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Abstract. This is a survey paper about representation theory and noncommu-
tative geometry of reductive p-adic groups G. The main focus points are:

1. The structure of the Hecke algebra H(G), the Harish-Chandra–Schwartz
algebra S(G) and the reduced C∗-algebra C∗

r (G).
2. The classification of irreducible G-representations in terms of supercuspidal

representations.
3. The Hochschild homology and topological K-theory of these algebras.
In the final part we prove one new result, namely we compute K∗(C

∗
r (G))

including torsion elements, in terms of equivariant K-theory of compact tori.
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Introduction

This survey paper is based on a series of lectures delivered by the author in
February–March 2025, for the thematic trimester ”Representation theory and non-
commutative geometry”. The lectures focused on the themes of the trimester, for
reductive p-adic groups G. These notes serve the same general goals as the lectures
(with less time pressure):

• Describe the structure of various (topological) versions of the group algebra
of G.
• Explain the classification of irreducible G-representations in terms of super-
cuspidal representations of Levi subgroups.
• Discuss the computation of the Hochschild homology and the topological
K-theory of these group algebras.

The Hecke algebra H(G) of a reductive p-adic group G has been a popular object
of study. A lot is known about this algebra and its representations, and the more
abstract part of that theory has been consolidated in Renard’s textbook [Ren]. The
Harish-Chandra–Schwartz algebra S(G) is important in harmonic analysis and for
tempered G-representations. Further, the reduced C∗-algebra C∗

r (G) is crucial in
the noncommutative geometry of G. Although both topological algebras S(G) and
C∗
r (G) have been known for more than half a century, the results about them are

scattered in the literature. We bring some of those results together in these notes
Roughly speaking, in Section 1 we will discuss the following relations between the

three group algebras of G:
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Group algebras
H(G) S(G) C∗

r (G)

Locally constant functions on group
compactly supported rapidly decaying ”C∗-norm bounded”

Representations
smooth tempered tempered unitary

Fourier transform
algebraic sections differentiable sections continuous sections

The classification of irreducible (smooth, complex) G-representations has two
main parts:

(i) supercuspidal G-representations,
(ii) irreducible representations in the parabolic inductions of a given set of super-

cuspidal representations of a Levi subgroup of G.

Part (i) is rather arithmetic, and outside the scope of these notes. We refer the
reader to the surveys [Afg, Fin]. Part (ii) is more geometric and highly relevant
for the noncommutative geometry of G. Moreover there is a beautiful solution to
(ii), which was already conjectured around 2012 by ABPS (Aubert, Baum, Plymen
and the author). We recall that every Bernstein block Rep(G)s in the category of
smooth G-representations comes with:

• a complex torus Ts which parametrizes the underlying supercuspidal repre-
sentations,
• a finite group Ws such that the centre of Rep(G)s is O(Ts)

Ws = O(Ts/Ws).

A simplified version of the ABPS conjecture says that there is a canonical bijection
between

• the set Irr(G)s of irreducible representations in Rep(G)s,
• the set of irreducible representations of the crossed product O(Ts)⋊Ws.

Actually, in general one has to extend both Ts and Ws by a finite group, and one
has to twist the group algebra of Ws by a 2-cocycle. For the sake of presentation,
we suppress those details in the introduction.

The proof of the ABPS conjecture [Sol9] entails several steps:

• Rep(G)s is made equivalent to the module category of the G-endomorphism
algebra of a progenerator Πs.
• General analysis of the structure of EndG(Πs).
• Relate localized versions of EndG(Πs) to graded Hecke algebras.
• Study the representation theory of graded Hecke algebras.
• Classify the irreducible representations of a graded Hecke algebra in terms
of those of a crossed product algebra.
• Classify the irreducible representations of a crossed product algebra.

In Sections 2 and 3 we treat all these topics, in survey style (and in a different order).

After that we come to the noncommutative geometric part of the paper. Section
4 starts with an introduction to Hochschild homology for algebras, based on [Lod]
and focussing on algebras that are close to commutative. Then we discuss the
Hochschild homology of H(G) and of H(G)s, the summand of H(G) associated to
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Rep(G)s. The latter is computed via the Hochschild homology of graded Hecke
algebras. It turns out that H(G)s has the same Hochschild homology as the crossed
product O(Ts)⋊Ws, which is known from [Nis].

Section 5 is dedicated to the Hochschild homology of topological algebras related
to S(G). There is a lot technique behind this, because it involves a mix of homologi-
cal algebra and functional analysis. We briefly discuss the setup and some examples
of such topological Hochschild homology groups. Let S(G)s be the summand of
S(G) associated to Rep(G)s and let T u

s be the compact real subtorus of Ts that
parametrizes the unitary supercuspidal representations underlying Rep(G)s. Then

(1) HHn(S(G)s) ∼= HHn(C
∞(T u

s )⋊Ws),

and the right hand side had already been computed earlier [Bry]. We point out that
HH∗(C

∗
r (G)) is less interesting: it recovers the cocenter C∗

r (G)/[C∗
r (G), C∗

r (G)] but
nothing more.

The isomorphism (1) and its analogue for H(G)s can be regarded as a version of
the ABPS conjecture in Hochschild homology. From there it is only a small step
to compute the periodic cyclic homology HP∗ of H(G) and S(G), again in terms of
crossed product algebras.

Finally we come to topological K-theory in Section 6, the most truly noncommu-
tative geometric part of the paper. We need K-theory both for Banach algebras and
for Fréchet algebras, and we recall some general results in the latter setting. Via
Chern characters, K-theory is related to periodic cyclic homology, which leads to
isomorphisms

(2) K∗(C
∗
r (G))⊗Z C ∼= K∗(S(G))ZC ∼= HP∗(S(G)).

These results can be compared with the Baum–Connes conjecture, which was proven
for G in [Laf]. We formulate the comparison with a completely algebraic counterpart
to the Baum–Connes conjecture from [HiNi].

To determine K∗(C
∗
r (G)) including torsion elements, we abandon the survey style

and add some new results in the last three paragraphs. Our idea is to transfer the
setup used for H(G)s to the summand C∗

r (G)s of C∗
r (G). We construct a progenera-

tor Πc
s for the module category of C∗

r (G)s, and an action of C(T u
s )⋊Ws on Πc

s. We
deduce isomorphisms

(3) K∗(C
∗
r (G)s) ∼= K∗(C(T u

s )⋊Ws) ∼= K∗
Ws

(T u
s ),

where the rightmost term denotes the Ws-equivariant K-theory of the topological
space T u

s . In Theorem 6.14, the precise version of (3), T u
s and Ws are replaced by

finite covers, and a twist by a 2-cocycle of the extension of Ws is involved. In the
end, that computes K∗(C

∗
r (G)s) in terms of ”twisted” Ws-equivariant vector bundles

on T u
s . That settles the ABPS conjecture in topological K-theory [ABPS2].
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tive geometry”. It is a pleasure to thank all the organizers of this program for their
efforts, and the Institut Henri Poincaré for the hospitality.
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Part A. Representation theory of reductive p-adic groups

1. Group algebras

1.1. Example: GL1(F ).
For a nice introduction to p-adic numbers we refer to [Gou]. In this paragraph we

mention several well-known aspects of p-adic numbers without further comments.
Let F be a non-archimedean local field. If F has characteristic zero, then it is a

finite extension of the field of p-adic numbers Qp, for some prime p. On the other
hand, if F has characteristic p, then it is a finite extension of the local function field
Fp((T )).

Let vF : F → Z ∪ {∞} be the discrete valuation and fix an element ϖF with
vF (ϖF ) = 1. Let oF = v−1

F (Z≥0∪{∞}) be the ring of integers of F and let ϖF oF =

v−1
F (Z>0 ∪ {∞}) be its unique maximal ideal. The residue field kF = oF /ϖF oF is a
finite field of characteristic p, whose cardinality we denote by qF .

Example 1.1. In F = Qp we have vF (p
na/b) = n for a, b ∈ Z not divisible by p.

Further oF = Zp and we can take ϖF = p. Then kF = Zp/pZp = Z/pZ = Fp.
In F = Fp((T )) we have vF

(∑∞
n=N anT

n
)
= N when an ∈ Fp and aN ̸= 0. Here

oF = Fp[[T ]] and one takes ϖF = T . Then kF = Fp[[T ]]/TFp[[T ]] = Fp.

On F one defines the absolute value |x|F = q
−vF (x)
F . We note that vF (0) = ∞

and that |0|F = 0. The absolute value defines a metric dF (x, y) = |x − y|F on F ,
with respect to which F is complete. Since the metric takes values in qZF ∪ {0}, the
image of dF does not contain any interval in R. Hence F with the metric topology
is a totally disconnected Hausdorff space. It is not discrete though, for instance the
sequence (ϖn

F )
∞
n=1 converges to 0 in F . By the completeness of F with respect to

dF and the finiteness of kF , F is locally compact. The ring oF is compact.
We shall discuss various group algebras of algebraic groups over F . Let us start

with the simplest example of such a group: F× = GL1(F ). Here and below, we
denote the group of invertible elements in a unital ring R by R×. For oF that gives

o×F = oF \ϖF oF = v−1
F (0).

Notice that this is strictly smaller than oF ∩F× = oF \{0}. In fact o×F is the unique
maximal compact subgroup of F×. We note that the valuation vF induces a group
isomorphism F×/o×F

∼= Z.
For simplicity we look only at functions on F× that are invariant under o×F . As F

×

is abelian, those are the same as o×F -biinvariant functions on F×. Three interesting
algebras of such functions are:

• The Hecke algebra

(1.1) H(F×)o
×
F = C[F×/o×F ]

∼= C[Z] ∼= O(C×),

where O means regular functions on an affine variety.
• The Harish-Chandra–Schwartz algebra

(1.2)

S(F×)o
×
F = S(F×/o×F )

∼= S(Z) = {Schwartz functions f : Z→ C} ∼= C∞(S1),

where S1 is unit circle in C.
• The reduced C∗-algebra

(1.3) C∗
r (F

×)o
×
F = C∗

r (F
×/o×F )

∼= C∗
r (Z) ∼= C(S1).
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Remarkable here is that, although F× is rather complicated and strange as a topo-
logical space (totally disconnected but not discrete), these three algebras of functions
on F× are very nice and well-behaved. They are among the standard examples of
algebras from a course on (respectively) algebraic geometry, differential geometry
and topology.

1.2. Definitions and first properties.
From now on G is a connected reductive algebraic group defined over F . We call

G = G(F ) a reductive p-adic group (even though F is not necessarily a p-adic field,
it may have positive characteristic). Of course G can be endowed with the Zariski
topology, but for the purposes of representation theory it is more useful to consider
a topology on F which comes from the metric topology on F .

We spell out this topology. Since G is a linear algebraic group, it can be embedded
in GLn for some n ∈ N. On the matrix ring Mn(F ) we define a norm by

∥(aij)ni,j=1∥F = max
i,j
|aij |F .

That in turn yields a metric on GLn(F ) by

(1.4) d(A,B) = max{∥A−B∥F , ∥A−1 −B−1∥F },
where the term with the inverses is needed to make inversion on GLn(F ) continuous.
We restrict this to a metric d on G ⊂ GLn(F ). While d depends on the choice of an
embedding G → GLn, the resulting topology on G does not. This makes G into a
totally disconnected locally compact group. (By convention locally compact groups
are Hausdorff.)

Since the metric on G only takes values in qZF ∪ {0}, every open ball in G is also
a closed ball. By the local compactness every closed ball is compact, so G has lots
of compact open subsets. Even better, G has many compact open subgroups.

Here is one construction of small compact open subgroups. The group

GLn(oF ) = {A ∈Mn(oF ) : det(A) ∈ o×F }
is compact and open in GLn(F ). Namely, Mn(oF ) and

Mn(oF )
♯ := {A ∈Mn(oF ) : det(A) ∈ ϖF oF }

are compact open subsets of Mn(F ), so their difference is compact. Further

GLn(oF ) = Mn(oF ) \Mn(oF )
♯ = (Mn(oF ) ∩GLn(F )) \ (Mn(oF )

♯ ∩GLn(F )),

which is open in GLn(F ). For any m ∈ Z≥0 we have the ring homomorphism
oF → oF /ϖ

m
F oF . This induces a group homomorphism

modϖm
F
: GLn(oF )→ GLn(oF /ϖ

m
F oF ),

whose image is finite because

|oF /ϖm
F oF | = qmF <∞.

Then GLn(F )m := ker(modϖm
F
) is an open subgroup of the compact group GLn(oF ),

so automatically closed and compact. In fact GLn(F )m equals the closed ball of
radius q−m

F around In in GLn(F ). It follows that

(1.5) Gm := G ∩GLn(F )m

is a compact open subgroup of G. This is known as a congruence subgroup of G,
because it consists of matrices that are equal to the identity modulo ϖm

F oF . With
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respect to the metric d from (1.4), the group Gm is the closed ball of radius q−m
F and

the open ball of radius q
1/2−m
F , both around the unit element In. In particular the

decreasing sequence of compact open subgroup {Gm : m ∈ Z≥0} is a neighborhood
basis of In in G.

We denote the set of compact open subgroups of G by CO(G). A large supply of
such subgroups comes from Bruhat–Tits theory, for which we refer to [KaPr, Tit].
For each K ∈ CO(G), the spaces G/K and K\G are discrete and countable. For the
latter, notice that G is a countable union of compact balls, and that each compact
subset of G is covered by finitely many cosets of the open group K.

The above provides, among others, ways to partition G are as a disjoint union of
compact open subsets, just take the left cosets of one of the subgroups Gm. The
abundance of compact open subsets means that G admits many locally constant
functions. For instance, any function on the discrete space G/Gm can be inflated to a
locally constant function on G. We let C∞(G) be the vector space of locally constant
functions f : G→ C. It is an algebra with respect to pointwise multiplication. The
notation C∞ comes from manifolds, even though on a totally disconnected space like
G there is no good notion of differentiability for general functions. The reasoning is
that locally constant functions are the only functions on G that one can differentiate
for sure: all their partial derivatives are 0.

We fix a left Haar measure µ on G. The group G is unimodular (because it is
reductive, see [Ren, §V.5.4]), so µ is a also a right Haar measure. The convolution
product of two integrable functions f1, f2 : G→ C is defined as

(f1 ∗ f2)(x) =
∫
G
f1(xg

−1)f2(g)dg =

∫
G
f1(g)f2(g

−1x)dg.

Here and later we suppress the Haar measures from the notations of integrals. We
note that the convolution product generalizes the multiplication in the full group
algebra C[G], with a modification for the measures of sets. For instance, let fi =
1giKi be the indicator function of a left coset of Ki ∈ CO(G). For x = g1k1g2k2 with
ki ∈ Ki one computes

(1g1K1 ∗ 1g2K2)(x) =

∫
gK1

1g2K2(g
−1x)dg =

∫
K1

1g2K2(h
−1g−1

1 x)dh

=

∫
K1

1g2K2(h
−1k1g2k2)dh =

∫
K1

1g2K2(kg2k2)dk

= µ(K1g2k2 ∩ g2K2) = µ(K1 ∩ g2K2g
−1
2 ).

The support of f1 ∗ f2 is always contained in supp(f1) · supp(f2), so

(1.6) 1g1K1 ∗ 1g2K2 = µ(K1 ∩ g2K2g
−1
2 ) 1g1K1g2K2 .

This equation shows that the convolution product generalizes the multiplication in
the full group algebra C[G], with a modification for the measures of sets. If we would
replace µ by the counting measure on G and we would only use functions with finite
support, then (1.6) would recover the multiplication in C[G].

Definition 1.2. The Hecke algebra H(G) is the vector space C∞
c (G) of locally

constant compactly supported functions f : G → C, endowed with the convolution
product.
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The C-algebra H(G) is associative but not unital. Namely, from (1.6) we see that
a unit element of H(G) would have to be supported only at the identity of G. But
{e} is open in G if and only if G is finite, which happens only when G = {e}.

For any K ∈ CO(G), the K-biinvariant functions form a subalgebra

H(G,K) = Cc(K\G/K)

of H(G). This subalgebra has

⟨K⟩ := µ(K)−11K

as unit, as one can check like in (1.6).

Proposition 1.3. (a) H(G) =
⋃

K∈CO(G)H(G,K) =
⋃∞

m=1H(G,Gm).

(b) The algebra H(G) has local units: for every finite subset S ⊂ H(G) there exists
an idempotent eS ∈ H(G) such that eS s = s = s eS for all s ∈ S.

(c) H(G) has countable dimension.

Proof. (a) Every f ∈ H(G) is compactly supported and locally constant, so takes
only finitely many values in C. For each nonzero value z, f−1(z) is a compact open
subset of G. Since the Gm form a neighorhood basis of e in G, there exists m ∈ N
such that f−1(z) is a union of Gm-double cosets. As f takes only finitely many
values, there exists an m that works for all values z ̸= 0. Then f ∈ H(G,Gm).
(b) By part (a) there exist Ks ∈ CO(G) such that s ∈ H(G,Ks). Define K =⋂

s∈S Ks, this is a compact open subgroup because S is finite. Now s ∈ H(G,K) for
all s ∈ S, so eS = ⟨K⟩ has the required property.
(c) The space Gm\G/Gm is countable, so H(G,Gm) has countable dimension. Com-
bine that with part (a). □

On Cc(G) we have the standard norms

∥f∥r =
( ∫

G
|f(g)|rdg

)1/r
with r ∈ R≥1 and ∥f∥∞ = sup

g∈G
|f(g)|.

Lemma 1.4. H(G) is dense in Cc(G) for the norms ∥ · ∥r with r ∈ R≥1 ∪ {∞}.

Proof. Let f ∈ Cc(G). For m ∈ Z≥1 we define fm ∈ H(G,Gm) as follows: pick a set
of representatives {gm,i}i forGm\G/Gm and put fm(g) = f(gm,i) for g ∈ Gmgm,iGm.
By the continuity of f and the compactness of its support, the sequence (fm)∞m=1

converges uniformly to f . Hence it also converges to f with respect to the norms
∥ · ∥r. □

The Banach algebra L1(G) acts continuously on the Hilbert space L2(G), by
the convolution product. That yields an injective homomorphism from L1(G) to
B(L2(G)), the C∗-algebra of bounded linear operators on L2(G). We make H(G)
and L1(G) into *-algebras by

f∗(g) = f(g−1).

Definition 1.5. The reduced C∗-algebra C∗
r (G) is the closure of L1(G) in B(L2(G)),

with respect to the operator norm.

By Lemma 1.4 H(G) is dense in L1(G), hence H(G) is also dense in C∗
r (G). In

other words, C∗
r (G) can be regarded as the completion of H(G) for the operator

norm of B(L2(G)). Lemma 1.4 also says that H(G) is dense in L2(G). Therefore the
operator norm of H(G) acting on L2(G) equals the operator norm of H(G) acting
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on itself by left multiplication. Thus C∗
r (G) can be constructed entirely in terms of

H(G), as a C∗-completion of that *-algebra.
For K ∈ CO(G), we let

C∗
r (G,K) = ⟨K⟩C∗

r (G)⟨K⟩

be the sub-C∗-algebra of K-biinvariant functions in C∗
r (G). In contrast with C∗

r (G),
the algebra C∗

r (G,K) has a unit, namely ⟨K⟩. One may identify C∗
r (G,K) with

the closure of H(G,K) = ⟨K⟩H(G)⟨K⟩ in C∗
r (G) or in B(L2(G)). It follows from

Proposition 1.3 that

(1.7) C∗
r (G) = lim

m→∞
C∗
r (G,Gm) = lim

K∈CO(G)
C∗
r (G,K),

where the limit is meant in the category of Banach algebras.
The original definition of the Harish-Chandra–Schwartz algebra of G [HC] is

rather complicated, we prefer the simpler construction in [Vig]. Using the embedding
G→ GLn(F ), we define a length function on G by

g 7→ log
(
max

{
∥g∥F , ∥g−1∥F

})
.

Then the function

σ : G→ R≥1, σ(g) = 1 + log
(
max

{
∥g∥F , ∥g−1∥F

})
is a scale, which means that it satisfies σ(g−1) = σ(g) and σ(gg′) ≤ σ(g)σ(g′). For
m ∈ Z>0 we define a norm νm on Cc(G) by νm(f) = ∥σmf∥2.

Definition 1.6. For K ∈ CO(G), S(G,K) is the completion of H(G,K) with respect
to the family of norms νm (m ∈ Z>0). The Harish-Chandra–Schwartz algebra of G
is S(G) =

⋃
K∈CO(G) S(G,K), endowed with the inductive limit topology.

Thus S(G) consists of locally constant functions on G that decay rapidly. These
functions need not have compact support, but every one of them is biinvariant under
some K ∈ CO(G). Some important properties of the algebras S(G,K) where proven
by Vignéras:

Theorem 1.7. [Vig, Propositions 10, 13, 28]

(a) S(G,K) is a nuclear Fréchet *-algebra with unit ⟨K⟩.
(b) S(G,K) is a dense subalgebra of C∗

r (G,K), with a finer topology.
(c) S(G,K) ∩ C∗

r (G,K)× = S(G,K)×, and this set is open in S(G,K).

By Theorem 1.7.b and (1.7), S(G) is contained in C∗
r (G). Like H(G) and C∗

r (G),
the Harish-Chandra–Schwartz algebra of G is not unital. The same argument as for
Proposition 1.3.b shows that S(G) does have local units, for instance the idempotents
⟨K⟩ with K ∈ CO(G).

The multiplication in S(G) is separately continuous, that is, for any fixed a ∈ S(G)
the maps f 7→ fa and f 7→ af are continuous [Wal, Lemme III.6.1]. However, S(G)
is not a Fréchet algebra, because the topological vector space S(G) is not Fréchet.
It is a strict inductive limit of Fréchet spaces, but such spaces are not metrizable
[DiSc, Corollaire 4.2].
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1.3. Classes of representations of reductive p-adic groups.
In these notes, all representations will by default be on complex vector spaces.

The best notion of continuity for a representations of a reductive p-adic group is
smoothness.

Definition 1.8. A G-representation (π, V ) is smooth if for all v ∈ V the stabilizer
group Gv = {g ∈ G : π(g)v = v} is open in G. Equivalently, π is smooth if the map
π : G× V → V is continuous with respect to the discrete topology on V .

This is a rather crude inpretation of smooth, like C∞(G). It says that for any
fixed v ∈ V the map G→ V : g 7→ π(g)v is locally constant.

Example 1.9. Let G act on H(G) by left translations:

(λ(g)f)(x) = f(g−1x) for g, x ∈ G, f ∈ H(G).

If f ∈ H(G,K), then λ(k)f = f for all k ∈ K. Hence (λ,H(G)) is a smooth
G-representation.

The motivation for considering the class of smooth representations comes from
profinite groups. Consider a projective limit of finite groups H = lim←−Hi. Then

each finite group Hi is a quotient of H and ker(H → Hi) is an open subgroup of
H. It is natural to impose that every irreducible H-representation factors through
Hi for some i. Smoothness of H-representations enforces that (at least under the
small extra condition that H is its own profinite completion), and at the same time
is sufficiently flexible to enable direct limits of H-representations.

Recall that every compact totally disconnected Hausdorff group is a profinite
group, and conversely. In particular every compact subgroup of a reductive p-adic
group is profinite. Thus smoothness of a G-representation (π, V ) means that for ev-
ery K ∈ CO(G), the restriction π|K belongs to the natural class of K-representations.

Every smooth G-representation extends to a representation of H(G) on V , by

(1.8) π(f)v =

∫
G
f(g)π(g)vdg f ∈ H(G), v ∈ V.

Since f ∈ C∞
c (G) and π is smooth, this integral boils down to a finite sum and there

are no convergence issues.
It is not quite true every H(G)-module gives rise to a (smooth) G-representation,

because H(G) is not unital. For instance, one could have a vector space W on which
H(G) acts by f · w = 0 for all f ∈ H(G), w ∈ W . That does not correspond to any
G-representation, because G would have to act on W by invertible linear operators.

Definition 1.10. We say that an H(G)-module is nondegenerate if for each v ∈ V
there exists a Kv ∈ CO(G) such that ⟨Kv⟩v = v. Let Rep(G) be the category
of smooth G-representations and let Mod(H(G)) be the category of nondegener-
ate H(G)-modules. The morphisms in these categories are the C-linear maps that
intertwine the action of G or H(G).

Lemma 1.11. (a) The categories Rep(G) and Mod(H(G)) are naturally equivalent,
via (1.8).

(b) Every finitely generated smooth G-representation has countable dimension.

