional roots, this was checked in (1.14), (1.15), Lemma 4.1
and (4.4). For exceptional roots (i.e. thise for which the issue can be reduced to a
unitary group U3), it is verified case-by-case in the lists at the end of Section 1 and
just before (4.6). �

We are ready to prove that the desired isomorphism between Hecke algebras on
two sides of the LLC.

Theorem 5.3. There is a canonical algebra isomorphism ψs : H(s)op → H(s∨, q
1/2
F ),

given by

• on O(Ts), ψs is induced by the bijection Ts ∼= Ts∨ from the LLC for tori,
• ψ(Nw) = Nw−1 for all w ∈Ws

∼= Ws∨.

Proof. By Theorem 2.7 there is a unique isomorphism of O(Ts∨)-modules with these

properties. By the Ws-equivariance of the LLC for tori via (5.1), O(Ts)
∼−→ O(Ts∨)

is Ws-equivariant. Combine that with Lemma 5.2 and the multiplication rules in
extended affine Hecke algebras [AMS3, Proposition 2.2]. �

We note that Theorem 5.3 is compatible with parabolic induction from standard
parabolic and standard Levi subgroups of G. Indeed, for a standard Levi subgroup
M of G one obtains the same isomorphism as in Theorem 5.3, on the subalgebra
generated by O(Ts) and the Nw with w ∈ NM (T )/T .

6. Parameters of generic representations

With Theorem 5.3 and (5.2) we can reformulate Theorem 3.4 in terms of

H(s∨, q
1/2
F )-modules. Then it says: π is (U, ξ)-generic if and only if

(6.1) HomH(Ws∨ ,q
λ
F )

(
HomG(Πs, π), St

)
is nonzero.

We want to investigate which Langlands parameters should correspond to generic
representations in Theorem 4.3. With the reduction theorems from [Lus3, §8–9]

we translate the study of (irreducible) representations of H(s)op ∼= H(s∨, q
1/2
F ) to

representations of graded Hecke algebras. Subsequently we take a closer look at the
geometric construction of the representations of such algebras. We need to revisit
the methods from [Lus3] and [AMS2, AMS3], because the aspects we are interested
in were not considered previously and require quite some details.

6.1. Reduction to graded Hecke algebras.
To ease the notation, from now on the elements of Rs∨ will be called just α∨,

instead of mαα
∨ as previously. For a H(s∨, q

1/2
F )-module V and t ∈ Ts∨ write

Vt = {v ∈ V : there exists n ∈ N such that (θx − x(t))nv = 0 for all x ∈ X}.

If Vt is nonzero, then we call t a weight of V . For a Ws∨-stable subset U ⊂ Ts∨ , let
Mod(Hs∨)U be the category of finite length Hs∨-modules all whose O(Ts∨)-weights
belong to U . There is a natural equivalence of categories

Mod
(
H(s∨, q

1/2
F )

)
U
→

⊕
t∈U/Ws∨

Mod
(
H(s∨, q

1/2
F )

)
Ws∨ t

V 7→
⊕

t∈U/Ws∨

(∑
w∈Ws∨

Vwt
) .
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Let Ts∨,un ⊂ Ts∨ be the maximal compact real subtorus. It is homeomorphic to the
set of unitary characters in Ts = Xnr(T )χ0. For u ∈ Ts∨,un we put

Rs∨,u = {α∨ ∈ Rs∨ : sα(u) = u}.

This is a root system and its Weyl group is contained in Ws∨,u. Recall that we fixed
a Borel subgroup B∨ ⊂ G∨, which provides Rs∨,u with a notion of positive roots.

Let Γs∨,u be the stabilizer of R+
s∨,u = R+

s∨ ∩Rs∨,u in Ws∨,u, then

Ws∨,u = W (Rs∨,u) o Γs∨,u.

From these objects we build a new root datum

Rs∨,u =
(
Rs∨,u, X

∗(Ts∨), R∨s∨,u, X∗(Ts∨)
)
,

which is endowed with an action of Γs∨,u. That gives rise to an extended affine
Hecke algebra

Hs∨,u = H(Rs∨,u, λ, λ
∗, q

1/2
F ) o Γs∨,u.

We denote the standard generators of this algebra (as O(Ts∨)-module) by Nw,u,
where w ∈Ws∨,u.

The positive part of Xnr(T ) is X+
nr(T ) = HomZ(T,R>0). Via the isomorphism

(4.2), X+
nr(T ) can be regarded as a subgroup of (T∨, IF )WF

, and as such it acts
on Ts∨ . In particular that yields a subset Ws∨,uX

+
nr(T )u of Ts∨ . Notice that every

element of Ts∨ lies in a subset of the form X+
nr(T )u with u ∈ Ts∨,un.

Theorem 6.1. There exists a canonical equivalence of categories

indu : Mod(Hs∨,u)X+
nr(T )u → Mod

(
H(s∨, q

1/2
F )

)
Ws∨X

+
nr(T )u

VX+
nr(T )u :=

∑
t∈X+

nr(T ) Vtu 7→ V

such that:

(a) indu is given by localization of the centres on both sides, followed by induction.
(b) indu and ind−1

u preserve central characters.
(c) For V ∈ Mod(Hs∨,u)X+

nr(T )u there is an isomorphism

HomH(Ws∨ ,q
λ
F )(induV,St) ∼= HomH(Ws∨,u,q

λ
F )(V,St).

Proof. The original version of this equivalence is [Lus3, Theorem 8.6], but the setup
is slightly different there. The version we need, including the canonicity and the
group Γs∨ , is shown in [Sol1, Theorem 2.1.2]. Strictly speaking Γs∨ must fix a point
of Ts∨ in [Sol1]. Fortunately, that does not play a role in the proof, it works in the
generality of our setting because we consider u that need not be fixed by W (Rs∨).
The properties (a) and (b) are checked in [AMS3, Theorem 2.5].

By [AMS3, Theorem 2.5] the effect of the thus obtained functor indu on
H(Ws∨ , q

λ
F )-modules is

(6.2) V 7→ ind
H(Ws∨ ,q

λ
F )

H(Ws∨,u,q
λ
F )
V.

In this expression H(W (Rs∨), qλF ) and C[Γs∨ ∩ Γs∨,u] are naturally subalgebras of

H(Ws∨ , q
λ
F ), but we have to be careful with the Ñw,u for which w ∈ Γs∨,u but

w 6∈ Γs∨ . From [Lus3, §8] and [Sol1, §2.1] one sees that Ñw,u is sent to

T̃w1X+
nr(T )u = Tw1X+

nr(T )u
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in a suitable completion of H(s∨, q
1/2
F ). Here Tw is as in Section 2, transferred to

completions of H(s∨, q
1/2
F ) via Theorem 5.3. From (6.2) and Frobenius reciprocity

(in a suitably completed algebra) we obtain (c). �

With Theorem 6.1 we can reduce the study of H(s∨, q
1/2
F )-modules that admit a

central character to modules of another affine Hecke algebra, Hs∨,u, such that for the
new modules the compact part of the central character is fixed by the new extended
Weyl group. In this process all relevant properties of modules are preserved.

Let Tu(Ts∨) be the tangent space of Ts∨ at u. It can be identified with
C⊗ZX∗(Ts∨), so Rs∨,u can be regarded as a subset of the cotangent space T∗u(Ts∨).
For α∨ ∈ Rs∨ we define a parameter

kuα∨ = (λ(h∨α) + α(u)λ∗(h∨α)) log(qF )/2 ∈ R≥0.

