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Abstract. For a reductive group G over a non-archimedean local field,
we compare smooth representations over C with smooth representations
over Q. For example, we show that tensoring with C over Q pre-
serves irreducibility of representations. We also show that an elliptic
G-representation (in the sense of Arthur) can be realized over Q if and

only if its central character takes values in Q. That applies in particular
to all essentially square-integrable G-representations.

We also study the action of the automorphism group of C/Q on
complex G-representations. We prove that essentially square-integrable
representations and elliptic representations are stable under Gal(C/Q).
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1. Introduction

The paper [FaSc] develops the theory of smooth representations of a re-
ductive group G over a non-archimedean local field F on Qℓ-vector spaces.
Choosing an isomorphism between C and Qℓ, one obtains results about
complex representations of G. It is natural to ask about independence of
the choice of such an isomorphism. Since any two isomorphisms between C
and Qℓ differ by a composition with an element of the automorphism group
Gal(C/Q), this question is equivalent to understanding of Gal(C/Q) on the
category of smooth complex representations of G. In this paper we show
that a large part of the familiar structure of this category is invariant under
Gal(C/Q).

This can be considered to be a counterpart of the recent result of Scholze
[Scho] asserting that the Fargues—Scholze correspondence can be done mo-
tivically and thus is independent of the ℓ in Qℓ.

1.1. Notations.

(1) Q is the algebraic closure of Q in C.
(2) F is a non-archimedean local field whose residue field has characte-

ristic p and cardinality qF .
(3) G is the group of F -points of connected reductive F -group G and

Z(G) is the centre of G.
(4) A representation of G on a complex vector space will be identified

with a representation of the group algebra CG.
(5) Irr(CG) is the set of isomorphism classes of smooth complex irre-

ducible representations of G.
(6) For π ∈ Irr(CG) we denote by cc(π) : Z(G) → C× the character

such that π(z) = cc(π)(z)Id, z ∈ Z(G).

(7) Irr′(CG) = {π ∈ Irr(CG) | Im(cc(π)) ⊂ Q×}.
(8) By default, our representations will have complex coefficients. So if

it says G or CG, then the coefficients are in C, while QG means that
the coefficients of the representations must be in Q.

(9) RG is the category of smooth finite length complex representations
of the group G. The variation R′

G is given by restricting to repre-
sentations all whose irreducible subquotients lie in Irr′(CG). When
G is semisimple, R′

G coincides with RG.

(10) Irr(QG) is the set of equivalence classes of smooth irreducible Q-
representations of G.

(11) RQG is the category of smooth finite length Q-representations of G.

(12) K(RG),K(R′
G) and K(RQG) are the K-groups of the categories

RG,R′
G and RQG.

(13) KG := K(RG)⊗Z Q, K′
G := K(R′

G)⊗Z Q, KQG := K(RQG)⊗Z Q.

(14) KG,temp is the subspace of KG spanned by the tempered G-repre-
sentations. The definition of tempered [Wal, §III.2] applies just as
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well to QG-representations, so we can define KQG,temp ⊂ KQG and

K′
G,temp ⊂ K′

G analogously.

(15) J. Arthur (see [Art, Herb]) defined aQ-linear subspaceKG,temp(ar) ⊂
KG,temp of elliptic tempered characters.

(16) Using only representations from R′
G in (15) gives K′

G,temp(ar).

(17) J. Arthur also defined a notion of elliptic tempered virtual G-repre-
sentations. These span KG,temp(ar).

1.2. Results.
The first general goal of this paper is a comparison of CG-representations

with QG-representations. We start with results valid for all irreducible
representations, which describe the relation between Irr(QG) and Irr(CG).

Theorem 1.1. (see Proposition 3.5 and Theorem 3.10)
For any irreducible Q-representation V of the group G the complex repre-
sentation V ⊗Q C is irreducible.

The functor ⊗QC provides a bijection from Irr(QG) to the subset of Irr(CG)

which is fixed by Gal(C/Q).

It follows from Theorem 1.1 that KQG embeds naturally in KG.

The group Gal(C/Q) acts on (π, V ) by its action on the matrix coefficients
of π with respect to an arbitrary basis of V . It is clear that every irreducible
QG-representation is fixed by Gal(C/Q), and Theorem 1.1 shows that the
converse is also true. We point out that both parts of Theorem 1.1 are
specific for algebraically closed fields, they would fail for other coefficient
fields like Q.

Of course not every irreducible CG-representation comes from a QG-
representation. An obvious necessary condition is that its central character

takes values in Q×
. That is accounted for by considering K′

G instead of KG.
But this condition is not sufficient, since there are representations parabol-
ically induced from representations σ of proper Levi subgroups L such that

the Z(L)-character of σ does not take values in Q×
. Looking for a descrip-

tion of a subspace of KG coming from Q-representations we restrict our
attention to the part of the representation theory of G that is ”orthogonal”
to the parabolically induced representations.

Arthur [Art] has shown that the subgroup of KG,temp spanned by tem-
pered representations induced from proper Levi subgroups of G admits a
complement KG,temp(ar) of tempered elliptic representations. These consti-
tute the discrete, non-induced part of KG,temp.

We define KQG,temp(ar) ⊂ KQG as the Q-linear subspace spanned by tem-

pered elliptic representations obtained from CG-representations defined over
Q. In Definitions (14)–(17) above the temperedness condition can be omit-
ted, which leads to natural ”nontempered” analogues of these spaces. In
particular there are spaces of elliptic (virtual) representations KG(ar) ⊂ KG
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and KQG(ar) ⊂ KQG. Again these subspaces form complements to the sub-
spaces spanned by representations induced from proper Levi subgroups. See
Paragraph 5.2 for details. For all these spaces we can impose the additional
condition that the central characters of the underlying representations must

take values in Q×
, which will be indicated by ′.

Theorem 1.2. (see Corollary 5.10)

(1) Every complex elliptic representation in R′
G can be realized over Q.

In particular every essentially square-integrable CG-representation

whose central character takes values in Q×
can be realized over Q.

(2) K′
G,temp(ar) equals KQG,temp(ar) and K′

G(ar) equals KQG(ar).

For semisimple p-adic groups Theorem 1.2 says, in various ways, that the
elliptic part of KG or KG,temp is the same for representations over C and

over Q. For reductive p-adic groups, this holds true because we restricted
to R′

G.

The second general goal of the paper is to show that well-known classes
of CG-representations are stable under the action of Gal(C/Q). It is clear
from the definitions that the classes of irreducible representations and of
cuspidal representations are stable under Gal(C/Q). Clozel showed that
the same holds for square-integrable representations, when char(F ) = 0.
We generalize his result to elliptic (virtual) CG-representations, without
restrictions on the characteristic of F .

Theorem 1.3. (see Theorem 4.6 and Corollary 5.13)

(1) The set of essentially square-integrable CG-representations is stable
under Gal(C/Q).

(2) The set of elliptic CG-representations is stable under Gal(C/Q).
(3) The spaces KG(ar) and K′

G(ar) are stable under Gal(C/Q).

We made the classes of representations in Theorem 1.3 into sets by con-
sidering the objects up to the isomorphism.

1.3. Brief outline of the paper.
Section 2 is preparatory, and it recalls known material. In Section 3

the basic properties of QG-representations are studied and Theorem 1.1 is
proven.

Section 4 has an algebraic part, in which Theorem 1.2.(1) for essentially
square-integrable representations is shown. In the analytic part of Section 4,
we investigate formal degrees of square-integrable representations to prove
that Gal(C/Q) permutes such representations.

Section 5 generalizes our results about essentially square-integrable rep-
resentations and finishes the proofs of Theorems 1.2 and 1.3.
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2. Cuspidal representations

We denote by HG the Hecke algebra of compactly supported locally con-
stant complex valued measures on G where the product is the convolution.
A smooth complex representation (π, V ) of G defines a representation of the
algebra HG on V , which we also denote by π.

The category RG is naturally equivalent to the full subcategory of the
category of finite length nondegenerate HG-modules. We go freely from the
language of complex G-representations to the language of HG-modules.

Definition 2.1. Let K ⊂ G be an open compact subgroup.

(1) HG,K ⊂ HG is the subalgebra of K-bi-invariant measures.

(2) For a representation (π, V ) of G we denote by V K ⊂ V the subspace
of K-invariant vectors, which is a HG,K-module.

Lemma 2.2. [Ren, Théorème III.1.5.(i)]
A representation (π, V ) of CG is irreducible if and only if HG,K-modules

V K are irreducible or zero for all open compact subgroups K ⊂ G.

We survey some abstract properties of cuspidal CG-representations. Re-
call that a representation (π, V ) of CG is cuspidal if, for every proper pa-
rabolic subgroup P = LUP of G, the space of UP -coinvariants in V is zero.
Equivalently, V is spanned by {v − π(u)v : v ∈ V, u ∈ UP }.

The group of field automorphisms Gal(C/Q) act naturally on complex
representations of G. Namely, for every complex representation (π, V ) of
G and γ ∈ Gal(C/Q) we denote by (πγ , V γ) the complex representation
of G, where the vector space V γ is defined as the base change C ⊗γ,C V
with respect to the isomorphism γ : C → C and G acts on V γ by formula
g(a ⊗ v) = a ⊗ gv. This means that, if π(g)ij is the matrix of π(g) with
respect to some (possibly infinite) basis of V , then the matrix of πγ(g) with
respect to the corresponding basis of V γ is γ(π(g)ij).

Theorem 2.3. (1) If γ ∈ Gal(C/Q) and π is a cuspidal representation
of G, then the representation πγ is cuspidal.