Proof. (a) Let V ∈ Mod(H(G)) and let v ∈ V . For every compact open subgroup
K ⊂ Kv we have

⟨K⟩v = ⟨K⟩⟨Kv⟩v = ⟨Kv⟩v = v.
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This enables us to define an action π of G on V by

(1.9) π(g)v = lim
K∈CO(G)

µ(K)−11gK · v.

As π(g′)v = π(g)v for all g′ ∈ gKv, π is smooth. The functor

Mod(H(G))→ Rep(G) : V 7→ π

is inverse to (1.8).
(b) Let (π, V ) ∈ Rep(G) be generated by m elements. By part (a) there exists a
surjection of H(G)-modules H(G)m → V . Combine that with Proposition 1.3.c. □

A deeper result in the direction of Lemma 1.11.b is known as “uniform admissi-
bility” [Ber]. It is usually stated for irreducible representations, and it extends to
finite length representations because the restriction of a smooth G-representation to
a compact subgroup is always completely reducible.

Theorem 1.12. [Ber]
Let K ∈ CO(G). There exists N(G,K) ∈ N such that, for all (π, V ) ∈ Rep(G) of
finite length, dimV K is at most N(G,K) times the length of π.

For an arbitrary G-representation (ρ,W ), the space of smooth vectors is

W∞ = {w ∈W : ⟨K⟩w = w for some K ∈ CO(G)}.
Then ρ restricts to a smooth G-representation on W∞, called the smoothening of
(ρ,W ). The group G acts on the space W ∗ of linear functions λ : W → C by

(ρ∨(g)λ)(w) = λ(ρ(g−1)w) w ∈W.

We define W∨ = W ∗,∞ to be the smooth part of the algebraic linear dual W ∗, so
the set of λ : W → C that factor via ρ(⟨K⟩) : W →WK for some K ∈ CO(G).

Definition 1.13. Let (π, V ) be a smooth G-representation. We call (π∨, V ∨) the
(smooth) contragredient of π. A matrix coefficient of π is a function of the form

cλ,v : G→ C, cλ,v(g) = λ(π(g)v) for some v ∈ V, λ ∈ V ∨.

Definition 1.14. A finite length smooth G-representation (π, V ) is tempered if it
extends to a S(G)-module by the formula

π(f)v =

∫
G
f(g)π(g)vdg f ∈ S(G), v ∈ V.

By [SSZ, Appendix, Proposition 1], Definition 1.14 is equivalent with the more
common definition of temperedness in terms of growth of matrix coefficients [Wal,
§III.2]. For representations of infinite length the matrix coefficients do not say
enough, we need a more subtle version of temperedness. Consider the category
Mod(S(G)) of nondegenerate S(G)-modules. Since H(G) ⊂ S(G), every nonde-
generate S(G)-module restricts to a nondegenerate H(G)-module, which by Lemma
1.11 can be regarded as a smooth G-representation.

Definition 1.15. The category of tempered smooth G-representations is the cate-
gory Mod(S(G)) of nondegenerate S(G)-modules.

Thus any tempered smooth G-representation is by definition endowed with an
extension to a S(G)-module. Notice that we do not put any continuity condition on
the action of S(G) on the module.

For a description of C∗
r (G)-modules, we need to look at unitary G-representations.
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Definition 1.16. Let V be a complex vector space with an inner product, and
let π be a G-representation on V . We say that π is pre-unitary if ⟨π(g)v, v′⟩ =
⟨v, π(g−1)v′⟩ for all v, v′ ∈ V . We say that (π, V ) is unitary if in addition V is a
Hilbert space (so complete with respect to the norm from the inner product).

For any (pre-)unitary G-representation (π, V ), the smoothening (π, V ∞) is a
smooth pre-unitary G-representation. The pre-unitarity on V ∞ is equivalent to
requiring that

⟨π(f)v, v′⟩ = ⟨v, π(f∗)v′⟩ for all v, v′ ∈ V ∞.

In other words, π(f∗) =
∫
G f(g−1)π(g)dg is the adjoint of π(f) : V ∞ → V ∞. We

warn that a unitary G-representation on an infinite dimensional Hilbert space is
typically not smooth, because smoothness and completeness of the Hilbert space fit
badly together.

Every unitary G-representation (π, V ) extends to a representation of the Banach
*-algebra L1(G). More precisely, the category of unitary L1(G)-modules is naturally
equivalent to the category of unitary G-representations. We say that V is (topolog-
ically) irreducible if {0} and V are the only G-invariant closed linear subspaces of
V . There are functors

(1.10) {smooth pre-unitary G-reps}
completion

.. {unitary G-reps}
smoothening
oo .

These functors are bijective on irreducible representations, see [Sol6, §4.2] which is
based on [Ber]. In view of the complete reducibility of finite length unitary represen-
tations, it follows that (1.10) restricts to an equivalence between the subcategories
of finite length objects on both sides.

Definition 1.17. ModC∗(C
∗
r (G)) is the category of those C∗

r (G)-modules that are
Hilbert spaces on which C∗

r (G) acts unitarily.

Via the natural homomorphism L1(G) → C∗
r (G), C∗

r (G)-modules can also be
regarded as unitary G-representations. However, not all unitary G-representations
give rise to C∗

r (G)-modules, only those that are weakly contained in L2(G).
We call unitary G-representations that extend to C∗

r (G)-modules tempered. In
view of the continuity of the involved unitary operators, such an extension is always
given by the formula (1.8). Thus we have a natural identification

{tempered unitary G-representations} ←→ ModC∗(C
∗
r (G)).

By the next result this is compatible with our notion of temperedness for smooth
G-representations.

Lemma 1.18. ModC∗(C
∗
r (G)) consists precisely of the unitary G-representations

that extend to S(G)-modules.

Proof. Since S(G) embeds in C∗
r (G) (by Theorem 1.7), every C∗

r (G)-module (π, V ) is
also a S(G)-module. Hence (π, V ) is tempered in the sense of Definition 1.15, except
that it need not be smooth as G-representation or nondegenerate as S(G)-module.

Consider a non-tempered unitary G-representation ρ. By Zorn’s lemma it has at
least one irreducible non-tempered subquotient ρ′. We will see in Lemma 1.24 that
ρ′ does not extend to a S(G)-module. Hence ρ cannot extend to S(G) either. □
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1.4. Normalized parabolic induction and Jacquet restriction.
Let P be a parabolic subgroup of G, that is, the F -points of a parabolic F -

subgroup of G. Let UP be its unipotent radical and let L be a Levi factor of P .
We briefly call L a Levi subgroup of G. Any (π, V ) ∈ Rep(L) may be regarded as
a smooth P -representation via the quotient map P → L. The smooth parabolic
induction indGP (π) is the vector space

indGP (V ) =
{
f : G→ V | f(pg) = π(p)f(g) for all p ∈ p, g ∈ G, f is locally constant

}
endowed with the G-action by right translations. Then indGP (π) is a smooth G-
representation. The functor indGP : Rep(L) → Rep(G) is exact, but does not pre-
serve temperedness or pre-unitarity. To improve on that, one involves the modular
function δP of P . By [Sil, §1.2.1], it can be computed as

(1.11) δP (lu) =
∣∣ det (Ad(l) : Lie(UP )→ Lie(UP )

)∣∣
F

l ∈ L, u ∈ UP .

Definition 1.19. The normalized parabolic induction of (π, V ) ∈ Rep(L) is IGP (π) =

indGP
(
π ⊗ δ

1/2
P

)
, on the vector space

IGP (V ) = {f : G→ V | f(ulg) = δ
1/2
P (l)π(l)f(g) for all u ∈ UP , l ∈ L, g ∈ G,

f is locally constant}.

Let Xnr(L) be the group of unramified characters of L, ie. characters whose kernel

contains every compact subgroup of L. For instance, δP and δ
1/2
P are unramified.

All the representations IGP (π ⊗ χ) with χ ∈ Xnr(L) can be realized on the same
vector space, as follows. We pick a good maximal compact subgroup K0 of G. The
Iwasawa decomposition [Tit, §3.3.2] says that

(1.12) G = PK0 = K0P.

This implies that restriction of functions to K0 defines a linear bijection

(1.13) indGP (Vπ⊗χ)→ indK0
K0∩P (Vπ⊗χ).

As K0 is compact, its action on indK0
K0∩P (Vπ⊗χ) does not depend on χ, so that we

can identify it with indK0
K0∩P (Vπ) as K0-representations. We call this vector space

IK0
P0∩P (Vπ), and we will always think of IGP (π ⊗ χ) as defined on IK0

P0∩P (Vπ).

The following properties can be found in [Ren, §IV.2.3, §VI.1.1, §VI.6.2, §VII.5]
and [Wal, Lemme III.2.3].

Theorem 1.20. The functor IGP : Rep(L) → Rep(G) is exact and preserves pre-
unitarity, finite length, finite generation and temperedness.

Suppose that π is pre-unitary with respect to an inner product ⟨ , ⟩V . In the
proof of Theorem 1.20 it is shown that IGP (π) is pre-unitary with respect to the
inner product

(1.14) ⟨f1, f2⟩ =
∫
P\G
⟨f1(g), f2(g)⟩V dg f1, f2 ∈ IGP (V ).

For any g ∈ G there are canonical isomorphisms of G-representations

(1.15)

indGP (π) → indGgPg−1(g · π)
IGP (π) → IGgPg−1(g · π)
f 7→ [x 7→ f(g−1x)]

.
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The version of (1.15) for IGP (π) follows from that for indGP (π) and the equality of
modular functions δgPg−1 = g · δP : x 7→ δP (g

−1xg).
The parabolic induction of an L-representation depends only a little on the choice

of a parabolic subgroup with Levi factor L:

Lemma 1.21. [ABPS1, Lemma 1.1]
Let P and P ′ be parabolic subgroups with Levi factor L and let π ∈ Rep(L) have
finite length. Then the finite length G-representations IGP (π) and IGP ′(π) have the
same irreducible subquotients, counted with multiplicity.

Let (ρ,W ) ∈ Rep(G). The Jacquet module of ρ with respect to P is

WUP
= W/W (UP ) = W/span{ρ(u)w − w : u ∈ UP , w ∈W}.

This is the largest quotient of W on which UP acts trivially. It is naturally a smooth
L-representation, denoted ρUP

and called the Jacquet restriction (or parabolic re-

striction) of ρ. Like indGP , it can be improved by a normalization.

Definition 1.22. The normalized Jacquet (or parabolic) restriction JG
P (ρ) is the

vector space WUP
with the L-action

l · (w +W (UP )) = δ
−1/2
P (l)ρ(l)w +W (UP ).

The functor JG
P has nice many properties, for instance exactness and preservation

of finite length [Ren, §VI.6.4]. However, it does not preserve temperedness or pre-
unitarity. Frobenius reciprocity provides adjointness relations

(1.16)
HomG(ρ, ind

G
P (π))

∼= HomM (ρUP
, π),

HomG(ρ, I
G
P (π)) ∼= HomM (JG

P (ρ), π).

There is a much deeper second adjointness relation, due to Bernstein:

Theorem 1.23. [Ren, §VI.9.6]
Let P̄ be the parabolic subgroup with Levi factor L that is opposite to P , ie. P ∩ P̄ =
L. There are natural bijections

HomG(ind
G
P (π), ρ)

∼= HomM (π, δP ⊗ ρUP̄
),

HomG(I
G
P (π), ρ) ∼= HomM (π, JG

P̄
(ρ)).

1.5. Description of the tempered dual.
For any algebra A, we denote by Irr(A) the set of irreducible A-representations up
to isomorphism. We endow it with the Jacobson topology, whose closed subsets are

V (S) = {π ∈ Irr(A) : S ⊂ ker(π)} for S ⊂ A.

In particular we have the space Irr(S(G)) of irreducible nondegenerate S(G)-modules.
We call that the tempered dual Irrtemp(G).

More analytically, Irr(L1(G)) is the unitary dual Irrunit(G) of G. It contains
Irr(C∗

r (G)), which is sometimes called the reduced (unitary) dual of G.

Lemma 1.24. Smoothening of G-representations defines a bijection

Irr(C∗
r (G)) −→ Irr(S(G)).

In particular every element of Irrtemp(G) is a pre-unitary smooth G-representation.
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Proof. The Plancherel formula for G [Wal] implies that every irreducible tempered
G-representation π belongs to the support of the Plancherel measure for G. That
is another way of saying that π is weakly contained in L2(G) [Dix, §18.8]. Hence π
is pre-unitary and its Hilbert space completion is an element π̃ of the reduced dual.
By (1.10), π is the smoothening of π̃. □

We warn that not every pre-unitary irreducible smooth G-representation belongs
to Irrtemp(G). For instance, the trivial G-representation is unitary but not tempered
(unless G = {e}). From now on we will be a little sloppy and call a pre-unitary
smooth G-representation unitary, as is customary.

By Schur’s lemma, the center Z(G) acts by a character on any irreducible G-
representation. If the representation is unitary, then its central character is unitary
as well. In that case |cλ,v| : G → R≥0, the absolute value of the matrix coefficient
cλ,v, descends to a map G/Z(G) → R≥0. This applies more generally to any G-
representation on which Z(G) acts by a unitary character.

Definition 1.25. Let π be a smooth G-representation that admits a unitary Z(G)-
character. We say that π is square-integrable modulo center if |cλ,v| ∈ L2(G/Z(G))
for every matrix coefficient cλ,v of π.

If π is moreover irreducible, then it is called a discrete series representation. We
denote the set of discrete series G-representations (up to isomorphism) by Irrdisc(G).

Every discrete series G-representation π is weakly contained in L2(G), so its
completion extends to a C∗

r (G)-module. By Lemma 1.24 π is tempered and unitary.
If Z(G) is compact, then every discrete series G-representation can be embedded in
L2(G), which implies that it is an isolated point in Irr(C∗

r (G)) ∼= Irrtemp(G) [Dix,
§18.4]. Sometimes discrete series are defined such that they can exist only when
Z(G) is compact.

Example 1.26. The most important example of a discrete series representation is
the Steinberg representation. It exists for any G and is defined as

StG = indGB(triv)
/∑

B⊊P⊂G
indGP (triv),

where B is a minimal parabolic subgroup of G. This representation is unitary
because triv ∈ Rep(B) and indGB(triv) are so. See [Cas] for a proof that StG is
irreducible and discrete series.

Recall that a character χ : G→ C× is unramified if it is trivial on every compact
subgroup of G. We will use the notations

Xnr(G) = {unramified characters of G},
Xu

nr(G) = {unitary unramified characters of G}.

Let G1 ⊂ G be the subgroup generated by all compact subgroups of G. It is an open
normal subgroup that contains the derived group of G. The quotient G/G1 is a free
abelian group of the same rank as the F -split part of Z(G)◦, say rank d. Although
the natural map Z(G)→ G/G1 need not be surjective, its image is sublattice of the
same rank d, so that image has finite index in G/G1.

There are isomorphisms of topological groups

(1.17)
Hom(G/G1,C×) = Xnr(G) ∼= HomZ(Zd,C×) ∼= (C×)d,
Hom(G/G1, S1) = Xu

nr(G) ∼= HomZ(Zd, S1) ∼= (S1)d.
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In this way Xnr(G) acquires the structure of a complex algebraic torus and Xu
nr(G)

is the maximal compact real subtorus of Xnr(G).
For every discrete series G-representation π and every χ ∈ Xu

nr(G), π⊗χ is again
discrete series. The group

Xnr(G, π) := {χ ∈ Xnr(G) : π ⊗ χ ∼= π}

consists of characters that are trivial on Z(G), because π⊗χ needs to have the same
central character as π. Since G/G1Z(G) is finite, the group Xnr(G, π) is finite and
contained in Xu

nr(G). The bijection

(1.18) Xu
nr(G)/Xnr(G, π)→ Xu

nr(G)π = {π ⊗ χ ∈ Irrtemp(G) : χ ∈ Xu
nr(G)}

endows Xu
nr(G) we the topological structure of a compact real torus (but Xu

nr(G)π
does not have a multiplication). We will soon see that every set of the form Xu

nr(G)π
with π ∈ Irrdisc(G) is a connected component of Irrtemp(G). These are the compo-
nents of Irrtemp(G) of minimal dimension, and when Z(G) is compact, they consti-
tute precisely the discrete part of Irrtemp(G).

To describe the connected components of Irrtemp(G) outside the discrete series,
we need the following result of Harish-Chandra.

Theorem 1.27. [Wal, Proposition III.4.1]
Let π ∈ Irrtemp(G).

(a) There exists a parabolic subgroup P with Levi factor L and a discrete series
L-representation δ, such that π is a direct summand of IGP (δ).

(b) The pair (L, δ) is uniquely determined by π, up to G-conjugation and isomor-
phism of L-representations.

By Theorem 1.20 the G-representation IGP (δ) is tempered, unitary and of finite
length, so completely reducible. The following result is known as Harish-Chandra’s
disjointness theorem. It says in particular that IGP (δ) does not depend on the choice
of a parabolic subgroup P ⊂ G with given Levi factor L.

Theorem 1.28. Let P = LUP and Q = MUP be parabolic subgroups of G and let
δ ∈ Irrdisc(L) and σ ∈ Irrdisc(M). The following are equivalent:

(i) There exists a g ∈ G such that M = gLg−1 and σ ∼= g · δ.
(ii) IGP (δ) and IGQ (σ) are isomorphic.

(iii) IGP (δ) and IGQ (σ) have an irreducible subquotient in common.

Proof. Clearly (ii) is stronger than (iii), which by Theorem 1.27.b implies (i). By
Lemma 1.21 and the complete reducibility of IGP (δ) and IGQ (σ), (i) implies (ii). □

On the set {(L, δ) : L Levi subgroup of G, δ ∈ Irrdisc(L)} we put the equivalence
relation ∼ generated by G-conjugation, isomorphism of L-representations and ten-
soring L-representations by elements of Xu

nr(L). We write

∆(G) = {(L, δ) : L Levi subgroup of G, δ ∈ Irrdisc(L)}/ ∼

and we denote its elements by [L, δ]G. To any d ∈ ∆(G) we associate the set

Irrtemp(G)d = {π ∈ Irrtemp(G) : π is a summand of IGP (δ) for some (L, δ) ∈ d}.

From Theorems 1.27 and 1.28 one deduces:
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Corollary 1.29. The sets Irrtemp(G)d with d ∈ ∆(G) are precisely the connected
components of Irrtemp(G), so

Irrtemp(G) =
⊔

d∈∆(G)
Irrtemp(G)d.

We call this the Harish-Chandra decomposition of Irrtemp(G) and we call the sets
Irrtemp(G)d Harish-Chandra components for G.

By the generic irreducibility of parabolically induced representations [Sau, Théo-
rème 3.2], in the family {IGP (δ⊗χ) : χ ∈ Xu

nr(L)} the irreducible representations form
an open dense subset. Hence Irrtemp(G)[L,δ] looks like the compact torus Xu

nr(L)δ,
with some points on submanifolds of smaller dimensions replaced by finite packets
of inseparable points.

Example 1.30. G = SL2(F )
The set Irrdisc(G) is countable, apart from StG are its elements are supercuspidal
representations.

Up to conjugation, the only proper Levi subgroup of G is the diagonal torus
T ∼= F×. The set Irrdisc(T )/X

u
nr(T ) is naturally in bijection with Irr(o×F ), which

is countable because o×F is profinite. The only further equivalences in ∆(G) come
from conjugation by NG(T ) = T ∪ sαT , where sα acts on T by inversion. Hence the
non-discrete part of ∆(G) is Irr(o×F ) modulo inversion.

Let B be the Borel subgroup of upper triangular matrices in G. A representa-
tion IGB (χ) with χ ∈ Irrdisc(T ) = Irrunit(T ) is reducible if and only if χ has order
two. There are three such characters (if p > 2): the quadratic unramified character
χ− and two ramified characters χr, χrχ− (these fail when p = 2). Two repre-
sentations IGB (χ) and IGB (χ′) have common irreducible subquotients if and only if
χ′ ∈ {χ, sα(χ) = χ−1}, and in that case IGB (χ) ∼= IGB (χ′).

A class [T, χ]G ∈ ∆(G) with χo := χ|o×F of order bigger than two gives rise

to a circle of irreducible G-representations, which is equivalent to the analogous
circle Irrtemp(G)[T,χ−1]. When χo has order at most two, the isomorphisms from
conjugation with sα mean that Irr(G)[T,χ] looks a half-circle, with one or two double
points.

Altogether, the topological space Irrtemp(G) looks like

N x N x pt
St

Here ”N x” just means countably many copies of something. We draw StG close
to Irrtemp(G)[T,1] because it is a subquotient of IGB (χ) for some χ ∈ Xnr(T ).

1.6. Structure of S(G) and C∗
r (G).

The algebra S(G) can be described by its Fourier transform, which relates closely
to the Plancherel formula for G [Wal]. By Theorem 1.27.a that means: S(G) is
determined by how it acts on the representations IGP (δ) with P = LUP a parabolic
subgroup of G and δ ∈ Irrdisc(L).

In view of Theorem 1.28, we need only one L and one P for each conjugacy class
of Levi subgroups of G. We fix a set of Levi subgroups Lev(G) representing the
conjugacy classes of Levi subgroups, and for each L ∈ Lev(G) we fix one parabolic
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subgroup P with Levi factor L. We have to analyse how the images of S(G) in
EndC(I

G
P (δ)) and in EndC(I

G
P (δ′)) are related when IGP (δ) ∼= IGP (δ′).

First we look at χ1 ∈ Xu
nr(L, δ). By definition there exists an isomorphism of

L-representations ϕχ1 : δ → δ ⊗ χ1, unique up to scalars. Since δ and δ ⊗ χ1 are
unitary representations (on the same inner product space), we may assume that ϕχ1

is unitary. Then ϕχ1 defines a unitary L-isomorphism δ ⊗ χ → δ ⊗ χ1 ⊗ χ for all
χ ∈ Xu

nr(L). By the functoriality of IGP , we obtain a family of G-isomorphisms

(1.19) I(χ1, P, δ, χ) : I
G
P (δ ⊗ χ)→ IGP (δ ⊗ χ1 ⊗ χ) χ ∈ Xu

nr(L).

The formula (1.14) shows that I(χ1, P, δ, χ) is unitary. Via (1.13), we can consider
I(χ1, P, δ, χ) as an operator on the vector space IPK0∩P (Vδ), then it does not depend
on χ.

Next we look at the other source of equivalences between parabolically induced
representations in Theorem 1.27: conjugation by elements w ∈ NG(L). Harish-
Chandra initiated the study of the integral operators

(1.20)
J(w,P, δ, χ) : IGP (δ ⊗ χ) → IGP (w · δ ⊗ w · χ)

f 7→ [g 7→
∫
w−1UPw∩UP̄

f(uw−1g)du] .

As a map from IK0
K0∩P (Vδ) to itself, this integral depends rationally on χ ∈ Xnr(L)

and converges when |χ| is large enough in a certain direction [Wal, Théorème IV.1.1].
Using [Hei2, Lemma 1.8] one can normalize J(w,P, δ, χ) with χ ∈ Xu

nr(L) to a
unitary G-isomorphism

(1.21) J ′(w,P, δ, χ) : IGP (δ ⊗ χ)→ IGP (w · δ ⊗ w · χ).
(This can be done so that J ′(w,P, δ, χ) depends continuously on χ, but it is only
canonical up to functions from Xu

nr(L) to S1.) The definition of ∆(G) entails that
it suffices to look at δ in set of representatives for Irrdisc(L)/(X

u
nr(L) ⋊NG(L)). In

combination with the union over L ∈ Lev(L), that yields a set of representatives for
∆(G). In this setting we only need the isomorphisms (1.21) for w ∈ NG(L) such
that w · δ ∈ Xu

nr(L)δ (as subsets of Irr(L), so up to isomorphism of representations).
Moreover w and wl with l ∈ L give essentially the same operators (1.20) and (1.21),
so we may let w run over a set of representatives for the finite group

Wd = {w ∈ NG(L)/L : w · δ ∈ Xu
nr(L)δ}.

For each w in this set we choose a unitary L-isomorphism ϕw,δ : w · δ → δ⊗χw,δ, for

some χw,δ ∈ Xu
nr(L). Then we can compose (1.21) with IGP (ϕw,δ) to obtain a family

of unitary G-isomorphisms

(1.22) I(w,P, δ, χ) : IGP (δ ⊗ χ)→ IGP (δ ⊗ χw,δ ⊗ w · χ) χ ∈ Xu
nr(L).

Definition 1.31. Write d = [L, δ]G. We define W e
d = W e

[L,δ] as the finite group of

diffeomorphisms of {δ} × Xu
nr(L)

∼= Xu
nr(L) generated by χ 7→ χ1 ⊗ χ with χ1 ∈

Xnr(L, δ) and χ 7→ χw,δ ⊗ w · χ with w ∈Wd.