The graded Hecke algebra H(W (Rs∨,u),Tu(Ts∨), ku) is the vector space
O(Tu(Ts∨))⊗ C[W (Rs∨,u)] with multiplication defined by

• O(Tu(Ts∨)) and C[W (Rs∨,u)] are embedded as unital subalgebras,
• for α∨ ∈ Rs∨,u simple and f ∈ O(Tu(Ts∨)):

sαf − sα(f)sα = kuα∨(f − sα(f))/α∨.

The group Γs∨,u acts naturally on this algebra, by

γ(wf) = (γwγ−1) f ◦ γ−1 w ∈W (Rs∨,u), f ∈ O(Tu(Ts∨)).

We define the extended graded Hecke algebra

Hs,u = H(W (Rs∨,u),Tu(Ts∨), ku) o Γs∨,u.

Its centre is O(Tu(Ts∨))Ws∨,u and weights of Hs∨,u-modules are by default consid-
ered with respect to the maximal commutative subalgebra O(Tu(Ts∨)). Like for
affine Hecke algebras, for a Ws∨,u-stable subset U ⊂ Tu(Ts∨) we have the category
Mod(Hs∨,u)U of finite length modules all whose O(Tu(Ts∨))-weights belong to U .

Recall the exponential map for Ts∨ based at u:

expu : Tu(Ts∨) → Ts∨
y 7→ u exp(y)

.

Theorem 6.2. The map expu induces a canonical equivalence of categories

expu∗ : Mod(Hs∨,u)R⊗X∗(Ts∨ ) → Mod(Hs∨,u)X+
nr(T )u,

such that:

(a) expu∗ comes from an isomorphism (induced by expu) between localized versions
of Hs∨,u and of Hs∨,u.

(b) expu∗ does not change the vector spaces underlying the modules.
(c) The effect of expu∗ on O(Tu(Ts∨))-weights is expu.
(d) For any V ∈ Mod(Hs∨,u)R⊗X∗(Ts∨ ) there is an isomorphism

HomWs∨,u(V,det) ∼= HomH(Ws∨,u,q
λ
F )(expu∗ V,St).

Proof. The original version of this equivalence is [Lus3, Theorem 9.3]. We use the
version from [Sol1, Theorem 2.1.4 and Corollary 2.1.5]. This includes the canonicity
and the properties (a),(b) and (c).
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One way to see (d) is via deformations of the parameters. We can scale the
parameters ku linearly to 0. That gives a family of extended graded Hecke algebras

Hs∨,u,ε = H(W (Rs∨,u),Tu(Ts∨), εku) o Γs∨,u ε ∈ R≥0.

A module V can be “scaled” to modules Vε, via the scaling homomorphisms Hs∨,u,ε →
Hs∨ for ε ≥ 0 [Sol1, (1.11)]. For ε = 0 we obtain a module V0 of

Hs∨,u,0 = O(Tu(Ts∨)) oWs∨,u,

which equals V as C[Ws∨,u]-module and on which O(Tu(Ts∨)) acts by evaluation at
0 ∈ Tu(Ts∨).

For the affine Hecke algebra Hs∨,u, the parameters can be scaled via qF 7→ qεF
with ε ∈ [0, 1]. That yields a family of algebras

Hs∨,u,ε = H(Ru, λ, λ∗, qεF ) o Γs∨,u ε ∈ R≥0.

The module expu∗ V can be “scaled” accordingly via a functor

σ̃ε : Mod(Hs∨,u)χ+u → Mod(Hs∨,u)χε+u ε ∈ [0, 1],

see [Sol1, Corollary 4.2.2]. In this processH(Ws∨,u, q
λ
F ) is replaced by the isomorphic

semisimple algebra H(Ws∨,u, q
ελ
F ). The multiplicities

dim HomH(Ws∨,u,q
ελ
F )

(
σ̃ε(expu∗ V ), St

)
depend continuously on ε ∈ [0, 1] and they are integers, so in fact they are constant
as functions of ε. It is known from [Sol1, (4.6)–(4.7)] that

expu∗(Vε) = σ̃ε(expu∗ V ) for all ε ∈ [0, 1].

We conclude that

HomH(Ws∨,u,q
λ
F )(expu∗ V ), St) ∼= HomH(Ws∨,u,q

0
F )

(
σ̃0(expu∗ V ),St)

∼= HomWs∨,u(V0,det) = HomWs∨,u(V,det). �

In view of Theorems 3.4, 6.1 and 6.2, the role of genericity for Hs∨,u is played by
modules that the contain the character det of C[Ws∨,u]. To analyse those, we bring
the algebra in an easier form.

Let Ru>0 be the subset of Rs∨,u consisting of the roots α∨ for which kuα∨ > 0. Let

Γu>0 be the stabilizer of R+
u>0 = Ru>0 ∩R+

s∨ in Ws∨,u.

Lemma 6.3. Rs∨,u is a root system and Hs∨,u = H(W (Ru>0),Tu(Ts∨), ku) o Γu>0.

Proof. The set Ru>0 is Ws∨,u-stable by the invariance properties of the labels. In
particular it is stable under the reflections with respect to its roots, so it is a root
system. In every irreducible component of Rs∨,u, Ru>0 is either everything or empty
or the roots of one given length. By the simple transitivity of the action of W (Ru>0)
on the collection of positive systems in Ru>0:

Ws∨,u = W (Ru>0) o Γu>0.

We note that

(6.3) Rs∨,u \Ru>0 = {α∨ ∈ Rs∨,u : λ(h∨α) = λ∗(h∨α), α∨(u) = −1}.

By reduction to irreducible root systems, and the classification thereof, one checks
that W (Rs∨,u) is the semidirect product of W (Ru>0) and the subgroup generated by
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the reflections with respect to the simple roots in Rs∨,u \Ru>0. For such reflections
the multiplication relations in Hs∨,u simplify to sαf = sα(f)sα. That implies

H(W (Rs∨,u),Tu(Ts∨), ku) = H(W (Ru>0),Tu(Ts∨), ku) o (Γu>0 ∩W (Rs∨,u)),

which in turn implies the lemma. �

The advantage of Lemma 6.3 is that via the new presentation the algebra becomes
isomorphic to a graded Hecke algebras with equal parameters.

Lemma 6.4. Hs∨,u is isomorphic to a graded Hecke algebra (extended by Γu>0) such
that every root from Ru>0 has the parameter log(qF ).

Proof. By [AMS3, Proposition 3.14], Hs∨,u is isomorphic to the graded Hecke algebra

associated to a certain complex reductive group G̃ and a cuspidal L-parameter with
values in a quasi-Levi subgroup M̃ of G̃. In our specific setting M̃◦ is a torus,
because we only work with principal series L-parameters. In particular the cuspidal
L-parameter is trivial on SL2(C). Thus Hs∨,u is a graded Hecke algebra associated

to G̃ and a cuspidal support whose unipotent (or nilpotent) element is trivial. By
construction [AMS3, §1] all the nonzero parameters are of the form kuα∨ = c(α∨)ri,
where ri ∈ C depends only on the connected component of the root system that
contains α∨. Further c(α∨) = 2 by [Lus2, §2] and our earlier specialization of z to

q
1/2
F entails ki = log(q

1/2
F ) = log(qF )/2. Combine that with Lemma 6.3. �

6.2. Geometric representations of graded Hecke algebras.
Recall that u corresponds to a unitary character of T , so it is a bounded L-

parameter for T . By [AMS3, Proposition 3.14], the algebra Hs∨,u is of the form
H(u, 0, triv, log(qF )/2), where triv means the trival local system on the trivial nilpo-
tent orbit 0. The meaning of this statement is explained somewhat further in [AMS3,
(71) and below]. It can be formulated as

H(u, 0, triv, log(qF )/2) ∼= H(G∨u ,M
∨, triv, log(qF )/2).

