ENDOSCOPY FOR REPRESENTATIONS OF DISCONNECTED
REDUCTIVE GROUPS OVER FINITE FIELDS

MAARTEN SOLLEVELD

ABSTRACT. Let G be the group of rational points of a connected reductive group
over a finite field. Based on work of Lusztig and Yun, we make the Jordan
decomposition for irreducible G-representations canonical. It comes in the form of
an equivalence between the category of G-representations with a fixed semisimple
parameter s and the category of unipotent representations of an endoscopic group
of G, enriched with an equivariant structure with respect to the component group
of the centralizer of s.

Next we generalize these results, replacing the connected reductive group
by a smooth group scheme with reductive neutral component. Again we esta-
blish canonical equivalences for both the rational and the geometric series of
G-representations, in terms of unipotent representations of endoscopic groups.

1. INTRODUCTION

Let G be a connected reductive group over a finite field IF,. We are interested in
the representations of G = G(F,), always on vector spaces over Q, where ¢ and /
are coprime.

Deligne and Lusztig [DeLu] showed that the irreducible G-representations can be
partitioned in series, indexed by semisimple conjugacy classes in the F,-group G
dual to G. More concretely, starting from a maximal F-torus 7 in G and a character
0 of T = T (F,) they constructed a virtual G-representation R%(¢). The data (T, 60)
determine a semisimple element s € G¥ = GY(F,), up to G-conjugacy. Moreover,
it was shown in [DeLu] that R%(0) and R% (#') have no common irreducible con-
stituents if their semisimple parameters not geometrically conjugate. That enables
the following definition: the geometric series with parameter s consists of the ir-
reducible G-representations that appear in RS (6) for some (7, 6) whose associated
element in sGV is geometrically conjugate to s.

Later Lusztig [Lusl] improved on that, by showing that two virtual represen-
tations RY(A) and RY,(¢') are disjoint whenever their parameters in G are not
G"-conjugate. This lead to the rational (or Lusztig) series Irrg(G), where s rep-
resents a semisimple (rational) conjugacy class in GV(F,;). The element s is called
the semisimple parameter of a representation in Irrg(G), uniquely determined up to
G"-conjugacy. The representations in Irri(G) are especially interesting, these are
known as unipotent representations.

In [Lusl) Lus2|, Lusztig proved that there is always a bijection

(1) Irrg(G) «— Irri1(Zgv (s)).

This works best when Zgv(s) is connected, then the bijection is canonical. Thus
every irreducible G-representation is determined by its semisimple parameter and a
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unipotent representation of another reductive [F -group. This is known as the Jordan
decomposition of irreducible G-representations, we refer to [DiMi, [GeMa)] for much
more background.

In [LuYull, LuYu2|, Lusztig and Yun set out to make canonical, in geometric
terms. This required several modifications. Firstly, they do not work with rational
but with geometric series. A maximal F-torus 7 in G is fixed, say with Weyl group
W. Characters of T" are replaced by rank one character sheaves on 7. These are not
required to be stable under the action of a Frobenius element Fr, only the W-orbit
of £ must be Fr-stable. Such data (WL, T) correspond to precisely one Fr-stable
geometric conjugacy class in GV.

Secondly, the main results of Lusztig—Yun involve categories, not only irreducible
representations. Instead of Irr, (G) (given some data x for which this is defined) we
have Rep,(G), the category generated by Irr;(G). In particular Repy, . (G) denotes
the geometric series associated to W L.

Thirdly, Zgv (s) is replaced by the endoscopic group H dual to Zgv (s)° plus some
group Q, isomorphic to my(Zg(s)). In this way the use of G¥ can be avoided in
[LuYull, LuYu?2].

With impressive geometric machinery Lusztig and Yun obtain canonical equiva-
lences between subcategories of Repyy (G) (determined by cells) and subcategories
of Rep;(H) enriched with Q,-equivariant structures. This can be regarded as an
endoscopic categorical version of Deligne-Lusztig theory.