Thus W e
d is an extension of Wd by Xnr(L, δ). We note that Xnr(L, δ) is really

needed here, in general the action of Wd on Xu
nr(L)δ does not lift to a group action

on Xu
nr(L). Combining (1.19) and (1.22), we obtain operators as in (1.22) for all

w ∈W e
d , canonical up to functions Xu

nr(L)→ S1. It follows that, for all w,w′ ∈W e
d ,

the operators

(1.23) I(w,P, δ, w′(χ)) ◦ I(w′, P, δ, χ) and I(ww′, P, δ, χ)
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differ only by a function Xu
nr(L) → S1. This enables us to define a group action of

W e
d on the algebra of functions from Xu

nr(L) to EndC(I
P
K0∩P (Vδ)) by

(1.24) (w · F)(w(χ)) = I(w,P, δ, χ) ◦ F(χ) ◦ I(w,P, δ, χ)−1

χ ∈ Xu
nr(L),F : Xu

nr(L)→ EndC
(
IK0
K0∩P (Vδ)

)
.

This action stabilizes various subalgebras, for instance C(Xu
nr(L))⊗End∞C (IK0

K0∩PVδ).

Here End∞C (W ), for a G-representationW , means the smooth vectors in EndC(W ) as
G×G-representation. The algebra End∞C (W ) has W as unique irreducible module,
and it is Morita equivalent to C via the bimodules W and W∨.

For each f ∈ S(G), the intertwining property of I(w,P, δ, χ) says that

(1.25) I(w,P, δ, χ) ◦ IGP (δ ⊗ χ)(f) = IGP (δ ⊗ w(χ))(f) ◦ I(w,P, δ, χ).
Hence the operators IGP (δ ⊗ χ)(f) are invariant for the W e

d -action from (1.24). Fur-

ther, since S(G) is a smooth G×G-representation, IGP (δ⊗χ)(f) ∈ End∞C (IK0
K0∩P (Vδ)).

The example (1.2) shows that we can expect that IGP (δ⊗χ)(f) is a smooth function
of χ ∈ Xu

nr(L). We are ready to state the Plancherel isomorphism for G, which is
due to Harish-Chandra.

Theorem 1.32. [Wal]

(a) The Fourier transform defines an isomorphism of topological *-algebras

S(G) ∼=
⊕

[L,δ]G∈∆(G)

(
C∞(Xu

nr(L))⊗ End∞C
(
IK0
K0∩P (Vδ)

))W e
[L,δ]

.

(b) For any K ∈ CO(G) with K ⊂ K0, part (a) restricts to an isomorphism of unital
Fréchet *-algebras

S(G,K) ∼=
⊕

[L,δ]G∈∆(G)

(
C∞(Xu

nr(L))⊗ EndC
(
IK0
K0∩P (Vδ)

K
))W e

[L,δ]
.

Here each space IK0
K0∩P (Vδ)

K has finite dimension, and it is nonzero for only

finitely many [L, δ]G ∈ ∆(G).

Theorem 1.32.b applies arbitarily small K ∈ CO(G), but not to all K ∈ CO(G).
We may also replace K0 by another good maximal compact subgroup of G, so that
Theorem 1.32.b applies to other K ∈ CO(G). We call

S(G)[L,δ] ∼=
(
C∞(Xu

nr(L))⊗ End∞C
(
IK0
K0∩P (Vδ)

))W e
[L,δ]

a Harish-Chandra block of S(G). Then we can think of Theorem 1.32.a as an explicit
“Harish-Chandra decomposition”

(1.26) S(G) =
⊕

[L,δ]G∈∆(G)
S(G)[L,δ].

Example 1.33. G = SL2(G).
We extend the description of Irrtemp(G) in Example 1.33 to S(G). We take K0 =
SL2(oF ) and we represent W (G,T ) ∼= S2 in K0. For [G, δ]G ∈ ∆(G) we have
WG,δ = {1} because Xnr(G) = {1}. Hence S(G)[G,δ]

∼= End∞C (Vδ).
For every [T, χ] ∈ ∆(G), the group Xnr(T, χ) is trivial because T = Z(T ). When

the order of χo = χ|o×F is larger than two, the group W e
[T,χ0]

is trivial and

S(G)[T,χ0]
∼= C∞(S1)⊗ End∞C

(
IK0
K0∩BC

)
.
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For χo of order at most two we get a summand

S(G)[T,χ] ∼=
(
C∞(S1)⊗ End∞C

(
IK0
K0∩BC

))S2 ,

but the S2-actions differ for χo = 1 and χo ramified quadratic (this case does not
occur when p = 2). It becomes easier if we are satisfied with a description up to
Morita equivalence. Namely, S(G) is Morita equivalent to(

C∞(S1)⊗M2(C)
)S2 ⊕ CSt ⊕ C∞(S1)⋊ S2 ⊕

⊕∞

j=1
C∞(S1) ⊕

⊕∞

i=1
C,

where CSt comes from the Steinberg representation. This compares well with the
picture of Irrtemp(G) in Example 1.30. See (2.5) for the definition of crossed products
like C∞(S1)⋊ S2.

The reduced C∗-algebra C∗
r (G) admits a description similar to Theorem 1.32. By

Lemma 1.18 and (1.10) we have to replace all pre-unitary tempered representations
by their Hilbert space completions, then they become C∗

r (G)-modules. We note that,
unlike Theorem 1.32.b, C∗

r (G) does not have to act on the Hilbert space completion
of IGP (Vδ) via one of the finite dimensional subspaces IGP (Vδ)

K . Instead it acts by
compact operators, because the compact operators form the closure of the algebra
of finite rank operators on a Hilbert space (with respect to the operator norm). We
denote the C∗-algebra of compact operators on the Hilbert space completion of an
inner product space V by K(V ). A study of the C∗-norm on both sides of Theorem
1.32 leads to:

Theorem 1.34. [Ply]
The Fourier transform (or equivalently Theorem 1.32) induces an isomorphism of
C∗-algebras

C∗
r (G) ∼=

⊕
[L,δ]G∈∆(G)

(
C(Xu

nr(L))⊗ K
(
IK0
K0∩P (Vδ)

))W e
[L,δ]

.

Here the tensor products and the direct sum are taken in the sense of C∗-algebras.
For any open subgroup K ⊂ K0, this restricts to an isomorphism of unital C∗-
algebras

C∗
r (G,K) ∼=

⊕
[L,δ]G∈∆(G)

(
C(Xu

nr(L))⊗ EndC
(
IK0
K0∩P (Vδ)

K
))W e

[L,δ]
.

Notice that C(Xu
nr(L)) is the C∗-completion of C∞(Xu

nr(L)), and that it genera-
lizes the example (1.10) for GL1(F ). For [L, δ]G ∈ ∆(G) we write

C∗
r (G)[L,δ] =

(
C(Xu

nr(L))⊗ K
(
IK0
K0∩P (Vδ)

))W e
[L,δ]

.

Like (1.26), Theorem 1.34 gives a Harish-Chandra decomposition

(1.27) C∗
r (G) ∼=

⊕
[L,δ]G∈∆(G)

C∗
r (G)[L,δ].

In many cases C∗
r (G)[L,δ] is Morita equivalent to the crossed product C(Xu

nr(L)) ⋊
W e

[L,δ], see [AfAu, Theorem 1.4].
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1.7. Description of the smooth dual.
By Lemma 1.11, Irr(H(G)) is the space of irreducible smooth G-representations,

which we write simply as Irr(G). We endow it with the Jacobson topology from
H(G). The space Irr(S(G)) = Irrtemp(G) of irreducible nondegenerate S(G)-modules
injects in Irr(H(G)) [SSZ, Appendix, Proposition 3]. However, the Jacobson topol-
ogy from S(G) on Irrtemp(G) is finer than the subspace topology from Irr(H(G)).
The typical example is S1 ⊂ C×, where S1 carries the Euclidean topology and C×

is endowed with the Jacobson topology.

Definition 1.35. Let (π, V ) ∈ Rep(G). We say that π is

• compact modulo center if all its matrix coefficients are compactly supported
modulo Z(G),
• cuspidal if JG

P (π) = 0 for all proper parabolic subgroups P of G,
• supercuspidal if π is irreducible and not isomorphic to any subquotient of
IGP (ρ), for any proper parabolic subgroup P = LUP ⊂ G and any ρ ∈ Rep(L).

From Frobenius reciprocity (1.16) one sees that every supercuspidal G-represen-
tation π is cuspidal:

HomL

(
JG
P (π), JG

P (π)
) ∼= HomG

(
π, IGP (JG

P (π))
)
= 0,

so JG
P (π) = 0. Jacquet and Bernstein proved that the three notions in Definition

1.35 coincide for irreducible representations:

Theorem 1.36. [Jac], [Ren, Théorème VI.2.1]
A smooth G-representation is compact modulo center if and only if it is cuspidal.

Moreover every irreducible cuspidal G-representation is supercuspidal.

Proof. We provide an argument for the second claim. Suppose that π ∈ Irr(G) is
cuspidal but not supercuspidal. Then it is isomorphic to a subquotient of IGP (ρ), for
some smooth representation ρ of a proper Levi subgroup L ⊂ G. By [Ren, Lemme
VI.3.6], π is also a subrepresentation of IGP (ρ). 1 Frobenius reciprocity shows that

0 ̸= HomL(π, I
G
P (ρ)) ∼= HomG(J

G
P (π), ρ),

so JG
P (π) ̸= 0, contradicting the cuspidality of π. □

Motivated by Theorem 1.36, we denote the set of supercuspidal G-representations
(up to isomorphism) by Irrcusp(G).

If Z(G) is compact, then every π ∈ Irrcusp(G) is an isolated point of Irr(G). In
general, if π ∈ Irrcusp(G) and χ ∈ Xnr(G), then π ⊗ χ is again supercuspidal. Let
Xnr(G, π) be the stabilizer of π for the action of Xnr(G) by tensoring. Like in (1.18),
we have a bijection

(1.28) Xnr(G)/Xnr(G, π)→ Xnr(G)π = {π ⊗ χ ∈ Irr(G) : χ ∈ Xnr(G)}.

This endows Xnr(G)π with the structure of an algebraic variety, namely a complex
algebraic torus. It will turn out that Xnr(G)π is a connected component of Irr(G),
of minimal dimension.

A supercuspidal representation need not be tempered or unitary, but in a sense
it is not far off. By Lemma 1.24 every tempered supercuspidal representation is

1“Supercuspidale” in [Ren] is cuspidal in our terminology.



22 P-ADIC GROUPS, REPRESENTATIONS AND NONCOMMUTATIVE GEOMETRY

unitary, and conversely every unitary supercuspidal representation is discrete series
so in particular tempered. In particular

Irrcusp,temp(G) := Irrcusp(G) ∩ Irrtemp(G) is a subset of Irrdisc(G).

The group of smooth characters Hom(G,R×
>0) consists of unramified characters,

because R×
>0 has no compact subgroups apart from {1}. We write

X+
nr(G) = Hom(G,R×

>0),

a group isomorphic to Hom(Zd,R×
>0)
∼= (R×

>0)
d. Then Xnr(G) admits the polar

decomposition

(1.29) Xnr(G) = Xu
nr(G)×X+

nr(G).

Lemma 1.37. [FlSo, Lemma 4.2]
Tensoring provides a bijection

Irrcusp,temp(G)×X+
nr(G)→ Irrcusp(G).

By Lemma 1.37 and (1.29), we may identify

(1.30) Irrcusp(G)/Xnr(G) = Irrcusp,temp(G)/Xu
nr(G).

Like all irreducible tempered G-representations arise from discrete series represen-
tations via parabolic induction, all irreducible smooth G-representations arise from
supercuspidal representations via parabolic induction. That was shown by Jacquet
[Jac], while Bernstein proved the uniqueness in the next result.

Theorem 1.38. [Ren, Théorème VI.5.4]
Let π ∈ Irr(G). There exists a parabolic subgroup P = LUP of G and a σ ∈ Irrcusp(L)
such that π is isomorphic to a subquotient of IGP (σ). Moreover the pair (L, σ) is
uniquely determined up to G-conjugation.

By (1.15) and Lemma 1.21, every pair (M, τ) which is G-conjugate to (L, σ)
yields a parabolically induced representation IGQ (τ) with exactly the same irreducible

constituents as IGP (σ). Nevertheless IGQ (τ) need not be isomorphic to IGP (σ).

The G-conjugacy class of (L, σ) in Theorem 1.38 is called the supercuspidal sup-
port of π, denoted Sc(π). This can be regarded as a map

Sc : Irr(G) −→ {(L, σ) : L ⊂ G Levi subgroup, σ ∈ Irrcusp(L)}/G.

On the set of pairs (L, σ) as above we put the equivalence relation generated by
G-conjugation, by isomorphism of L-representations by and (L, σ ⊗ χ) ∼ (L, σ) for
χ ∈ Xnr(G). We write

B(G) = {(L, σ) : L ⊂ G Levi subgroup, σ ∈ Irrcusp(L)}/ ∼ .

By (1.30), B(G) is a subset of ∆(G). The elements of B(G), denoted [L, σ]G, are
called inertial equivalence classes for G. To any s = [L, σ]G one associates the set

Irr(G)s = {π ∈ Irr(G) : Sc(π)/ ∼ ∈ s}
= {π ∈ Irr(G) : π is a subquotient of IGP (σ ⊗ χ) for some χ ∈ Xnr(L)}.

Theorem 1.38 is the main step towards the Bernstein decomposition of the smooth
dual:
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Theorem 1.39. [Ren, Théorème VI.7.1]
The sets Irr(G)s with s ∈ B(G) are precisely the connected components of Irr(G),
so Irr(G) =

⊔
s∈B(G) Irr(G)s.

The set Irr(G)s endowed with the Jacobson topology from Irr(H(G)) is called
a Bernstein component of Irr(G). By [Sau, Théorème 3.2], the representations
IGP (σ ⊗ χ) are irreducible for χ in a Zariski-open dense subset of Xnr(G). Fur-
ther, by Theorem 1.38 two representations IGP (σ⊗χ) and IGP ′(σ⊗χ′) have common
irreducible subquotients if and only if σ ⊗ χ′ ∼= n · (σ ⊗ χ) for some n ∈ NG(L).

Hence Irr(G)[L,σ] is a possibly nonseparated algebraic variety with maximal sepa-
rable quotient Xnr(L)σ/NG(L), and such that the inseparable points live only over
some lower dimensional subvarieties of Xnr(L)σ/NG(L).

Example 1.40. G = SL2(F )
Every supercuspidal representation gives an isolated point in Irr(G).

Every inertial equivalence class [T, χ]G is determined by χo = χ|o×F . If ord(χo) > 2,

then all the representations IGB (χ′) with χ′ ∈ Xnr(T )χ are irreducible and mutually
inequivalent. There are still isomorphisms

(1.31) IGB (χ′) ∼= IGB (s · χ′) = IGB (χ′−1
) for s ∈ NG(T ) \ T.

This gives countably many Bernstein components homeomorphic to C×, indexed by

{χo ∈ Irr(o×F ) : ord(χo) > 2}/W (G,T ).

When χo has order two, the representations I
G
B (χ′) with χ′ ∈ Xnr(T )χ are reducible

if χ′ is quadratic and irreducible otherwise, while the only equivalences among them
are (1.31). When χ0 = 1, characters χ′ in Xnr(T )χ are precisely the unramified
characters of T . The representation IGB (χ−) with ord(χ−) = 2 is a direct sum of

two irreducibles. If χ ∈ Xnr(T ) sends a generator of T/T 1 ∼= Z to qF or to q−1
F ,

then IGB (χ) has two irreducible constituents: StG and the trivial G-representation.
All other representations IGB (χ) with χ ∈ Xnr(T ) are irreducible and satisfy (1.31).
Altogether, we find that Irr(SL2(F )) is homeomorphic to

N x N x pt
St

*C

The two discs with a hole in the middle represent C×/S2 with S2 acting by
inversion. It is interesting to compare this with the picture of Irrtemp(SL2(F )) from
Example 1.30:

N x N x pt
St

We see that Irr(SL2(F )) is some sort of complexification of Irrtemp(SL2(F )).
More precisely Irrtemp(SL2(F )) is built from circles and points, and if we replace
each circle by C×, we obtain a space Irrtemp(SL2(F ))C with a natural bijection
to Irr(SL2(F )). However, the topology of Irrtemp(SL2(F ))C is finer than that of
Irr(SL2(F )). For instance, IGB (triv) and StG are in different connected components
of Irrtemp(SL2(F ))C but in the same Bernstein component.
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The relation between Examples 1.30 and 1.40 generalizes to arbitrary reductive
p-adic groups [ABPS1]. Namely, Irrtemp(G) is built from copies of Xu

nr(L) for Levi
subgroups L ⊂ G. If we replace each occurrence of Xu

nr(L) by its complexification
Xnr(L), then we obtain a space Irrtemp(G)C. By an extension of the Langlands
classification, Irrtemp(G)C maps bijectively to Irr(G). This can be stated (rather
imprecisely) as

(1.32) Irr(G) is canonically in bijection with a complexification of Irrtemp(G).

Hence, for any reductive p-adic group the smooth dual and the tempered dual are
equally difficult to determine.

1.8. Rough structure of H(G).
There are two stronger versions of Theorem 1.39, which are very useful to under-

stand Rep(G) and H(G). For s ∈ B(G), we define

Rep(G)s = {π ∈ Rep(G) : every irreducible subquotient of π lies in Irr(G)s}.
In other words, Rep(G)s is the full subcategory of Rep(G) generated by Irr(G)s.
Further, we define a two-sided ideal of H(G) by

H(G)s = {f ∈ H(G) : π(h) = 0 for all π ∈ Irr(G) \ Irr(G)s}.
The next theorem is known as the Bernstein decomposition.

Theorem 1.41. [BeDe, Ren]
Each Rep(G)s is a block of Rep(G), that is, an indecomposable direct summand of
Rep(G). The category Rep(G) admits an orthogonal decomposition

Rep(G) =
∏

s∈B(G)
Rep(G)s.

Each two-sided ideal H(G)s of H(G) is indecomposable and H(G) =
⊕

s∈B(G)H(G)s.

By Lemma 1.11.a, Rep(G)s can be identified with Mod(H(G)s). These subcate-
gories are called Bernstein blocks of Rep(G) or for G.

To understand H(G), it suffices to classify B(G) and to understand each H(G)s.
However, in spite of Theorem 1.41 and (1.32), the structure of Rep(G) is substan-
tially more complicated than that of Mod(S(G)). The main reason is that the
building blocks IGP (δ) for Mod(S(G)) are unitary, while for H(G) the building blocks
IGP (σ) with σ ∈ Irrcusp(L) need not be completely reducible.

Like the Plancherel isomorphism for S(G), one would like to understand H(G)
by the Fourier transform, which in this case means its action on the representations
IGP (σ) with σ ∈ Irrcusp(L). We proceed as in Paragraph 1.6. By Lemma 1.37 we
may assume that σ ∈ Irrcusp,temp(L), so that it is a discrete series representation.

For χ1 ∈ Xnr(L, σ) we have the operator

I(χ1, P, σ, χ) : I
G
P (σ ⊗ χ)→ IGP (σ ⊗ χ1 ⊗ χ).

For w ∈ NG(L) there is the intertwining operator

J(w,P, σ, χ) : IGP (σ ⊗ χ)→ IGP (w · σ ⊗ w · χ)
from (1.20), which depends rationally χ ∈ Xnr(L) once we identify the underlying

vector spaces with IK0
K0∩P (Vσ) as in (1.13). The operator J(w,P, σ, χ) may have

poles and zeros at some nonunitary χ ∈ Xnr(L), and that complicates things. Even
when we normalize it to J ′(w,P, σ, χ) as in (1.21), it need not be injective for some
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χ ∈ Xnr(L)σ \Xu
nr(L)σ. This means that the action (1.24) of W[L,σ] on C(Xu

nr(L))⊗
End∞C

(
IK0
K0∩PVσ

)
does not stabilize the subalgebra O(Xnr(L)) ⊗ End∞C

(
IK0
K0∩PVσ

)
.

The (weaker) analogue of Theorem 1.32 for H(G) is:

Theorem 1.42. [Hei1]

(a) The Fourier transform (the action of H(G) on the representations IGP (σ′) with
σ′ ∈ Irrcusp(L)) determines an isomorphism of *-algebras H(G) ∼=⊕

[L,σ]G∈B(G)

(
C∞(Xu

nr(L))⊗End∞C
(
IK0
K0∩P (Vσ)

))W e
[L,σ]∩O(Xnr(L))⊗End∞C

(
IK0
K0∩P (Vσ)

)
.

(b) For every K ∈ CO(G) with K ⊂ K0, part (a) restricts to an isomorphism

H(G,K) ∼=
⊕

[L,σ]G∈B(G)

(
C∞(Xu

nr(L))⊗ EndC
(
IK0
K0∩P (Vσ)

K
))W e

[L,σ]

∩ O(Xnr(L))⊗ EndC
(
IK0
K0∩P (Vσ)

K
)
.

Here IK0
K0∩P (Vσ)

K has finite dimension, and it is nonzero for only finitely many

[L, σ]G ∈ B(G).

Notice that in Theorem 1.42 the regular functions on Xnr(L) appear in the same

way as H(F×)o
×
F ∼= O(C×) in (1.1).

Example 1.43. Every σ ∈ Irrcusp(G) gives a summand

H(G)[G,σ] = End∞C (Vσ) ∼=
⋃

n∈N
Mn(C)

of H(G). For an inertial equivalence class s = [T, χ]G with χo = χ|o×F of order bigger

than two, W e
[T,χ] is trivial and

H(G)s ∼= O(Xnr(T ))⊗ End∞C
(
IK0
B∩K0

(Cχ)
)
,

where K0 = SL2(oF ). Let χr ∈ Irr(T ) be ramified quadratic, and represent S2
∼=

W (G,T ) in K0, then

H(G)[T,χr] ∼=
(
O(Xnr(T )⊗ EndC

(
C[S2]

))S2 ⊗ End∞C
(
IK0
B∩K0

(Cχr)
S2
)
.

Finally, for the trivial character of T there is an affine Hecke algebra Haff such that

H(G)[T,1] ∼= Haff ⊗ End∞C
(
IK0
B∩K0

(trivT )
S2
)
.

We find that H(G) is Morita equivalent to

Haff ⊕ O(Xnr(T ))⋊ S2 ⊕
⊕∞

j=1
O(C×) ⊕

⊕∞

i=1
C.

This can be compared with the description of S(G) up to Morita equivalence, from
Example 1.33:((

C∞(S1)⊗M2(C)
)S2 ⊕ CSt

)
⊕ C∞(S1)⋊ S2 ⊕

⊕∞

j=1
C∞(S1) ⊕

⊕∞

i=1
C.
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1.9. Decompositions of S(G) and C∗
r (G).

The Bernstein decomposition ofH(G) induces decompositions of S(G) and C∗
r (G).

Namely, let S(G)s be the closure of H(G)s in S(G) and let C∗
r (G)s be the closure

of H(G)s in C∗
r (G). Theorem 1.41 and the density of H(G) in S(G) and in C∗

r (G)
imply the Bernstein decompositions

(1.33)
S(G) =

⊕
s∈B(G) S(G)s,

C∗
r (G) =

⊕
s∈B(G)C

∗
r (G)s,

where for C∗
r (G) the direct sum is meant in the sense of Banach algebras. The two-

sided ideals S(G)s ⊂ S(G) and C∗
r (G)s ⊂ C∗

r (G) are often decomposable. Hence
the decompositions (1.33) are coarser than the Harish-Chandra decompositions in
(1.26) and (1.27), which are block decompositions. For d ∈ ∆(G) and s ∈ B(G), we
write

d ∈ ∆(G, s) when Irrtemp(G)d ⊂ Irr(G)s.

We note that s itself is an element of ∆(G, s), in fact the only element that can be
represented by a supercuspidal representation of a Levi subgroup of G. From (1.33)
and Theorems 1.32 and 1.34 we obtain

(1.34)
S(G)s =

⊕
d∈∆(G,s) S(G)d,

C∗
r (G)s =

⊕
d∈∆(G,s)C

∗
r (G)d.

The finite groups indexing the intertwining operators in Theorems 1.32 and 1.42 for
Rep(G)s are related:

Lemma 1.44. For d ∈ ∆(G, s), the group W e
d is a subquotient of W e

s .

Proof. We write d = [M, δ]G and s = [L, σ]G, where M ⊃ L. Recall from Definition
1.31 that

W e
[M,δ/Xnr(M, δ) ∼= W[M,δ] and W e

[L,σ]/Xnr(L, σ) ∼= W[L,σ].