In [AMS3] the group G∨u is defined as Z1
G∨sc

(u)×Xnr(G), but in our current setting we

have just G∨u = ZG∨(u). The reason is that at the start of Section 4 we refrained from
involving the simply connected cover of G∨der, that would be superfluous for quasi-
split groups. Similarly the group M∨, which is a quasi-Levi subgroup of Z1

G∨sc
(u)×

Xnr(G) in [AMS3], becomes simply T∨ in our setup.
Notice that G∨u need not be connected. In fact the isomorphism

(6.4) H(G∨u , T
∨, triv, log(qF )/2) ∼= Hs∨,u = H(W (Ru>0),Tu(Ts∨), ku) o Γu>0

and Lemma 6.3 imply that π0(G∨u) ∼= Γu>0. When we replace G∨u by its identity
component, we obtain the subalgebra

H◦s∨,u := H(G∨,◦u , T∨, triv, log(qF )/2) ∼= H(W (Ru>0),Tu(Ts∨), ku).

The irreducible representations of such graded Hecke algebras were parametrized
and constructed geometrically in [Lus2, Lus4]. The parameters are triples (σ, y, ρ◦)
where:

(i) σ ∈ Lie(G∨,◦u ) is semisimple,
(ii) y ∈ Lie(G∨,◦u ) is nilpotent,
(iii) [σ, y] = log(qF )y,
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(iv) ρ◦ is an irreducible representation of π0

(
ZG∨,◦u /Z(G∨,◦u )

)
satisfying the analogue

of (ii) on page 24.

By [Lus4] G∨,◦u -conjugacy classes of such triples are naturally in bijection with
Irr
(
H(G∨,◦u , T∨, triv, log(qF )/2)

)
. Let us write that as

(σ, y, ρ◦) 7→M◦y,σ,ρ◦ .

In [Lus2, Lus4] there is an extra parameter r ∈ C, but we suppress that because in
this paper it will always be equal to log(qF )/2. From these parameters σ can always
be chosen in Lie(T∨), and then W (Ru>0)σ is the central character of M◦y,σ,ρ◦ .

Lusztig’s parametrization was slightly modified in [AMS2, §3.5], essentially by
composing it with the Iwahori–Matsumoto involution IM of H◦s∨,u. To make that

consistent, the above condition (iii) must be replaced by

(iii’) [σ, y] = − log(qF )y.

We denote the resulting parametrization of Irr
(
H(G∨,◦u , T∨, triv, log(qF )/2)

)
, which

is the one used in [AMS3], by

(6.5) (σ, y, ρ◦) 7→ M̄◦y,σ,ρ◦ := IM∗My,−σ,ρ◦ .

Proposition 6.5. The irreducible H(G∨,◦u , T∨, triv, log(qF )/2)-representation M̄◦y,σ,ρ◦
contains the sign representation of C[W (Ru>0)] if and only if ρ◦ is the trivial repre-
sentation and the ZG∨,◦u (σ)-orbit of y is dense in

{Y ∈ Lie(G∨,◦u ) : [σ, Y ] = − log(qF )Y }.

Proof. We may replace G∨,◦u by any finite covering group, that does not change the
associated graded Hecke algebra. In particular we may assume that the derived
group of G∨,◦u is simply connected.

Via [AMS3, Theorems 2.5 and 2.11], analogous to Theorems 6.1 and 6.2, M̄◦y,σ,ρ◦
becomes an irreducible representation of the affine Hecke algebra associated to
(G∨,◦u , T∨, triv), with parameter qF . By [AMS3, Proposition 2.18], M̄◦y,σ,ρ◦ is turned

into the module M̃exp(σ),exp(y),ρ◦ associated by Kazhdan–Lusztig [KaLu] to
(exp(σ), exp(y), ρ◦) and qF . We note that the paper [KaLu] assumed that the de-
rived group of the involved complex reductive group is simply connected. It was
shown in [Ree2, §7.2–7.3] that M̃exp(σ),exp(y),ρ◦ contains the Steinberg representation
of H(W (Ru>0), qF ) if and only if ρ◦ is trivial and the Z◦

G∨,◦u
-orbit of y is dense in

{Y ∈ Lie(G∨,◦u ) : Ad(expσ)Y = q−1
F Y }

Now we go back to H(G∨,◦u , T∨, triv, log(qF )/2)-modules, and we conclude with a
version of Theorem 6.2.d. �

The parametrization of Irr(H◦s∨,u) from (6.5) has been generalized to Hs∨,u in

[AMS2, Theorem 3.20] and [AMS3, Theorem 3.8]. The parameters are G∨u -conjugacy
classes of triples (σ, y, ρ) as above, with as only difference that ρ is now an irreducible
representation of π0

(
ZG∨u (σ, y)/Z(G∨,◦u )

)
.

The two constructions are related as follows. To (σ, y) one associates [Lus2] a
H◦s∨,u × π0(ZG∨,◦u )-representation E◦y,−σ. Then

E◦y,−σ,ρ◦ = Homπ0(Z
G
∨,◦
u

(σ,y))(ρ
◦, E◦y,−σ)

and M◦y,−σ,ρ◦ is the unique irreducible quotient of that module.
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Similarly a Hs∨,u×π0(ZG∨u )-representation Ey,−σ can be constructed [AMS2], and
by [AMS2, Lemma 3.3] there is a canonical isomorphism

(6.6) Ey,−σ ∼= ind
Hs∨,u
H◦

s∨,u
E◦y,σ.

One defines

(6.7) Ey,−σ,ρ = Homπ0(ZG∨u
(σ,y))(ρ,Ey,−σ),

and then My,−σ,ρ is the unique irreducible quotient of Ey,−σ,ρ.

Lemma 6.6. Every semisimple σ ∈ G∨,◦u can be extended to a triple as used in
(6.7), such that My,−σ,ρ contains the trivial representation of C[W (Ru>0) o Γu>0].
Moreover (y, ρ) is unique up to ZG∨u (σ)-conjugacy, y lies in the dense ZG∨,◦u (σ)-orbit
in

{Y ∈ Lie(G∨,◦u ) : [σ, Y ] = − log(qF )Y }
and the restriction of ρ to π0(ZG∨,◦u (σ, y)) is a multiple of the trivial representation.

Proof. Let My,−σ be the maximal semisimple quotient Hs∨,u-module of Ey,−σ. Then

(6.8) My,−σ,ρ = Homπ0(ZG∨u
(y,σ))(ρ,My,−σ),

for any eligible ρ. The same can be done for the analogous H◦s∨,u-modules. It follows

from (6.6), (6.7) and (6.8) that

(6.9) My,−σ ∼= ind
Hs∨,u
H◦

s∨,u
M◦y,−σ.

Recall that Hs∨,u = H◦s∨,uoΓu>0. By Frobenius reciprocity and (6.9) the multiplicity
of trivW (Ru>0)oΓu>0

in My,−σ equals the multiplicity of trivW (Ru>0) in M◦y,−σ.
For any given σ, Proposition 6.5 and (6.8) for H◦s∨,u entail that trivW (Ru>0) appears

with multiplicity one in M◦y,−σ if y satisfies the density condition, and otherwise that
multiplicity is zero. Hence My,−σ contains trivW (Ru>0)oΓu>0

if and only if y satisfies
the condition from the statement, and then the multiplicity is one.

For such (σ, y), multiplicity one ensures that there exists a unique ρ such that
My,σ,ρ contains trivW (Ru>0)oΓu>0

. Let ρ◦ be an irreducible subrepresentation of ρ
restricted to the normal subgroup π0(ZG∨,◦u (σ, y)). By Clifford theory the restriction

of ρ to π0(ZG∨,◦u (σ, y)) is a multiple of
⊕

g g · ρ◦, where g runs over π0(ZG∨u (σ, y))
modulo the stabilizer of ρ◦.