(2) An irreducible cuspidal representation of G is unitary if and only if
its central character is unitary.

(3) For every representation V of G there exists a unique decomposition
V = V cusp ⊕ V nc such that V cusp is a cuspidal representation and
every irreducible subquotient of V nc is not cuspidal.

(4) There exists a unique decomposition HG = Hcusp
G ⊕Hnc

G of the algebra
HG as a sum of two-sided ideals such that Hcusp

G V = V cusp and
Hnc

G V = V nc.
(5) A representation V of G is cuspidal if and only if Hnc

G V = 0.

Proof. Part (1) is clear by definition; for part (2) see [Ren, §IV.3.2], while
for part (3) see [Ren, §VI.3.5]. For part (5) note that a representation V
of G is cuspidal if and only if V nc = 0, so the assertion follows from part
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(4). Although part (4) is a formal consequence of part (3), we include the
argument for completeness. Let

(2.1) HG = Hcusp
G ⊕Hnc

G

be the decomposition of part (3) for the G-representation HG acting by
left multiplication. Since the decomposition of part (3) is automatically
functorial in V , we deduce that both left ideals Hcusp

G ,Hnc
G ⊂ HG are stable

under right multiplication by any h ∈ HG, hence are two-sided ideals. We
claim that for every representation V of G we have inclusions

(2.2) Hcusp
G V ⊆ V cusp and Hnc

G V ⊆ V nc.

We will show the first inclusion, while the second one is similar. It suffices to
show that for every v ∈ V we have an inclusion Hcusp

G v ⊆ V cusp. Since the
map av : HG → V : h 7→ h(v) is G-equivariant, the assertion follows from
the fact that every homomorphism V1 → V2 of G-representations induces a
map V cusp

1 → V cusp
2 .

Next, using identities Hcusp
G V +Hnc

G V = HGV = V and V cusp⊕V nc = V ,
the inclusions in (2.2) have to be equalities. Finally, the uniqueness of the
decomposition in part (4) follows from the equalities Hcusp

G V = V cusp and
Hnc

G V = V nc for V = HG. □

Definition 2.4. (1) Let G1 ⊂ G be the open normal subgroup gener-
ated by all compact subgroups of G.

(2) Let Xnr(G) be the group of unramified characters of G.
(3) If L ⊂ G is a Levi subgroup and σ a cuspidal representation of L we

denote by Irr(CG)L,σ ⊂ Irr(CG) the subset of irreducible represen-

tations of G which are subquotients of representations IGP (σ⊗χ) for
a χ ∈ Xnr(L), where IGP denotes normalized parabolic induction.

(4) Two cuspidal representations σ of L and σ′ of L′ are inertially equiv-
alent if Irr(CG)L,σ = Irr(CG)L′,σ′ .

(5) BG is the set of inertial equivalence classes of pairs (L, σ).
(6) For a compact open subgroup K ⊂ G, we set Hcusp

G,K := Hcusp
G ∩HG,K .

The following result is due to Bernstein, see [Ren, §VI.7].

Theorem 2.5. Irr(CG) is the disjoint union of subsets Irr(CG)s, s ∈ BG.

We need a few more relative notions. Let θ : Z(G) → C× be a smooth
character. Define HG(θ) as the quotient of HG by the ideal generated by
the elements

hθ,z : g 7→ h(gz)− θ(z)h(g) h ∈ HG, z ∈ Z(G).

The category of nondegenerate HG(θ)-modules is naturally equivalent to the
category of smooth CG-representations with central character θ.

Moreover, since the subalgebras Hcusp
G and HG,K are Z(G)-invariant, we

can form quotient algebras Hcusp
G (θ), HG,K(θ), and Hcusp

G,K(θ).
Note thatHG1 is naturally a subalgebra ofHG, so we can form subalgebras

Hcusp
G1 := Hcusp

G ∩HG1 and Hcusp
G1,K

:= Hcusp
G ∩HG1,K .
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Definition 2.6. We say that an open compact subgroup K ⊂ G admits an
Iwahori decomposition if it satisfies the properties of [Ren, Théoréme V.5.2].
Such subgroups form a basis of open neighborhoods of the identity in G.

The following result is also due to J. Bernstein, we provide a proof because
we could not find a reference formulated precisely in the form we need.

Theorem 2.7. Let K ⊂ G be a compact open subgroup admitting an Iwahori
decomposition.

(1) If the centre Z(G) is compact, then the algebra Hcusp
G,K is semisimple

and thus is isomorphic to a finite product of matrix algebras.
(2) The algebra Hcusp

G1,K
is semisimple.

(3) For any character θ :Z(G) → C×, the algebra Hcusp
G,K(θ) is semisimple.

Proof. We only prove part (3), while the other parts are similar. First we
have the following lemma.

Lemma 2.8. In the situation of Theorem 2.7.(3), the functor V 7→ V K

induces an equivalence between the category Rep(G,K)cuspθ of cuspidal rep-
resentations of G with central character θ which are generated by K-fixed
vectors, and the category of Hcusp

G,K(θ)-modules. Moreover, the inverse functor
W 7→ HG ⊗HG,K

W .

Proof. Notice that the decomposition HG = Hcusp
G ⊕ Hnc

G as a direct sum
of two-sided ideals from Theorem 2.3.(4) induces a decomposition HG,K =
Hcusp

G,K⊕Hnc
G,K . Thus, the category of Hcusp

G,K -modules naturally identifies with
the category of HG,K-modules W such that Hnc

G,KW = 0.

By [Ren, Proposition VI.10.6], the functor V 7→ V K induces an equiva-
lence between the category Rep(G,K) of representations of G generated by
K-fixed vectors and the category of HG,K-modules, with inverse functor

W 7→ HG ⊗HG,K
W.

Using Theorem 2.3.(5) we have to show that for V ∈ Rep(G,K) we have
Hnc

G V = 0 if and only if Hnc
G,KV K = 0, which is straightforward. This

yields an equivalence of categories between the category Rep(G,K)cusp and
the category of Hcusp

G,K -modules. Restrict that to modules which admit the

Z(G)-character θ. □

We return to the proof of the theorem. By Lemma 2.8, it suffices to show
that the category Rep(G,K)cuspθ is semisimple, that is, every object of V of
Rep(G,K)cuspθ is semisimple. Since every such object has an irreducible sub-
quotient, it suffices to show that every irreducible object of Rep(G,K)cuspθ
is projective. But this follows from [Ren, Proposition VI.3.6]. □

We also take a look at cuspidal QG-representations.
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Definition 2.9. We set Hcusp

QG
:= Hcusp

G ∩ HQG, H
nc
QG

:= Hnc
G ∩ HQG, and

Hcusp

QG,K
:= Hcusp

G,K ∩ HQG. For every character θ : Z(G) → Q×
, we set

Hcusp

QG,K
(θ) := Hcusp

K,G(θ) ∩HQG.

Lemma 2.10. (1) The Q-algebras Hcusp

QG
, Hnc

QG
, Hcusp

QG,K
and Hcusp

QG,K
(θ)

are the Q-forms of the C-algebras HG, Hnc
QG

, Hcusp
G,K and Hcusp

G,K(θ),

respectively.
(2) Hcusp

QG,K
(θ) is a semisimple Q-algebra.

Proof. (1) Notice that the C-vector space HG is defined over Q, with Q-
form HQG. Therefore it suffices to show that Hcusp

QG
spans Hcusp

G over C, and
similarly for the other algebras.

By Theorem 2.3.(1), the decomposition HG = Hcusp
G ⊕Hnc

G is stable under

the action of Gal(C/Q), thus the projection HG → Hcusp
G is defined over

Q, thus it induces a surjection HQG → Hcusp

QG
, implying the assertion for

Hcusp

QG
. The proof of the assertion for Hnc

QG
is similar. Next, the assertion

Hcusp

QG,K
follows from the fact that the averaging maps Hcusp

QG
→ Hcusp

QG,K
and

Hcusp
G → Hcusp

G,K are surjective. Finally, the assertion for Hcusp

QG,K
(θ) follows

from that for Hcusp

QG,K
.

(2) This is a consequence of part (1) and Theorem 2.7.(3). □

3. Irreducible G-representations over Q

Let Rep(CG) be the category of smooth G-representations on C-vector
spaces, and define Rep(QG) analogously. The irreducible objects (up to
isomorphism) in here form sets Irr(CG) and Irr(QG). SinceQ is algebraically
closed and of characteristic zero, most of the abstract representation theory
of G works the same over Q as over C. For instance, Lemma 2.2 applies just
as well over Q.

3.1. Schur’s lemma and admissibility.
Schur’s lemma does not apply automatically over Q, because the cardi-

nality of Q is not larger than that of G/K for an open compact subgroup K
of G. We will show that nevertheless Schur’s lemma holds in this setting.

Lemma 3.1. Every irreducible admissible representation V of QG or QG1

has endomorphism algebra Q and therefore admits a central character.

Proof. The argument applies to any totally disconnected locally compact
group G.

Let V be such a representation, and let K ⊂ G be a compact open sub-
group. By assumption dimQ V K is finite. If it is nonzero, then by Lemma

2.2 V K is an irreducible representation of HQG,K . Since V K is finite dimen-

sional, it follows from Schur’s lemma that EndHK,QG
(V K) = Q.
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For every endomorphism f ∈ EndQG(V ), its restriction f |V K is an element

EndHQG,K
(V K). By what we proved above, f acts on each V K by a scalar.