The group W[M,δ] ⊂ NG(M)/M stabilizes Irrtemp(G)[M,δ] ⊂ Irr(G)[L,σ], so stabilizes

Rep(G)[L,σ]. Hence W[M,δ] can be represented in StabNG(M,L)/L(Xnr(L)σ), which is
a subgroup of W[L,σ].

Suppose that (L, σ⊗χL) represents Sc(δ) and that χM ∈ Xnr(M, δ). Then (L, σ⊗
χL(χMχ)|L) represents Sc(δ⊗χ), for all χ ∈ Xu

nr(M). By the uniqueness of cuspidal
supports up to G-conjugation, there exists w ∈ W e

[L,σ] such that w(σ ⊗ χLχ|L) =

σ ⊗ χL(χMχ)|L for all χM ∈ Xu
nr(M).

Hence the action of any element of W e
[M,δ] on Xnr(M)δ arises from an element of

W e
[L,σ]. It follows that W e

[M,δ] is isomorphic to the quotient of StabW e
[L,σ]

(Xu
nr(M)δ)

by the elements that act trivially on Xnr(M)δ. □

For K ∈ CO(G) we put

(1.35)
H(G,K)s = ⟨K⟩H(G)s⟨K⟩ = H(G,K) ∩H(G)s,
S(G,K)s = ⟨K⟩S(G)s⟨K⟩ = S(G,K) ∩ S(G)s,
C∗
r (G,K)s = ⟨K⟩C∗

r (G)s⟨K⟩ = C∗
r (G,K) ∩ C∗

r (G)s.

Then S(G,K)s and C∗
r (G)s are closures of H(G,K)s, and they are generated by

H(G,K)s as two-sided ideals in, respectively, S(G,K) and C∗
r (G,K). To understand

H(G)s, it suffices to consider H(G,K)s for K ∈ CO(G) in a countably family:
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Theorem 1.45. [BeDe, §2.2 and Corollaire 3.9]
There exists a decreasing sequence (Kn)

∞
n=1 of compact open subgroups of G with the

following properties:

•
⋂∞

n=1Kn = {1}
• Each Kn is a normal subgroup of the good maximal compact subgroup K0.
• For each s ∈ B(G) and each n ∈ Z>0, H(G,Kn)

s is either 0 or Morita
equivalent to H(G)s.
• The bimodules for such a Morita equivalence are ⟨Kn⟩H(G)s and H(G)s⟨Kn⟩.

From Theorems 1.42 and 1.45 one concludes:

Corollary 1.46. There exists a unique finite subset B(G,Kn) ⊂ B(G) such that

H(G,Kn) equals
⊕

s∈B(G,Kn)
H(G,Kn)

s

and is Morita equivalent to
⊕

s∈B(G,Kn)
H(G)s.

The sequence of sets (B(G,Kn))
∞
n=1 increases and its union is B(G).

There are versions of Theorem 1.45 and Corollary 1.46 for S(G) and C∗
r (G):

Proposition 1.47. Let Kn be as in Theorem 1.45.

(a) For any s ∈ B(G), S(G,Kn)
s is either 0 or Morita equivalent to S(G)s. In the

latter case, the Morita bimodules are ⟨Kn⟩S(G)s and S(G)s⟨Kn⟩.
(b) The algebra S(G,Kn) equals

⊕
s∈B(G,Kn)

S(G,Kn)
s and is Morita equivalent to⊕

s∈B(G,Kn)
S(G)s.

(c) Parts (a) and (b) also hold for C∗
r (G,Kn).

Proof. (a) If H(G,Kn)
s = 0, then also S(G,Kn)

s = 0. Therefore we may as-
sume that S(G,Kn)

s is nonzero. We consider ⟨Kn⟩S(G)s and S(G)s⟨Kn⟩, which
are bimodules for S(G)s and S(G,Kn)

s. Multiplication provides an isomorphism of
S(G,Kn)

s-bimodules

(1.36) ⟨Kn⟩S(G)s ⊗S(G)s S(G)s⟨Kn⟩ → S(G,Kn)
s,

and an isomorphism of S(G)s-bimodules

(1.37) S(G)s⟨Kn⟩ ⊗S(G,Kn)s ⟨Kn⟩S(G)s → S(G)s⟨Kn⟩S(G)s.

The right hand side of (1.37) is an S(G)s-sub-bimodule of S(G)s, and by Theorem
1.45 it contains H(G)s. Since H(G)s generates S(G)s as an ideal, we deduce that

(1.38) S(G)s⟨Kn⟩S(G)s = S(G)s.

From (1.36), (1.37) and (1.38) we see that ⟨Kn⟩S(G)s and S(G)s⟨Kn⟩ implement a
Morita equivalence between S(G)s and S(G,Kn)

s.
(b) This follows from Corollary 1.46 and part (a).
(c) This can be shown in the same way as parts (a) and (b). □

2. Twisted graded Hecke algebras

In this section we survey some algebras which will play an important role in the
analysis of the Hecke algebra of a reductive p-adic group.
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2.1. Twisted crossed products.
Let Γ be a finite group. A 2-cocycle for Γ is a map ♮ : Γ× Γ→ C× such that

(2.1) ♮(γ1γ2, γ3)♮(γ1, γ2) = ♮(γ1, γ2γ3)♮(γ2, γ3) for all γ1, γ2, γ3 ∈ Γ.

To these data one associates the twisted group algebra C[Γ, ♮], which has a C-basis
{Tγ : γ ∈ Γ} and multiplication rules

Tγ1Tγ2 = ♮(γ1, γ2)Tγ1γ2 for all γ1, γ2 ∈ Γ.

The condition (2.1) means precisely that C[Γ, ♮] is an associative algebra. Repla-
cing Te by ♮(e, e)−1Te, we can achieve that Te · Te = Te (at the cost of modifying
♮). Therefore we may and will always assume that ♮(e, e) = 1. Then (2.1) for
(γ1, γ2, γ3) = (e, e, γ) shows that ♮(e, γ) = 1 while (2.1) for (γ1, γ2, γ3) = (γ, e, e)
shows that ♮(γ, e) = 1. In other words, the condition ♮(e, e) = 1 implies that Te is
the unit element of C[Γ, ♮].

For any function f : Γ → C×, one may pass to new basis elements T ′
γ = f(γ)Tγ .

In those terms, the multiplication rules read

(2.2) T ′
γ1T

′
γ2 = f(γ1)f(γ2)f(γ1γ2)

−1♮(γ1, γ2)T
′
γ1γ2 .

The map

b(f) : (γ1, γ2) 7→ f(γ1)f(γ2)f(γ1γ2)
−1

is called the coboundary of f . Hence the algebra C[Γ, ♮] depends, up to rescaling,
only on ♮ modulo coboundaries, that is, on the image of ♮ in H2(Γ,C×). This
construction yields a map from the second group cohomology H2(Γ,C×) to twisted
versions of C[Γ] up to isomorphism.

There exists a finite central extension Γ∗ of Γ, such that the inflation to Γ∗ × Γ∗

of any 2-cocycle ♮ for Γ represents the trivial class in H2(Γ∗,C×). It is known as
the Schur extension or multiplier of Γ [CuRe, §53]. Let Z∗ be the kernel of Γ∗ → Γ.
Then ♮ determines a character c♮ of Z

∗, with central idempotent e♮ ∈ C[Z∗] ⊂ C[Γ∗],
such that

(2.3) C[Γ, ♮] ∼= e♮C[Γ∗].

From (2.3) one can recover ♮ (up to some coboundary), as follows. Pick representa-
tives {γ∗ : γ ∈ Γ} for Γ in Γ∗. Then {e♮γ∗ : γ ∈ Γ} is a C-basis of e♮C[Γ∗], and ♮ can
be defined by the formula

e♮γ
∗
1 · e♮γ∗2 = ♮(γ1, γ2)e♮(γ1γ2)

∗.

Moreover C[Γ∗] =
⊕

c♮∈Irr(Z∗) e♮C[Γ∗], so each C[Γ, ♮] is isomorphic to a direct sum-

mand of C[Γ∗]. As C[Γ∗] is semisimple, so is C[Γ, ♮].

Example 2.1. For Γ = S2 × S2, the Schur multiplier is Q8, the quaternion group
of order eight. The group Q8 has four irreducible representations of dimension one,
and one of dimension two, so C[Q8] ∼= C4 ⊕M2(C).

We have Z∗ = Z(Q8) = {±1}, so there are precisely two inequivalent twisted
group algebras of Γ. The first comes from c♮ = 1 ∈ Irr(Z∗), it is just C[Γ]. As
C[Γ] ∼= C4, this corresponds to the direct summand C4 of C[Q8].

The second comes from c♮ = sign ∈ Irr(Z∗). It corresponds to the remaining
direct summand of C[Q8], so C[S2×S2, ♮] ∼= M2(C) for any 2-cocycle ♮ whose image
in H2(S2 × S2,C×) is nontrivial.
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For g ∈ Γ we introduce the map

(2.4) ♮g : Γ→ C×, ♮g(γ) = TγTgT
−1
γ T−1

γg−1γ−1 .

One checks that the restriction ♮g|ZΓ(g) is a character of ZΓ(g). These characters
measure the difference between C[Γ, ♮] and C[Γ]. For instance, they can be used to
count the number of irreducible representations of C[Γ, ♮]:

Lemma 2.2. [Sol10, Lemma 1.1]
The cardinality of {g ∈ Γ : ♮g|ZΓ(g) = 1}/Γ-conjugacy} equals |Irr(C[Γ, ♮])|.

More precisely, for every conjugacy class C with the above property, define a trace
νC on C[Γ, ♮] by νC(Tg) = 1 if g ∈ C and νC(Tg) = 0 otherwise. Then the νC form
a basis of the space of all traces on the semisimple algebra C[Γ, ♮].

Notice that Lemma 2.2 generalizes the well-known equality between the number
of conjugacy classes and the number irreducible representations (over C) of a finite
group.

Suppose now that Γ acts on a C-algebra A, by automorphisms. Then we can form
the crossed product algebra A⋊ Γ, which is A⊗C C[Γ] which multiplication rules

(2.5) (a1 ⊗ γ1)(a2 ⊗ γ2) = a1γ1(a2)⊗ γ1γ2 for all ai ∈ A, γi ∈ Γ.

More generally, for any 2-cocycle ♮ of Γ there is a twisted crossed product A⋊C[Γ, ♮].
It it the same vector space A⊗C C[Γ], but now the multiplication is given by

(a1 ⊗ Tγ1)(a2 ⊗ Tγ2) = a1γ1(a2)⊗ ♮(γ1, γ2)Tγ1γ2 for all ai ∈ A, γi ∈ Γ.

This is an associative algebra that contains A and C[Γ, ♮] as subalgebras (for the
latter we need to assume that A is unital). There is a close relation between Irr(A)
and Irr(A ⋊ C[Γ, ♮]), known as Clifford theory. We refer to [RaRa, p. 24] for the
cases with ♮ = 1, and to [AMS1, §1] for how to handle nontrivial ♮.

In the remainder of this paragraph we focus on the cases where A is commutative
and unital. More concretely, consider the algebra A = O(X) of regular functions
on some complex affine variety X. The upcoming arguments also work for smooth
functions on a closed manifold and for continuous functions on a compact Hausdorff
space, the main point is that A can be regarded as an algebra of C-valued functions
on Irr(A).

So, we assume that Γ acts on X by homeomorphisms, and we form the twisted
crossed product

(2.6) B = A⋊C[Γ, ♮] = O(X)⋊C[Γ, ♮].
The crossed product A ⋊ Γ is self-opposite, so its left and right module categories
are equivalent. The analogue for the twisted crossed product B is more subtle. The
opposite algebra Bop can be studied via the isomorphism

(2.7)
Bop = (A⋊C[Γ, ♮])op ∼−→ A⋊C[Γ, ♮−1]

aTγ 7→ T−1
γ a a ∈ A, γ ∈ Γ.

This enables us to identify right B-modules with left modules over A ⋊ C[Γ, ♮−1].
We work out the classification of the irreducible left modules of the algebra B, a
simple case of Clifford theory.

Lemma 2.3. (a) B has finite rank as a module over its centre Z(B).
(b) All irreducible B-representations have finite dimension.
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Proof. (a) Firstly, O(X)Γ = O(X/Γ) is a central subalgebra of B. Since O(X) is
finitely generated and integral over O(X)Γ, O(X) has finite rank as O(X)Γ-module.
As Z(B) ⊃ O(X)Γ, B also has finite rank over Z(B).
(b) Let V be an irreducible B-module. As B has countable dimension, so has V .
Hence Schur’s lemma applies, and says that Z(B) acts by scalars on V . With part
(a) it follows that the image of B in EndC(V ) has finite dimension. Therefore B · v
has finite dimension for any v ∈ V . But by the irreducibility B · v = V whenever
v ̸= 0. □

Lemma 2.3 implies that the restriction of any irreducibleB-module (π, V ) toO(X)
has an O(X)-eigenvector, say vx with weight x ∈ X. By Frobenius reciprocity

(2.8) HomB(ind
B
O(X)(Cx), π) ∼= HomO(X)(Cx, π) ̸= 0,

so π is a quotient of indBO(X)(Cx). For any γ ∈ Γ and f ∈ O(X), π(Tγf)vx ∈ V is

an O(X)-eigenvector with weight γx. If π is irreducible, then it cannot have more
weights than these γx. It follows that the irreducible quotients of indBO(X)(Cx) are

precisely the irreducible B-modules with O(X)Γ-character Γx.
Let Γx be the stabilizer of x in Γ. For ρ ∈ Irr(C[Γx, ♮]), we form the irreducible

O(X)⋊C[Γx, ♮]-module x⊗ ρ, on which O(X) acts by evaluation at x and C[Γx, ♮]
acts by ρ. We write

π(x, ρ) = ind
O(X)⋊C[Γ,♮]
O(X)⋊C[Γx,♮]

(x⊗ ρ).

We let Γ act on {
(x, ρ) : x ∈ X, ρ ∈ Irr(C[Γx, ♮])

}
by γ(x, ρ) = (γx, γρ), where γρ(h) = ρ(T−1

γ hTγ) for h ∈ C[Γγx, ♮]. The space

(2.9) (X//Γ)♮ =
{
(x, ρ) : x ∈ X, ρ ∈ Irr(C[Γx, ♮])

}
/Γ

is called a twisted extended quotient.

Theorem 2.4. Recall that B = O(X)⋊C[Γ, ♮].
(a) The B-module π(x, ρ) is irreducible.
(b) There is canonical a bijection

(X//Γ)♮ → Irr(B)
(x, ρ)/ ∼ 7→ π(x, ρ)

.

Proof. (a) Consider the ideal IΓx = {f ∈ O(X)Γ : f(Γx) = 0} of O(X)Γ. By the
Chinese remainder theorem

O(X)/IΓxO(X) = O(X)/{f ∈ O(X) : f |Γx = 0} ∼=
⊕

γ∈Γ/Γx

Cγx.

The irreducible B-modules with O(X)Γ-character Γx descend to modules of

B/IΓxB ∼=
(⊕

γ∈Γ/Γx

Cγx

)
⋊C[Γ, ♮].

Let p ∈
⊕

γ∈Γ/Γx
Cγx be the idempotent which is 1 in Cx and 0 in all other sum-

mands, then as bimodules:

(2.10)

p(B/IΓxB) = Cx ⊗C C[Γ, ♮],
(B/IΓxB)p = C[Γ, ♮]⊗C Cx,
p(B/IΓxB)p = Cx ⊗C C[Γx, ♮] ∼= C[Γx, ♮],
(B/IΓxB)p(B/IΓxB) = B/IΓxB.
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The first three of these equalities are straightforward, the last follows because
(B/IΓxB)p(B/IΓxB) contains TγpT

−1
γ = γ(p) and

∑
γ∈Γ/Γx

γ(p) = 1. From (2.10)

we see that the bimodules p(B/IΓxB) and (B/IΓxB)p provide a Morita equivalence
between B/IΓxB and C[Γx, ♮]. This equivalence sends x⊗ ρ ∈ Irr(Cx⊗C C[Γx, ♮]) to

(B/IΓxB)p⊗Cx⊗CC[Γx,♮] (x⊗ ρ) = ind
B/IΓxB⊕

γ∈Γ/Γx
Cγx⋊C[Γx,♮]

(x⊗ ρ),

which is therefore an irreducible B/IΓxB-module. Via inflation to B, we find that

ind
O(X)⋊C[Γ,♮]
O(X)⋊C[Γx,♮]

(x⊗ ρ) = π(x, ρ) is irreducible.

(b) By the remarks before the theorem, every irreducible B-module has a unique
O(X)Γ-character Γx. The set of irreducible B-modules with that O(X)Γ-character
is naturally in bijection with Irr(B/IΓxB). The proof of part (a) yields a bijection

Irr(Cx ⊗ C[Γx, ♮]) → Irr(B/IΓxB)
x⊗ ρ 7→ π(x, ρ)

.

Hence every element of Irr(B) has the form π(x, ρ). The only freedom in the above
construction is the choice of x in Γx. Suppose that instead we pick γx ∈ Γx. Then
conjugation by Tγ can be pulled through the entire construction, and we end up
with γρ instead of ρ. Thus π(x, ρ) ∼= π(γx, γρ) and these are the only possible
equivalences between modules of this form. □

Twisted crossed products for free group actions are considerably easier.

Proposition 2.5. Suppose that the action of Γ on X is free.

(a) The categories of finite length modules of O(X/Γ) and of B = O(X) ⋊ C[Γ, ♮]
are naturally equivalent.

(b) If ♮ is trivial in H2(Γ,C×), then O(X)⋊C[Γ, ♮] is Morita equivalent to O(X/Γ).

Proof. (a) The O(X/Γ)-weights provide a decomposition of the category of finite
length modules

Modfl(O(X)⋊C[Γ, ♮]) =
⊕

Γx∈X/Γ
Modfl(O(X)⋊C[Γ, ♮])Γx,

and similarly for O(X/Γ). Therefore it suffices to fix a Γ-orbit Γx in X and to
consider finite lengthO(X)⋊C[Γ, ♮]-modules V such that all irreducible subquotients
of V |O(X/Γ) are isomorphic to CΓx.

With the notations from the proof of Theorem 2.4, let

Ô(X/Γ)Γx = lim←−
n

O(X/Γ)/InΓx

Ô(X)Γx = lim←−
n

O(X)/InΓxO(X) ∼=
⊕

x′∈Γx
Ô(X)x′

B̂Γx = B ⊗O(X/Γ) Ô(X/Γ)Γx = lim←−
n

B/InΓxB

be the formal completions of O(X/Γ),O(X) and B with respect to the ideal ge-
nerated by IΓx. This completion operation does not change the category of finite
length modules whose only O(X/Γ)-weight is Γx. As in (2.10), one checks that the

bimodules pB̂Γx and B̂Γxp provide a Morita equivalence between

pB̂Γxp ∼= Ô(X/Γ)Γx and B̂ΓxpB̂Γx = B̂Γx.
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(The freedom of the action is used in the last equality.) That yields equivalences of
categories

Modfl(B)Γx ∼= Modfl
(
B̂Γx

) ∼= Modfl
(
Ô(X/Γ)Γx

) ∼= Modfl(O(X/Γ))Γx.

(b) Suppose that ♮ ∈ H2(Γ,C×) is trivial. As explained after (2.2), B = O(X) ⋊
C[Γ, ♮] is isomorphic to O(X)⋊ Γ. This enables us to construct the idempotent

eΓ := |Γ|−1
∑

γ∈Γ
γ ∈ C[Γ] ⊂ B.

We claim that BeB = B. For this, it suffices to check that B̂eBΓx = B̂Γx for all

x ∈ X. Since Γ acts freely on X, 1x |Γ| eΓ1x ∈ B̂eBΓx equals 1x ∈ Ô(X)x. As in the

proof of Theorem 2.4, it follows that B̂eBΓx = B̂Γx, proving our claim.
Now the isomorphisms of bimodules

eB ∼= O(X), Be ∼= O(X), eBe ∼= O(X/Γ), BeB = B

show that eB and Be provide a Morita equivalence between B and O(X/Γ). □

For nontrivial ♮ ∈ H2(Γ,C×) one cannot say directly that Proposition 2.5.b fails,
it depends on X. In the cases where X is irreducible as an algebraic variety, one
can improve on Proposition 2.5, as follows.

Suppose that there is a Morita equivalence between B and O(X/Γ). Let C(X)
be the quotient field of O(X) and tensor the Morita bimodules with C(X/Γ) over
O(X/Γ). That yields a Morita equivalence between C(X)Γ = C(X/Γ) and

(2.11) C(X/Γ)⊗O(X/Γ) B ∼= C(X/Γ)⊗O(X/Γ) O(X)⋊C[Γ, ♮] = C(X)⋊C[Γ, ♮].

By the next result and Proposition 2.5.b, (2.11) is only possible if ♮ ∈ H2(Γ,C×) is
trivial.

Theorem 2.6. Let X be an irreducible algebraic variety, endowed with a faithful
action of a finite group Γ. Then C(X) ⋊ C[Γ, ♮] is a central simple C(X)Γ-algebra.
It is Morita equivalent to C(X)⋊ Γ if and only if ♮ is trivial in H2(Γ,C×).

Proof. By the general theory of central simple algebras, C(X) ⋊ C[Γ, ♮] is one, see
for instance [Ker, §7.5]. By a result of Noether [Ker, §7.7], C(X)⋊C[Γ, ♮] is Morita
equivalent to C(X)⋊ Γ if and only if ♮ is trivial in H2(Γ,C(X/Γ)×).

We claim that the natural map

H2(Γ,C×)→ H2(Γ,C(X/Γ)×) is injective.

Suppose that c ∈ Z2(Γ,C×) is a 2-cocycle, which equals a 2-coboundary b(f) for
some f : Γ → C(X/Γ)×. Write f = f1/f2 for some fi ∈ O(X/Γ) \ {0}, and pick
x ∈ X such that f1(Γx)f2(Γx) ̸= 0. Then f and b(f) can be evaluated at Γx, which
gives b(f(x)) = b(f)(x) = c(x) = c. Hence c is trivial in H2(Γ,C×). □

2.2. Definitions of graded Hecke algebras.
We will analyse the modules over the Hecke algebra of a reductive p-adic group

in terms of modules of graded Hecke algebras. Here we provide a short introduction
to those algebras, which were discovered by Lusztig [Lus].

We need the following data:

• a finite dimensional real vector space tR,
• the linear dual space t∨R,
• a reduced integral root system Φ in t∨R, with a basis ∆,
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• the Weyl group W = W (Φ), which acts on tR and on t∨R,
• a W -invariant parameter function k : Φ→ C,
• a formal variable r,
• the complexifcations t of tR and t∨ of t∨R.

Definition 2.7. The graded Hecke algebra H(t,W, k, r) is the vector space O(t) ⊗
C[r]⊗ C[W ] with multiplication rules

• C[W ] and O(t)⊗ C[r] = O(t⊕ C) are embedded as subalgebras,
• C[r] is central,
• for α ∈ ∆ and f ∈ O(t):

(2.12) f · sα − sα · sα(f) = k(α)r(f − sα(f))/α.

The grading on H(t,W, k, r) is twice the usual grading on the polynomial algebra
O(t⊕ C), while all nonzero elements of C[W ] have degree 0.

It is easy to check that f − sα(f) is divisible by α in O(t), so that (2.12) is really
a relation in H(t,W, k, r). For f = x ∈ t∨, (2.12) simplifies to

(2.13) x · sα − sα · sα(x) = k(α)rx(α∨),

where α∨ ∈ tR denotes the coroot of α. The elements α ∈ t∨ and r have degree
two, so the relation (2.12) is homogeneous. It follows that H(t,W, k, r) is a graded
algebra:

deg(xy) = deg(x) + deg(y) when x, y ∈ H(t,W, k, r) are homogeneous.

Example 2.8. If Φ is empty, then H(t,W, k, r) reduces to O(t) ⊗ C[r]. For k = 0
we have

H(t,W, 0, r) = (O(t)⋊W )⊗ C[r].
In practice the central element r is often specialized to a complex number. In

view of the identity H(t,W, k, zr) = H(t,W, zk, r) for z ∈ C, it suffices to consider
the specialization of r to 1. We define

(2.14) H(t,W, k) = H(t,W, k, r)/(r− 1).

The vector space H(t,W, k) = O(t)⊗C[W ] is graded in the same way as H(t,W, k, r).
However, the multiplication relation (2.12) becomes

f · sα − sα · sα(f) = k(α)(f − sα(f))/α,

in H(t,W, k), which is usually not homogeneous. Therefore H(t,W, k) is not graded
as an algebra. Instead it is a filtered algebra, which means that for homogeneous
elements x, y ∈ H(t,W, k), the product xy is a sum of terms of degrees at most
deg(x) + deg(y).