Suppose that ρ◦ is nontrivial. Then g · ρ◦ is nontrivial for any g ∈ π0(ZG∨u (σ, y)),
and My,−σ,ρ cannot contain any H◦s∨,u-submodule of the form M◦y′,σ′,triv. In this case
My,−σ,ρ does not contain trivW (Ru>0). �

To see that the parametrization of Irr(Hs∨,u) from [AMS3, Theorem 3.8] has a
property like Proposition 6.5, it remains to analyse the ρ determined by Lemma 6.6.
To that end we have to delve more deeply into the underlying constructions.

By the naturality of the parametrization (6.5), the Γu>0-stabilizer of M̄◦y,σ,ρ◦ (or

equivalently of M◦y,−σ,ρ◦) equals the Γu>0-stabilizer of the G∨,◦u -orbit of (σ, y, ρ◦).
When ρ◦ = triv, that group depends only on (σ, y). When furthermore y satisfies
the density condition from Proposition 6.5, the Γu>0-stabilizer of M̄◦y,σ,triv equals the

Γu>0-stabilizer of the G∨,◦u -orbit of σ, which we denote by Γ[σ].
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Lemma 6.7. Let (σ, y, triv) be as in Proposition 6.5. The action of H◦s∨,u on
M◦y,−σ,triv extends a unique way to an action of H◦s∨,uoΓ[σ] that contains the trivial

representation of C[W (Ru>0) o Γ[σ]].

Proof. By Proposition 6.5M◦y,−σ,ρ◦ contains the trivial representation of C[W (Ru>0)],
and by Lemma 3.5 it does so with multiplicity one. Any γ ∈ Γ[σ] stabilizes M◦y,−σ,triv,
so there exists a linear bijection Iγ such that

Iγ ◦ h = γ(h) ◦ Iγ : M◦y,−σ,ρ◦ →M◦y,−σ,ρ◦ for all h ∈ H◦s∨,u.

Schur’s lemma says that Iγ is unique up to scalars. Since trivW (Ru>0) is Γ[σ]-stable
and appears with multiplicity on in M◦y,−σ,ρ◦ , Iγ stabilizes the one-dimensional
subspace which affords trivW (Ru>0). We normalize Iγ by requiring that it fixes
trivW (Ru>0) ⊂ M◦y,−σ,ρ◦ pointwise, that is the only possibility if we want to end up
with the trivial representation of W (Ru>0) o Γ[σ].

For any γ, γ′ ∈ Γ[σ], Iγ ◦ Iγ′ satisfies the same condition as Iγγ′ , so equals Iγγ′ .
These Iγ provide the desired extension. �

The module M◦y,σ,ρ◦ comes as the unique irreducible quotient of a standard module
E◦y,σ,ρ◦ [Lus5, Theorem 1.15.a]. The latter is a subspace of the homology of the

variety By of Borel subgroups of G∨,◦u that contain exp(y), with coefficients in a

certain local system L̇. In our setting L̇ is trivial because it comes from the trivial
local system on {0}. In terms of the Γu>0-stable Borel subgroup B∨ ∩G∨,◦u we have

E◦y,σ,ρ◦ ⊂ H∗(By) = H∗
({
g ∈ G∨,◦u /B∨ ∩G∨,◦u : Ad(g−1)y ∈ Lie(B∨ ∩G∨,◦u )

})
.

From that and (6.7) we see that

(6.10) E◦y,−σ,triv = H∗(By)
Z
G
∨,◦
u

(y,σ)
.

Lemma 6.8. Let (σ, y, triv) be as in Proposition 6.5. Then

M◦y,−σ,triv = E◦y,−σ,triv = H∗(By)
Z
G
∨,◦
u

(y,σ)

as vector spaces. The subspace H0(By)ZG∨,◦u (y,σ)
has dimension one and C[W (Ru>0)]

acts on it as the trivial representation.

Proof. By [Lus4, §10.4–10.8], every irreducible subquotient of E◦y,−σ,triv different
from M◦y,−σ,triv is of the form M◦y′,−σ,ρ◦ with

Ad(ZG∨,◦u )y ⊂ Ad(ZG∨,◦u )y′.

By the density condition on y, such a y′ does not exist. Therefore E◦y,−σ,triv is
irreducible and equal to M◦y,−σ,triv.

Again by [Lus4, §10.4–10.8], M◦y,−σ,triv is a subquotient of E◦0,−σ,triv. As

(6.11) Ad(ZG∨,◦u )y = {Y ∈ Lie(G∨,◦u ) : [σ, Y ] = − log(qF )Y }

is a vector space, the intersection cohomology complex from the constant sheaf on
Ad(ZG∨,◦u )y is simply the constant sheaf on (6.11). In view of [Lus4, §10], restricting

that sheaf to {0} provides a natural nonzero H◦s∨,u-module homomorphism

E◦y,−σ,triv → E◦0,−σ,triv.

This realizes M◦y,−σ,triv as subrepresentation of E◦0,−σ,triv.
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Consider the algebra A = O(Lie(G∨,◦u )/Ad(G)×C) of conjugation invariant func-
tions on the Lie algebra of G∨,◦u × C×. We recall from [Lus2] that

E◦0,−σ,ρ◦ = Hom
(
ρ◦, E◦y,σ

)
= Hom

(
ρ◦,C−σ,log(qF )/2 ⊗A HA

∗ (B0)
)
.

If we replace log(qF )/2 by an arbitrary r ∈ C, we still obtain a module for a graded
Hecke algebra, namely H(G∨,◦u , T∨, triv, r). It is known from [Lus2, Proposition 7.2]
that HA

∗ (B0) is a free A-module. That implies that the modules C−σ,r ⊗A HA
∗ (B0)

form an algebraic family parametrized by r ∈ C and a semisimple σ ∈ Lie(G∨,◦u ). In
particular, as modules for the finite dimensional semisimple subalgebra C[W (Ru>0)]
they do not depend on (σ, r).

For r = 0, σ = 0 the group ZG∨,◦u (σ, 0) = G∨,◦u is connected, and we obtain E◦0,0 =

H∗(B0). This is a C[W (Ru>0)]-representation with which the classical Springer
correspondence can be constructed. Here we must use the version of the Springer
correspondence from [Lus1], which by [Lus1, Theorem 9.2] means that the trivial
W (Ru>0)-representation appears as

H0(pt) = H0(Bx) ∼= H0(B0)

for a regular unipotent element x ∈ G∨,◦u . As dimH0(B0) = 1, the parts of

M◦y,−σ,triv ⊂ E◦0,−σ,triv ⊂ C−σ,log(qF )/2 ⊗A HA
∗ (B0)

in homological degree zero also have dimension one and carry the trivial represen-
tation of W (Ru>0). �

We are ready to prove the desired generalization of Proposition 6.5.

Theorem 6.9. There exists a canonical bijection between Irr(Hs∨,u) and the set of
G∨u -conjugacy classes of triples (σ, y, ρ), where

• σ, y ∈ Lie(G∨u) with σ semisimple, y nilpotent and [σ, y] = − log(qF )y,
• ρ is an irreducible representation of π0

(
ZG∨u (σ, y)/Z(G∨,◦u )

)
, such that any

irreducible π0

(
ZG∨,◦u (σ, y)/Z(G∨,◦u )

)
-subrepresentation appears in the homo-

logy of the variety of Borel subgroups of G∨,◦u that contain exp(σ) and exp(y).