All these scalars coincide because the spaces V K overlap. Hence f acts by
a scalar on the whole of V =

⋃
K V K . □

In view of Lemma 3.1, we want to prove that every irreducible QG-
representation is admissible. We start by checking that for a simpler group.

Lemma 3.2. Let r ∈ N. Every irreducible QZr-representation has dimen-
sion one.

Proof. An irreducible QZr representation is the same as a simple module
of the group algebra A = Q[Zr], that is, a quotient A/m for some maximal
ideal m ⊂ A. Since A is a finitely generated Q-algebra, the assertion follows
from the Nullstellensatz. □

For reductive p-adic groups, admissibility of irreducible representations is
by no means obvious. Like for complex representations, we derive it from
properties of compact representations.

Let Z(G)1 be the unique maximal compact subgroup of Z(G). Recall that
the group G1Z(G)/G1 ∼= Z(G)/Z(G)1 is free abelian and finitely generated.
We fix a subset {x1, . . . , xd} ⊂ Z(G) whose images in Z(G)/Z(G)1 is Z-
basis. We define

(3.1) Zd
G := subgroup of Z(G) generated by {x1, . . . , xd}.

This is a group isomorphic to Zd and

(3.2) G1Z(G) = G1 × Zd
G.

Proposition 3.3. Every irreducible cuspidal representation of QG1 or QG
is admissible.

Proof. First we consider an irreducible cuspidal representation π of QG1. By
[Ren, Théorème VI.2.1] it is compact, and then [Ren, Proposition IV.1.3]
says that π is admissible.
Now we consider an irreducible cuspidal representation (π, V ) ofQ(G1Z(G)).
Since the restriction V |G1 is cuspidal as well, [Ren, Théorème VI.2.1 ] says
that V |G1 is compact and hence [Ren, Corollaire IV.1.6] says that V |G1 is
semisimple.

Let V ′ be an irreducible QG1-subrepresentation of V |G1 . Since V is irre-
ducible, we conclude that V |G1 is a sum

∑
z∈Z(G) z(V

′). Now we can write

V |G1 = W ⊗Q V ′ with W = HomQG1(V ′, V ).

The irreducibility of V and (3.2) imply that W is an irreducible QZd
G-

representation. By Lemma 3.2 we conclude that dimQW = 1, so V is already

irreducible as a representation of QG1. As observed at the beginning of the
proof, V is admissible as G1-representation. Every compact open subgroup
ofG1Z(G) is contained inG1, so V is admissible as aG1Z(G)-representation.
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Finally, we consider an irreducible cuspidal representation σ of QG. As
[G : G1Z(G)] is finite, the restriction of σ to G1Z(G) is a finite direct
sum of irreducible cuspidal representations π of Q(G1Z(G)), and each π is
admissible by the above. Hence σ is admissible as well. □

The next result will be used many times in this paper, sometimes implicitly.

Theorem 3.4. Every irreducible representation of QG or QG1 is admissible
and has a central character.

Proof. It suffices to prove the admissibility, then Lemma 3.1 guarantees the
existence of a central character.

Let π ∈ Irr(QG). By [Ren, Corollaire VI.2.1], π is isomorphic to a sub-
representation of some IGP (σ), where P = LU is a parabolic subgroup of G

and σ is an irreducible cuspidal QL-representation. By Proposition 3.3 and
[Ren, Lemme III.2.3], IGP (σ) is admissible. Hence π is also admissible.

Consider (ρ,W ) ∈ Irr(QG1). By [Tad, §2] there exists a (π, V ) ∈ Irr(QG)
whose restriction to G1 contains ρ. Then dimWK ≤ dimV K , so by the
above ρ is admissible. □

3.2. Comparison with G-representations over C.
We have the functor

(3.3) ⊗QC : Rep(QG) → Rep(CG).

Proposition 3.5. Let (π, V ) ∈ Irr(QG).

(1) The CG-representation (π, V ⊗Q C) is irreducible.

(2) Suppose that (π′, V ′) ∈ Irr(QG) and that (π, V ⊗QC) ∼= (π′, V ′⊗QC).
Then π ∼= π′.

Proof. (1) For any compact open subgroup K ⊂ G, let eK ∈ HG be the
corresponding idempotent. Then

(3.4) (V ⊗Q C)K = π(eK)(V ⊗Q C) = (π(eK)V )⊗Q C = V K ⊗Q C.

By Lemma 2.2 (over Q) the HQG,K-module V K is either zero or irreducible.

Assume the latter. By Theorem 3.4 every finite length QG-representation is
admissible, so dimQ V K is finite. By Burnside’s theorem the image of HQG,K

in EndQ(V
K) by π is a simple Q-algebra with V K as irreducible module.

As Q is algebraically closed in fact π(HQG,K) = EndQ(V
K). It follows that

π(HG,K) = π(HQG,K ⊗Q C) = π(HQG,K)⊗Q C = EndC(V
K ⊗Q C).

With (3.4) we conclude that (V ⊗Q C)K is an irreducible HG,K-module,

whenever it is nonzero. Lemma 2.2 says that (π, V ⊗Q C) is irreducible.
(2) Let K be as above. By (3.4), the HG,K-modules V K ⊗QC and V ′K ⊗QC
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are isomorphic. These are finite dimensional modules, so their traces are
the same. For any f ∈ HQG,K we have

tr(f, V K) = tr(f, V K ⊗Q C) = tr(f, V ′K ⊗Q C) = tr(f, V ′K).

Therefore V K and V ′K are isomorphicHQG,K-modules. Now [Ren, Théorème

III.1.5.(ii)] says that π and π′ are isomorphic. □

Proposition 3.5.(1) can be generalized to finite length representations, in
the following sense:

Lemma 3.6. Let (π, V ) ∈ Rep(CG) have finite length, and suppose that
π can be realized over Q. Then every irreducible constituent of π can be
realized as an irreducible QG-representation.

Proof. By assumption, there exists a representation (πQ, VQ) ∈ Rep(QG)

with (πC, VQ ⊗Q C) ∼= (π, V ). The functor ⊗QC is exact and maps non-
zero representations to non-zero representations, and πC is Noetherian and
Artinian. We conclude that πQ is Noetherian and Artinian, thus of finite
length. Let

(3.5) 0 ⊂ τ1 ⊂ τ2 ⊂ · · · ⊂ τM = πQ

be a composition series in Rep(QG). By Proposition 3.5.(1) all the CG-
representations (τi/τi−1)⊗Q C are irreducible. Thus applying ⊗QC to (3.5)
yields a composition series of π. Hence every irreducible constituent of π is
isomorphic to (τi/τi−1)⊗Q C for some i. □

We note that ⊗QC sends cuspidal representations to cuspidal represen-
tations. In fact, for cuspidal representations there is only little difference
between working over Q and over C:

Proposition 3.7. (1) Every cuspidal V1 ∈ Irr(CG1) can be realized
over Q.

(2) Let (π, V ) ∈ Irr(CG) be cuspidal. Then π can be realized over Q if
and only if the central character cc(π) : Z(G) → C× takes values

in Q×
.

Proof. We only prove part (2), because part (1) is similar and easier.
⇒ Every irreducible QG-representation has a central character with val-

ues in Q×
. Hence any CG-representation which can be realized over Q has

the same property.

⇐ Let θ : Z(G) → Q×
be the central character of π. Let K ⊂ G be a

compact open subgroup admitting an Iwahori decomposition such that V K

is nonzero. By Lemma 2.8 we have an isomorphism

V ∼= HG ⊗HG,K
V K .
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Since C-algebras HG and HG,K are obtained by extension of scalars from

Q-algebras HQG and HQG,K , respectively, it suffices to show that the HG,K-

module V K is obtained by extension of scalars from a HQG,K-module.

Using Lemma 2.8 again, we see that V K corresponds to a simpleHcusp
G,K(θ)-

module. Since Hcusp

QG,K
(θ) is a Q-form of Hcusp

G,K(θ) (by Lemma 2.10.(1)), it

suffices to show that V K is obtained extension of scalars from a simple
Hcusp

QG,K
(θ)-module.

By Theorem 2.7.(3), Hcusp
G,K(θ) is a semisimple algebra, therefore every

simple Hcusp
G,K(θ)-module satisfies this property. □

The following simple observation will be important later.

Lemma 3.8. For every π ∈ Irr(CG) there exists χ ∈ Xnr(G) such that the
image of central character cc(χ ⊗ π) has finite image, thus takes values in

{z ∈ Q×
: |z| = 1}.

Proof. Since Z(G)1 is compact and cc(π) is smooth, the image cc(π)(Z(G)1)
is a finite subgroup of C×. Let Zd

G be as in (3.1) and define a character

χ′ : Z(G)/Z(G)1 → C× by χ′(x) = cc(π)(x−1) for x ∈ Zd
G. Then the map

cc(π)⊗ χ′ : Z(G) → C× sends Zd
G to 1, so has finite image.

The group Z(G)/Z(G)1 embeds in G/G1 with finite index. As C× is divi-
sible, we can extend χ′ to a C×-valued character χ of G/G1, or equivalently
an unramified character of G. Then cc(π⊗χ) = cc(π)⊗χ′ has a finite image.
The last assertion follows from the observation that every finite subgroup of

C× is contained in {z ∈ Q×
: |z| = 1}. □

For an arbitrary irreducible CG-representation π the cuspidal support
Sc(π) consists of a Levi subgroup L ⊂ G and a cuspidal CL-representa-
tion σ, such that π is a constituent of the normalized parabolic induction
of σ (with respect to any parabolic subgroup with Levi factor L). This
determines (L, σ) uniquely up to G-conjugacy. We will also express that by
saying that (L, σ) represents Sc(π).