The aims of this paper are threefold. Firstly, we want to explain the final results
of [LuYu2] in simpler representation theoretic terms. Secondly, we want to find a
version of these results for rational series, so a canonical Jordan decomposition of
irreducible G-representations, like . This may have been known to Lusztig and
Yun, but it is not stated in [LuYull LuYu2]. And thirdly, we want to generalize
these canonical equivalences of categories to disconnected reductive F,-groups. In a
sense, this is the natural generality for such results. Namely, already shows that
to analyse irreducible representations of connected reductive F,-groups, one has to
involve unipotent representations of disconnected reductive [Fy-groups. If instead we
start with a disconnected reductive F4-group, then we still need to study unipotent
representations of other disconnected reductive F,-groups, but we stay within the
same class of groups.

Now we discuss our main results in more detail. Let G be a smooth F,-group
scheme whose neutral component G° is reductive. Only the connected components
of G which are stable under a Frobenius element Fr contribute to G = G(F,), so we
may assume that all connected components of G are Fr-stable. We allow my(G) to
be infinite.

Let £ be a rank one character sheaf on a maximal [Fy-torus 7 in G°, such that
W(G°, T)L is Fr-stable. We define the geometric series Repyy g 7). (G) as consisting

of the G-representations m such that Resgoﬂ lies in the subcategory generated by

Uwew (g, RePw (ge, 7w (G°)-

Let H be the (connected) endoscopic group of G° determined by (£, 7). To (£, T)
we also associate a group {2, which plays the role of the component group of some
disconnected version of H. We need a certain set B} with an action of QF (the
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version of Q¢ for G°) such that B7/Q} parametrizes the rational conjugacy classes
in one geometric conjugacy class in G°V. Every 8 € B} gives rise to a Fy-form of

H, say HP.

Theorem A. There exists a canonical equivalence of categories

Q
RepW(g,T)E(G) = (@56‘32 Repl (Hﬂ)> E.

The superscript 2, means that we enrich the objects in the category between
brackets with Qz-equivariant structures. Thus Theorem [A] describes G-representa-
tions with semisimple geometric parameter W (G, 7 )L in terms of unipotent repre-
sentations of forms of an endoscopic group H plus a kind of action of the group .
When G is connected, Theorem is a quick consequence of [LuYu2l, Corollary 12.7].

Suppose now that £ is Fr-stable. Then it determines a semisimple rational conju-
gacy class in G°Y, say represented by s. We define the rational series Rep,(G) as the
category of G-representations 7 such that Resgoﬂ lies in the subcategory generated

by Uge Ad(g)"Rep, (G°).
Theorem B. There exists a canonical equivalence of categories
Rep,(G) = Repy ()%

This can be regarded as a Jordan decomposition for representations of the possi-
bly disconnected reductive group G = G(F,). It existed already when G is connected
[Lus2], but even in that case Theorem [Bfadds canonicity.

We expect that our results will have applications to depth zero representations
of reductive p-adic groups. The main reason is that by [MoP1] every supercuspidal
depth zero representation of such a group, say M, is obtained from an irreducible
representation of a group of the form G(F,). In that setting G(IF,) arises as a quotient
of the M-stabilizer of a vertex in the reduced Bruhat—Tits building of M.

In the recent preprint [Fuj], depth zero supercuspidal representations of simple
p-adic groups were analysed, with several techniques among which some version of
a Jordan decomposition for Irr(G(FF,)). With Theorem [B|it should be possible to
make the results in [Fuj, §4] applicable in larger generality.

2. CONNECTED GROUPS

We start by recalling a part of the setup and the relevant results from [LuYull
LuYu2]. Let G be a connected reductive group defined over the algebraic closure
of a finite field F,. Let ¢ be a prime number different from p = char(FF;). All our
representations will be on vector spaces over Q.

Let € be the action of a geometric Frobenius element Fr € Gal(F,/F,) for some
rational structure of G. We denote the corresponding [F -group by G¢, and we write

G = G“(F) = 9(F)"

We fix an e-stable maximal torus 7 in G, so 7€ is a maximal F,-torus in G¢. Let B
be an e-stable Borel subgroup of G containing 7 and let ®* be the corresponding
set of positive roots in ® = ®(G,T). We write W = W(G,T) and for each w € W
we fix a representative w € Ng(T).
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Let £ be a rank one character sheaf on 7, and assume that WL is e-stable.
Whenever wel = L, L can be regarded as a character sheaf on 7€, stable under
the Frobenius action Ad(w) o € of that Fy-torus. Then L is equivalent to the data
of a character T%¢ — @X.