Multiplication by z ∈ C× on t induces an algebra isomorphism

(2.15)
H(t,W, k) → H(t,W, zk)

fw 7→ (f ◦ z)w .

For z = 0 this becomes a projection

H(t,W, k)→ C[W ] ⊂ H(t,W, 0).

In addition to the data at the start of this paragraph, let Γ be a finite group acting
linearly on t∨R, such that it stabilizes Φ,∆ and k. Then Γ acts on W by conjugation
in GL(t∨R) and on H(t,W, k) by

γ(fw) = (f ◦ γ−1)(γwγ−1) f ∈ O(t), w ∈W,γ ∈ Γ.



34 P-ADIC GROUPS, REPRESENTATIONS AND NONCOMMUTATIVE GEOMETRY

Definition 2.9. Let ♮ : Γ× Γ→ C× be a 2-cocycle. We call

H(t,WΓ, k, ♮) = H(t,W, k)⋊C[Γ, ♮]

a twisted graded Hecke algebra.

Notice that we allow Γ = {e}, in which case H(t,WΓ, k, ♮) reduces to H(t,W, k).
By (2.3), H(t,W, k, ♮) is a direct summand of the algebra H(t,W, k) ⋊ Γ∗. There-
fore most results that have been proven for H(t,W, k) ⋊ Γ∗ apply automatically to
H(t,W, k, ♮). We will tacitly use that several times.

We shall also want to consider the opposite algebras of twisted graded Hecke
algebras. These are of the same kind, because there is an algebra isomorphism

(2.16)
H(t,WΓ, k, ♮)op

∼−→ H(t,WΓ, k, ♮−1)
fwNγ 7→ N−1

γ w−1f f ∈ O(t), w ∈W,γ ∈ Γ.

The centre of H(t,W, k) is known from [Lus, Proposition 3.11]:

Z(H(t,W, k)) = O(t)W = O(t/W ).

We have Z(H(t,WΓ, k, ♮)) ⊃ O(t)WΓ, with equality if Γ acts faithfully on t∨R. By
the same arguments as in Lemma 2.3.a,

(2.17) H(t,WΓ, k, ♮) has finite rank as module over its centre and over O(t)WΓ.

For another parameter function k′, the algebras H(t,WΓ, k′, ♮) and H(t,WΓ, k, ♮)
are usually not isomorphic. Nevertheless they are always very similar, in several
ways. The clearest relation between these algebras can be seen when we include the
quotient field C(t/WΓ) = C(t)WΓ of O(t/WΓ). There are field isomorphisms

O(t)⊗O(t/WΓ) C(t/WΓ) ∼= C(t)
f1 ⊗ f2/f3 7→ f1f2/f3

g1
∏

w∈WΓ\{e}w(g2)⊗
∏

w∈WΓw(g2)
−1 7→ g1/g2

.

In particular C(t) is naturally a subalgebra of C(t/WΓ)⊗O(t/WΓ)H(t,WΓ, k, ♮). For
α ∈ ∆ we define

(2.18) τsα = (1 + sα)
α

α+ k(α)
− 1 ∈ C(t/WΓ)⊗O(t/WΓ) H(t,WΓ, k, ♮).

A direct calculation shows that τ2sα = 1. For γ ∈ Γ we put τγ = Tγ ∈ C[Γ, ♮].

Theorem 2.10. [Lus, §5] and [Sol5, Proposition 1.5.1]

(a) The map sα 7→ τsα extends to a group homomorphism

τ : W →
(
C(t/WΓ)⊗O(t/WΓ) H(t,WΓ, k, ♮)

)×
.

(b) There is an isomorphism of C(t/WΓ)-algebras

C(t)⋊C[WΓ, ♮] → C(t/WΓ)⊗O(t/WΓ) H(t,WΓ, k, ♮)
f ⊗ w 7→ fτw

.

We note that

C(t)⋊C[WΓ, ♮] = C(t/WΓ) ⊗
O(t/WΓ)

O(t)⋊C[WΓ, ♮] = C(t/WΓ) ⊗
O(t/WΓ)

H(t,WΓ, 0, ♮).

Theorem 2.10 shows that, upon including C(t/WΓ), the dependence of H(t,WΓ, k, ♮)
on k disappears.
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2.3. Representation theory.
In this paragraph we survey representations of a (twisted) graded Hecke algebra

H = H(t,W, k, ♮), in analogy with representations of reductive groups over local
fields. For more background on H-representations we refer to [KrRa, Sol4].

The starting point is always representations of the maximal commutative subal-
gebra O(t).

Definition 2.11. Let (π, V ) be a H-representation and let λ ∈ t. We write

Vλ =
{
v ∈ V : ∃N ∈ N such that (π(x)− x(λ))Nv = 0 for all x ∈ t∨

}
.

We say that λ is an O(t)-weight (or simply a weight) of π if Vλ is nonzero. The set
of O(t)-weights of π is denoted Wt(π).

With simple linear algebra one checks that:

Lemma 2.12. (a) Every nonzero weight space Vλ contains an O(t)-eigenvector,
that is, a v ̸= 0 such that π(x)v = x(λ)v for all x ∈ t∨.

(b) If dimV is finite, then V =
⊕

λ∈Wt(π) Vλ.

Let Cλ be the onedimensional O(t)-module with weight λ. With induction one
constructs the H-module

I(λ) = indHO(t)(Cλ).

By [BaMo2, Theorem 6.4], Wt(I(λ)) = WΓλ.

Lemma 2.13. Let (π, V ) be an irreducible H-representation.

(a) dimV is finite.
(b) π is a quotient of I(λ), for some λ ∈ t.

Proof. (a) This is shown in the same way as Lemma 2.3.
(b) Lemma 2.12 ensures that π has an O(t)-weight, say λ, with an eigenvector. Then
Frobenius reciprocity shows that

HomH(I(λ), π) ∼= HomO(t)(Cλ, π) ̸= 0.

Hence there exists a nonzero H-homomorphism from I(λ) to π, which by the irre-
ducibility of π must be surjective. □

In simplest noncommutative case, one can classify the irreducible H-representa-
tions by hand.

Example 2.14. We take tR = t∨R = R, Φ = {±1} andW = S2. We write k(α) = k ∈
C and we consider H = H(t, S2, k). There are two onedimensional H-representations:

• The trivial representation triv defined by triv|O(t) = Ck and triv|C[S2] = triv.
• The Steinberg representation St defined by St|O(t) = C−k and St|C[S2] = sign.

All other irreducible representations are of the form I(λ) with λ ∈ C. As vector
spaces H = C[S2] ⊗ O(t), so ResHC[S2]

I(λ) is the regular representation C[S2]. The

only proper S2-invariant subspaces are

C(1 + sα) and C(1− sα),

so if I(λ) is reducible, then at least one of these two is an H-subrepresentation. For
x ∈ t∨ (corresponding to x(1) ∈ C) one computes in I(λ), using (2.13) with r = 1
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and α∨ = 2:

x · (1 + sα) = x+ sα sα(x) + k(α)x(α∨) = (λ+ 2k − λsα)x(1)

x · (1− sα) = x− sα sα(x)− k(α)x(α∨) = (λ− 2k + λsα)x(1).

Hence C(1+sα) is an H-submodule of I(λ) if and only if λ = −k, while C(1−sα) is an
H-submodule of I(λ) if and only if λ = k. One can check that I(k) and I(−k) both
have length two, with irreducible subquotients triv and St. All the representations
I(λ) with λ ∈ C \ {k,−k} are irreducible. By Lemma 2.13.b, this exhausts Irr(H).

Frobenius reciprocity tells us that

HomH(I(λ), I(λ
′)) ∼= HomO(t)(Cλ, I(λ

′)).

This is nonzero if and only if λ′ = ±λ, because Wt(I(λ′)) = S2λ
′ = {λ′,−λ′}.

Therefore the irreducible representations I(λ) and I(λ′) are isomorphic if and only
if λ′ = ±λ.

Temperedness of H-representations is defined via their weights. Consider the
positive Weyl chamber

(t∨R)
+ = {x ∈ t∨R : x(α∨) ≥ 0 for all α ∈ ∆}

and the obtuse negative cone

t−R = {λ ∈ tR : x(λ) ≤ 0 for all x ∈ (t∨R)
+}.

Example 2.15. Suppose that tR = t∨R = R2 with the standard inner product. The
positive Weyl chamber and the obtuse negative cone for R = A1 (from GL2) and

R = B2 look like

R
t

+v

R
t

_

R
t

+v

R
t

_

α α

β

Definition 2.16. Let (π, V ) be a finite dimensional H-representation. We call π
tempered if Wt(π) ⊂ t−R + itR. More restrictively, we say that π is discrete series if

it is irreducible and Wt(π) ⊂ int(t−R ) + itR. Here int(t−R ) denotes the interior of t−R
as a subset of the R-span of the root system in tR dual to Φ.

In terms of the canonical real part map ℜ : t → tR, we can reformulate these
conditions as, respectively, ℜWt(π) ⊂ t−R and ℜWt(π) ⊂ int(t−R ).

It is known from [Sol9, §9]2 that the notions of temperedness and discrete series
for representations of twisted graded Hecke algebras correspond to the synonymous
notions for representations of reductive p-adic groups.

Example 2.17. The representation I(λ) is tempered if and only if λ ∈ itR, be-
cause Wt(I(λ)) = Wλ. It is never discrete series, because Wℜ(λ) ⊂ tR cannot be
contained in the interior of t−R .

Let H(C, S2, k) be as in Example 2.14. The Steinberg representation is tempered
if and only if ℜ(k(α)) ≥ 0. It is discrete series if and only if ℜ(k(α)) > 0.

2Our discrete series representations are called tempered essentially discrete series in [Sol9].
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Definition 2.18. Irrtemp(H) is the set of irreducible tempered H-representations.
For a subset E ⊂ t, we let Irr(H)E be the set of irreducible H-representations π such
that Wt(π) ⊂ E. The same condition determines the subset Irrtemp(H)E . We define
Mod(H)E as the category of finite length H-representations all whose weights lie in
E. We say that an H-representation (π, V ) has real weights if it lies in Mod(H)tR .

Example 2.19. Assume that k = 0. Then H(t,W, 0) = O(t) ⋊ W , which we dis-
cussed in Paragraph 2.1. From Theorem 2.4 we see that the weights of any irreducible
O(t) ⋊W -representation always form one full W -orbit Wλ ⊂ t. As Wℜ(λ) cannot
be contained in int(t−R ), H(t,W, 0) does not have discrete series representations.

The conditions Wt(π) ⊂ itR and Wt(π) ⊂ tR together imply Wt(π) = {0}, so
Irrtemp(O(t)⋊W )tR = Irr(O(t)⋊W ){0}. This set is naturally identified with Irr(W ).

In general the representations in Irrtemp(H)tR can have more weights than just 0,
but not many, the conditions tempered and real weights are very restrictive. For an
algebra or group A, let R(A) be the Grothendieck group of the category of finite
length A-representations. When A is a group or a group algebra, R(A) is called the
representation ring of A (with the tensor product as multiplication).

Theorem 2.20. [Sol3, Theorem 6.5.c] and [Sol8, Theorem 6.2.a]
Suppose that k is real-valued. The set {π|C[WΓ,♮] : π ∈ Irrtemp(H)tR} is Z-basis of
R(C[WΓ, ♮]).

Example 2.21. Let H = H(C, S2, k) be as in Example 2.14, with k > 0. Then
Irrtemp(H) = {St, I(0)}. We recall that St|C[S2] = sign and I(0)|C[S2] = C[S2]. These
form a basis of the representation ring of S2, for instance triv = C[S2] − sign in
R(S2).

2.4. Parametrization of irreducible representations.
The best method to produce new H-representations is parabolic induction. For

the moment we do this without Γ, so for H(t,W, k).

Definition 2.22. Let P ⊂ ∆ and let ΦP ⊂ Φ be the associated parabolic root
subsystem. Then HP = H(t,W (ΦP ), k) is called a parabolic subalgebra of H(t,W, k).

Parabolic induction is the functor ind
H(t,W,k)

HP .

Example 2.23. If P is empty, then HP = O(t). If P = ∆, then HP = H(t,W, k).

It is known [BaMo1, Corollary 6.5] that parabolic induction preserves tempered-
ness. The vector space t decomposes as P⊥ ⊕ CP∨, where P∨ = {α∨ : α ∈ P}.
Accordingly HP decomposes as a tensor product of algebras

(2.19) HP = H(CP∨,W (ΦP ), k)⊗O(P⊥) = HP ⊗O(P⊥).

When we think of HP as corresponding to a Levi subgroup M of a reductive group
G, HP corresponds to the derived group of M .

For any HP -representation (πP , VP ) and any λP ∈ P⊥, we can form the HP -
representation (πP ⊗λP , VP ). By varying λP , this construction yields continuous or
algebraic families of HP -representations.

We sketch how the classification of Irr(H) is obtained. A crucial role is played by
Theorem 2.20, and therefore we assume throughout this paragraph that

(2.20) the parameter function k is real-valued.
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The condition 2.20 implies [Slo, Lemma 2.13]:

(2.21) every discrete series representation π of HP has Wt(π) ⊂ RP∨+i(tR∩P⊥).

By completion with respect to central characters, as in [Lus, §7–8] and [Sol5, §2.1],
one shows that for any λ, µ ∈ tR there is an equivalence of categories

(2.22) Mod(H(t,W, k)))W (iλ+µ)
∼= Mod(H(t,Wiλ, k))Wiλ·µ.

Notice that Wiλ = Wλ is again a Weyl group, from the root system {α ∈ Φ : α(λ) =
0}. With (2.22) one can reduce the issues in this paragraph from Mod(H) to H-
representations with real weights. By [AMS2, Proposition 2.7], (2.22) restricts to a
bijection

Irrtemp(H(t,W, k))W (iλ+µ) ←→ Irrtemp(H(t,Wiλ, k))Wiλ·µ.

Taking the union over all µ ∈ tR yields a bijection

Irrtemp(H(t,W, k))Wiλ+tR ←→ Irrtemp(H(t,Wiλ, k))tR .

By Theorem 2.20, restriction to C[Wiλ] sends the last set to a basis of R(C[Wiλ]).
Theorem 2.4 provides a bijection

R(C[Wiλ]) −→ R(O(t)⋊W )Wiλ = R(H(t,W, 0))Wiλ,

and we note that this consists entirely of tempered representations. The composition
of all these maps is

(2.23)
Irrtemp(H(t,W, k))Wiλ+tR → R(O(t)⋊W )Wiλ

ind
H(t,W,k)
H(t,Wiλ,k)

(π) 7→ ind
O(t)⋊W
O(t)⋊Wiλ

(π|C[Wiλ] ⊗ iλ)
.

Now we let λ run over tR, and we conclude that Irrtemp(H) maps canonically to a
Z-basis of R(O(t)⋊W )itR = R(O(t)⋊W )temp.

Next we involve the Langlands classification for graded Hecke algebras, from [Eve].
We write

P⊥+ =
{
λP ∈ P⊥ : α(ℜ(λP )) > 0 for all α ∈ ∆ \ P

}
.

For each λP ∈ P⊥+ and each πP ∈ Irrtemp(HP ), theH-representation indHHP (πP⊗λP )
has a unique irreducible quotient. That sets up a bijection [Eve]

(2.24)
⋃

P⊂∆
Irrtemp(HP )× P⊥+ −→ Irr(H(t,W, k)) = Irr(H).

This also applies to O(t)⋊W = H(t,W, 0). The Langlands classification and (2.23)
lead to a version of [Sol5, Theorem 2.3.1] for graded instead of affine Hecke algebras:

Theorem 2.24. Suppose that k is real-valued. There exists a natural bijection

ζ0 : R(H(t,W, k))→ R(H(t,W, 0)) = R(O(t)⋊W )

satisfying the following properties.

(i) For ρ ∈ Irrtemp(H(t,W, k))tR we have ζ0(ρ) = C0 ⊗ ρ|C[W ].
(ii) ζ0 commutes with parabolic induction and with character twists:

ζ0
(
ind

H(t,W,k)

HP (πP ⊗ λP )
)
= ind

O(t)⋊W
O(t)⋊W (ΦP )(ζ0(πP )⊗ λP ) for πP ∈ Irr(HP ), λ

P ∈ P⊥.

(iii) ζ0 preserves the underlying (virtual) C[W ]-representations.
(iv) For any λ ∈ tR, ζ0 sends virtual representations with O(t)-weights in iλ + tR

to virtual representations with O(t)-weights in iλ+ tR.
(v) ζ0 sends tempered representations to tempered representations, and restricts to

a bijection between the tempered parts on both sides.



P-ADIC GROUPS, REPRESENTATIONS AND NONCOMMUTATIVE GEOMETRY 39

In Theorem 2.24.(iv) ζ0 may adjust the weights by elements of tR, and these
changes are always weights of a discrete series representation.

Further, with [Sol8, §6] ζ0 can be refined to a bijection

(2.25) ζIrr : Irr(H(t,W, k))→ Irr(O(t)⋊W ).

Both Theorem 2.24 and (2.25) confirm what we already saw in Theorem 2.10: that
H(t,W, k) and H(t,W, 0) are very similar.

Example 2.25. We consider H = H(C, S2, k) with k = k(α) > 0. With the classifi-
cation of Irr(H) from Example 2.14 at hand, the maps ζ0 and ζIrr can be tabulated.

Irr(H) R(O(t)⋊W ) Irr(O(t)⋊W )

I(λ) π(λ) := ind
O(t)⋊W
O(t) (λ) π(λ) λ ∈ C \ {k,−k}

I(0) π(0) C0 ⊗ triv
St C0 ⊗ sign C0 ⊗ sign
triv π(k)− C0 ⊗ sign π(k)

Notice that for St and triv, ζ0 changes the O(t)-weights, while ζIrr for I(0) =
indHO(t)(C0) is not compatible with parabolic induction. Further ζ0(triv) is not an

actual representation, and it is certainly not irreducible.

Now we generalize to the twisted graded Hecke algebras

(2.26) H(t,WΓ, k, ♮) = H(t,W, k)⋊C[Γ, ♮].

The equivalence of categories (2.22) and the arguments leading up to (2.23) also
work for these algebras, so there is a canonical map

Irrtemp(H(t,WΓ, k, ♮))→ R(O(t)⋊C[WΓ, ♮])temp

whose image is a Z-basis of its range.
A parabolic subalgebra of H(t,WΓ, k, ♮) has the form H(t,W (ΦP )ΓP , k, ♮), where

ΓP ⊂ Γ is a subgroup stabilizing P . (In general there are several choices for ΓP , and
in principle they are all feasible. Sometimes specific circumstances determine ΓP .)
The tensor product decomposition (2.19) generalizes only in the weaker form

H(t,W (ΦP )ΓP , k, ♮) =
(
H(t,W (ΦP ), k)⊗O(P⊥)

)
⋊C[ΓP , ♮].

This creates complications for the Langlands correspondence, the version for
H(t,WΓ, k, ♮) is more cumbersome, see [Sol8, Corollary 6.8].

Theorem 2.26. Theorem 2.24 and (2.25) hold also for H(t,WΓ, k, ♮).
To retain property (iii), we can either start with representations of the parabolic

subalgebra HP = H(t,W (ΦP ), k) (so with ΓP = {e}), or we have to put an extra
condition on λP .

Proof. For representations with real weights, this is proven in [Sol8, Proposition
6.10.a]. The general case follows from that with (2.22). □

The property (2.21) can be used to obtain some information about families of
discrete series representations of parabolic subalgebras of (2.26).

Lemma 2.27. For P ⊂ ∆ and λ ∈ itR, let ∆(P, λ) ⊂ Irr
(
H(t,W (ΦP )ΓP , k, ♮)

)
be the set of discrete series representations occurring in ind

H(t,W (ΦP )ΓP ,k,♮)
O(t) Cλ+ν for

some ν ∈ tR. Let C be a contractible subset of itR, such that (W (ΦP )ΓP )λ is the
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same for all λ ∈ C. Then all the sets ∆(P, λ) with λ ∈ C are canonically in bijection
with each other.

Proof. First we look at H(t,W, k) and its parabolic subalgebra HP . By (2.21),
∆(P, λ) is empty unless λ ∈ i(tR ∩ P∨). From (2.19) we see that

(2.27) ∆(P, λ) = ∆(P, 0)⊗ Cλ for λ ∈ i(tR ∩ P∨).

The set i(tR ∩P∨) is precisely the fixed point set of W (ΦP ) in itR. Therefore either
C ⊂ i(tR∩P∨) or C ∩ i(tR∩P∨) is empty. In the latter case ∆(P, λ) is empty, while
in the former case (2.27) provides a canonical bijection from ∆(P, λ) to ∆(P, λ′) for
any λ, λ′ ∈ C.

Now we consider HP
+ := H(t,W (ΦP )ΓP , k, ♮), and we denote ∆(P, λ) for that

algebra by ∆(P, λ)+. Notice that the discrete series condition from Definition 2.16
is stable under the action of ΓP on t. Therefore the restriction to HP of any δ+ ∈
∆(P, λ)+ has all irreducible subquotients in ∆(P, λ). It follows that we can exhaust

∆(P, λ)+ with the irreducible subquotients of ind
HP

+

HP (δ) for δ ∈ ∆(P, λ).

By Clifford theory, as for instance in [RaRa, p. 24] or [AMS1, §1], ind
HP

+

HP (δ) is
completely reducible and its decomposition into irreducible representations is gover-
ned by its algebra of self-intertwiners, which is a twisted group algebra C[ΓP,δ, ♮δ].
Write δ = δ0 ⊗ λ as in (2.27). For γ ∈ ΓP we have

γ(δ0 ⊗ λ) = γ(δ0)⊗ γ(λ).

Consequently ΓP,δ0⊗λ is the same for all λ ∈ C. The 2-cocycles ♮δ0⊗λ come a choice
of intertwining operators

Iγδ0⊗λ ∈ HomHP (γ(δ0)⊗ γ(λ), δ0 ⊗ λ),

see [AMS1, (4)–(5)]. We can choose these independently of λ ∈ C, so ♮δ0⊗λ does

not depend on λ ∈ C either. Hence the entire decomposition of ind
HP

+

HP (δ0 ⊗ λ)
depends continuously on λ ∈ C. Together with the contractibility of C, that yields

a canonical bijections between the sets of irreducible subquotients of ind
HP

+

HP (δ0 ⊗ λ)

and of ind
HP

+

HP (δ0⊗λ′), for any λ, λ′ ∈ C. When we carry this out for all δ ∈ ∆(P, λ),

we obtain the desired bijection ∆(P, λ)+ → ∆(P, λ′)+. □

3. Progenerators and their endomorphism algebras

We look in more detail at the structure of the Hecke algebra of a reductive p-adic
group G. In Paragraph 1.8 we surveyed it in terms of harmonic analysis, but that
description does not suffice to say much about the representation theory of H(G).

The Bernstein decomposition (Theorem 1.41) reduces the issue to understanding
each Bernstein block Rep(G)s, so we will focus on one such block. We will study
it by means of a finitely generated projective generator, a progenerator for short.
This strategy is very general, it can be employed whenever one has a ring A and a
progenerator P for Mod(A). The main point is the following result from category
theory:
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Proposition 3.1. [Roc, Theorem 1.8.2.1]
There are equivalences of categories

Mod(A) ←→ EndA(P )−Mod ∼= Mod(EndA(P )op)
M 7→ HomA(P,M)

V ⊗EndA(P ) P 7→ V
.

Here EndA(P )−Mod denotes the category of right EndA(P )-modules. The bimodules
for the Morita equivalence between A and EndA(P )op are P and HomA(P,A).

Progenerators are quite common in the representation theory of reductive p-adic
groups, although sometimes implicitly. Namely, suppose that (K, ρ) is a type for
Rep(G)s, in the sense of Bushnell and Kutzko [BuKu]. Then indGK(ρ) is a progen-
erator of Rep(G)s. Moreover the Hecke algera H(G,K, ρ), as defined in [BuKu,
§2], is the opposite algebra of EndG(ind

G
K(ρ)), and the equivalence of categories

Rep(G)s ∼= Mod(H(G,K, ρ)) from [BuKu, Theorem 4.3] is just an instance of Propo-
sition 3.1.

In this paper we will not use types, because we want to treat all Bernstein blocks,
whereas types are not always available. Whenever one has a type (K, ρ), the algebra
H(G,K, ρ) is Morita equivalent to the G-endomorphism algebra of any other pro-
generator for Rep(G)s, so in that sense the choice of a progenerator does not really
matter.