The question whether or not π can be defined over Q can be reduced to
the cuspidal case:

Proposition 3.9. Let (π, V ) ∈ Irr(CG). Then π can be realized over Q if
and only if its cuspidal support can be realized over Q.

Proof. ⇒ For a parabolic subgroup P = LU of G, the (normalized) Jacquet
functor JG

P : Rep(CG) → Rep(CL) is defined over Q. Hence JG
P (π) can be

realized over Q. It has finite length [Ren, §VI.6.4], so by Lemma 3.6 all
its irreducible constituents can be realized over Q. By construction [Ren,
§VI.7.1], Sc(π) can be represented by any of the constituents of JG

P (π), for

a suitable P . Hence Sc(π) can be realized over Q.
⇐ The (normalized) parabolic induction functor IGP : Rep(CL) → Rep(CG)

is defined over Q. By definition, π is an irreducible subquotient of IGP (σ),
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where (L, σ) represents Sc(π). By assumption σ can be realized over Q, and
hence IGP (σ) can be realized over Q. It has a finite length [Ren, Lemme
VI.6.2], so by Lemma 3.6 all its irreducible constituents can be realized over
Q. By Lemma 3.6, π can be realized over Q. □

Theorem 3.10. The functor ⊗QC provides a bijection

Irr(QG) −→ Irr(CG)Gal(C/Q).

Proof. For (π, V ) ∈ Irr(QG) and γ ∈ Gal(C/Q) we have

(V ⊗Q C)γ = V ⊗Q Cγ ∼= V ⊗Q C.

That and Proposition 3.5.(1) show that

(3.6) (π, V ⊗Q C) ∈ Irr(CG)Gal(C/Q).

Proposition 3.5.(2) ensures that the map from the statement is injective.

Conversely, consider any π ∈ Irr(CG)Gal(C/Q). We represent Sc(π) by
(L, ω) for a parabolic subgroup P = LU . Since IGP is Gal(C/Q)-equivariant,

Sc(π) can be represented by (L, ωγ) for any γ ∈ Gal(C/Q). On the other
hand, Sc(π) is unique up to G-conjugation. If we fix L, that means that
Sc(π) can be represented only by (L, n·ω) for some n ∈ NG(L). As NG(L)/L
is finite, there are only finitely many such pairs (L, n · ω). It follows that
the orbit Gal(C/Q)ω ⊂ Irr(CL) is finite. In particular the set of central
characters Gal(C/Q)cc(ω) ⊂ Irr(CZ(L)) is finite.

For any z ∈ C \Q, the orbit Gal(C/Q)z ⊂ C is infinite, because z is not

algebraic over Q. We deduce that cc(ω) takes values in Q×
. By Proposition

3.7 ω can be realized over Q, and then Proposition 3.9 says that π can be
realized over Q as well. □

4. Essentially square-integrable representations

Definition 4.1. (1) A complex G-representation (π, V ) is unitary if
there exists a G-invariant positive definite Hermitian form (, ) on V .
If (π, V ) is irreducible then such a form is unique up to multiplication
by a positive scalar.

(2) For a unitary irreducible representation (π, V, (, )) of G and v ∈ V
we define a matrix coefficient fv(g) := (π(g)v, v). Then fv and |fv|
are functions on G, and |fv| can also be regarded as a function on
G/Z(G).

(3) An irreducible representation (π, V ) of G is square-integrable (mod-
ulo centre) if it is unitary and |fv| ∈ L2(G/Z(G)) for some non-zero
v ∈ V . Then |fv| ∈ L2(G/Z(G)) for all v ∈ V .

(4) An irreducible representation (π, V ) of G is square-integrable (also
called discrete series) if Z(G) is compact and fv ∈ L2(G) for all
v ∈ V .
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(5) An irreducibleG-representation (π, V ) is essentially square-integrable
if its restriction to Gder is a direct sum of square-integrable repre-
sentations.

4.1. Some general results.
Let Gder be the derived group of G and write Gder = Gder(F ). Recall from

[Sil4] that the restriction of an irreducible CG-representation to Gder is al-
ways a finite direct sum of irreducible representations. The following lemma
is well-known, we include a proof because we could not find a reference.

Lemma 4.2. Let π be an irreducible CG-representation. Then π is es-
sentially square-integrable if and only if π ⊗ χ is square-integrable (modulo
centre) for some χ ∈ Xnr(G).

Proof. ⇐ See [Tad, Lemma 2.1 and Proposition 2.7].
⇒ The absolute value of the central character of π extends uniquely to an
unramified character of G with values in R>0, say νG. Then π ⊗ ν−1

G has
unitary central character and its restriction to Gder is the same as that of
π, so a direct sum of square-integrable representations π1. Every matrix
coefficient f of π from a vector in π1 is square-integrable on Gder. Hence
|f | is square-integrable on GderZ(G)/Z(G). As G/GderZ(G) is compact,
it follows that |f | is also square-integrable on G/Z(G). Hence π ⊗ ν−1

G is
square-integrable modulo centre and π is essentially square-integrable. □

For every parabolic subgroup P = LU ⊂ G, the normalized parabolic
induction functor IGP gives a homomorphism K(RL) → K(RG). (It only
depends on L, not on choice of P when L is given.) Let Kind(RG) be the
subgroup generated by the sets IGP (K(RL)), where L runs over all proper
Levi subgroups of G.

Lemma 4.3. Let π ∈ Irr(CG) be essentially square-integrable. Then the
class of π in K(RG) does not belong to Kind(RG).

Proof. By assumption there exists a χ ∈ Xnr(G) such that σ := π ⊗ χ is
square-integrable modulo centre, and in particular tempered. The subgroup
Kind(RG) is stable under tensoring by unramified characters of G, so it
suffices to prove that σ does not lie in Kind(RG).

Recall that an element g ∈ G is called regular elliptic if ZG(g)/Z(G) is
an anisotropic torus. This is equivalent to requiring that g does not be-
long to any proper parabolic subgroup P = LU of G. For any finite length
CL-representation ρ, the Harish-Chandra character χIGP (ρ) is supported on

the set of elements of G that are conjugate to an element of P . There-
fore χIGP (ρ)(g) = 0 for any regular elliptic g ∈ G. This also follows from

[KaVa, Proposition 4.1]. Thus the character of any virtual representation in
Kind(RG) vanishes at any regular elliptic element g.

According to [Art, Proposition 2.1.c], the square-integrable modulo centre
representation σ is elliptic, in the sense that χσ(g) ̸= 0 for some regular
elliptic element g ∈ G. Therefore σ does not belong to Kind(RG). □
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The set of irreducible square-integrable CG-representations is countable
(but empty when Z(G) is not compact). To get from there to finite sets of
representations, one may involve compact open subgroups.

Theorem 4.4. Fix a compact open subgroup K ⊂ G.

(1) The set of essentially square-integrable CG-representations (π, V )
with V K ̸= 0 (considered up to isomorphism) forms a union of
finitely many Xnr(G)-orbits.

(2) There are only finitely many non-isomorphic irreducible square-inte-
grable CG1-representations (ρ,W ) with WK ̸= 0.

Proof. (1) By [Ren, Théorème VI.10.6] there are only finitely many Bern-
stein components in Irr(CG) containing representations with nonzero K-
fixed vectors. Therefore we may restrict to essentially square-integrable
G-representations in one Bernstein component Irr(CG)s (with the notation
from Theorem 2.5).

In Lemma 4.3 we saw that no essentially square-integrable CG-repre-
sentation π lies in Kind(RG). In the terminology of [BDK], π is discrete.
According to [BDK, Proposition 3.1], the discrete irreducible CG-represen-
tations in one Bernstein component form a finite union of Xnr(G)-orbits.
That remains true if we impose the additional condition of essential square-
integrability.
(2) Let (ρ,W ) be such a CG1-representation. Let Zd

G ⊂ Z(G) be as in (3.1).
By (3.2) we can extend (ρ,W ) to a G1Z(G)-representation ρZ by defining
it to be trivial on Zd

G. Since ρ is square-integrable, ρZ is square-integrable
modulo centre.

As [G : G1Z(G)] is finite, the CG-representation indGG1Z(G)ρZ has finite

length, and all its irreducible constituents are square-integrable modulo cen-
tre. By Frobenius reciprocity ρ is a constituent of ResGG1ω, for an irreducible

constituent ω of indGG1Z(G)ρZ with nonzero K-fixed vectors. From part (1)

we know that there are only finitely many possibilities for ω, up to tensoring
by unramified characters and up to isomorphism. By [Sil3], ResGG1ω is a fi-

nite direct sum of irreducible representations. As ResGG1(ω⊗χ) = ResGG1ω for
χ ∈ Xnr(G), there are only finitely many possible ρ (up to isomorphism). □

The next result generalizes Proposition 3.7.

Theorem 4.5. Let π ∈ Irr(CG) be essentially square-integrable.

(1) π can be realized over Q if and only if cc(π) takes values in Q×
.

(2) The Xnr(G)-orbit of π contains a π′ ∈ Irr(CG) such that the image

of cc(π′) is finite subgroup of {z ∈ Q×
: |z| = 1}. Such a π′ can be

realized over Q and is unitary and square-integrable (modulo centre).

Proof. (1) The condition on the central character is clearly necessary.