The orbit W L corresponds to a Fr-stable semisimple conjugacy class in the reduc-
tive Fy-group G¥ dual to G [DeLul, §5]. Deligne-Lusztig theory yields the category
Repyy £ (G€) generated by irreducible G¢-representations with semisimple parameter
W L. The set of irreducible representations in Repy, (G¢) is called the geometric
series with parameter £ or W L.

The stabilizer of £ in W can be written as

We =Wz xQp.
Here W is the Weyl group of the root system
Or={ac®: ()L is trivial}

and €y is the W -stabilizer of (IDZ = ®t N ®,. Let H be the connected reductive
F,-group with maximal torus 7 and root system ®,. It is called the endoscopic

group of G associated to £. It can be endowed with a pinning relative to G, as in
[LuYu2, §10.2]. Consider the set

Br=Wpr\{weW:wel =L}.
The group Qp = W2 \W, acts on B, by
(2.1) Ad(w)w = wwe(w) L.

Any other e-stable maximal torus in G has the form g7 ¢~! for some g € G. There
are bijections
We — Wyt w = quwgt,
By = Bgr: w qwe(g)~L,

which induce a bijection
‘BL/AdE(QL) — SBQE/AdE(QgL).

The data (£, 7T, 3) are considered equivalent to (g£, g7 g~ ', gBe(g)~!), and all the
below constructions from these two sets of data related by conjugation by g.

Each class 8 € B, contains a unique element w? of minimal length, which sends
@Z to ®*. As explained in [LuYu2, §12.1], the relative pinning and the lift i
determine an automorphism og,. of (H, 7, @Z), whose action on 7 and on the root
subgroups in H corresponds to the action of Ad(w?) o € on 7 and on the root
subgroups in G. This provides a Frobenius action on H, and hence a Fg-form H7s«
of H. Up to a canonical isomorphism, it does not depend on the choice of w?.

Next we want to define Qg-equivariant structures on Pgeg, Repy (H?%<). For
every mg € Rep;(H?%<) and every w € Q, we have

Ad(@)ms € Repy (HA@)7sAd@ T

For another representatives &0, Ad()mg differs from Ad(w)mg by a canonical isomor-
phism, namely Ad(w™!) with & ™! € 7. Lang’s theorem ensures the existence of
an isomorphism

HAd(@)UBeAd(w)_l o [JOAde(w)Be
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It is conjugation by an element of 7, which is unique up to T74de)8¢. Via this iso-
morphism we regard Ad(w)mg as an element of Rep, (H74d<()5<). Equivalently, this
construction means that we select a representative n(w, ) € Ng(T) for w (unique
up 774de@e from the left and up to T7#< from the right), such that

TAd.(w)pe = Ad(n(w, B))oscAd(n(w, B)) "
Then we define
Ad(@)ms = Ad(n(w, B))ms € Repy (HA5e),

Here Ad(w)7 is independent of the choices, up to canonical isomorphisms (namely
inner automorphisms, from 774de(@)5<). That defines an action of Q, on
@Dsen, Repy (H7%¢) modulo inner automorphisms.

Now an {2,-equivariant structure on = = @ gem, TB consists of a morphism from
7 to Ad(w)7 for each w € Qf, multiplicative in w up to canonical isomorphisms. To
make that explicit we need, for each representative n(w, ), a morphism

(2.2) m(n(w,B)) : mp = Ad(n(w, B))mg
such that:

o 7(n(1,8)) = ms(n(1, §)) for all n(1, ) € T,
e for all eligible n(w’, Ad.(w)p):

T(n(w', Ade(w)B)n(w, B)) = 7(n(w', Ade(w)B)) 7 (n(w, B)).
The category €D ges,, Rep; (H?7¢) enriched with (z-equivariant structures is denoted

( @ﬁem Rep, (7% )> -

The following result is a version of [LuYu2, Corollary 12.7] without cells.