The module M̄y,σ,ρ associated to (σ, y, ρ) contains the character det of C[Ws∨,u] if
and only if ρ is trivial and the Ad(ZG∨,◦u (σ))-orbit of y is dense in

{Y ∈ Lie(G∨,◦u ) : [σ, Y ] = − log(qF )Y }.

Proof. We start with the parametrization of Irr(H(G∨u , T
∨, triv, log(qF )/2) provided

by [AMS2, §3.5] and [AMS3, Theorem 3.8]. This has almost all the required prop-
erties, only the action of C[Γu>0] on the thus constructed modules can still be
normalized in several ways.

Fix a nilpotent y ∈ Lie(G∨,◦u ) and consider the variety

Py :=
{
g ∈ G∨u/B∨ ∩G∨,◦u : Ad(g−1)y ∈ Lie(B∨ ∩G∨,◦u )

}
.

The Hs∨,u×π0(ZG∨u (σ, y))-representation Ey,−σ equals H∗(Py) as vector space. The
action of π0(ZG∨u (σ, y)) on H∗(Py) is induced by the natural left action of ZG∨u (σ, y)
on Py. An element γ ∈ Γu>0 acts on Py by

(6.12) r−1
γ : g(B∨ ∩G∨,◦u ) 7→ gγ−1B∨ ∩G∨,◦u ,

which in fact makes Py isomorphic to By×Γu>0. We normalize the action of C[Γu>0]
on Ey,−σ, by defining it as H∗(r

−1
γ ). (This normalization was not possible in [AMS2],
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because there the homology of Py had coefficients in a possibly nontrivial local
system.)

From now on we assume that y satisfies the density condition from the statement.
In view of Lemma 6.6, it remains to analyse the π0(ZG∨u (σ, y))-invariants in Ey,−σ.
We recall from [AMS2, Lemma 3.12] that

Γ[σ]
∼= π0(ZG∨u (σ, y))/π0(ZG∨,◦u (σ, y)).

Let γσ,y ∈ ZG∨u (σ, y) be a representative of γ ∈ Γ[σ]. Then H∗(Py)π0(ZG∨u
(σ,y))

consists
of the invariants for {γσ,y : γ ∈ Γ[σ]} in

(6.13) H∗(Py)
π0(Z

G
∨,◦
u

(σ,y))
=
⊕

w∈Γu>0

H∗(w · By)
π0(Z

G
∨,◦
u

(σ,y))
.

Fix γ ∈ Γ[σ] and consider the map

(6.14)
fγ : By → By

g(B∨ ∩G∨,◦u ) 7→ γσ,ygγ
−1(B∨ ∩G∨,◦u )

.

It can be decomposed as

fγ = lγy,σ ◦ ρ−1
γ = r−1

γ ◦ lγy,σ

The induced map on H∗(By)
π0(Z

G
∨,◦
u

(σ,y))
is the composition of the action of an Hs∨,u-

intertwiner H∗(lγy,σ) from π0(ZG∨,◦u (σ, y)) and the action H∗(ρ
−1
γ ) of γ ∈ Hs∨,u, so

it is an H◦s∨,u-intertwiner

H∗(fγ) : E◦y,−σ,triv → γ · E◦y,−σ,triv.

Let πy,−σ be the extension of E◦y,−σ,triv = M◦y,−σ,triv to an Hs∨,uoΓ[σ]-representation
from Lemma 6.8. Consider the composition

πy,−σ(γ−1) ◦H∗(fγ) ∈ EndH◦
s∨,u

(E◦y,−σ,triv).

By Schur’s lemma this is a scalar, say λ ∈ C. We know from Lemma 6.8 that

H0(By)π0(Z
G
∨,◦
u

(σ,y))
has dimension one, so in terms of simplicial homology it is

spanned by an element v that is the sum of one point from every connected com-
ponent of By. That v is fixed by H0(fγ) because (6.14) is a homeomorphism. By
Lemmas 6.7 and 6.8 also πy,−σ(γ−1)v = v. Hence λ = 1 and πy,−σ(γ−1) ◦H∗(fγ) is
the identity. Equivalently,

H∗(lγy,σ) = H∗(rγ) ◦ πy,−σ(γ) : H∗(By)
π0(Z

G
∨,◦
u

(σ,y)) → H∗(γ · By)
π0(Z

G
∨,◦
u

(σ,y))
.

Specializing to H0(By)π0(Z
G
∨,◦
u

(σ,y))
= Cv we obtain

H0(lγy,σ) = H0(rγ) : H0(By)π0(Z
G
∨,◦
u

(σ,y)) → H0(γ · By)π0(Z
G
∨,◦
u

(σ,y))
.

It follows that H0(Py)π0(ZG∨u
(σ,y))

contains the nonzero vector∑
γ∈Γu>0

H0(r−1
γ )v =

∑
w∈Γu>0/Γ[σ]

H0(r−1
w )

∑
γ∈Γ[σ]

H0(lγy,σ)v0.

Lemma 6.8 shows that this an element of Ey,−σ,triv fixed by W (Ru>0) o Γu>0. In
other words,

(6.15) IM∗My,−σ,triv contains the C[W (Ru>0) o Γu>0]-representation sign o triv.
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Lemma 6.6 says that only the triples (y, σ, ρ) of the kind indicated in the statement
have that property.

Finally, we slightly modify the construction from [AMS2, §3.5]. Instead of ex-
tending the Iwahori–Matsumoto involution from H◦s∨,u to Hs∨,u by making it the

identity on C[Γu>0],

(6.16) we extend IM to Hs∨,u as multiplication by det on C[Γu>0].

Then (6.15) becomes: IM∗My,−σ,ρ contains detWs∨,u if and only if (σ, y, ρ) is as stated

in the theorem. �

We note that (6.16) only differs from the usual Iwahori–Matsumoto involution on
the extended graded Hecke algebra Hs∨,u by the automorphism

(6.17) detΓu>0 : γwf 7→ det(γ)γwf γ ∈ Γu>0, w ∈W (Ru>0), f ∈ O(Tu(Ts∨)).

Since detΓu>0 is the identity on O(Tu(Ts∨)), it preserves all the properties (e.g.
temperedness) that we need later on.

We wrap up this section by combining the main results.

Lemma 6.10. We modify [AMS3, Theorem 3.18] (see Theorem 4.3) by using (6.16)
instead of the involution IM from [AMS2, §3.5]. That yields a canonical bijection

Φe(G)s
∨ → Irr

(
H(s∨, q

1/2
F )

)
(φ, ρ) 7→ M̄(φ, ρ, q

1/2
F )

such that:

• It has all the properties listed in [AMS3, Theorem 3.18].

• M̄(φ, ρ, q
1/2
F ) contains the Steinberg representation H(Ws∨ , q

λ
F ) if and only if

ρ is trivial and log φ(1, ( 1 1
0 1 )) lies in the dense ZG∨

(
φ̃(WF )

)
-orbit in{

Y ∈ Lie
(
ZG∨(φ(IF ))

)
: Ad(φ̃(FrobF ))Y = q−1

F Y
}
.

Here φ̃|IF = φ|IF and φ̃(FrobF ) = φ
(
FrobF ,

(
q
−1/2
F 0

0 q
1/2
F

))
.

Proof. By design [AMS3, Theorem 3.18] for H(s∨, q
1/2
F ) is the composition of Theo-

rems 6.1, 6.2 and 6.9, with (6.16) as only difference. Since each of the three involved
bijections is canonical, so is our version of [AMS3, Theorem 3.18]. As explained
after (6.17), the automorphism detΓu>0 does not destroy any of the properties from
[AMS3, Theorem 3.18], so our bijection still satisfies all those properties.