Let (π, V ) ∈ Irr(CG) with cc(π) : Z(G) → Q×
. By Proposition 3.7

and Lemma 3.8, there exists a Levi subgroup L ⊂ G, a cuspidal QL-
representation σ and an unramified character χ ∈ Xnr(L) such that π is
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an irreducible subquotient of IGP (σ ⊗ χ). By Proposition 3.9, it suffices to

show that the character χ takes values in Q×
.

For every γ ∈ Gal(C/Q) the conjugate πγ is an irreducible subquotient of
IGP (σ ⊗ χγ). Arguing as in Theorem 4.4.(1) all conjugates πγ lie in a finite
number of Xnr(G)-orbits. Indeed, π is discrete in the sense of [BDK], so πγ

is discrete as well and the assertion follows from [BDK, Proposition 3.1].
With the uniqueness of the cuspidal support (up to G-conjugation), it

follows that all conjugates χγ of χ belong to a finite union of Xnr(G)-orbits.
Therefore the set of conjugates χγ |L∩G1 is finite, and thus the restriction

χ|L∩G1 has values in Q×
.

By assumption, the central character cc(π) = cc(σ)|Z(G) · χ|Z(G) takes

values in Q×
. Since σ is defined over Q, the central character cc(σ)|Z(G) has

values in Q×
.

Thus, the restriction χ|Z(G) and hence also χ|L∩G1Z(G) takes values in

Q×
. Since [G : G1Z(G)] < ∞, we conclude that χ has values in Q×

.
(2) By Lemma 3.8, there exists a χ ∈ Xnr(G) such that the image of the

central character of π′ := π ⊗ χ is a finite subgroup of {z ∈ Q×
: |z| = 1}.

By part (1), π′ can be realized over Q. Further, since cc(π′) is unitary, we
conclude that π′ is unitary and square-integrable (modulo centre). □

4.2. Clozel’s result about the Galois action.
L. Clozel has shown that the action of Gal(C/Q) on Irr(CG) preserves

the discrete series. We thank him for sharing his unpublished proof with us.
In this paragraph we work his argument out and generalize it.

Theorem 4.6. Let (π, V ) be an essentially square-integrable CG-represen-
tation and let γ ∈ Gal(C/Q). Then the representation (πγ , V ) is essentially
square-integrable.

The proof of Theorem 4.6 will occupy the remainder of this paragraph. An
important tool to study square-integrable representations is the Plancherel
measure, which exists for any locally compact unimodular group of type I.

We fix a Haar measure µQ on G such that µQ(K) ∈ Q>0 for every compact
open subgroup K of G. That provides an identification between HG and
the space of locally constant compact supported C-valued functions on G.

The Plancherel measure µPl is usually defined via unitary G-representa-
tions which are not smooth. We recall from [Sol1, (95)] that there is a canon-
ical bijection between the set of irreducible unitary G-representations on
Hilbert spaces and the set of irreducible smooth unitary G-representations
(both considered up to isomorphism). In one direction the functor is com-
pletion, in the opposite direction the functor is taking smooth vectors.
Therefore we may replace unitary G-representations by smooth unitary G-
representations for µPl. Further, we may extend the Plancherel measure
to Irr(CG) by defining it to be supported on the unitary representations in
Irr(CG). That leads to:
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Theorem 4.7. [Dix, §18.8]

(1) There exists a unique measure µPl on Irr(CG) which is supported on
unitary representations and satisfies

f(1) =

∫
Irr(CG)

trπ(fµQ) dµPl(π) for all fµQ ∈ HG.

(2) Assume that Z(G) is compact. An irreducible CG-representation π
is square-integrable if and only if µPl({π}) > 0.

We focus first on the cases of Theorem 4.6 where G is semisimple and the
underlying field F is p-adic (so of characteristic zero). By [BoHa, Remark
1.13] there exists a number field E such that all infinite places of E are real
and Ev

∼= F for a finite place v. Let VE be the set of places of E and let V∞
E

be the subset of infinite places. Recall that any semisimple real group has a
compact form. By [BoHa, Theorem B], there exists an E-group G such that
G(Ev) ∼= G(F ) ∼= G and such that G(Ew) is compact for every w ∈ V∞

E .

Theorem 4.8. [BoHa, Theorem A and page 60]
Let Γ ⊂ G(E) be an S-arithmetic subgroup, where S = V∞

E ∪ {v}. Then Γ is
a discrete cocompact subgroup of the semisimple group G(Ev) over the p-adic
field Ev

∼= F .

By varying Γ in Theorem 4.8, we can construct a sequence (Γn)
∞
n=0 such

that:

• each Γn is a discrete cocompact subgroup of G(Ev) ∼= G,
• Γn+1 ⊂ Γn and

⋂
n Γn = {1},

• each Γn is normal in Γ0.

For example if G is defined over the ring of integers oE, we can take

Γ0 = G(oE,S) ⊂
⋂

w∈S
G(Ew) ∩

⋂
w∈VE\S

G(oEw),

and define Γn by putting more congruence conditions on the places in VE\S.
For each n ∈ Z≥0 we have a unitary representation of G on L2(Γn\G), by
right translations. The following theorem is a reformulation of a result of
Sauvageot [Sau].

Theorem 4.9. Take Γn as above.

(1) For any irreducible unitary G-representation π̃ on a Hilbert space:

µPl({π̃}) = lim
n→∞

vol(Γn\G)−1 dimHomCG(π̃, L
2(Γn\G)).

(2) For any π ∈ Irr(CG):

µPl({π}) = lim
n→∞

vol(Γn\G)−1 dimHomCG(π,C
∞(Γn\G)).

Proof. (1) See [Sau, Introduction].
(2) It follows from the remarks before Theorem 4.7 that in part (1) we
may replace both π̃ and L2(Γn\G) by their smooth parts. That does not
change the dimension of the Hom-space because π̃ is irreducible. The smooth
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part of L2(Γn\G) is C∞(Γn\G) and the smooth part of π̃ is an irreducible
unitary representation in Rep(CG) [Sol1, (95)]. Moreover any irreducible
unitary smooth G-representation can be obtained in this way, which proves
(2) when π is unitary.

When π is not unitary, µPl({π}) = 0 by definition. HomCG(π,C
∞(Γn\G))

is also zero because all subrepresentations of C∞(Γn\G) are unitary. □

The next result is the crucial part of Clozel’s argument.

Proposition 4.10. Let π be a discrete series representation of a semisimple
group G over a p-adic field, and let γ ∈ Gal(C/Q). Then the representation
πγ is also a discrete series and has the same formal degree as π.

Proof. Note that the C-vector space C∞(Γn\G) has a natural Q-structure,
and there is an isomorphism of CG-representations

(4.1)
C∞(Γn\G) → C∞(Γn\G)γ

f 7→ γ−1 ◦ f .

Hence the representation of G on C∞(Γn\G) is stable under the action of
Gal(C/Q). By Theorem 4.9.(2)

µPl({πγ}) = lim
n→∞

vol(Γn\G)−1 dimHomCG(π
γ , C∞(Γn\G))

= lim
n→∞

vol(Γn\G)−1 dimHomCG(π,C
∞(Γn\G)) = µPl({π}).

Now Theorem 4.7 and the square-integrability of π imply that πγ is square-
integrable. □

Unfortunately, Theorem 4.9 cannot be applied to semisimple groups G′

over local function fields, because it is not known whether G′ has discrete
cocompact subgroups. To establish Theorem 4.6 for such groups, we use the
method of close local fields from [Del, Gan, Kaz]. Let F ′ be a local field
of positive characteristic and write G′ = G′(F ′). Let G′

x′,0 be the parahoric

subgroup of G′ associated to a special vertex x′ of the Bruhat–Tits building
of G′. For m ∈ Z>0, let G′

x′,m be the Moy–Prasad subgroup of level m.
We will choose m so large that the representations which we consider have
nonzero G′

x′,m-fixed vectors.

Let Rep(CG′, G′
x′,m) be the category of CG′-modules which are generated

by theirG′
x′,m-fixed vectors. Recall from [Ren, Proposition VI.9.4] that there

is an equivalence of categories

(4.2)
Rep(CG′, G′

x′,m) → Rep(HG′,G′
x′,m

)

V 7→ V
G′

x′,m
.

We recall that a non-archimedean local field F is said to be l-close to F ′ if
there is a ring isomorphism oF ′/plF ′

∼= oF /p
l
F . Given F ′ and l ∈ Z≥0, there

always exists an l-close p-adic field F [Del].
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Theorem 4.11. [Gan, Theorem 4.1]
Suppose that F ′ and F are l-close, where l is large enough compared to m.
Then there exist

• a semisimple F -group G,
• a special vertex x of the Bruhat–Tits building of G = G(F ),
• a bijection G′

x′,m\G′/G′
x′,m → Gx,m\G/Gx,m,

which induce an C-algebra isomorphism HG′,G′
x′m

∼= HG,Gx,m.

Theorem 4.11 also holds for reductive groups, but we do not need that
here. From (4.2) (for G′ and for G) and Theorem 4.11, we obtain an equiv-
alence of categories

(4.3) Rep(CG′, G′
x′,m) ∼= Rep(CG,Gx,m).

Lemma 4.12. The equivalence of categories (4.3):

(1) commutes with the action of Gal(C/Q),
(2) preserves square-integrability of irreducible representations.