Theorem 2.1. Let G be a connected reductive Fq-group and let WL be an e-stable
orbit of character sheaves on T . There is a canonical equivalence of categories

Q
Repic(G) = (@D, Repi(H7))

Proof. Let ¢ be a cell in W7 and let [c] C W x WL be the associated two-sided cell,
as in [LuYu2, §11.4]. They are related by

(2.3) [c]N(Wz x {L}) = Qc.
By construction
(2.4) Repyy £(G9) @ Rep
Let Q. be the stabilizer of ¢ in Q, and write
B, = {f € B : w’e stabilizes c}.
By [LuYu2, Corollary 12.7] there are canonical equivalences of categories

(2.5) Rep[c] (G°) = @ Repf§ (H75<) fPop o ( @ Rep§ (H7%<) ) -
BEBe/Ade () BEB.
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When g € B, \ B, H% has no nonzero representations associated to the cell c
(because the cell of an irreducible representation is unique). Hence the right hand
side of (2.5)) can be rewritten as

Now we take the direct sum over all two-sided cells [c] and with (2.4]) and (2.3)) we
obtain

Repy 0 (G°) = @( @ Rep?CC(HU,Be))QC _ ( @ Repl(HUBE)>QC_ .

[c] BEB. BEB.

We turn our attention to rational series for G¢. Let GV be the dual group of G.
It is endowed with the [F -structure from the Frobenius action dual to €, which we
shall also denote €. Recall that every rational series is parametrized by the (rational)
conjugacy class of a semisimple element s of GV = GY(F,). In terms of (£, T¢), the
condition s € GV¢ means that £ must be e-stable. That can always be arranged:

Lemma 2.2. Suppose that W L is e-stable. Then (L, T) is G-conjugate to an e-stable
pair (L, Tw) and Repy £(G) = Repw g 7,)2., (G-

Proof. Select w € W such that wel = L. By the surjectivity of Lang’s map on
G |GeMa, Theorem 1.4.8], there exists g,, € G such that g, 'e(g,) represents w €
Ng(T)/T. Then

90T 90" = guwTw gyt = e(gu)Telgw) ™ = €(gu)e(T)e(gw) ™" = (90T 9u"),
gw»c - gwwe‘C = e(gw)e’c = ngﬁa

50 (Lw, Tw) = (gwl, gwT gy') is e-stable. The equality of categories holds because
WL and W (G, Ty)Lyw correspond to the same geometric conjugacy in GV°. O

With Lemma [2.2in mind, we assume that (£,7) is e-stable. Recall from [DeLul,
§5.2] or [GeMal, Corollary 2.5.14] that there is a natural bijection between

e the set of G-conjugacy classes of e-stable pairs (£, 7),
e the set of GV¢-conjugacy classes of e-stable pairs in GV¢ formed by a maximal
torus and an element thereof.

We record that as
(2.6) (L, T) + (s, 7).

The intersection of the geometric conjugacy class Ad(GY)s with 7V is Ws with
W = W(GY, TV). By [DeLu, §5] or [GeMal, Propositions 2.4.28, 2.5.5 and p. 155],
this corresponds precisely to (WL, T). Then Repy, (G¢) is a direct sum of finitely
many rational series, which we want to parametrize in terms of L.

Lemma 2.3. The quotient set B,/Adc(Qz) naturally parametrizes the GY-conju-
gacy classes in (Ad(GY)s)¢. The parametrization can be realized as follows. For
w € Wy representing 8 € Bz, find hy € GY such that h,'e(hy) represents w as
element of W = Ngv(TV)/T". Then the bijection sends 8 = [w] € B /Ad(Qz) to
Ad(GV) (hyshyt).
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Proof. As Fr(s) = s, the GV-conjugacy class of s is isomorphic to GV /Zgv(s) as
F-variety. Galois cohomology provides an exact sequence
27)  Zgv(s)™ = (GV)™ = (GY/Zgv(s))™ — H'(Fr, Zgv(s)) — H'(Fr,GY).
Here H!(Fr,GV) is a short notation for the cohomology of Gal(F,/F,) with coeffi-
cients in GV. By the surjectivity of Lang’s map on connected F,-groups, H!(Fr,G")
is trivial and