3.1. The cuspidal case.
Let L = L(F ) be a reductive p-adic group (which in the next paragraphs will be

a Levi subgroup of G). Let σ ∈ Irr(L) be supercuspidal and consider the Bernstein
block Rep(L)sL with sL = [L, σ]L. Recall from Theorem 1.36 that ResLL1σ is a

compact L1-representation. Compact representations are always projective [Ren,
Proposition IV.1.6], because they behave like representations of compact groups.

We note that ResLL1σ has finite length because [L : Z(L)L1] is finite. Let

ΠsL := indLL1(Res
L
L1σ)

be the smooth compact induction, from L1 to L, of σ. Here compact means that
the underlying vector space is

{f : G→ Vσ | f(kl) = σ(k)f(l) for all k ∈ L1, l ∈ L, supp(f) is compact in L/L1}.

Proposition 3.2. (Bernstein, see [Ren, Proposition VI.4.1])
The L-representation ΠsL is a progenerator of Rep(L)sL.

We note that ΠsL is canonical, in the sense that it depends only on [L, σ]L,
or equivalently only on Xnr(L)σ. Thus Propositions 3.1 and 3.2 give a canonical
equivalence of categories

(3.1) Rep(L)[L,σ] ∼= EndL(Π[L,σ])−Mod.

There are isomorphisms of L-representations

ΠsL = indLL1(Res
L
L1σ) ∼= C[L/L1]⊗ σ ∼= O(Xnr(L))⊗ σ,

where L acts diagonally on the tensor products. Since L/L1 is commutative, the
multiplication action of C[L/L1] ∼= O(Xnr(L)) on C[L/L1] is by L-intertwiners. This
gives an embedding

(3.2) O(Xnr(L))→ EndL
(
O(Xnr(L))⊗ σ

) ∼= EndL(ΠsL).
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Recall the finite group Xnr(L, σ) = {χ ∈ Xnr(L) : σ ⊗ χ ∼= σ}. It acts on Xnr(L) by
translations, and there is a homeomorphism

(3.3) Xnr(L)/Xnr(L, σ) −→ Irr(L)sL .

For χ ∈ Xnr(L, σ), the choice of a nonzero element of HomL(σ, σ ⊗ χ) gives rise to
an element Tχ ∈ EndL(ΠsL), which lifts the multiplication action of χ on Xnr(L).
We define a 2-cocycle ♮sL of Xnr(L, σ) by

(3.4) Tχ1Tχ2 = ♮sL(χ1, χ2)Tχ1χ2 .

Theorem 3.3. [Sol9, Proposition 2.2 and (2.25)]
The elements Tχ with χ ∈ Xnr(L, σ) determine an algebra isomorphism

EndL(ΠsL)
∼= O(Xnr(L))⋊C[Xnr(L, σ), ♮sL ].

From Theorem 3.3 one sees that the centre is

(3.5) Z(EndL(ΠsL)
∼= O(Xnr(L))

Xnr(L,σ) = O(Xnr(L)/Xnr(L, σ)) ∼= O(Irr(L)sL).
This is also the centre of the category Rep(L)sL . By Proposition 2.5 there are
equivalences of categories of finite length representations

(3.6) Repfl(L)
sL ∼= EndL(ΠsL)−Modfl ∼= O(Irr(L)sL)−Modfl.

By Proposition 2.5.b the restriction to finite length can be omitted if ♮sL is trivial, but
by (2.11) and Theorem 2.6 it is necessary if ♮sL is nontrivial in H2(Xnr(L, σ),C×).
An example of the latter situation is [Sol9, Example 2.G].

3.2. The non-cuspidal case.
Let P = LUP be a parabolic subgroup of G with Levi factor L. Recall that

s = [L, σ]G and sL = [L, σ]L. The following result of Bernstein is quite deep, in
particular it uses the second adjointness relation (Theorem 1.23).

Proposition 3.4. The G-representation

Πs := IGP (ΠsL) = IGP (indLL1(Res
L
L1σ))

is a progenerator of Rep(G)s. It is canonical, in the sense that up to isomorphism
it depends only s.

From Propositions 3.1 and 3.2 we obtain a canonical equivalence of categories

(3.7) Rep(G)s ∼= EndG(Πs)−Mod.

Example 3.5. Suppose that G is quasi-split and that s = [T, 1]G for a maximal
torus T of G. Then, by [Blo, Théorème 2]

Πs = IGB (indTT 1(triv)) = IGB (C[T/T 1]) ∼= C[G/I]

for an Iwahori subgroup I of G. In this case

EndG(Πs) ∼= EndG(C[G/I]) ∼= H(G, I),

so in words EndG(Πs) is isomorphic to the Iwahori–Hecke algebra of G. It is known
from [IwMa] that H(G, I) has the structure of an affine Hecke algebra. The equiva-
lence between the module category of H(G, I) and the category of Iwahori-spherical
G-representations from [Bor] is a special case of the equivalence obtained from
Propositions 3.1 and 3.2, combined with an isomorphism between H(G, I) and its
opposite algebra.
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However, in general the structure of EndG(Πs) is considerably more involved, and
we will only approach it in several steps. The first observation in this direction is
that (3.2) and the functor IGP provide an embedding

(3.8) O(Xnr(L))→ EndG(Πs).

Recall that

Ws = StabNG(L)/L([L, σ]L) = {w ∈ NG(L) : w · σ ∈ Xnr(L)σ}/L.

The action of NG(L) on Irr(L) induces an action of Ws on Irr(L)sL .

Example 3.6. We consider the special case Ws = {e}, which is very common. Let
π, ρ ∈ Rep(L)sL . Recall that Bernstein’s geometric lemma [Ren, Théorème VI.5.1]
provides a filtration of the L-representation JG

P IGP (π). The condition Ws = {e}
implies that from the irreducible subquotients of this filtration only π itself belongs
to Rep(L)sL . From that and Frobenius reciprocity we obtain

HomG(I
G
P (π), IGP (ρ)) ∼= HomL(J

G
P IGP (π), ρ) ∼= HomL(π, ρ).

Therefore the functor IGP : Rep(L)sL → Rep(G)s is an equivalence of categories. In
particular IGP induces an algebra isomorphism

EndL(Πs)→ EndG(I
G
P (ΠsL)) = EndG(Πs).

This is a very satisfactory outcome, but of course things are more complicated
(and more interesting) when Ws ̸= {e}.

Recall that the Bernstein centre of G [BeDe] is the centre of the category Rep(G).
It can also be expressed in terms of distributions on G [MoTa, Proposition 3.2g].
Some aspects of the Bernstein decomposition involve the Bernstein centre:

Theorem 3.7. [BeDe]
There are natural isomorphisms

Z(Rep(G)s) ∼= Z(EndG(Πs)) ∼= O(Irr(L)sL)Ws = O(Irr(L)sL/Ws).

Recall from Definition 1.31 that W e
s is an extension of Ws by Xnr(L, σ), which

acts on Xnr(L). By construction, the quotient map

Xnr(L)→ Irr(L)sL : χ 7→ σ ⊗ χ

induces a homeomorphism

Xnr(L)/W
e
s → Irr(L)sL/Ws.

Knowing this, Theorem 3.7 says that

(3.9) Z(EndG(Πs)) ∼= O(Xnr(L))
W e

s = O(Xnr(L)/W
e
s ).

As we saw in (1.22) and Theorem 1.42, the group W e
s acts on the family of repre-

sentations IGP (σ ⊗ χ) with χ ∈ Xnr(L), but by operators that depend rationally on
χ and may have poles. Moreover, from (1.23) and (3.4) we see that in general this
is only a projective action of W e

s . Still, from these one can construct, as done in
[Sol9, §4], an embedding

(3.10) C[W e
s , ♮s]→ EndG(Πs)⊗O(Xnr(L)/W e

s
C(Xnr(L)/W

e
s ),

for a suitable 2-cocycle ♮s generalizing (1.23). This and the next result can be
compared with Theorem 2.10.
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Theorem 3.8. [Sol9, Corollary 5.8]
The embeddings (3.8) and (3.10) combine to an algebra isomorphism

EndG(Πs)⊗O(Xnr(L)/W e
s ) C(Xnr(L)/W

e
s )
∼= C(Xnr(L))⋊C[W e

s , ♮s].

In Theorem 3.8 it is necessary to include the quotient field C(Xnr(L)/W
e
s ), unlike

in Theorem 3.3, without that Theorem 3.8 would only hold in special cases. Since
W e

s acts faithfully on Xnr(L), C(Xnr(L)) has dimension |W e
s | over C(Xnr(L)/W

e
s ).

Theorem 3.8 shows that

dimC(Xnr(L)/W e
s ) EndG(Πs)⊗O(Xnr(L)/W e

s ) C(Xnr(L)/W
e
s ) = |W e

s |2.
This can be stated more precisely in terms of central simple algebras. Namely, it
follows from Theorems 2.6 and 3.8 that:

Corollary 3.9. EndG(Πs)⊗O(Xnr(L)/W e
s ) C(Xnr(L)/W

e
s ) is a central simple algebra

over C(Xnr(L)/W
e
s ). It is Morita equivalent to C(Xnr(L))⋊W e

s if and only if ♮s is
trivial in H2(W e

s ,C×).

3.3. Localization on the Bernstein centre.
For any Ws-stable subset U ⊂ Irr(L)sL , one can consider

Rep(G)sU = {π ∈ Rep(G)s : Sc(π′) ∈ (L,U) for all irreducible subquotients π′ of π}.
In view of Theorem 3.7, this category can be obtained from Rep(G)s by imposing
conditions on how the Bernstein centre Z(Rep(G)s) may act on the representations.

Often it is more prudent to restrict to finite length representations. That will be
indicated by a subscript fl, so Repfl(G)sU . When Ui, for i in some (possibly infinite)
index set, are disjoint Ws-invariant subsets of Irr(L)

sL , there is a decomposition

(3.11) Repfl(G)s∪iUi
=

⊕
i
Repfl(G)sUi

,

This does not work with representations of arbitrary length, and it is an important
reason why it is easier to work with representations of finite length.

To proceed, we make the relation between EndG(Πs) and supercuspidal supports
explicit. Let Q = MUQ be a parabolic subgroup of G containing P = LUP , so that

sM = [L, σ]M is defined. Then the functor IGQ provides an embedding

EndM (ΠsM )→ EndG(Πs).

Lemma 3.10. [Sol7, Lemma 5.1]

(a) The equivalences of categories (3.7) are compatible with parabolic induction: they
form a commutative diagram

Rep(G)s ∼= EndG(Πs)−Mod
↑ IGQ ↑ ind

Rep(M)sM ∼= EndM (ΠsM )−Mod
.

(b) The equivalences of categories (3.7) are compatible with parabolic restriction:
they form a commutative diagram

Rep(G)s ∼= EndG(Πs)−Mod
↓ prsM ◦ J

G
Q

↓ Res
Rep(M)sM ∼= EndM (ΠsM )−Mod

.

Here prsM : Rep(M)→ Rep(M)sM is the projection from the Bernstein decom-
position.
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From Lemma 3.10, (3.5) and Theorem 3.7, we see that the equivalence of cate-
gories (3.7) is compatible with supercuspidal supports, in the following sense.

Corollary 3.11. Suppose that π ∈ Irr(G)s has supercuspidal support (L, σ ⊗ χ).
Then HomG(Πs, π) ∈ Irr(EndG(Πs)) has central character Ws(σ⊗χ) ∈ Irr(L)sL/Ws,
or equivalently W e

s χ ∈ Xnr(L)/W
e
s .

Corollary 3.11 enables us to analyse the representation theory of EndG(Πs) by
putting conditions on the supercuspidal supports. For a W e

s -stable subset U ′ ⊂
Xnr(L) we define

EndG(Πs)−ModU ′ = {V ∈ EndG(Πs)−Mod : all O(Xnr(L))-weights of V lie in U ′},
and its subcategory EndG(Πs)−Modfl,U ′ .

If U equals {σ ⊗ χ : χ ∈ U ′}, then (3.7) and Corollary 3.11 provide equivalences
of categories

(3.12) Rep(G)sU
∼= EndG(Πs)−ModU ′ and Repfl(G)sU

∼= EndG(Πs)−Modfl,U ′ .

When U ′ ⊂ Xnr(L) is open (with respect to the Zariski topology or with respect to
the analytic topology), we can analyse EndG(Πs)−Modfl,U ′ by localizing EndG(Πs)
with respect to an ideal of Z(EndG(Πs)) ∼= O(Xnr(L)/W

e
s ) or by involving complex

analytic functions on U ′. For specific U ′, this localization may be Morita equivalent
to a localization of a simpler algebra.

From now we assume

(3.13) σ ∈ Irrcusp(L) is unitary (or equivalently tempered).

By Lemma 1.37, that is no restriction on s or sL. We are interested in the category
Rep(G)s

X+
nr(L)Wsσ

, which will be related to a twisted graded Hecke algebra.

Let X∗(Z◦(L)) be the lattice of F -rational characters Z◦(L) = Z(L)◦ → GL1

and let Φ(G,Z◦(L)) be the set of α ∈ X∗(Z◦(L)) that appear in the adjoint action
of Z◦(L) on the Lie algebra of G. This is not necessarily a root system, but it is
always a generalized root system in the sense of [DiFi].

For a reduced root α ∈ Φ(G,Z◦(L)), let Lα be the reductive group generated by
L and the root subgroups of G associated to the multiples of α. Then L is a maximal
proper Levi subgroup of Lα. We say that α belongs to Φ(G,Z◦(L))σ if, for some

χσ ∈ Hom(L/Z(Lα),R>0) \ {1}, the representation ILα

L(P∩Lα)
(σ ⊗ χσ) is reducible.

By [Sol12, Corollary 1.3 and (1.8)] and [Hei2, Proposition 2.13],

Φ(G,Z◦(L))σ ⊂ X∗(Z◦(L)) is a reduced root system.

For α ∈ Φ(G,Z◦(L))σ ⊂ X∗(Z◦(L)), the above unramified character χσ is unique
up to inversion. It can be captured with one real number qσ,α, as follows. Put
L2
σ =

⋂
χ∈Xnr(L,σ)

kerχ and let h∨α (a version of the coroot α∨) be the generator of

(L2
σ ∩ L1

α)/L
1 ∼= Z from [Sol9, (A.2)]. Then qσ,α ∈ R>1 is the unique number such

that χσ(h
∨
α) ∈ {qσ,α, q−1

σ,α}. For explicit computations of the numbers qσ,α we refer
to [Sol12, Oha].

We introduce the data for our twisted graded Hecke algebra.

• t = Lie(Xnr(L)) = Hom(L,C) ∼= Hom(Z(L),C) ∼= X∗(Z(L))⊗Z C.
• Rσ = {h∨α : α ∈ Φ(G,Z◦(L))σ} ⊂ L2

σ/L
1 is a root system by [Sol9, Propo-

sition 3.1]. The set R+
σ of h∨α for which α appears in LieUP is a positive

system in Rσ.
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• The parameter function kσ : Rσ → R>0 given by kσ(h
∨
α) = log(qσ,α).

• The finite group Ws,σ acts on Rσ. It can be written as

(3.14) Ws,σ = W (Rσ)⋊ Γσ, where Γσ is the stabilizer of R+
σ .

• The 2-cocycle ♮σ given by the multiplication rules for the intertwining opera-
tors in (1.23). It records how much w 7→ I(w,L(P ∩ Lα), σ, χ = 1) deviates
from a group homomorphism. We note that ♮σ depends on a normalization
of these intertwining operators.

Let H(t,Ws,σ, kσ, ♮σ) be the algebra as in Definition 2.9, determined by the above
data.

Example 3.12. Consider G = SL2(F ), the diagonal torus T = L and σ = trivT .
In this setting t = Hom(T,C×) ∼= C, Ws = NG(T )/T ∼= S2 and the group Γσ′ is
trivial for all σ′ ∈ Xnr(T ). For various σ

′, the algebras H(t,Ws,σ′ , kσ′) are:

• H(C, S2, log(qF )) for σ
′ = trivT ,

• H(C, S2, 0) = O(C)⋊ S2 for σ′ ∈ Xnr(T ) quadratic,
• H(C, {e}, 0) = O(C) for other σ′ ∈ Xnr(T ).

For open U ⊂ Xnr(L), let Can(U) be the algebra of complex analytic functions
on U . We define the analytic localization of EndG(Πs) on U as

(3.15) EndG(Πs)⊗O(Xnr(L)) C
an(U).

This is an algebra if U is W e
s -stable.

We note that the map

expσ : t→ Irr(L)sL , x 7→ exp(x)⊗ σ

restricts to a diffeomorphism from tR := X∗(Z◦(L)) to X+
nr(L)σ. Analytic localiza-

tion of EndG(Πs) on a small tabular open neighborhood of X+
nr(L)Ws in Irr(L)sL

can be compared with analytic localization of H(t,Ws,σ, kσ, ♮σ) on a small tubular
open neighborhood Uσ of tR in t, an algebra of the form

(3.16) H(t,Ws,σ, kσ, ♮σ)⊗O(t/Ws,σ) C
an(Uσ)

Ws,σ .

Arguments involving these localizations lead to:

Theorem 3.13. [Sol9, Corollary 8.1]
There are equivalences of categories

Repfl(G)s
X+

nr(L)Wsσ
∼= EndG(Πs)−Modfl,X+

nr(L)Wsσ
∼= H(t,Ws,σ, kσ, ♮σ)−Modfl,tR

such that

(a) Once a 2-cocycle ♮σ has been fixed (by a normalization of the involved intertwi-
ning operators), the equivalences are canonical.

(b) The equivalences preserve temperedness.
(c) π ∈ Irr(G)s

X+
nr(L)Wsσ

is discrete series if and only if the image of π in

Irr
(
H(t,Ws,σ, kσ, ♮σ)

)
is discrete series and rk(Rσ) equals dimF (Z(L)/Z(G)).

(d) The equivalences are compatible with parabolic induction and restriction, in the
same sense as Lemma 3.10.

(e) For π ∈ Irr(G)s
X+

nr(L)Wsσ
with Sc(π) represented by σ ⊗ χ ∈ X+

nr(L)σ, the as-

sociated H(t,Ws,σ, kσ, ♮σ)-module has central character Ws,σ logχ ∈ tR/Ws,σ.
Equivalently, expσ translates central characters into supercuspidal supports.
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Via Lemma 1.11, Repfl(G)s
X+

nr(L)Wsσ
is equivalent to the category of finite length

H(G)s-modules all whose supercuspidal supports lie in X+
nr(L)Wsσ/Ws. Theorem

3.13 is our final answer to the question about the structure of H(G)s and EndG(Πs),
in terms of their module categories.

3.4. The ABPS conjecture.
The big advantage of Theorem 3.13 is that it allows us to study G-representations

via graded Hecke algebras. In particular all the results from Section 2 can now be
applied to Repfl(G)s

X+
nr(L)Wsσ

. Let R(G)s
X+

nr(L)Wsσ
be the Grothendieck group of

Repfl(G)s
X+

nr(L)Wsσ
. From (2.16) and Theorems 2.24, 2.26 and 3.13 we conclude:

Theorem 3.14. Fix a 2-cocycle ♮σ as in Theorem 3.13.

(a) There exist canonical group isomorphisms

R(G)s
X+

nr(L)Wsσ
←→ R(EndG(Πs)

op)X+
nr(L)σ

←→ R
(
H(t,Ws,σ, kσ, ♮

−1
σ )

)
tR
.

These isomorphisms are compatible with parabolic induction and they preserve
temperedness.

(b) Part (a) can be refined canonically to a bijection

Irr(G)s
X+

nr(L)Wsσ
←→ Irr

(
O(t)⋊C[Ws,σ, ♮

−1
σ ]

)
tR
.

It preserves temperedness, but it need not respect parabolic induction or super-
cuspidal supports/central characters.

Next we want to combine instances of Theorem 3.14 for all σ′ = χu ⊗ σ ∈
Irrtemp(L)

sL . Recall from Theorem 3.8 and (2.16) that

EndG(Πs)
op ⊗O(Xnr(L)/W e

s ) C(Xnr(L)/W
e
s )
∼= C(Xnr(L))⋊C[W e

s , ♮
−1
s ].

By [Sol9, Lemma 7.1] and Clifford theory, there are equivalences of categories

(3.17)
O(t)⋊C[Ws,σ′ , ♮σ′ ]−Modfl,tR

∼= O(Xnr(L)⋊C[Ws,σ′ , ♮σ′ ]−Modfl,χuX
+
nr(L)

∼= O(Xnr(L)⋊C[W e
s , ♮s]−Modfl,W e

s χuX
+
nr(L)

.

Theorem 3.15. [Sol11, Theorem 2.5]
Theorem 3.14.a and (3.17) induce a canonical group isomorphism

ζ∨ : R(G)s → R
(
O(Xnr(L))⋊C[W e

s , ♮
−1
s ]

)
with the following properties:

(a) ζ∨ and its inverse preserve temperedness. Moreover ζ∨ sends tempered repre-
sentations to tempered representations (so not to virtual representations).

(b) If χu ∈ Xu
nr(L) and all irreducible subquotients of π ∈ R(G)s have cuspi-

dal support in σ ⊗ W e
s χuX

+
nr(L), then all O(Xnr(L))-weights of ζ∨(π) lie in

W e
s χuX

+
nr(L).

(c) In the setting of (b), suppose that π ∈ Irrtemp(G)s. Then

ζ∨(π) = ind
O(Xnr(L))⋊C[W e

s ,♮
−1
s ]

O(Xnr(L))⋊C[(W e
s )χu ,♮

−1
s ]

(χu ⊗ πχu),

where πχu ∈ Mod− C[(W e
s )χu , ♮

−1
s ] is obtained like in Theorem 2.24.a.

(d) ζ∨ commutes with parabolic induction and with unramified twists, in the sense
that for a parabolic subgroup Q = MUQ ⊃ P and χ ∈ Xnr(M):

ζ∨(IGQ (τ ⊗ χ)) = ind
O(Xnr(L))⋊C[W e

s ,♮
−1
s ]

O(Xnr(L))⋊C[W e
sM

,♮−1
s ]

(ζ∨M (τ)⊗ χ|L).
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We point out that in Theorem 3.15 the canonicity holds after ♮s has been fixed,
the choice of the 2-cocycle ♮s is (in general) not canonical.

Recall from (2.9) that the irreducible representations of twisted crossed product
algebras can be parametrized by twisted extended quotients. Combining Theorems
3.15, 3.14.b and Theorem 2.4.b leads to:

Theorem 3.16. [Sol9, Theorem 9.9]

(a) There exists a family ♮ of 2-cocycles ♮−1
σ (σ ∈ Irrtemp(L)

sL) and bijections

Irr(G)s
X+

nr(L)Wsσ
←→ (tR//Ws,σ)♮−1

σ

Irr(G)s ←→ (Irr(L)sL//Ws)♮
Irrtemp(G)s ←→ (Irrtemp(L)

sL//Ws)♮

(b) For σ′ ∈ X+
nr(L)σ we write ♮σ′ = ♮σ. The bijections from part (a) combine to a

bijection from Irr(G) to the set of G-orbits in{
(L, σ′, ρ) : L ⊂ G Levi subgroup, σ′ ∈ Irrcusp(L), ρ ∈ Irr(C[StabG(L, σ′)/L, ♮−1

σ′ ])
}
.

Theorem 3.16 proves a version of the ABPS conjecture, as formulated in [ABPS2,
§2.3]. This was built upon several earlier versions of the conjecture, starting with
[ABP, Conjecture 1].

Notice that the last space in Theorem 3.16.b projects naturally onto the variety
of supercuspidal supports for G, by forgetting the ρ’s. The fibers of that map are
finite, and parametrized by Irr(C[StabG(L, σ′)/L, ♮−1

σ′ ]). However, like in Theorem
3.14.b, the bijections in Theorem 3.16 do not always translate the supercuspidal
support map for G-representations into the natural projection (L, σ′, ρ) 7→ (L, σ′).
In general it has to be corrected by some element of X+

nr(L), the absolute value of a
Z◦(L)-weight of some discrete series representation of L.

We may regard StabG(L, σ
′)/L as π0(StabG(L, σ

′)), where π0 is meant as algebraic
varieties over F . We can modify the notion of a twisted extended quotient by
replacing stabilizers by component groups of stabilizers. (That does not make a
difference if we divide by finite groups like we did so far.) Let us denote such
twisted extended quotients by //♮. Then Theorem 3.16.b can be reformulated as a
bijection

(3.18) Irr(G)←→
(⊔

L⊂G Levi subgroup
Irrcusp(L)

)
//♮G.