In Theorem 6.9 we found a necessary and sufficient condition so that M̄y,σ,ρ ∈
Irr(Hs∨) contains detWs∨,u . With Theorem 6.2 we can translate that to expu∗ M̄y,σ,ρ.

Thus the latter module contains the representation St of H(Ws∨,u, q
λ
F ) if and only if

ρ is trivial and the orbit of y is dense in

{Y ∈ Lie(ZG∨(φ(IF )) : Ad(u exp(σ))Y = q−1
F Y }.

With Theorem 6.1 we transfer that to a property of

ind−1
u expu∗ M̄y,σ,ρ ∈ Irr

(
H(s∨, q

1/2
F )

)
.

The translation to L-parameters from [AMS3] is such that Sc(φ, ρ) = u exp(σ) and
y = log φ(1, ( 1 1

0 1 )). Thus we recover the characterization of genericity stated in the
lemma. �
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7. A canonical local Langlands correspondence

Recall that we fixed a quasi-split group G = G(F ), a maximal split torus S of
G, a Borel subgroup B ⊂ G containing T = ZG(S) and a Whittaker datum (U, ξ).
Given G, only ξ is really a choice, the other objects are unique up to G-conjugacy.

We denote the space of irreducible G-representations in the principal series by
Irr(G,T ), and we write Φe(G,T ) for the set of principal series enhanced L-parameters
in Φe(G).

Theorem 7.1. The Whittaker datum (U, ξ) determines a canonical bijection

Irr(G,T ) ←→ Φe(G,T )
π 7→ (φπ, ρπ)

π(φ, ρ) 7→ (φ, ρ)
.

Proof. Recall from (5.1) that the LLC for tori provides a NG(T )/T -equivariant bi-
jection between the Bernstein components of Irr(T ) and the Bernstein components
of Φe(T ), say sT 7→ s∨T .

Every principal series Bernstein component Irr(G)s of Irr(G) determines a unique
NG(T )/T -orbit of Bernstein components Irr(T )sT . Similarly every principal se-

ries Bernstein component Φe(G)s
∨

determines a unique NG(T )/T -orbit of Bernstein

components Φe(G)s
∨
T . Thus the LLC for tori induces a natural bijection between

the Bernstein components of Irr(G,T ) and those of Φe(G,T ). We denote it by

Irr(G)s 7→ Φe(G)s
∨
, where typically s = [T, χ0]G and s∨ = (T, χ̂0Xnr(T )). From

respectively (1.1) and Theorem 2.7, Theorem 5.3 and Theorem 4.3 in the form of
Lemma 6.10, we obtain canonical bijections

(7.1) Irr(G)s ↔ Irr(EndG(Πs)
op)↔ Irr(H(s)op)↔ Irr

(
H(s∨, q

1/2
F )

)
↔ Φe(G)s

∨
.

Suppose we represent s instead by wsT = [T,wχ0]T with w ∈W (G,S) = NG(T )/T .
Clearly we may assume that w has minimal length in wWs. Start with any π ∈
Irr(G)s and follow (7.1) to obtain πs ∈ Irr(H(s)op), πs∨ ∈ Irr

(
H(s, q

1/2
F )

)
and

(φπ, ρπ) ∈ Φe(G,T ). We use the same notations with ws instead of s. Proposition
2.8 implies πws = πs ◦Ad(φw) where

φw(fNv) = (f ◦ w)Nw−1vw for f ∈ O(Tws), v ∈Wws.

Now we consider w as element of NG∨(T∨ o WF )/T∨ via (5.1), and we define an
algebra isomorphism

Ad(φw)∨ : H(ws∨, q
1/2
F ) → H(s∨, q

1/2
F )

fNv 7→ (f ◦ w)Nw−1vw f ∈ O(Tws∨), v ∈Wws∨ .

With Theorem 5.3 we obtain πws∨ = πs∨ ◦ Ad(φw)∨. All the constructions behind
Theorem 4.3 and Lemma 6.10 are equivariant for algebraic automorphisms of (G,T ).
Consequently πws∨ is parametrized by (wφπw

−1, w · ρπ), for any representative of w
in NG∨(T∨ oWF ). As (wφπw

−1, w · ρπ) equals (φπ, ρπ) in Φe(G), we deduce that

the bijection between Irr(G)s and Φe(G)s
∨

from (7.1) does not depend on the choice
of an inertial equivalence class for T underlying s.

Knowing that, we can unambiguously take the union of the bijections (7.1) over
all Bernstein components of Irr(G,T ). �

In the remainder of this section we will show that the bijection from Theorem 7.1
has many desirable properties.
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The definition of φ̃ in Lemma 6.10 applies to any Langlands parameter φ ∈ Φ(G).

The group ZG∨(φ̃(WF )) acts by conjugation on the variety

Vφ̃ =
{
v ∈ ZG∨(φ(IF )) : v is unipotent and φ̃(FrobF )−1vφ̃(FrobF ) = vqF

}
.

It is known from [CFMMX, Proposition 5.6.1] that Vφ̃ is an affine space over C on

which ZG∨(φ̃(WF )) acts with finitely many orbits, of which exactly one is open. Fol-

lowing [CFZ, §0.6], we call φ ∈ Φ(G) open if uφ ∈ Vφ̃ is lies in the open ZG∨(φ̃(WF ))-

orbit.

Lemma 7.2. The representation π(φ, ρ) ∈ Irr(G,T ) is (U, ξ)-generic if and only if
φ is open and ρ is trivial.

Proof. By Theorem 3.4, π(φ, ρ) is (U, ξ)-generic if and only if the EndG(Πs)
op-module

HomG(Πs, π(φ, ρ)) contains St. Via Theorems 5.3 and 4.3 that becomes the analo-

gous statement forH(s∨, q
1/2
F )-representations. In Lemma 6.10 we showed the equiv-

alence with the stated conditions on φ and ρ, except unipotency. The conditions in
Lemma 6.10 imply that log uφ must be nilpotent. Hence uφ must be unipotent (as
is any case required for Langlands parameters). �

We note that Lemma 7.2 agrees with the Reeder’s findings [Ree1, Ree2] for generic
unipotent representations and generic principal series representations, in both cases
for split reductive p-adic groups with connected centre.

For the next properties of our LLC, the setup will be similar to [Sol6, §5].

Lemma 7.3. Theorem 7.1 is compatible with direct products of quasi-split F -groups.

Proof. If G = G1 × G2, then all involved objects for G are naturally products of the
analogous objects for G1 and G2. �

Recall that the group of (smooth) characters Hom(G,C×) is naturally isomorphic
to H1(WF , Z(G∨)). The former group acts on Irr(G) by tensoring, and that action
commutes with the supercuspidal support map so stabilizes Irr(G,T ).

On the other hand, H1(WF , Z(G∨)) acts on Φ(G) by multiplication of maps
WF × SL2(C)→ G∨, where H1(WF , Z(G∨)) gives maps that do not use SL2(C)).
That action does not change Rφ, so it induces an action of H1(WF , Z(G∨)) on
Φe(G) which does not change the enhancements. This last action commutes with
the cuspidal support maps, so it stabilizes Φe(G,T ).

Lemma 7.4. The bijection in Theorem 7.1 is H1(WF , Z(G∨))-equivariant.

Proof. For the fourth bijection in (7.1), such equivariance was shown in [Sol6, Lemma
2.2.a]. Here z ∈ H1(WF , Z(G∨)) acts via the algebra isomorphism

H(z) : H(s∨, q
1/2
F ) → H(zs∨, q

1/2
F )

fNw 7→ (f ◦ z−1)Nw f ∈ O(Ts∨), w ∈Ws∨ .

In view of Theorem 5.3, the same formula also defines an algebra isomorphism

H(z) : H(s)op → H(zs)op.