H'(Fr, Zgv(s)) = H' (Fr,mo(Zgv (s)))-
Thus (2.7) says that the set we are looking for is parametrized naturally by
H'(Fr,mo(Zgv(s))). This bijection sends
(2.8) gsg~t € (Ad(GV)s)™™ to [Fr g 'Fr(g)] € H(Fr, Zgv(s)).
By Steinberg’s description of the centralizers of semisimple elements in reductive
groups [Ste], mo(Zgv(s)) & W2\Ws, where W C W =2 W(GY,TV) is generated by
the reflections s, with aV¥(s) = 1. In terms of (£, T), this becomes
(2.9) mo(Zgv(s)) 2 WINWs ZW\W, = Br =W \Wp x Qe = Q.
It follows that H' (Fr, mo(Zgv(s))) is naturally isomorphic to
(2.10) HY(Fr,Qz) = (Q)r = B/Ad(Q).
The map from ([2.10)) to conjugacy classes of s is essentially the inverse of (2.8)). O

Lemmas [2.2] and [2.3] provide a bijection between

e the set of semisimple conjugacy classes in GV¢,
e the W-orbits of pairs (£, 3), where L is a character sheaf on 7 with e-stable
W-orbit and 8 € B./Ad(L),
e triples (£, 7', 8") where T" is an e-stable maximal torus in G, (£, ) is as in
the previous bullet and any such triple of the form (gL', gT"'g~ 1, gB8'e(g)™1)
with g € G° is considered as equivalent to (L', 77, 3).
Let us make it more explicit, starting from W (L, 5). As in Lemma pick g € G
such that (gL,gTg ') is e-stable, and replace B by gBe(g)™' € B,e. Associate
s € GV to (gL,9Tg™ ') by . From s and gBe(g)~!, Lemma produces
85 = hyshy', where w represents gfBe(g) 1. We record this as
(2.11) W (L, B) +— 3.

The explicit description of the correspondence (2.6) in [GeMal, §2.5.12 and Corollary
2.4.14] is in terms of elements h,, and g,, as in the proof of Lemma Consequently
(2.12) (88, huwT Y hyyt) corresponds to (L, To)-

We denote the rational series (in Rep(G€)) associated to sz € GY¢ by Rep,, (G°).
By the correspondence (2.11) we may write Rep,, (G) = Repyy(£,5)(G). Lemma
shows how to write a geometric series as a direct sum of rational series, with sg

as in (2.11)):
(213)  Reppe(G)= B  Repwesn(G)= E  Rep,,(G9),
BE%C/Ade(QC) /Be%ﬁ/Ade(QC)

Let G — G, be a regular embedding of reductive F,-groups |[GeMal, §1.7], so Z(G.)
is connected and Gger = G1 der- As is common, we will analyse series for G¢ in terms
of those for G¢. Let 7. C G. be the maximal torus with 7.NG = T. We fix an
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extension L. of £ to a character sheaf on 7, and we let s, € T¢ be the corresponding
element. The canonical quotient map G — GY sends 7Y — T and s, to s. The
group W, = W(G.,7T.) can be identified with W. Since G. has connected centre,
He = Zg,(Sc) is connected and

Ws, =Wg W, =W; .

The rational and geometric series for G¢ coincide, and by [Lus2|:

(2.14) Rep,(G°) = Resgé (Rep,, (GS)) = Resgé (RepW£C (GY)).
Since B,, = {1} and Q,, = {1}, Theorem for G¢ simplifies to
(2.15) Repyy ., (Ge) = Repy (He).

The group H. is generated by 7. and the root subgroups U, with «"(s.) = 1. The
latter condition depends only on s, so these are precisely the roots in &, and H, is
the full preimage of H in G..

Theorem 2.4. Let (£, T) be e-stable, corresponding to (s, T") with s € GV¢. There
is a canonical equivalence of categories

Rep,(G°) = Repyy(£,1)(G) = Rep, (H)%z,
where Q% = m(Zgv(s))°.