Proof. (1) This holds because the functors in (4.2) and the algebra isomor-
phism in Theorem 4.11 commute with the action of Gal(C/Q).
(2) For general linear groups over division algebras, this is [Bad, Théorème
2.17.b]. That proof can be adapted to the setting of [Gan], but we pre-
fer a different argument. We regard HG′,G′

x′,m
as the algebra of compactly

supported functions on G′
x′,m\G′/G′

x′,m, where G′
x′,m has volume 1. We

make it into a unital Hilbert algebra with *-operation f∗(g) = f(g−1) and
trace f 7→ f(1). Then it has a C∗-completion and a Plancherel measure
[BHK, §3.2]. Now Theorem 4.11 provides an isomorphism of Hilbert al-
gebras HG′,G′

x′m
∼= HG,Gx,m , so it preserves the Plancherel measures. Fur-

thermore, by [BHK, Theorem 3.5] the functor (4.2) preserves Plancherel
measures, up to positive real factor that depends on the normalization of
the Haar measure on G′. The same holds with G instead of G′. It follows
that the equivalence of categories (4.3) preserves Plancherel measures, up
to a positive real factor. That and Theorem 4.7 entail that (4.3) preserves
square-integrability of irreducible representations. □

We are ready to finish the proof of Theorem 4.6, first for semisimple
groups and then in general.

Proof of Theorem 4.6
Let G′ be as in Theorem 4.11 and let π′ ∈ Irr(CG′) be square-integrable.
We choose m ∈ Z>0 such that π′ has nonzero G′

x′,m-fixed vectors. Let G
be the semisimple group from Theorem 4.11, over a p-adic field F , and let
π ∈ Irr(CG) be the image of π′ under (4.3). By Lemma 4.12.(2), π is square-
integrable. For γ ∈ Gal(C/Q), Lemma 4.12.(1) says that the image of π′γ

under (4.3) is πγ . By Proposition 4.10, πγ is square-integrable. Now Lemma
4.12.(2) says that π′γ is square-integrable.
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This and Proposition 4.10 establish Theorem 4.6 for all semisimple groups
over non-archimedean local fields.

Consider any reductive group G over a non-archimedean local field, and
an essentially square-integrable π ∈ Irr(CG). Thus the restriction of π to
the derived group Gder is a direct sum of irreducible representations π1,
each of which is square-integrable. By Theorem 4.6 for semisimple groups,
πγ
1 is square-integrable. Thus πγ is an irreducible G-representation whose

restriction to Gder is a direct sum of square-integrable representations πγ
1 .

By definition πγ is essentially square-integrable. □

5. Elliptic representations

The goal of this section is to generalize the results from Section 4 to
elliptic representations. Before we come to their definition, we recall some
necessary background.

5.1. Intertwining operators and µ-functions.
First we recall the definition of Harish-Chandra’s intertwining operators.

Consider two parabolic subgroups P = LUP and P ′ = LUP ′ with a common
Levi factor L. Let (σ, Vσ) be an irreducible CL-representation. All the
representations IGP (σ ⊗ χ) with χ ∈ Xnr(L) can be realized on the same

vector space, namely indK0
P∩K0

Vσ for a good maximal compact subgroup K0

of G. This makes it possible to speak of objects on IGP (σ ⊗ χ) that vary
regularly or rationally as functions of χ ∈ Xnr(L). Consider the intertwining
operators

(5.1)
JP ′|P (σ ⊗ χ) : IGP (σ ⊗ χ) → IGP ′(σ ⊗ χ)

f 7→ [g 7→
∫
UP∩UP ′\UP ′

f(ug) du]
.

This is well-defined as a family of G-homomorphisms depending rationally
on χ ∈ Xnr(L) [Wal, Théorème IV.1.1]. There is an alternative algebraic
construction of (5.1) in [Wal, proof of Théorème IV.1.1], which also works
for representations over Q.

We denote the maximal F -split torus in Z(L) by AL. Let Φ(G,AL) be
the set of reduced roots of (G,AL) and denote the subset of roots appearing
in the Lie algebra of P by Φ(G,AL)

+. For α ∈ Φ(G,AL)
+, let Uα (resp.

U−α) be the root subgroup of G for all positive (resp. negative) multiples of
α. Let Lα be the Levi subgroup of G generated by L∪Uα ∪U−α. Then L is
a maximal proper Levi subgroup of Lα, while LUα and LU−α are opposite
parabolic subgroups with Levi factor L. Consider the composition
(5.2)

JLUα|LU−α
(σ⊗χ)JLU−α|LUα

(σ⊗χ) : ILα
LUα

(σ⊗χ) → ILα
LUα

(σ⊗χ) χ ∈ Xnr(L).

This operator depends rationally on χ, and for generic χ the representation
ILα
LUα

(σ ⊗ χ) is irreducible [Sau, Théorème 3.2]. Therefore (5.2) is a scalar
operator [Wal, §IV.3], say

(5.3) jLα,L(σ ⊗ χ)id with jLα,L : Xnr(L)σ → C ∪ {∞}.
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By definition [Wal, §V.2] Harish-Chandra’s µ-function in this corank one
setting is

(5.4) µLα,L(σ ⊗ χ) = γ(Lα|L)2jLα,L(σ ⊗ χ)−1,

where the constant γ(Lα|L) ∈ Q>0 is defined in [Wal, p. 241].

5.2. R-groups and elliptic representations.
This paragraph is based on constructions and results of J. Arthur pre-

sented in [Art]. We note that Arthur considered only tempered representa-
tions reductive groups defined over local fields of characteristic zero. But
all the harmonic analysis which is necessary for these results has been de-
veloped for tempered and nontempered representations of reductive groups
over nonarchimedean local fields, so we may include those as well.

Let L ⊂ G be a Levi subgroup, and let the group NG(L) act on Irr(CL),
by (n · π)(l) = π(n−1ln). This descends to an action of

WL := NG(L)/L

on Irr(CL) and on Irr(QL), which sends Xnr(L) to Xnr(L). We denote the
stabilizer of π ∈ Irr(CL) by WL,π ⊂ WL.

Let δ ∈ Irr(CL) be an essentially square-integrable. Consider the set of
reduced roots α of (G,AL) such that Harish-Chandra’s function µLα,L (see
[Wal, §V.2] or the previous paragraph) has a zero at δ. These roots form a
finite integral root system, say Φδ. The group WL,δ acts on Φδ and contains

the Weyl group W (Φδ) as a normal subgroup. Let Φ+
δ be the positive system

of roots appearing in the Lie algebra of P . The R-group Rδ is defined as
the stabilizer of Φ+

δ in WL,δ. Since W (Φδ) acts simply transitively on the
collection of positive systems in Φδ, we have a decomposition

(5.5) WL,δ = W (Φδ)⋊Rδ.

Let P = LUP be a parabolic subgroup of G and consider the G-represen-
tation IGP (δ) obtained by normalized parabolic induction. Every w ∈ WL,δ

gives rise to an invertible intertwining operator Jδ(w) in EndG(I
G
P (δ)) [ABPS,

Lemma 1.3], unique up to scalars. It relates to the intertwining operators
from (5.1) by a normalization procedure. By results of Knapp–Stein [Sil1],
and by [ABPS, Lemma 1.5] in the non-tempered cases, Jδ(w) is a scalar
multiple of the identity if and only if w ∈ W (Φδ). Therefore it suffices
to consider the intertwining operators Jδ(r) with r ∈ Rδ. These operators
span a twisted group algebra C[Rδ, ♮δ], for some 2-cocycle Rδ × Rδ → C×.
In other words, Jδ yields a projective representation of Rδ on IGP (δ). By
[ABPS, Theorem 1.6] there is a decomposition of C[Rδ, ♮δ]× CG-modules

(5.6) IGP (δ) =
⊕

κ∈Irr(C[Rδ,♮δ])
κ⊗ IGP (δ)κ.

For r ∈ Rδ we have the G-invariant distribution

HG → C : f 7→ tr
(
Jδ(r)I

G
P (δ)(f)

)
.
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This is the trace-distribution of the virtual G-representation

(5.7) IGP (δ)r =
∑

κ∈Irr(C[Rδ,♮δ])

tr(κ(r))IGP (δ)κ.

We note that IGP (δ)r is uniquely determined up to scalars (because Jδ(r) is)
and that it depends only on r up to Rδ-conjugacy.

Let X∗(Z(L)) and X∗(Z(G)) be the groups of F -rational cocharacters of
Z(L) and Z(G). We say that

(5.8) w ∈ WL is elliptic if X∗(Z(L))w = X∗(Z(G)).

Equivalently, an element of WL is elliptic if it fixes only finitely many points
ofXnr(L)/Xnr(G). We letWL,ell be the set of elliptic elements ofWL. Notice
that it is not a group because e ∈ WL is not elliptic (unless L = G, but in
that case everything in this section is trivial). We write

WL,δ,ell := WL,δ ∩WL,ell and Rδ,ell = Rδ ∩WL,ell.

Definition 5.1. The virtual representations IGP (δ)r with r ∈ Rδ,ell are
called elliptic G-representations. If δ is square-integrable modulo centre,
then IGP (δ)r is called an elliptic tempered representation.

Although there is in general no canonical normalization of the Jδ(r), we
can be a bit more precise than above.

Lemma 5.2. (1) We can normalize the Jδ(r) such that each Jδ(r) has
finite order and all values of ♮δ are roots of unity.

(2) For any normalization as in part (1), Jδ(r) is uniquely determined

up to roots of unity, and in particular up to elements of Q×
.

(3) If δ = δQ ⊗Q C for a QL-representation δQ, then we can choose all

the Jδ(r) in EndQG(I
G
P (δQ)).

Proof. (1) Pick a finite central extension R̃δ of Rδ such that the projective

representation r 7→ Jδ(r) lifts to a linear representation J̃δ of R̃δ on IGP (δ).