This is a remarkably simple way to parametrize all irreducible smooth G-represen-
tations in terms of the supercuspidal representations of its Levi subgroups.
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Part B. Noncommutative geometry of reductive p-adic groups

4. Hochschild homology for algebras

Hochschild (co)homology, which appeared first in [Hoc], is a (co)homology theory
for associative algebras over commutative rings. (Nowadays there are notions of
Hochschild homology in categorical settings, but they are outside the scope of this
paper.) We focus on algebras over fields, to make the definitions easier.

Let A be a unital algebra over a field k and let Aop be the opposite algebra. Let
M be an A-bimodule, or equivalently a A⊗k A

op-module.

Definition 4.1. Let n ∈ Z≥0. The nth homology of A with coefficients in M is

Hn(A,M) = TorA⊗kA
op

n (A,M).

The n-th Hochschild homology of A is

HHn(A) = Hn(A,A) = TorA⊗kA
op

n (A,A).

One can compute HHn(A) as the homology of an explicit differential complex
(A⊗m, dm)∞m=1 [Lod, §1.1]. This shows that HHn is a functor from unital k-algebras
to k-vector spaces. We abbreviate

HH∗(A) =
⊕∞

n=0
HHn(A).

There are two good ways to generalize Definition 4.1 to non-unital algebras.

• Assume that for every finite set S ⊂ A there exists an idempotent eS ∈ A
such that eSa = a = seS for all a ∈ S. Such an algebra is called locally unital.
For locally unital algebras we can still use Definition 4.1, without significant
changes. This will be useful for Hecke algebras of reductive p-adic groups.
• Let A+ be the vector space A⊕ k with multiplication

(4.1) (a1, k1)(a2, k2) = (a1a2 + k1a2 + k2a1, k1k2).

This algebra has unit (0, 1), contains A as an ideal and is called the unitiza-
tion of A. We note that A 7→ A+ is a functor. We define

HHn(A) = coker(HHn(k)→ HHn(A+)),

where the map is induced by the inclusion k → A+.

4.1. Basic properties of HH∗.
In this paragraph A is a locally unital algebra and M is an A-bimodule.

1. Degree zero. One can compute the zeroth Hochschild homology groups
directly from the definition:

H0(A,M) = A⊗A⊗kAop M = M/[M,A],

where [M,A] ⊂M is the k-span of {ma− am : m ∈M,a ∈ A}. In particular

HH0(A) = A/[A,A],

a vector space known as the cocenter of A.
Let Rf (A) be the Grothendieck group of the category of finite dimensional A-

representations. There is a natural pairing

HH0(A)×Rf (A) → k
(a, π) 7→ trπ(a)

.
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This is the main use of Hochschild homology in representation theory.

2. HH∗ as derived functor. Let A ← P∗ be a projective A ⊗k Aop-module
resolution. By Definition 4.1

(4.2) Hn(A,M) = Hn(P∗ ⊗A⊗kAop M).

For example, if A = k, then we can take the resolution k ← P0 = k ← P1 = 0. With
that we find

(4.3) HHn(k) = Hn(P0 ← 0) =

{
k n = 0

0 n > 0
.

By 1. above, the Hochschild homology functors HHn can be regarded as derived
functors of the cocenter functor. Loosely speaking, that means that HH∗ is the uni-
versal derived functor with the tracial property that it kills all commutators. Thus
HH∗(A) is a rather subtle invariant of A, which contains a lot of information. On
the other hand, it is often quite difficult to determine the Hochschild homology of
an algebra.

3. Additivity. For another locally unital algebra B, there is a natural isomor-
phism [Lod, Theorem 1.2.15]

HHn(A⊕B) ∼= HHn(A)⊕HHn(B).

4. Continuity. Consider a direct limit of locally unital algebras limiAi. The
properties of Tor yield a natural isomorphism

HHn(limiAi) ∼= limiHHn(Ai).

5. Module structure over the centre. When A is unital, H∗(A,M) and
HHn(A) are naturally modules over the centre Z(A). This follows for instance from
the Z(A)-module structure of P∗ ⊗A⊗kAop M in (4.2).

6. Morita invariance. The Hochschild homology of A depends only on the
category of left A-modules. More precisely, suppose we have an equivalence of
categories Mod(A)

∼−→ Mod(B). Then A and B are Morita equivalent and there
exist projective bimodules P and Q implementing the equivalence of categories.
These also yield an equivalence of categories

Mod(A⊗k A
op)

∼−→ Mod(B ⊗k B
op)

M 7→ P ⊗A M ⊗A Q
,

which sends A to P ⊗A Q ∼= B. This induces an isomorphism

(4.4) HHn(A)
∼−→ HHn(B),

see [Lod, Theorem 1.2.7]. If A is unital, then B is naturally a Z(A)-algebra and
(4.4) is Z(A)-linear.
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Example 4.2. Let Γ be a finite group and consider A = C[Γ]. With additivity,
Morita invariance and (4.3) we compute

HHn(C[Γ]) ∼= HHn

(⊕
π∈Irr(Γ)

EndC(Vπ)
) ∼= ⊕

π∈Irr(Γ)
HHn

(
EndC(Vπ)

)
∼=

⊕
π∈Irr(Γ)

HHn(C) ∼=

{⊕
π∈Irr(Γ)C n = 0

0 n > 0
.

More concisely: HH0(C[Γ]) ∼= Z(C[Γ]) and HHn(C[Γ]) = 0 for n > 0. The Z(A)-
module structure is just multiplication.

7. Localization. We suppose that A is unital. Let S ⊂ Z(A) be subset which is
closed under multiplication, and contains 1 but not 0. Recall that the localization
of A with respect to S is

S−1A = {s−1a : s ∈ S, a ∈ A},

where s−1a means (s−1, a) modulo the equivalence relation (s−1
1 s2, b) ∼ (s−1

1 , s2b)
for s1, s2 ∈ S and b ∈ A. The operations in S−1A are like in the quotient field
of a domain. Then S−1A is a k-algebra and S−1M is an S−1A-bimodule. Since
localization is an exact functor, there are natural isomorphisms [Lod, Proposition
1.1.17]

(4.5)
S−1Hn(A,M) ∼= Hn(S

−1A,S−1M),

S−1HHn(A) ∼= HHn(S
−1A).

This can be used to reduce the determination of HH∗(A) to a local problem on the
spectrum of Z(A).

4.2. Hochschild homology of some commutative algebras.
We start with an example that shows very regular behaviour.

Example 4.3. Take A = k[x], so that A ⊗k Aop ∼= k[x, y]. There is a projective
bimodule resolution

k[x, y]
mod (x−y)←−−−−−−−− P0 = k[x, y]

mult x−y←−−−−−− P1 = k[x, y]← P2 = 0.

With (4.2) we find

HHn(k[x]) = Hn

(
P∗ ⊗k[x,y] k[x]

)
= Hn

(
k[x]

0←− k[x]
)
=

{
k[x] n = 0, 1

0 n > 1

However, in general the Hochschild homology of A may be nonzero in degrees far
above the Krull dimension of A.

Example 4.4. Consider B = k[x]/(x2) and the B-bimodules Pn = k[x, y]/(x2, y2) ∼=
B ⊗k B

op for all n ≥ 0. They form a projective resolution

B
mod (x−y)←−−−−−−−− P0

mult x−y←−−−−−− P1
mult x+y←−−−−−− P2

mult x−y←−−−−−− P3
mult x+y←−−−−−− · · ·

We compute, assuming that the characteristic of k is not 2:

HHn(B) = Hn

(
B

0←− B
2x←− B

0←− B
2x←− · · ·

)
=


k[x]/(x2) n = 0

k[x]/(x) = k n odd

xk[x]/(x2) = kx n > 0 even

.
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The difference between Examples (4.3) and (4.4) is that A = k[x] is the coordinate
ring of a non-singular algebraic variety, while B = k[x]/(x2) is not reduced. Example
(4.3) is a simple case of the Hochschild–Kostant–Rosenberg theorem:

Theorem 4.5. [HKR]
Let V be a nonsingular affine variety over an algebraically closed field k. Let O(V )
be the k-algebra of regular functions on V and let Ωn(V ) be the O(V )-module of
differential n-forms on V .

There is a natural isomorphism of O(V )-modules HHn(O(V )) ∼= Ωn(V ).

Theorem 4.5 provides an interpretation of HH∗(A): it is a kind of differential
forms on Irr(A). For commutative algebras that can be made quite precise [Lod,
§1.3], while for non-commutative algebras it means that HH∗(A) can be regarded
as some ”non-commutative differential forms”. However, this interpretation only
applies well to nice algebras, for Example 4.3 shows that HH∗(A) is very sensitive
to changes like non-reducedness.

4.3. Hochschild homology of finite type algebras.
Besides commutative algebras, there are some classes of algebras which are close

to commutative and whose Hochschild homology can be computed reasonably well.
Let V be a complex affine variety. Recall that an O(V )-algebra is a C-algebra A

with an algebra homomorphism from O(V ) to the centre of the multiplier algebra
of A. In other words, O(V ) acts on A and

f(a1a2) = f(a1)a2 = a1f(a2) for all f ∈ O(V ), ai ∈ A.

For any unital O(V )-algebra A, the action of O(V ) comes from an algebra homo-
morphism O(V )→ Z(A). If B is a nonunital O(V )-algebra, then B⊕O(V ) has the
structure of a unital O(V )-algebra, like B+ in (4.1).

Definition 4.6. We say that an O(V )-algebra A has finite type if A has finite
rank as O(V )-module. An arbitrary C-algebra has finite type if it is a finite type
O(V )-algebra for some complex affine variety V .

Example 4.7. Mn(O(V )) is a finite type O(V )-algebra.
LetK ∈ CO(G) and let s = [L, σ]G. By Theorem 1.42, the unital algebraH(G,K)s

from (1.35) has finite rank over

O(Xnr(L)/W
e
s )
∼= O(Irr(L)sL) ∼= Z(Rep(G)s).

The algebra H(G,K) is a finite type O(V )-algebra for V = ⊔s Irr(L)sL/Ws, where s
runs over the finite subset of B(G) such that H(G,K)s is nonzero.

Standard algebraic techniques like those described in Paragraph 4.1 can be used
to study Hochschild homology of finite type algebras, and to some extent reduce it
to the case of commutative algebras [KNS, §2–3]. If A is a unital finite type algebra
and n ∈ Z≥0, then HHn(A) is an O(V )-module of finite rank.

Consider a non-singular affine C-variety V , and let Γ be a finite group acting on
V by automorphisms. Brylinski [Bry] and Nistor [Nis] generalized the Hochschild–
Kostant–Rosenberg theorem to the crossed product O(V )⋊ Γ = O(V )⋊C[Γ] from
Paragraph 2.1.

More generally we may involve a 2-cocycle ♮ : Γ × Γ → C×. By Lemma 2.3, the
twisted crossed product O(V ) ⋊ C[Γ, ♮], is a finite type O(V/Γ)-algebra. We recall
the map ♮γ : Γ→ C× from (2.4).
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Theorem 4.8. [Sol10, Theorem 1.2 and (1.17)]
There exists an isomorphism of O(V )Γ-modules

HHn

(
O(V )⋊C[Γ, ♮]

) ∼= ⊕
γ∈Γ/conjugacy

(Ωn(V γ)⊗ ♮γ)ZΓ(γ) ∼=
(⊕

γ∈Γ
Ωn(V γ)⊗ ♮γ

)Γ
.

This generalizes (and relies on) the aforementioned result of Brylinski–Nistor,
which can be recovered by setting ♮ = 1. In view of Theorems 2.4, 4.5 and 4.8,

we may regard
(⊕

γ∈ΓΩ
n(V γ)⊗ ♮γ

)Γ
as a kind of differential forms on the twisted

extended quotient (V//Γ)♮.

4.4. Hochschild homology of graded Hecke algebras.
Let H(t,W, k) be a graded Hecke algebra, as in (2.14), and let H(t,WΓ, k, ♮) =

H(t,W, k) ⋊ C[Γ, ♮] be a twisted graded Hecke algebra, as in Definition 2.9. Recall
from Theorem 2.10 that the algebras H(t,WΓ, k′, ♮) with varying parameters k′ :
Φ → C are all very similar, and that for k′ = 0 we recover the simpler algebra
O(t)⋊C[WΓ, ♮]. That can also be seen in Hochschild homology:

Theorem 4.9. [Sol3, Theorem 3.4] and [Sol10, (2.5)–(2.6)]
There exist isomorphisms of vector spaces

HH∗(H(t,W, k)) ∼= HH∗(H(t,W, 0)) ∼=
(⊕

w∈W Ω∗(tw)
)W

HH∗(H(t,WΓ, k, ♮)) ∼= HH∗(H(t,WΓ, 0, ♮)) ∼=
(⊕

w∈WΓΩ
∗(tw)⊗ ♮w

)WΓ

Theorem 4.9 comes from the filtration of H(t,WΓ, k, ♮) by degrees, and from an
associated spectral sequence that converges to HH∗(H(t,WΓ, k, ♮)). We point out
that the isomorphisms in Theorem 4.9 are usually not linear over O(t)W or O(t)WΓ.

From now on we assume that k is real-valued, like in Paragraph 2.4. Then we
have the natural bijection

ζ0 : R(H(t,WΓ, k, ♮))→ R(O(t)⋊C[WΓ, ♮])

from Theorems 2.24 and 2.26.

Theorem 4.10. [Sol10, Corollary 2.10 and Proposition 2.11]
ζ0 induces a natural C-linear bijection

HH∗(ζ0) : HH∗(O(t)⋊C[WΓ, ♮])→ HH∗(H(t,WΓ, k, ♮)).

The map HH∗(ζ0) can be characterized as follows. For any tempered σ ∈ Irr(HP )
there is an algebraic family of H-representations

FP,σ =
{
indHHP (σ ⊗ Cλ) : λ ∈ P∨⊥ ⊂ t

}
.

This family gives rise to an algebra homomorphism

FP,σ : H = H(t,WΓ, k, ♮)→ O(P∨⊥)⊗ EndC
(
indHHP (σ ⊗ C0)

)
.

By Morita invariance and Theorem 4.5 we have

HH∗
(
O(P∨⊥)⊗ EndC

(
indHHP (σ ⊗ C0)

)) ∼= HH∗
(
O(P∨⊥)

) ∼= Ω∗(P∨⊥).

The same can be done with FP,ζ0(σ), and in Theorem 4.10 there is an equality

(4.6) HH∗(FP,σ)◦HH∗(ζ0) = HH∗(FP,ζ0(σ)) : HH∗(O(t)⋊C[WΓ, ♮])→ Ω∗(P∨⊥).

Conversely, imposing (4.6) for all families of the form FP,σ determines HH∗(ζ0).
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Example 4.11. Consider t = C and R = {±1}. By Theorem 4.9

HH∗(H(t,W, k)) ∼= HH∗(O(C)⋊ S2)) ∼= Ω∗(C)S2 ⊕ Ω∗({0}) =


C[z2]⊕ C n = 0

C[z2]z dz n = 1

0 n > 1

.

With Theorem 4.10 and (4.6) we can make this more explicit. The first family of
representations to consider comes from P = ∅ and the module C0 of H∅ = O(t).
Then ζ0(C0) = C0 and

F∅,C0
: HH∗(O(C)⋊ S2)→ Ω∗(C)

can be identified with the projection Ω∗(C)S2 ⊕Ω∗({0})→ Ω∗(C)S2 . The Steinberg
representation of H(t,W, k) forms another family of representations. It satisfies
ζ0(St) = signS2

⊗ C0 and HH∗(ζ0(St)) identifies with the projection Ω∗(C)S2 ⊕
Ω∗({0})→ Ω∗({0}). Hence

(4.7) HH∗(F∅,C0
)⊕HH∗(ζ0(St)) : HHn(O(C)⋊ S2)→ Ω∗(C)S2 ⊕ Ω∗({0})

is a C-linear bijection. With (4.6) it follows that

(4.8) HH∗(F∅,C0
)⊕HH∗(St) : HHn(H(t,W, k))→ Ω∗(C)S2 ⊕ Ω∗({0})

is also a C-linear bijection. Via (4.7) and (4.8), HHn(ζ0) corresponds to the iden-
tity on Ω∗(C)S2 ⊕ Ω∗({0}). The summand C ∼= Ω∗({0}) in HH∗(H(t,W, k)) has
O(C)S2-weight ±k because it comes from St, while Ω∗({0}) has O(C)S2-weight 0 in
HH∗(O(C)⋊ S2). Therefore HHn(ζ0) is not O(C)S2-linear.

4.5. HH∗(H(G)): cuspidal Bernstein blocks.
Let G be a reductive p-adic group and let H(G) be its Hecke algebra, as in Section

1. Our goal is to compute HH∗(H(G)) in terms of the representation theory of G.
By Proposition 1.3.b H(G) has local units, so in relation to Hochschild homology
we may treat it as a unital algebra. Recall that by the Bernstein decomposition
(Theorem 1.41) H(G) =

⊕
s∈B(G)H(G)s. By the additivity and the continuity of

HH∗:

HH∗(H(G)) = HH∗

(
lim

S⊂B(G),S finite

⊕
s∈S
H(G)s

)
∼= lim

S⊂B(G),S finite
HH∗

(⊕
s∈S
H(G)s

)
∼= lim

S⊂B(G),S finite

⊕
s∈S

HH∗(H(G)s) =
⊕

s∈B(G)
HH∗(H(G)s).(4.9)

This means that to compute HHn(H(G)), it suffices to classify B(G) and to de-
termine HH∗(H(G)s) for each Bernstein block Rep(G)s of Rep(G). We will treat
B(G) as a black box and we will focus on HH∗(H(G)s) for one arbitrary s ∈ B(G).
We write s = [L, σ]G and let Πs = IGP (indLL1(Res

L
L1σ)) be the projective generator of

Rep(G)s = Mod(H(G)s) from Paragraph 3.2. By Morita invariance, the equivalence
of categories (3.7) induces a natural isomorphism

(4.10) HH∗(H(G)s) ∼= HH∗(EndG(Πs)
op).

In the cuspidal cases this quickly leads to a nice description.

Proposition 4.12. Suppose that s is cuspidal, that is, L = G. There is a natural
isomorphism of O(Irr(G)s)-modules

HHn(H(G)s) ∼= Ωn(Irr(G)s).
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Proof. From Theorem 3.3 and (2.16) we know that

EndG(Πs)
op ∼= O(Xnr(G))⋊C[Xnr(G, σ), ♮−1

s ].

Then Theorem 4.8 says that

(4.11) HHn

(
EndG(Πs)

op
) ∼= (⊕

χ∈Xnr(G,σ)
Ωn(Xnr(G)χ)⊗ (♮−1

s )χ
)Xnr(G,σ)

.

Here Xnr(G, σ) acts on Xnr(G) by multiplication, so Xnr(G)χ is empty unless χ = 1.

As (♮−1
s )1 = 1, the right hand side of (4.11) reduces to Ωn(Xnr(G))Xnr(G,σ). Then

(4.11) (from right to left) can be written as

(4.12) Ωn(Xnr(G))Xnr(G,σ) → HHn(Xnr(G))→ HHn(EndG(Π
op
s ),

where the first arrow comes from Theorem 4.5 and is natural, while the second
arrow is induced by the inclusion O(Xnr(G))→ EndG(Π

op
s ). By (3.2) that inclusion

is natural once σ ∈ Irr(G)s has been chosen.
The action of Xnr(G, σ) on Xnr(G) is free, and Xnr(G)/Xnr(G, σ) ∼= Irr(G)s by

(3.3), so

(4.13) Ωn(Xnr(G))Xnr(G,σ) = Ωn(Xnr(G)/Xnr(G, σ)) ∼= Ωn(Irr(G)s).

The composition of (4.10), (4.11) and (4.13) is the required isomorphism

(4.14) HHn(H(G)s)
∼−→ Ωn(Irr(G)s).

The isomorphism (4.13) depends only on the choice of σ in Irr(G)s. That cancels out
with the same choice in (4.12), so the composition of (4.11) and (4.13) is natural.
As (4.10) is also natural, so is (4.14).

Recall from (3.1) that

(4.15) Z
(
EndG(Πs)

op
)
= Z(EndG(Πs)) ∼= O(Xnr(G))Xnr(G,σ) ∼= O(Irr(G)s).

We saw in (4.4) that (4.10) intertwines the actions of (4.15), and by Theorem 4.8
the same holds for (4.11). Further (4.13) is by definition O(Irr(G)s)-linear, and we
conclude that (4.14) is O(Irr(G)s)-linear as well. □

4.6. HH∗(H(G)): non-cuspidal Bernstein blocks.
In this paragraph s = [L, σ]G with L ̸= G. We want to determine HH∗(H(G)s),

where Mod(H(G)s) is a non-cuspidal Bernstein block of Rep(G). It is isomorphic to
HH∗(EndG(Πs)

op), but we do not understand EndG(Πs) well enough to handle this
directly. Instead, we will approach it via localization on the Bernstein centre, as in
Paragraph 3.3. Recall from Theorem 3.7 that the Bernstein centre for H(G)s is

Z(Rep(G)s) ∼= O(Irr(L)sL)Ws ∼= O(Xnr(L)/W
e
s ).

We may and will assume that σ ∈ Irrcusp(L)
sL is tempered. It is known from

[Sol9, §7] that the “analytic localization” of EndG(Πs) at X
+
nr(L)Wsσ is isomorphic

to the “analytic localization” at tR of a twisted graded Hecke algebra, denoted
H(t,Ws,σ, kσ, ♮σ) in Theorem 3.13. However, since X+

nr(L)Wsσ is not Zariski-closed
in Irr(L)sL/Ws, we cannot localize there by means of subsets of Z(Rep(G)s).

The best we can achieve in that way is: for any χ ∈ X+
nr(L), take

Sχ = {s ∈ Z(Rep(G)s) : s(σ ⊗ χ) ̸= 0}
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and consider S−1
χ HH∗(H(G)s). This can be related to the localization of

H(t,Ws,σ, kσ, ♮σ) with respect to a maximal ideal Ilogχ of its centre. By (4.5) and
Theorem 3.13, that relates

S−1
χ HH∗(H(G)s) ∼= HH∗

(
S−1
χ EndG(Πs)

op
)

to a localization of HH∗
(
H(t,Ws,σ, kσ, ♮σ)

)
at Ilogχ. That provides a description of

the localization of HH∗(H(G)s) at one arbitrary point of Irr(L)sL/Ws.
Thus HH∗(H(G)s) gives a sheaf over Irr

(
Z(Rep(G)s)

)
, whose stalks we under-

stand. In [Sol11], this entire sheaf is reconstructed by a convoluted glueing pro-
cedure. The main tools for that are algebraic families of G-representations like in
(4.6).

Let M ⊂ G be a Levi subgroup containing L, and let (τ, Vτ ) ∈ Irrtemp(M)sM .
This gives a family of representations

FM,τ =
{
IGPM (τ ⊗ χM ) : χM ∈ Xnr(M)

}
and a homomorphism of O(Irr(L)s)Ws-algebras

(4.16) FM,τ : H(G)s → O(Xnr(M))⊗ End∞C (IGPM (Vτ )).

By the Morita equivalence of C with End∞C (IGPM (Vτ )), the smooth part of the G×G-
representation EndC(I

G
PM (Vτ )), FM,τ induces a O(Irr(L)sL)Ws-linear map

(4.17) HH∗(FM,τ ) : HH∗(H(G)s)→ HH∗
(
O(Xnr(M))

) ∼= Ω∗(Xnr(M)).

Applying Theorem 3.15 to FM,τ yields a family of O(Xnr(L))⋊C[W e
s , ♮

−1
s ]-modules

FM,ζ∨M (τ) =
{
ind

O(Xnr(L))⋊C[W e
s ,♮

−1
s ]

O(Xnr(L))⋊C[W e
sM

,♮−1
s ]

(ζ∨M (τ)⊗ χM ) : χM ∈ Xnr(M)
}
.

As in (4.17), this induces a O(Xnr(L))
W e

s -linear map

HH∗(FM,ζ∨M (τ)) : HH∗
(
O(Xnr(L))⋊C[W e

s , ♮
−1
s ]

)
→ HH∗

(
O(Xnr(M))

)
.

Theorem 4.13. [Sol11, Theorem 2.14]
There exists a unique C-linear bijection

HHn(ζ
∨) : HH∗

(
O(Xnr(L))⋊C[W e

s , ♮
−1
s ]

)
→ HHn(H(G)s)

such that, for all families FM,τ as above,

HHn(FM,τ ) ◦HHn(ζ
∨) = HHn

(
FM,ζ∨M (τ)

)
.