Proof. We will use the functorial properties of the constructions of Lusztig and Yun.
The functor

Resg: : Repye, (Gt) = Repyc (GY)
corresponds to restriction of sheaves from G, to G in [LuYu2]. Via and The-
orem it becomes a functor

(2.16) Rep, (H;) — @5@B£/Ade(ﬂg)

From [LuYu2, §12.10] one can see what does. Namely, first it restricts repre-
sentations of H to H¢, and then it endows them with some equivariant structure for
Qg 3 = Stabq,(B8) with § =1 € B,. In particular the image of lies entirely
in the summand 8 = 1 of the codomain. Together with , it follows that the
image of Rep,(G¢) under Theorem is contained in Rep, (H¢)%&1.

Now we consider another e-fixed element in the geometric conjugacy class of s,
namely sg = hyshg! from with 8 € B, = Wz\W, represented by w = wP
of minimal length in its class. We saw in that it corresponds to an e-stable
pair (Luw, Tw) = (9wl, 9wT gy"). The above constructions can also be applied to
(sg, Lw, Tw), and they show that

Rep, (H7%<) Qs

Resgé : Repwﬁw’l(GE) — Rep( (G%) = Repyy £ (G°)

Jw Wg’l; ! )»Cw
corresponds to a functor

(2.17) Rep; (90 Hay')s) = Repy (9w Hay')e) o

When we restore the previous bookkeeping by conjugation with g;;*, the Frobenius
action € is replaced by Ad(g;'e(gw))e, which equals Ad(w?) o e for some lift w? €
Ng(T) of w”. Following the conventions in [LuYu2, §12.1] as mentioned after (2.1,

becomes a functor
Repy (HZ*) = Repy (H77) 7.
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Thus Theorem 2.] sends
€ Z € (e Q
(2.18) Rep,, (G°) = Resge (RepWLUJ’l(Gc)) to Rep; (H7%)"".

If we take the direct sum over 8 € B,/Ad(Q,) of the functors (2.18)), then by
(2.13]) we recover the equivalence from Theorem Hence is an equivalence
of categories for every 5 € B.

In the special case § = 1, we have

(2.19) Qr1={weQ we(w) ™ €W} ={we U we(w)™ =1} = QF.
From (2.9) we see that this group is canonically isomorphic to mo(Zgv (s))€. O

3. DISCONNECTED GROUPS

We no longer require that G is connected. Instead, we assume the following
throughout this section:

Condition 3.1. G€ is a smooth F,-group scheme with reductive neutral component,
such that every connected component of G is e-stable.

If G would have connected components that are not e-stable, then they would not
contribute to G¢ and could be ignored for the study of G¢-representations. Hence
the last part of Condition is not a restriction, it merely serves to simplify the
notations. Notice that 7o(G) may be infinite.

Let 7§(G) be the group of connected components of G. If x € G represents an
element of mo(G), then x7te(z) € G°. By Lang’s theorem there exist g € G° with
g e(g) = 27 'e(x). Then zg~! € 2G° is fixed by €, so G° has F-points.

For each w € m9(G) we pick a representative w € G¢ = G°(F,). That gives a map

Ad(w) : Rep(G°°) — Rep(G®).

It depends on the choice of w, but the map Ad(w) for another representative &
differs only by Ad(ww™!) with &w=! € G°¢. Hence Ad(w) is unique up to canonical
isomorphisms.

A my(G)-equivariant structure on 7° € Rep(G°¢) consists of a morphism 7(w) :
m° — Ad(w)7° for each w € my(G). These must be multiplicative up to canonical
isomorphisms, which means that

(@) (dg) = 7° (W1 (@)~ )m(ws)
whenever wiws = w3 € m(G).

Lemma 3.2. The category Rep(Goe)“O(g) of G°¢-representations enriched with a
m0(G)-equivariant structure is naturally equivalent with Rep(G€).

Proof. For any G¢-representation m, write 7° = Resg;w. We obtain a m(G)-
equivariant structure on 7° by defining the required morphism 7° — Ad(w)7® as
m(w), for any representative w of w € m(G).