Notice that the restriction of J̃δ to ker(R̃δ → Rδ) is a character, say ζδ,
times the identity.

Let r̃ ∈ R̃δ be a lift of r ∈ Rδ and normalize Jδ(r) as J̃δ(r̃). Now the

multiplication rules in C[R̃δ] entail that Jδ(r) has finite order and that each
value of ♮δ is a value of ζδ (a character of a finite group).
(2) This is clear, we only need to know that there exists some normalization
of Jδ(r) of finite order.
(3) The algebraic construction of the intertwining operators (5.1) from [Wal,
Théorème IV.1.1] can be applied to IGP (δQ). With that as starting point

for the normalizations in [Art, §2] and [ABPS, §1], we obtain Jδ(r) ∈
EndQG(I

G
P (δQ)) for all r ∈ Rδ. □

We pick any normalization of the Jδ(r) as in Lemma 5.2.
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Lemma 5.3. For any r ∈ Rδ, the virtual representation IGP (δ)r belongs to

KG = K(RG)⊗Z Q. It is uniquely determined up to scaling by elements of

Q×
.

Proof. For any κ ∈ Irr(C[Rδ, ♮δ]), tr κ(r) is a sum of roots of unity, so belongs
to Q. Hence IGP (δ)r is an Q-linear combination of CG-representations. The
second claim follows from (5.7) and Lemma 5.2.(2). □

In the setting of the proof of Lemma 5.2.(1), Irr(C[Rδ, ♮δ]) identifies with

the set of irreducible representations of R̃δ whose restriction to ker(R̃δ → Rδ)
is a multiple of ζδ. This shows that (5.6) and Definition 5.1 agree with the
setup in [Art, Herb], where our κ is called ρ∨ in [Art].

One can characterize characters of elliptic tempered G-representations
also as characters of G that decrease rapidly (in a precise sense) when g ∈ G
goes to infinity [Herb, Theorem 3.1].

Definition 5.4. (1) For every irreducible essentially square-integrable
representation δ of a Levi subgroup ofG we denote byKG,δ(ar) ⊂ KG

the Q-span of the virtual representations IGP (δ)r with r ∈ Rδ,ell.
(2) We denote by KG,temp(ar) ⊂ KG,temp the span of all the subspaces

KG,δ with δ square-integrable modulo centre. We denote byKG(ar) ⊂
KG the Q-span of the subspaces KG,δ with δ essentially square-
integrable.

(3) We set K′
G(ar) := KG(ar) ∩ K′

G, K′
G,temp(ar) := KG,temp(ar) ∩ K′

G,

KQG(ar) := KG(ar) ∩ KQG, K
′
G,temp(ar) := KG,temp(ar) ∩ K′

G, and

KQG,temp(ar) := KG,temp(ar) ∩ KQG.

The next result provides a basis of KG,δ(ar).

Lemma 5.5. We say that r ∈ Rδ is ♮δ-good if Jδ(r) and Jδ(r
′) commute

whenever r and r′ ∈ Rδ commute.

(1) The virtual representation IGP (δ)r is nonzero if and only if r ∈ Rδ is
♮δ-good.

(2) The virtual representations IGP (δ)r, where r runs through the conju-
gacy classes of ♮δ-good elements in Rδ, are linearly independent.

(3) When r ∈ Rδ is not elliptic, IGP (δ)r belongs to Kind(RG)⊗Z Q.

Proof. (1) The space of trace functions on C[Rδ, κδ] has a basis formed by
the characteristic functions of the conjugacy classes consisting of ♮δ-good
elements [Sol2, Lemma 1.1]. Combine that with (5.6) and (5.7).
(2) This follows from the same arguments as (1).
(3) When δ is square-integrable modulo centre, this is [Art, Proposition
2.1.b]. With the intertwining operators from [ABPS], the same arguments
work when δ is essentially square-integrable. □

With Lemma 5.5 we can provide a classification of elliptic representations.

Namely, each elliptic G-representation is (up to scaling by Q×
) determined
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by a triple (L, δ, r) where L is a Levi subgroup of G, δ ∈ Irr(CL) is essentially
square integrable and r ∈ Rδ is elliptic and ♮δ-good. For a given elliptic G-
representation, (L, δ) is unique up to G-conjugation and r is unique up to
Rδ-conjugation.

The following two results highlight the importance of the space of elliptic
(tempered) G-representations. For a Levi subgroup L of G we denote by
KL

G(ar) ⊂ KG the image of the space KL(ar) under the map IGP : KL → KG.
This subspace depends only on the G-conjugacy class of L.

Theorem 5.6. [Art, §2]
KG,temp equals

⊕
LKL

G,temp(ar), where L runs through the set of conjugacy

classes of Levi subgroups of G (including G itself). In particular the subspace
KG,temp(ar) of KG,temp is a complement to Q-span of the set of tempered
representations induced from proper Levi subgroups of G.

Corollary 5.7. KG =
⊕

LKL
G(ar) = KG(ar)⊕ (Kind(RG)⊗Z Q).

Proof. This follows from Theorem 5.6 and the comparison of the geometric
structures of Irr(CG) and its subspace of tempered representations, as in
[ABPS, Proposition 2.1]. □

5.3. Realization of elliptic representations over Q.
As before, let L ⊂ G be a Levi subgroup.

Lemma 5.8. Let δ ∈ Irr(CL).
(1) Assume that WL,δ,ell is nonempty. There exists χG ∈ Xnr(G) such

that the image of the central character of δ ⊗ χG|L is finite.
(2) The set {χ ∈ Xnr(L) : WL,δ⊗χ,ell is nonempty} is a finite union of

Xnr(G)-orbits.

Proof. (1) Arguing as in Lemma 3.8, we conclude that there exists χG ∈
Xnr(G) such that the image of the tensor product cc(δ)|Z(G) ⊗ χG|Z(G) is
finite. We claim that this χG satisfies the required property. Indeed, re-
placing δ by δ ⊗ (χG|L) we can assume that w(δ) ∼= δ for some w ∈ WL,ell

and the image cc(δ)(Z(G)) is finite. We want to show that the image of
µ :=cc(δ) : Z(L) → C× is finite.

Choose an uniformizer ϖ ∈ F . Then the map ν 7→ ν(ϖ) gives an injective
map X∗(Z(L)) ↪→ Z(L) such that X∗(Z(L))Z(L)1 ⊂ Z(L) is a subgroup of
finite index. Since Z(L)1 is compact and µ is smooth, the image µ(Z(L)1)
is finite. Therefore it suffices to show that the image µ(X∗(Z(L))) is finite.

Since w(δ) ∼= δ, we conclude that w(µ) = µ, thus µ is tvivial on the image
Im(w−1) ⊂ X∗(Z(L)). On the other hand, the assumption that w is elliptic
implies that X∗(Z(G))+Im(w−1) ⊂ X∗(Z(L)) is a subgroup of finite index.
Therefore finiteness of µ

(
X∗(Z(L))

)
follows from the finiteness of µ(Z(G)).

(2) Since WL is finite, it suffices to show that for every w ∈ WL,ell the set
{χ ∈ Xnr(L) : w ∈ WL,δ⊗χ} is a finite union of Xnr(G)-orbits. Replacing δ
by δ ⊗ χ, if necessary, we may assume that w(δ) ∼= δ. Let Xnr(L, δ) be the
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collection of all χ ∈ Xnr(L) such that χ⊗ δ ∼= δ, so that there is a bijection

Xnr(L)/Xnr(L, δ) → Xnr(L)δ : χ 7→ δ ⊗ χ.

This map is w-equivariant, so it induces a bijection between the w-fixed
points on both sides. Since w is assumed to be elliptic, (Xnr(L)/Xnr(L, δ))

w

is a finite union of Xnr(G)-orbits. Hence (Xnr(L)δ)
w is a finite union of

Xnr(G)-orbits as well. □

We return to an essentially square-integrable δ ∈ Irr(CL). The represen-
tation δ⊗χG|L from Lemma 5.8 is square-integrable modulo centre because
its central character is unitary. The equality

(5.9) IGP (δ)r = IGP (δ ⊗ χG|L)r ⊗ χ−1
G

shows that all elliptic G-representations can be obtained from elliptic tem-
pered G-representations by tensoring with unramified characters.

The condition that WL,δ contains elliptic elements is necessary for Rδ,ell

to be nonempty and for KG,δ to be nonzero, but not sufficient. Fortunately,
it already gives us enough structure to derive some nice properties of repre-
sentations.

Theorem 5.9. Let δ ∈ Irr(CL) be an essentially square-integrable represen-
tation such that Rδ,ell is nonempty.

(1) The G-representations IGP (δ)κ with κ ∈ Irr(C[Rδ, ♮δ]) can be realized

over Q if and only if cc(IGP (δ)κ) = cc(δ)|Z(G) takes values in Q×
.

(2) In the case of (1), δ can be realized over Q and KG,δ = KQG,δ.

Proof. (1) ⇒ Each IGP (δ)κ can be realized over Q, so by Proposition 3.9

their cuspidal support Sc(IGP (δ)κ) = Sc(δ) can be realized over Q. Another

application of Proposition 3.9 shows that δ can be realized over Q. Hence

cc(δ) takes values in Q×
.

⇐ By Theorem 4.5.(2) there exists χ ∈ Xnr(L) such that δ′ := δ ⊗ χ−1 can

be realized over Q. We claim that χ takes values in Q×
.