We define an action of H1(WF , Z(G∨)) on the union of the spaces Irr(H(s)op) by
z · τ = τ ◦ H(z)−1. That renders the third bijection in (7.1) equivariant. Using
Theorem 2.7 and the same argument we also make the second bijection in (7.1)
equivariant for H1(WF , Z(G∨)).
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Finally, consider π ∈ Irr(G)s and HomG(Πs, π) ∈ Irr(EndG(Πs)
op). Then z ⊗ π ∈

Irr(G)zs and

HomG(Πzs, z ⊗ π) = HomG

(
IGB indTTcpt(z ⊗ χ), z ⊗ π

) ∼=
HomG

(
z ⊗ IGB indTTcpt(χ), z ⊗ π

)
= HomG

(
IGB indTTcpt(χ), π

)
= HomG(Πs, π).

The isomorphism (from bottom to top) is given by translation by z on Irr(T ). As
modules over H(s) and H(zs), that isomorphism is implemented by composition
with H(z)−1. Hence the first bijection in (7.1) is equivariant as well. �

It is clear that a principal series G-representation is supercuspidal if and only if G
is a torus. Similarly, the discussion at the start of Section 4 entails that a principal
series enhanced L-parameter for G is cuspidal if and only if G is a torus. The next
result relates the cuspidal support maps on both sides, when G is not a torus.

Lemma 7.5. Theorem 7.1 and the cuspidal support maps make a commutative
diagram

Irr(G,T ) ←→ Φe(G,T )
↓ Sc ↓ Sc

Irr(T )/NG(T )
LLC−−−→ Φ(T )/NG∨(T oWF )

.

Proof. From the formula for the cuspidal support (4.1) and Theorem 4.2.a, we see

that the central character of M(φ, ρ, q
1/2
F ) is given by Sc(φ, ρ)/Ws∨ ∈ Φe(T )/Ws∨ .

Hence the central character of HomG(Πs, π(φ, ρ)) is the image Wsχφ of Sc(φ, ρ)/Ws∨

in Irr(T )/Ws.
More explicitly, O(Ts)

Ws acts on HomG(Πs, π(φ, ρ)) via Wsχφ. Then a glance at
the construction of Πs reveals that Wsχφ represents the supercuspidal support of
π(φ, ρ). �

We turn to more analytic properties of G-representations.

Lemma 7.6. π ∈ Irr(G,T ) is tempered if and only if φπ ∈ Φ(G) is bounded.

Proof. Theorem 4.2.b says that the fourth bijection in (7.1) has the desired property.
By Lemma 5.2 and Theorem 5.3, the third bijection in (7.1) preserves tempered-
ness. By [Sol5, Theorem 9.6.a], so does the composition of the first and the second
bijections in (7.1). �

Lemma 7.7. π ∈ Irr(G,T ) is essentially square-integrable if and only if φ is discrete.

Proof. Suppose first that Rs,µ has smaller rank that R(G,S). By [Sol5, Theo-
rem 9.6.b], Rep(G)s contains no essentially square-integrable representations. As
rk(R(G,S)) equals the F -split rank of G and

rk(Rs,µ) = rk(R∨s ) = rk(Rs∨),

Theorem 4.2.c says that Φe(G)s
∨

contains no discrete enhanced L-parameters.
Now we suppose that rk(Rs,µ) = rk(R(G,S)). Then [Sol5, Theorem 9.6.c] says

that (1.1) restricts to a bijection between essentially square-integrable representa-
tions in Irr(G)s and essentially discrete series representations in Irr(H(s)op). By
Lemma 5.2 and Theorem 5.3, the latter set is naturally in bijection with the set

of essentially discrete series representations in Irr
(
H(s∨, q

1/2
F )

)
. Combine that with

Theorem 4.2.c. �
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Recall from [Lan1, p. 20–23] and [Bor2, §10] that every φ ∈ Φ(G) determines in
a canonical way a character χφ of Z(G).

Lemma 7.8. For any (φ, ρ) ∈ Φe(G,T ), the central character of π(φ, ρ) equals χφ.

Proof. For any subquotient π of IGB (χ) = indGB(χ⊗ δ1/2
B ), the central character of π

equals (χ⊗ δ1/2
B )|Z(G) = χ|Z(G). In particular the central character of π(φ, ρ) equals

Sc(π(φ, ρ))|Z(G). By Lemma 7.5 that is π(Sc(φ, ρ))|Z(G). With (4.1) we write it as

χ|Z(G) where χ̂|IF = φ|IF and χ̂(FrobF ) = φ
(
FrobF ,

(
q
−1/2
F 0

0 q
1/2
F

))
.

It remains to show that χφ equals χ|Z(G), and to that end we revisit the construction

from [Bor2, Lan1]. Let G be a quasi-split reductive F -group with connected centre,
such that Gder = Gder. Let φ ∈ Φ(G) be a lift of φ ∈ Φ(G). With the canonical
map p : LG → LZ(G) we obtain p(φ) ∈ Φ(Z(G)). Via the LLC for tori that gives
χp(φ) ∈ Irr(Z(G)), and by definition χφ = χp(φ)|Z(G).

Let T = ZG(S) = ZG(T ). From (4.1) we see that, for any enhancement ρ of

φ such that (φ, ρ) ∈ Φe(G,T ), we have Sc(φ, ρ) = (ψ, ε), where ψ ∈ Φ(T ) is a

lift of χ̂ ∈ Φ(T ). As φ and ψ differ only by elements of G
∨

der ⊂ ker(p), we have
pφ = pψ. By the naturality of the LLC for tori, χψ extends both χ ∈ Irr(T ) and

χpψ = χpφ ∈ Irr(Z(G)). Hence χ|Z(G) = χpφ|Z(G) = χφ. �

Suppose that P = MRu(P ) is a parabolic subgroup of G, where M is a Levi
factor of P and T ⊂M . We can use the normalized parabolic induction functor IGP
to relate representations of M and of G.

The restriction of ξ to U∩M is a nondegenerate character ξM . We use (U∩M, ξM )
to define genericity of M -representations and to normalize the LLC for Irr(M,T ).

Suppose furthermore that φ ∈ Φ(G) factors via Φ(M). By [AMS1, Theorem
7.10.a] the group RMφ = π0(ZM∨(φ)/Z(M∨)) injects naturally into Rφ. Hence any

enhancement of φ ∈ Φ(G) can be considered as (possibly reducible) representation
of RMφ .

Lemma 7.9. Let (φ, ρM ) ∈ Φe(M,T ) be bounded. Then

IGP π(φ, ρM ) ∼=
⊕

ρ
HomRMφ

(ρM , ρ)⊗ π(φ, ρ),

where the sum runs over all ρ ∈ Irr(Rφ) with Sc(φ, ρ) = Sc(φ, ρM ).

Proof. By [AMS3, Theorem 3.18.f and Lemma 3.19.a], the analogous statement holds

forH(s∨, q
1/2
F )-modules. Theorem 5.3 (which is compatible with parabolic induction)

entails it also holds for H(s)op-modules. Then (1.2) enables us to transfer the desired
statement from H(s)op to Rep(G)s. �

Recall that the Langlands classification for irreducible G-representations [Lan1, Ren]
associates to any π ∈ Irr(G) a unique standard parabolic subgroup P = MRu(P ),
a unique tempered τ ∈ Irr(M) and a unique strictly positive z ∈ Hom(M,R>0),
such that π is the unique irreducible quotient of the standard module IGP (τ ⊗ z).
It has a counterpart for (enhanced) L-parameters [SiZi]. Let (φ, ρ) ∈ Φe(G,T ) and
let (P = MRu(P ), φb, z) be the triple associated to φ by [SiZi, Theorem 4.6]. Here
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φb ∈ Φ(M) is bounded and z ∈ Xnr(M) ∼= (Z(M∨)IF )◦WF
is “strictly positive with

respect to P”. By [AMS1, Theorem 7.10.b] there are natural isomorphisms

RMφb
∼= RMzφb = RMφ

∼= Rφ.