Conversely, suppose that 7° € Rep(G°) has a my(G)-equivariant structure. Then
we have a morphism of G°“-representations 7(w) : 7°© — Ad(w)7®, for any represen-
tative w € G¢ of w € my(G). By the multiplicativity of equivariant structures, these
m(w) combine to a representation of

Uwewo(g) wGoe — Ge
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on the vector space underlying 7°. It follows from 7(1) = id that 7(g) = 7°(g) for
all g € G°¢, so 7 extends 7°.

It is clear that the functors # — 7° and 7° — 7 are mutually inverse, so they
define equivalences of categories. O

Let 7 be a maximal Fy-torus in G° and let 7y be a maximally split maximal
F,-torus in G°. Let B and By be Borel F,-subgroup of G° containing, respectively,
T and Ty. Although 7 may equal to 7Ty, we remain more flexible by not requiring
that.

Lemma 3.3. The group G equals G°“Ng« (1§, B).
Proof. For x € G¢, zByz~! is an e-stable Borel subgroup of G°. All such subgroups
are G%-conjugate [Spr} 15.4.6.ii], so there exists g € G°¢ such that gxBoz g~ = Bo.

Let S be the maximal [Fy-split subtorus of 7y. Since G° is quasi-split over [y, the
centralizer Zgo(S) equals To. As gz € Nge(B§), grSz~1g~! is a maximal F,-split
torus in By. All such tori are B¢-conjugate [Spr}, 14.4.3], so we can find b € B¢ such
that bgzS(bgz)~t = S. Then

bgaTo(bge) ™! = bgrZge(S)(bgx) ™" = Zgo (bgaS(bgx) ™) = Zge(S) = To,

so bgr € Nge(B§, T§). It follows that € G°“Nge(Bg, Tf). O

Lemma implies that the natural map Ng- (7§, Bf)/T5 — mo(G) is a group
isomorphism. That yields split short exact sequences
1 - We=w(@°,7) - W=W(G,T) —» mG) — 1,
1 — W (G, T§) — W(G*,T§) — mw(G) — 1.
Condition enables us to pick representatives w € Nge(Tf, Bf) for w € m(G),

unique up to T5. The action of 7(G) on Rep(G°¢) permutes the subcategories
Repyyo £ (G°°) and stabilizes the subcategory

(3.2) Repyy £ (G*) = @ Repyyon. (GT)
weWe\W/W,

(3.1)

generated by irreducible G°¢-representations with semisimple parameter in W L.
Indeed, for 7 = Ty we see this with the representatives of 7y(G) in Ng< (T, Bf). For
other T it follows because (7, B) and (7o, By) are G°-conjugate and Repyyo,(G)
depends only on W°L up to G°-conjugacy.

We define the geometric series Repyy (G€) as the category of G¢-representations
whose restriction to G°¢ lies in Repyy(G°¢). Thus Lemma provides a natural
equivalence of categories

(3.3) Repyy ¢ (G) 2 Repyy(G°)™9).

The group mp(G) = W/W*° permutes the direct summands in (3.2) transitively,
which leads to a natural equivalence

(3.4) RepWL(Goe)Wo(g) ~ RepVVOL(Goe)wo(g)woC '

We define Q, = StabW£(<I>Z) = W, /W3 as before, and we let Q% = (W°)z/W2 be
its version for G°. Then

(35) Wo(g)woﬁggc/ﬁi.
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Let B} be B, for G°. With Theorem we can transfer the action of mo(G)wor
on Repyyo,(G°9) to an action on

(3.6) (@ﬁe%% Repy (HUBE)>Q%’

unique up to canonical isomorphisms. Let us make that more explicit. The action
of m9(G)wer on @56%2 Rep; (H7?5¢) can be described in the same way as the action
of Q% in (2.2), now only with representatives n(w, 5) from Ng (7T, B). The effect on a
morphism Ay : 7g = Ad(w)7g, from an Q%-equivariant structure A on m = P 576
is the morphism
Ad(n(w, )75 — Ad()Ad(n(w, B)7s
given by
An(w,ﬁ)—lu'm(w,ﬂ) Y Ad(n(wv ﬁ)_l)Ad(w)Ad(n(w, ﬁ))ﬂ-ﬁ'

Via this transfer of actions, every m(G)we-equivariant structure on (3.6 can be
identified with one mo(G)wec-equivariant structure on Repyyo (G°).