The proof of the claim is almost identical to that of Theorem 4.5.(1).
Arguing as over there, we deduce from Lemma 5.8.(2) that the restriction

χ|L∩G1 has values in Q×
. Next, since cc(δ)|Z(G) has values in Q×

and δ′

can be realized over Q, we deduce that χ|Z(G) takes values in Q×
. Hence

χ|L∩G1Z(G) takes values in Q×
, and χ as well because [G : G1Z(G)] < ∞.

That proves our claim.
By our claim δ = δ′ ⊗ χ can be realized over Q, say as δQ. By Lemma

5.2.(3), we can normalize the Jδ(r) so that they span a twisted group algebra

Q[Rδ, ♮δ] ⊂ EndQL(I
G
P (δQ)).

This gives rise to a version of the decomposition (5.6) for IGP (δQ), and in

particular IGP (δQ)κ is defined for κ ∈ Irr(Q[Rδ, ♮δ]). Extension of scalars

from Q to C recovers IGP (δ)κ.
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(2) When the above equivalent conditions are fulfilled, Lemma 5.3 shows
that the elliptic representations IGP (δ)r with r ∈ Rδ,ell are defined over Q.

Both KG,δ and KQG,δ are the Q-span of these representations. □

Theorem 5.9 shows that an elliptic CG-representation IGP (δ)r can be rea-

lized over Q if and only if its central character cc(δ)|Z(G) takes values in Q×
.

We are ready to conclude the proof of Theorem 1.2.

Corollary 5.10. Consider complex G-representations in the category R′
G.

(1) Every elliptic representation in K(R′
G)⊗ZQ can be realized over Q.

(2) K′
G,temp(ar) equals KQG,temp(ar) and K′

G(ar) equals KQG(ar).

Proof. (1) Since we work in R′
G, central characters of irreducible represen-

tations take values in Q×
. Apply Theorem 5.9 and the remark below it.

(2) This is a direct consequence of part (1). □

5.4. The action of Gal(C/Q).
We consider the Galois action on elliptic representations, generalizing

the Galois action on essentially square-integrable representations studied in
Section 4. We have to take into account that IGP need not commute with
the action of an arbitrary γ ∈ Gal(C/Q). To this end, we consider the
alternative square root of δP . Recall from [Sil2, §1.2.1] that

δP (l) = | det
(
Ad(l) : Lie(UP ) → Lie(UP )

)∣∣
F
.

This shows in particular that δP takes values in qZF ⊂ Q>0. Whenever δP (l)

is a square in Q×, it has a canonical root in Q, namely
√
δP (l) ∈ Q>0.

When δP (l) is not a square in Q×, it has the roots
√

δP (l) ∈ R>0 and
′√
δP (l) ∈ R<0, which are exchanged by Gal(Q(

√
qF )/Q). This gives rise to

two roots of δP , denoted
√
δP and

′√
δP . Let vp be the p-adic valuation on

Q, then

(5.10)

′√
δP =

√
δPχ−,

χ−(l) = (−1)vp(δP (l)) l ∈ L.

Notice that χ− is a quadratic unramified character of L, which could be 1.

Lemma 5.11. (1) χ−|L depends only on L, not on P .
(2) χ−|L is fixed by NG(L).

Proof. (1) Let Lα be the Levi subgroup ofG generated by L∪Uα∪U−α, where
Uα denotes the root subgroup for all positive multiples of α. Multiplication
provides an isomorphism∏

α∈Φ(G,AL)+
(UP ∩ Lα) → UP ,

for any ordering of the set of roots Φ(G,AL)
+ [Bor, Proposition 14.4]. This

implies that

δP (l) =
∏

α∈Φ(G,AL)+
δP∩Lα(l) l ∈ L.
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Writing χα
− for χ− with respect to Lα ⊃ P ∩ Lα = LUα ⊃ L, we obtain

(5.11) χ−|L =
∏

α∈Φ(G,AL)+
χα
−|L.

As δLU−α = δ−1
LUα

= δ−1
P∩Lα

and χα
− is quadratic, we can also interpret χα

− as
χ− for Lα ⊃ LU−α ⊃ L. This enables us to rewrite (5.11) as

χ−|L =
∏

α∈Φ(G,AL)/{±1}
χα
−|L.

That expression does not depend on the choice of a parabolic subgroup with
Levi factor L.
(2) For n ∈ NG(L) and l ∈ L we have δP (n

−1ln) = δnPn−1(l). Hence
χ−(n

−1ln) = χ−(l), where the second χ− is for G ⊃ nPn−1 ⊃ L. By part
(1), χ− coincides with the original χ−. □

For γ ∈ Gal(C/Q) we write ϵ(γ) = 0 if γ fixes
√
qF , and ϵ(γ) = 1 other-

wise. This definition is designed so that
√
δP

γ
=

√
δP ⊗ χ

ϵ(γ)
− .

For π ∈ Rep(CL) and γ ∈ Gal(C/Q) we have

(5.12)
IGP (π)γ = indGP

(
π ⊗

√
δP

)γ ∼= indGP
(
πγ ⊗

√
δP

γ)
= indGP

(
πγ ⊗

√
δP ⊗ χ

ϵ(γ)
−

)
= IGP

(
πγ ⊗ χ

ϵ(γ)
−

)
.

Proposition 5.12. Let δ ∈ Irr(CL) be essentially square-integrable, such
that Rδ,ell is nonempty. Let r ∈ Rδ,ell and let γ ∈ Gal(C/Q). Then

(1) R
δγ⊗χ

ϵ(γ)
−

= Rδ ⊂ WL and R
δγ⊗χ

ϵ(γ)
− ,ell

= Rδ,ell.

(2) With the identifications from part (1) and IGP (δ)γ ∼= IGP
(
δγ ⊗ χ

ϵ(γ)
−

)
from (5.12), we can normalize the involved intertwining operators
such that Jδ

γ = J
δγ⊗χ

ϵ(γ)
−

.

(3) With the normalizations as in (2), IGP (δ)γr is isomorphic to the ellip-

tic representation IGP
(
δγ ⊗ χ

ϵ(γ)
−

)
r
.

Proof. We abbreviate δ′ = δγ ⊗ χ
ϵ(γ)
− .

(1) By Theorem 4.6, δγ ∈ Irr(CL) is an essentially square-integrable repre-
sentation. By Lemma 5.11.(2), WL,δ′ equals WL,δγ . The group WL,δγ equals
WL,δ because the actions of NG(L) and Gal(C/Q) on Irr(L) commute. It
follows easily from (5.12), algebraic description of intertwining operators in
[Wal, proof of Théorème IV.1.1], and the definition of jLα,L that

(5.13) γ(jLα,L(δ)) = jLα,L

(
δγ ⊗ χ

ϵ(γ)
−

)
.

Therefore the set Φδ of roots α such that µLα,L(δ) = 0 does not change when
we replace δ by δ′. Now the definitions before (5.5) show that the groups

W (Φδ′) and Rδ′ are the same for δ′ = δγ ⊗ χ
ϵ(γ)
− and for δ. By (5.8), the

same holds for the subsets of elliptic elements.
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(2) For every r ∈ Rδ, the intertwining operator Jδ(r) ∈ AutG(I
G
P (δ))

(defined up to a scalar) is characterized by the fact that it is a member of
an algebraic family

Jδ⊗χ(r) ∈ HomG

(
IGP (δ ⊗ χ), IGP (r · (δ ⊗ χ))

)
χ ∈ Xnr(L).

Indeed, for generic χ, IGP (δ⊗χ) is irreducible and Jδ⊗χ(r) is unique up to a
scalar. For any χ ∈ Xnr(L), the operator Jδ⊗χ(r)

γ is an element of

HomG

(
IGP (δ ⊗ χ)γ , IGP (r · (δ ⊗ χ))γ

)
=

HomG

(
IGP (δγ ⊗ χγ ⊗ χ

ϵ(γ)
− ), IGP (r · (δγ ⊗ χγ)⊗ χ

ϵ(γ)
− )

)
.

As r · χ− = χ− (by Lemma 5.11.2), a family of such operators determines
Jδ′(r). Therefore the operators Jδ(r)

γ and Jδ′(r) are equal up to a scalar.
Hence we can normalize them so that they become equal.

(3) For κ ∈ Irr(C[Rδ, ♮δ]), part (2) entails that κ
γ ∈ Irr(C[Rδ′ , ♮δ′ ]) and

(5.14) IGP (δ)γκ = IGP (δ′)κγ .

Upon applying γ and using (5.14), the decomposition (5.6) becomes

(5.15)
IGP

(
δ′
) ∼= IGP (δ)γ ∼=

⊕
κ∈Irr(C[Rδ,♮δ])

κγ ⊗ IGP (δ)γκ

=
⊕

κγ∈Irr(C[Rδ′ ,♮δ′ ])
κγ ⊗ IGP

(
δ′
)
κγ .

It follows that (5.7) transforms into

IGP (δ)γr =
∑

κγ∈Irr(C[Rδ′ ,♮δ′ ])

tr(κγ(r)) IGP (δ′)κγ = IGP (δ′)r. □

We are ready to conclude the proof of Theorem 1.3.

Corollary 5.13. (1) For every elliptic G-representation π and every
γ ∈ Gal(C/Q), the Galois conjugate πγ is elliptic.

(2) The spaces KG(ar) and K′
G(ar) are stable under Gal(C/Q).

Proof. (1) This is a less precise formulation of Proposition 5.12.(3).
(2) Since these spaces are spanned by elliptic G-representations, this is a
direct consequence of part (1). □
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Travaux en cours, Hermann, 1984
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