Hence ρ can also be regarded as enhancement of φ ∈ Φ(M) or φb ∈ Φ(M).

Lemma 7.10. In the above setting:

(a) π(φ, ρ) is the unique irreducible quotient of IGP π
M (φ, ρ).

(b) πM (φ, ρ) = πM (zφb, ρ) = z ⊗ πM (φb, ρ) with πM (φb, ρ) ∈ Irr(M) tempered.
(c) The triple associated to π(φ, ρ) by the Langlands classification for Irr(G) is

(P, πM (φb, ρ), z).

Proof. (a) By [Sol6, Proposition 2.3], the analogue in Rep(H(s∨, q
1/2
F )) holds. As in

the proof of Lemma 7.9, that can be transferred to Rep(G)s via (1.2).
(b) This is a direct consequence of Lemmas 7.4 and 7.6.
(c) This follows from parts (a) and (b) and the uniqueness in the Langlands classi-
fication. �

Suppose that F ′/F is a finite extension inside the fixed separable closure Fs. Let
G′ be a quasi-split F ′-group and put G = ResF ′/F (G′). Then G(F ) = G′(F ′), so there
is a natural bijection Irr(G(F ))→ Irr(G′(F ′)). On the other hand, Shapiro’s lemma
provides a natural isomorphism

Sh : Φe(G(F ))→ Φe(G′(F ′)),
see [FOS1, Lemma A.3].

Lemma 7.11. The bijection in Theorem 7.1 is compatible with restriction of scalars,
in the sense that the following diagram commutes:

Irr(G(F ), T (F )) → Φe(G(F ), T (F ))
↓ Sh ↓ Sh

Irr(G′(F ′), T ′(F ′)) → Φe(G′(F ′), T ′(F ′))
Here ResF ′/FT ′ = T .

Proof. By [Sol6, (26)], Sh induces a bijection from the set of Bernstein components of
Φe(G(F )) to the analogous set for G′(F ′). This bijection commutes with the cuspidal
support maps, so it also applies to Φe(G(F ), T (F )) and Φe(G′(F ′), T ′(F ′)). When-

ever s∨ corresponds to s′∨, there is a natural algebra isomorphism H(s∨, q
1/2
F ) ∼=

H(s′∨, q
1/2
F ′ ) [Sol6, Lemma 2.4]. Combine that with (7.1). �

Finally we investigate in what sense our (enhanced) L-parameters are unique.

Lemma 7.12. Let π ∈ Irr(G,T ). Then the φπ from Theorem 7.1 is uniquely deter-
mined by Lemmas 7.4, 7.5, 7.6 and 7.10.

Proof. Suppose that π is tempered. Lemma 7.5 determines Sc(φπ, ρπ) = φ̃ up to
NG∨(T∨ oWF ). Lemma 7.7 says that φπ must be bounded, so according to [CFZ,
§0.6] φπ is an open Langlands parameter. In other words, uφπ is uniquely determines

(up to ZG∨(φ̃π(WF ))-conjugacy) as an element of the open orbit in Vφ̃π . Thus φπ
is unique up to G∨-conjugacy.

Suppose now that π is not tempered. Let (P, τ, z) be the triple associated to
π by the Langlands classification. Here τ is tempered, so the above determines



PRINCIPAL SERIES REPRESENTATIONS OF QUASI-SPLIT REDUCTIVE p-ADIC GROUPS 45

φτ ∈ Φ(P/Ru(P ), T ) uniquely. Then Lemma 7.4 forces φτ⊗z = z · φτ and Lemma
7.10 says that φπ equals zφτ up to G∨-conjugacy. �

It is less clear to what extent the enhancement ρπ of φπ is uniquely specified.
Lemma 7.10 reduces this issue to tempered π ∈ Irr(G,T ). Then φπ is bounded,
so open. By Lemma 7.2 the L-packet Πφπ(G) contains a unique generic member,
namely π(φπ, triv). That fixes the normalization of the interwining operators from
elements of Rφπ , which then determines π(φπ, ρ) for any ρ ∈ Irr(Rφπ) such that
(φπ, ρ) ∈ Φe(G,T ). However, to make that precise one has to say on which mod-
ule these intertwining operators acts. That involves the constructions with Hecke
algebras in Section 6, which are canonical but not necessarily unique.

References

[ABPS1] A.-M. Aubert, P.F. Baum, R.J. Plymen, M. Solleveld, “The principal series of p-adic
groups with disconnected centre”, Proc. London Math. Soc. 114.5 (2017), 798–854

[ABPS2] A.-M. Aubert, P.F. Baum, R.J. Plymen, M. Solleveld, “Conjectures about p-adic groups
and their noncommutative geometry”, Contemp. Math. 691 (2017), 15–51

[AMS1] A.-M. Aubert, A. Moussaoui, M. Solleveld, “Generalizations of the Springer correspondence
and cuspidal Langlands parameters”, Manus. Math. 157 (2018), 121–192

[AMS2] A.-M. Aubert, A. Moussaoui, M. Solleveld, “Graded Hecke algebras for disconnected re-
ductive groups”, Geometric aspects of the trace formula, W. Müller, S. W. Shin, N. Templier
(eds.), Simons Symposia, Springer, 2018, 23–84

[AMS3] A.-M. Aubert, A. Moussaoui, M. Solleveld, “Affine Hecke algebras for Langlands parame-
ters”, arXiv:1701.03593v3, 2019

[AMS4] A.-M. Aubert, A. Moussaoui, M. Solleveld, “Affine Hecke algebras for classical p-adic
groups”, arXiv:2211.08196, 2022

[Bad] M.P. Badea, “Hecke algebras for covers of principal series Bernstein components in quasisplit
unitary groups over local Fields”, PhD thesis, Radboud Universiteit Nijmegen, 2020

[BeDe] J. Bernstein, P. Deligne, “Le ”centre” de Bernstein”, pp. 1–32 in: Représentations des
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réductif p-adique - le cas des groupes classiques”, Selecta Math. 17.3 (2011), 713–756

[Hel] E. Hellmann, “On the derived category of the Iwahori-Hecke algebra”, Compos. Math. 159.5
(2023), 1042–1110

[HII] K. Hiraga, A. Ichino, T. Ikeda, “Formal degrees and adjoint γ-factors”, J. Amer. Math. Soc.
21.1 (2008), 283–304 and correction J. Amer. Math. Soc. 21.4 (2008), 1211–1213

[Kal] T. Kaletha, “Representations of reductive groups over local fields”, arXiv:2201.07741, 2022
[KaLu] D. Kazhdan, G. Lusztig, “Proof of the Deligne–Langlands conjecture for Hecke algebras”,

Invent. Math. 87 (1987), 153–215
[Kud] S. Kudla, “The local Langlands correspondence: the non-Archimedean case”, Proc. Symp.

Pure Math 55.2 (1994), 365–391
[Lan1] R.P. Langlands, “On the classification of irreducible representations of real algebraic

groups”, pp. 101–170 in: Representation theory and harmonic analysis on semisimple Lie
groups, Math. Surveys Monogr. 31, American Mathematical Society, Providence RI, 1989

[Lan2] R.P. Langlands, “Representations of abelian algebraic groups”, pp. 231–250 in: Olga
Taussky-Todd: in memoriam, Pacific J. Math. 1997, Special Issue
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