The group 2, acts on @56%% Rep; (H?5¢), by the same constructions as in the
case of a connected G. Again this action is well-defined up to canonical isomorphisms,
and there is a notion of Q,-equivariant structures on €9 seBe, Rep, (H5¢).

Theorem 3.4. Suppose that G¢ satisfies Condition and let L be a rank one
character sheaf on T, such that W°L is e-stable. There exists a canonical equivalence
of categories

Q
Repyy . (G°) = (@ﬂe%% Repl(H%e)) :

Proof. By Lemma (13-3), (3.4) and Theorem there are canonical equivalences

of categories

m0(G)wor

(3.7) Repyo(G) = Repyop (G™)™Owee = (@D Repy (H7))"%)

Bews,

In view of (3.5)), a mo(G)woc-equivariant structure on top of a 23-equivariant struc-
ture contains precisely the same information as an ),-equivariant structure. Hence
the right hand side of (3.7) is naturally equivalent to € BeBS, Rep, (H5¢) enriched

with Qg-equivariant structures. O

We turn to rational series for G¢. First we have to define them properly. By ,
we can parametrize the rational series in Rep(G°¢) by W°-orbits of pairs (£, ). If
we set that up with 7o, (3.1) shows that the groups mo(G) = Ng<(Tf5, B§)/T5 and
W(G,To) = W and act naturally on the set of such parameters. Then the definition
of Repyyo(r,3)(G) in terms of generators obtained by Deligne-Lusztig induction
shows that 7(G) and W and permute the various rational series according to the
actions on their parameters. It follows that the category

Repyy(£,6)(G™) := @VGWOWQ A RePWerL ()1 (G7)

is stable under the action of G° on Rep(G°). Via conjugation in G°, these conside-
rations also apply to any e-stable maximal torus 7 instead of 7.
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We define Repyy Eﬁ)(Ge) as the category of G¢-representations whose restriction
to G°¢ lies in Repyy (¢, 5)(G°°). When W°(L, B) corresponds to Ad(G°V¢)ss, we write

Repyy(c,5)(G°) = Rep,, (G°).

We call this the rational series of G associated to sg or to W(L, ). It actually
corresponds to a set of semisimple elements in G°V¢ larger than the rational conju-
gacy class of sg, but it is difficult to express that precisely because we do not have
a group dual to G.

As the analysis of Repyy (. 5)(G€) proceeds like for G°¢, we will carry it out more
briefly. Like in and (3.4) we have

(38) RepW(ﬁﬁ) (Ge) = Repw(cﬁ) (Goe)ﬂ-o(g) = RepWo (C,ﬁ) (Goe)ﬂo(g)wo(ﬁ,ﬂ) .
There are isomorphisms

(3.9) mo(Gwec,sy EWes/(W)ep= Wz xQeg)/(WexQz5) = Qe s/ g
By Lemma [2.2] it suffices to consider the cases where L is e-stable and 8 = 1.

Theorem 3.5. Suppose that G¢ satisfies Condition [3.1 Let L be an e-stable rank
one character sheaf on T and suppose that W°(L,1) corresponds to s € G°V¢ via
(2.11)). There exists a canonical equivalence of categories

Rep,(G°) = Repw(c,l)(GE) = Repl(He)Qz-

Proof. This is entirely analogous to Theorem By Lemma (3.8) and Theorem
there are canonical equivalences of categories

€~ oeNTT R ~ o\ To(@wo (.1
RepW(ﬁ,l)(G ) = RepWO(E,l)(G ) 0(@we(c,1) =~ (Repl(H )QL,l) .

In the rightmost term, the two equivariant structures combine to one {2, 1-equivariant
structure, by (3.9). We recall from (2.19) that Qg1 = Q. O

Acknowledgement. The author thanks Tasho Kaletha for many enlightening
discussions on this and related topics.
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