In generalHHn(ζ
∨) does not respect the actions ofO(Xnr(L))

W e
s ∼= O(Irr(L)sL)Ws ,

but it can be described precisely how it deviates from O(Irr(L)sL)Ws-linearity [Sol11,
Theorem B]. On the part of HHn(H(G)s) that comes from Irrtemp(G)[M,δ] with

[M, δ]G ∈ ∆(G, s), the deviation is given by an element rδ ∈ X+
nr(M) such that δ is

a constituent of IGP (σ′ ⊗ rδ) for a unitary σ′ ∈ Xnr(L)σ.
From Theorems 4.8 and 4.13 we obtain a C-linear bijection

(4.18) HHn(H(G)s)→
(⊕

w∈W e
s

Ωn(Xnr(L)
w ⊗ (♮−1

s )w
)W e

s
.

This map can also be constructed via families of (virtual) G-representations, see
[Sol11, Theorem 2.13.b].
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Example 4.14. We consider G = SL2(F ) and s = [T, triv]G. Then W e
s = S2, ♮s = 1

and Theorem 4.13 says that

HHn(H(G)s) ∼= HH∗(O(Xnr(T ))⋊ S2).

We use three families of representations to construct this isomorphism:

FT,1 = {IGB (χ) : χ ∈ Xnr(T )},

FG,St = {St} and FG,2 = {π+ − π−}, where IGB (χ−) = π+ ⊕ π− for the unique

χ− ∈ Xnr(T ) of order two. These induce O(Xnr(T ))
S2-linear maps

HHn(FT,1) : HHn(H(G)s)→ HHn

(
O(Xnr(T ))⊗ End∞C (IGB (triv))

) ∼= Ωn(Xnr(T )),

HHn(FG,St) : HHn(H(G)s)→ HHn(End
∞
C (VSt)) ∼= Ωn({St}),

HHn(FG,2) = HHn(π+)−HHn(π−) : HHn(H(G)s)→ HHn(O({χ−})).

The sum of the three maps is an isomorphism of O(Xnr(T ))
S2-modules

(4.19) HHn(H(G)s)→ Ωn(Xnr(T ))
S2 ⊕ Ωn({St})⊕ Ωn({χ−}).

The right hand side of (4.19) is isomorphic to

(4.20) HHn(O(T )⋊ S2) ∼=
(
Ωn(Xnr(T ))⊕ Ωn({triv})⊕ Ωn({χ−})

)S2 ,

and the canonical map from (4.19) to (4.20) is almost linear over O(Xnr(T ))
S2 ∼=

Z(Rep(G)s). The only deviation fromO(Xnr(T ))
S2-linearity is that the Z(Rep(G)s)-

character of St does not agree with triv ∈ Xnr(T )/S2.

5. Hochschild homology for topological algebras

We would like to compute the Hochschild homology of topological algebras ap-
pearing in the representation theory of p-adic groups, like C∞(X)⋊Γ or S(G). The
definition of Hochschild homology in Section 4 can be applied to any algebra, so in
particular to C∞(X) or C(X) for a smooth manifold X. However, that does not
give interesting results, because the functor HH∗ from Definition 4.1 does not take
the topology of an algebra into account. The best way to improve that is by using
a topological tensor product.

As is common in noncommutative geometry, we will work mostly with Fréchet
algebras. For later use we define precisely which algebras we mean by that.

Definition 5.1. A Fréchet algebra is a C-algebra A such that:

• A is a Fréchet space,
• the topology on A can be defined by a countable family of seminorms p which
are submultiplicative: p(ab) ≤ p(a)p(b) for all a, b ∈ A.

The submultiplicativity implies that for any Fréchet algebra A the multiplication
map A × A → A is continuous. The class of Fréchet algebras contains all Banach
algebras and spaces of smooth functions C∞(X).

For two Fréchet spaces V and W , we denote their completed projective tensor
product by V ⊗̂W . This is a completion of V ⊗W and a Fréchet space, with the
following universal property: for any Fréchet space Z there is a natural bijection
between

• the set of continuous C-linear maps from V ⊗̂W to Z,
• the set of continuous C-bilinear maps from V ×W to Z.
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Example 5.2. For two smooth manifolds X and Y , there is an isomorphism of
Fréchet spaces

C∞(X)⊗̂C∞(Y ) ∼= C∞(X × Y ).

For a Fréchet algebra A, there is also a notion of the completed projective tensor
product of A-modules. Let V be a right Fréchet A-module and let W be a left
Fréchet A-module. Then V ⊗̂AW is a completion of V ⊗A W which, like V ⊗̂W , has
a universal property with respect to A-balanced C-bilinear continuous maps from
V ×W to a Fréchet space Z. Concretely, this works out to

V ⊗̂AW = V ⊗̂W
/
span{va⊗ w − v ⊗ aw : v ∈ V, a ∈ A,w ∈W},

where the bar means closure.
To define Hochschild homology for Fréchet algebras one needs homological algebra

in a topological setting, for which we refer to [Tay]. For Fréchet algebras we will
always do that with respect to ⊗̂, and we often suppress that from the notations.

Definition 5.3. Let A be a unital Fréchet algebra. For n ∈ Z≥0, Tor
A
n denotes the

n-th derived functor of ⊗̂A. The n-th Hochschild homology of A is

HHn(A) = HHn(A, ⊗̂) = TorA⊗̂Aop

n (A,A).

For a possibly non-unital Fréchet algebra B we put

HHn(B) = coker
(
HHn(C)→ HHn(B+)

)
.

Each HHn is a functor from Fréchet spaces to topological vector spaces. These
functors share several properties with their purely algebraic counterparts:

• One can computeHH∗(A) as the homology of an explicit differential complex

(A⊗̂m, dm).

• In degree zero the definition shows that HH0(A) = A/[A,A].
• Additivity holds for unital Fréchet algebras.
• HHn(A) has the structure of a Z(A)-module.
• Morita invariance holds for unital Fréchet algebras.

Continuity of HHn(?, ⊗̂) is problematic, because a direct limit of Fréchet algebras
is often not a Fréchet space.

We point out that Hochschild homology works badly for Banach algebras. Con-
sider a commutative Banach algebra B, for instance C(Y ) for a compact Hausdorff
space Y . Then HH0(B, ⊗̂) = B and

(5.1) HHn(B, ⊗̂) = 0 for n ∈ Z>0.

In fact (5.1) also holds for large classes of noncommutative Banach algebras [Joh].
Roughly speaking Hochschild homology detects some differentiable structure, and
Banach algebras are too complete for that.

5.1. Comparison between algebraic and topological settings.
For a smooth manifold X, we write Ωn

sm(X) for the space of smooth differential
n-forms on X. The following version of the Hochschild–Kostant–Rosenberg theorem
(Theorem 4.5) was discovered by Connes, in the case of compact manifolds [Con].

Theorem 5.4. [Tel]
There is a natural isomorphism of Fréchet C∞(X)-modules

HHn(C
∞(X)) ∼= Ωn

sm(X).
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Let Γ be a finite group acting on X by diffeomorphisms, and let ♮ : Γ× Γ→ C×

by a 2-cocycle. Then we can form the crossed product C∞(X)⋊ Γ and the twisted
crossed product C∞(X)⋊ C[Γ, ♮]. Like in the algebraic setting, HHn(C

∞(X)⋊ Γ)
was computed by Brylinski [Bry]. That can be generalized to a topological version
of Theorem 4.8:

Theorem 5.5. [Sol11, Proposition 3.12]
There exists an isomorphism of Fréchet C∞(X)Γ-modules

HHn(C
∞(X)⋊C[Γ, ♮]) ∼=

(⊕
γ∈Γ

Ωn
sm(Xγ)⊗ ♮γ

)Γ
.

From on the one hand Theorems 4.5 and 4.8 and on the other hand Theorems 5.7
and 5.4, we see that there is a clear analogy between HHn in an algebro-geometric
setting and HHn in a differential geometric setting. This can be made precise for
larger classes of (noncommutative) algebras.

Let V be a complex affine variety and let X be a real analytic manifold which
is contained and Zariski-dense in V . Then O(V ) embeds in C∞(X) and C∞(X) is
a O(V )-module (usually of infinite rank). Assume that a finite group Γ acts on V
by automorphisms of algebraic varieties, and that Γ stabilizes X. Then X/Γ is an
orbifold and C∞(X)Γ is (by definition) the ring of smooth functions on X/Γ.

Let A be a finite type O(V )Γ-algebra, as in Definition 4.6. The algebra

C∞(X)Γ ⊗O(V )Γ A

has finite rank over C∞(X)Γ, and by [KaSo, Lemma 1.3] it is a Fréchet algebra.

Example 5.6. The crossed product O(V )⋊ Γ is a finite type O(V/Γ)-algebra and

C∞(X/Γ)⊗O(V/Γ) O(V )⋊ Γ = C∞(X)⋊ Γ.

Theorem 5.7. [KaSo, Theorems C and D]
Let V,X,Γ, A be as above and assume that Tx(X)⊗R C = Tx(V ) for all x ∈ X.

(a) C∞(X)Γ is flat over O(V )Γ.
(b) There is an isomorphism of Fréchet C∞(X)Γ-modules

HHn

(
C∞(X)Γ ⊗O(V )Γ A

) ∼= C∞(X)Γ ⊗O(V )Γ HHn(A).

One can recover Theorems 5.4 and 5.5 from Theorems 4.5 and 4.8 by applying
Theorem 5.7, see [KaSo, §4]. In a similar way, Theorem 5.7 will help us to determine
HHn(S(G,K)d) for some d ∈ ∆(G).

5.2. Hochschild homology of S(G).
Let G be a reductive p-adic group and let S(G) be its Harish-Chandra–Schwartz

algebra, as in Definition 1.6. We want to describe its Hochschild homology in terms
of representation theory, like we did for HH∗(H(G)) in Paragraphs 4.5 and 4.6.

However, since S(G) is not a Fréchet space, Definition 5.3 will probably produce
suboptimal results. The best solution for that technical problem is to consider
S(G) as a bornological algebra [Mey1] and to use Hochschild homology based on
the completed bornological tensor product ⊗̂b [Mey2, Chapter I]. This fits with
Definition 5.3, because for Fréchet spaces ⊗̂b and ⊗̂ agree [Mey2, Theorem I.87].
The functor HH∗(?, ⊗̂b) enjoys continuity properties for strict inductive limits of
Fréchet algebras, which we state only in two concrete cases.
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Theorem 5.8. [BrPl, Theorem 2] and [Mey2, Theorem I.93]
Let (Km)∞m=1 be as in Theorem 1.45 and let s ∈ B(G). There are natural isomor-
phisms of topological vector spaces

HHn(S(G), ⊗̂b) = HHn

(
lim

m→∞
S(G,Km), ⊗̂b

) ∼= lim
m→∞

HHn(S(G,Km)),

HHn(S(G)s, ⊗̂b) = HHn

(
lim

m→∞
S(G,Km)s, ⊗̂b

) ∼= lim
m→∞

HHn(S(G,Km)s).

For each s ∈ B(G) we pick m(s) ∈ Z>0 such that s ∈ B(G,Km(s)), and we write
Ks = Km(s). By Proposition 1.47.a all the spaces HHn(S(G,Km)s) with m ≥ m(s)
are isomorphic. From Theorem 5.8, Corollary 1.46 and Proposition 1.47.b we obtain

HHn(S(G), ⊗̂b) ∼= lim
m→∞

HHn

(⊕
s∈B(G,Km)

S(G,Km)s
)

∼= lim
m→∞

⊕
s∈B(G,Km)

HHn

(
S(G,Km)s

)
(5.2)

∼= lim
m→∞

⊕
s∈B(G,Km)

HHn

(
S(G)s, ⊗̂b

)
=

⊕
s∈B(G)

HHn

(
S(G)s, ⊗̂b

)
.

From (5.2) we see that, in order to determine HHn(S(G), ⊗̂b), it suffices to compute
HHn(S(G,Ks)

s) for each s ∈ B(G). This brings us back to unital Fréchet algebras.
We recall from Theorem 1.32 and (1.36) that

S(G,Ks)
s =

⊕
d∈∆(G,s)

S(G,Ks) ∩ S(G)d

∼=
⊕

[L,δ]G∈∆(G,s)

(
C∞(Xu

nr(L))⊗ EndC
(
IK0
K0∩P (Vδ)

Ks
))W e

[L,δ]
.

Write s = [M,σ]G with σ unitary supercuspidal and recall that s ∈ ∆(G, s). That
brings us in a good position to apply the results from the previous paragraph.

Lemma 5.9. (a) There is an isomorphism of Fréchet algebras

S(G,Ks) ∩ S(G)[M,σ]G
∼= C∞(Xu

nr(M))W
e
s ⊗O(Xnr(M))W

e
s H(G,Ks)

s.

(b) There is an isomorphism of Fréchet C∞(Xu
nr(M))W

e
s -modules

HHn

(
S(G,Ks) ∩ S(G)[M,σ]G

) ∼= C∞(Xu
nr(M))W

e
s ⊗O(Xnr(M))W

e
s HHn

(
H(G,Ks)

s
)
.

Proof. (a) In Theorem 1.42 the underlying intertwining operators do not have sin-
gularities on Xu

nr(M)σ, so the Fourier transform induces an algebra isomorphism

H(G,Ks)
s|Xu

nr(M)σ
∼=

(
O(Xnr(M))|Xu

nr(M) ⊗ EndC
(
IK0
K0∩P (Vσ)

Ks
))W e

s
.

It follows that

C∞(Xu
nr(M))W

e
s ⊗O(Xnr(M))W

e
s H(G,Ks)

s ∼=
(
C∞(Xu

nr(M))⊗EndC
(
IK0
K0∩P (Vσ)

Ks
))W e

s
.

By Theorem 1.32.b, the right hand side equals S(G,Ks) ∩ S(G)[M,σ]G .
(b) In view of part (a), this is an instance of Theorem 5.7. □

Unfortunately it remains difficult to determine HHn

(
S(G,Ks) ∩ S(G)[M,σ]G

)
in

Lemma 5.9.b, because the O(Xnr(M))W
e
s -module structure of HHn(H(G,Ks)

s) is
tricky.
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Example 5.10. Consider G = SL2(F ) and s = [T, triv]G. By Lemma 5.9.b and
(4.19) we have

HHn(S(G)s, ⊗̂b) ∼= C∞(Xu
nr(T ))

S2 ⊗O(Xnr(T ))S2 HHn(H(G)s)

∼= C∞(Xu
nr(T ))

S2 ⊗O(Xnr(T ))S2

(
Ωn(Xnr(T ))

S2 ⊕ Ωn({St})⊕ Ωn({χ−})
)
.

Here Ωn({St}) drops out, because its O(Xnr(T ))-character does not lie in Xu
nr(T ).

The other two summands ofHHn(H(G)s) carry theO(Xnr(T ))-action expected from
the notations. We find

(5.3) HHn(S(G)s, ⊗̂b) ∼= Ωn
sm(Xu

nr(T ))
S2 ⊕ Ωn

sm({χ−}).

As S(G)s = S(G)s⊕S(G)[G,St] and S(G)[G,St] is Morita equivalent to C, (5.3) yields

(5.4) HHn(S(G)s, ⊗̂b) ∼= Ωn
sm(Xu

nr(T ))
S2 ⊕ Ωn

sm({χ−})⊕ Ωn({St}).

Theorem 5.5 shows that (5.4) is isomorphic to HHn

(
C∞(Xu

nr(T ))⋊ S2

)
.

There is a version of Lemma 5.9.a for d ∈ ∆(G, s) which are not represented by a
supercuspidal representation [Sol11, Lemma 3.3], but it is more complicated and does
not fit in the framework of Theorem 5.7. To handle HHn(S(G,Ks)∩S(G)d) for such
d we use families of representations, like in Paragraph 4.6. For a parabolic subgroup
P = LUP ⊂ G and τ ∈ Irrtemp(L)

sL we have a family of tempered representations

Fu
L,τ = {IGP (τ ⊗ χL) : χL ∈ Xu

nr(L)}

and a homomorphism of C∞(Xu
nr(M))W

e
s -algebras

Fu
L,τ : S(G,Ks)

s → C∞(Xu
nr(L))⊗ EndC

(
IK0
P∩K0

(τ)Ks
)
.

Recall ζ∨ from Theorem 3.15. It preserves temperedness and the tempered part of
R
(
O(Xnr(M))

)
can be identified with R

(
C∞(Xu

nr(M))
)
, so ζ∨ restricts to a group

isomorphism

(5.5) ζ∨u : R(S(G)s)→ R
(
C∞(Xu

nr(M))⋊C[W e
s , ♮

−1
s ]

)
.

In particular ζ∨u (F
u
L,τ ) = Fu

L,ζ∨u (τ) is a family of C∞(Xu
nr(M))⋊C[W e

s , ♮
−1
s ]-modules.

Theorem 5.11. [Sol11, Theorem 3.13]
There exists a unique isomorphism of Fréchet spaces

HHn(ζ
∨
u ) : HHn

(
C∞(Xu

nr(M))⋊C[W e
s , ♮

−1
s ]

)
→ HHn(S(G,Ks)

s)

such that

HHn(Fu
L,τ ) ◦HHn(ζ

∨
u ) = HHn

(
Fu
L,ζ∨u (τ)

)
for all families of tempered representations Fu

L,τ .

From Theorems 5.5 and 5.11 we obtain an isomorphism of Fréchet spaces

(5.6) HHn(S(G,Ks)
s) ∼=

(⊕
w∈W e

s

Ωn
sm(Xu

nr(M))w ⊗ (♮−1
s )w

)W e
s
.

This isomorphism can also be constructed more directly, with suitable families of
tempered representations.
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Example 5.12. We given an overview of HHn(S(G)s, ⊗̂b) for all Bernstein blocks
of G = SL2(F ). For s = [G, σ]G with σ ∈ Irrcusp(G), we have

HH∗(S(G,Ks)
s) = HH0(S(G,Ks)

s) ∼= C.
For s = [T, χ]G with ord(χ|o×F ) > 2 we have

HHn(S(G,Ks)
s) ∼= HHn

(
C∞(Xu

nr(T ))
) ∼= Ωn

sm(Xu
nr(T ))

∼= Ωn
sm(S1).

For s = [T, χ2]G with ord(χ2|o×F ) = 2, (5.6) shows that

HHn(S(G,Ks)
s) ∼= HHn

(
C∞(Xu

nr(T ))⋊ S2

) ∼= Ωn
sm(Xu

nr(T ))
S2 ⊕ Ωn

sm({1,−1}).
Finally, for s = [T, triv]G, we already determined HHn(S(G,Ks)

s) in Example 5.10.

5.3. Trace Paley–Wiener theorems for H(G) and S(G).
The structure of

HH0(H(G)) = H(G)/[H(G),H(G)]

can be described with the trace Paley–Wiener for reductive p-adic groups, which we
recall now. The main ingredient is the trace pairing

HH0(H(G))×R(G) → C
(f, π) 7→ trπ(f)

.

To see that this pairing is well-defined, pick K ∈ CO(G) such that f ∈ H(G,K). For
(π, V ) ∈ Repfl(G), trπ(f) equals trπ(f)|V K . As dimC V K is finite (Theorem 1.12),
trπ(f)|V K ∈ C is defined.

We say that a linear form λ ∈ HomZ(R(G),C) is regular if
• λ is supported on finitely many Bernstein blocks of Rep(G),
• for every parabolic subgroup P = LUP and every π ∈ Irr(L), the function

Xnr(L)→ C : χ 7→ λ(IGP (π ⊗ χ)) is regular.

We denote the C-vector space of such λ by HomZ(R(G),C)reg.

Theorem 5.13. [BDK]
The trace pairing induces an isomorphism of Z(Rep(G))-modules

HH0(H(G)) −→ HomZ(R(G),C)reg.

Next we consider a twisted crossed product A ⋊ C[Γ, ♮] as in (2.6), where Γ is
a finite group and A denotes either C∞(X) for a smooth manifold or O(X) for a
non-singular affine C-variety. From Theorems 4.8 and 5.5 we know that there are
isomorphisms of AΓ-modules

(5.7)
HH0(C

∞(X)⋊C[Γ, ♮]) ∼=
(⊕

γ∈Γ
C∞(Xγ)⊗ ♮γ

)Γ
∼=

⊕
γ∈Γ/conjugacy

(
C∞(Xγ)⊗ ♮γ

)ZΓ(γ),

and similarly with O instead of C∞. The specialisation of HH0(A) at an arbitrary
character Γx ∈ X/Γ of AΓ can be identified with

(5.8) C
{
Tγ : γ ∈ Γx, ♮

γ |ZΓx (γ)
= 1, modulo Γx-conjugation

}
.

From Theorem 2.4 and Lemma 2.2 one deduces that (5.8) pairs nondegenerately with
the Grothendieck group of the category of finite dimensional A⋊C[Γ, ♮]-modules with
AΓ-character Γx. This implies that the trace pairing

(5.9) HH0(A⋊C[Γ, ♮])×R(A⋊C[Γ, ♮]) −→ C is nondegenerate.
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Reasoning in such ways, one can recover Theorem 5.13 from Theorems 3.15 and
4.13, see [Sol11, Proposition 2.9.b].

As we saw in Paragraph 5.2, there are versions of Theorems 3.15 and 4.13 for S(G).
That makes the existence of a trace Paley–Wiener theorem for S(G) plausible, and
(5.7) suggests that it should involve smooth rather than regular functions. We call
a linear form λ ∈ HomZ(R(S(G)),C) smooth if:

• λ is supported on finitely many Bernstein blocks of Rep(G),
• for every parabolic subgroup P = LUP and every τ ∈ Irrtemp(L), the function

Xnr(L)→ C : χ 7→ λ(IGP (τ ⊗ χ)) is smooth.

We denote the C-vector space of such linear forms by HomZ(R(S(G)),C)∞.

Theorem 5.14. [Sol11, Theorem D.ii and (3.4)]
The trace pairing induces an isomorphism of Z(Rep(G))-modules

HH0(S(G), ⊗̂b) = S(G)
/
[S(G),S(G)] −→ HomZ(R(S(G)),C)∞.

5.4. Periodic cyclic homology.
Periodic cyclic homology of algebras consists of two functors HP0, HP1 from al-

gebras to vector spaces. They are periodic in the sense that HPn+2m = HPn for
all n,m ∈ Z. The functor HP∗ = HP0 ⊕ HP1 plays an important role in non-
commutative geometry, because it is an analogue of DeRham cohomology (which
can be defined for commutative algebras). Its functorial properties are analogous to
those of topological K-theory (see Paragraph 6.1), in particular it is Morita invariant
[Cun2] and there are six-term exact sequences associated to short exact sequences of
algebras [CuQu]. In practice, these make it possible to determine HP∗(A) for many
algebras A.

The periodic cyclic homology of a C-algebra A is defined as the homology of
an explicit infinite double complex CCper(A) with spaces A⊗n [Lod, §5.1]. A part
of CCper(A) computes HH∗(A), and as a result HP∗(A) and HH∗(A) are closely
related. In many cases HP∗(A) can be computed as the homology of HH∗(A) with
respect to a new differential B discovered by Connes.

Periodic cyclic homology is also defined for topological algebras, when one fixes a
topological tensor product. We focus on Fréchet algebras and ⊗̂. Then HP∗(A, ⊗̂) is
the homology of a double complex CCper(A, ⊗̂) obtained from CCper(A) by replacing

all terms A⊗n by A⊗̂n.
We can now formulate the Hochschild–Kostant–Rosenberg–Connes theorem. In

these cases HP∗(A) is computed from HH∗(A) (which is known from Theorems 4.5
and 5.4) as the homology with respect to usual d for differential forms.

Theorem 5.15. [Lod, §5.1.12] and [Con, Tel]
Let i ∈ {0, 1} and let H∗

dR denote de Rham cohomology with complex coefficients.

(a) Let V be a nonsingular complex affine variety. There is a natural isomorphism

HPi(O(V )) ∼=
⊕

m∈Z≥0

H i+2m
dR (V ).

(b) Let X be a smooth manifold. There is a natural isomorphism

HPi(C
∞(X), ⊗̂) ∼=

⊕
m∈Z≥0

H i+2m
dR (X).
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Suppose that in the setting of Theorem 5.15, a finite group Γ acts on V and on
X, by automorphism in the appropriate category. Then we can combine Theorem
5.15 with Theorems 4.8 and 5.5 to obtain:

Corollary 5.16. There are isomorphisms

HP∗(O(V )⋊C[Γ, ♮]) ∼=
(⊕

γ∈ΓH
∗
dR(V

γ)⊗ ♮γ
)Γ
,

HP∗(C
∞(X)⋊C[Γ, ♮], ⊗̂) ∼=

(⊕
γ∈ΓH

∗
dR(X

γ)⊗ ♮γ
)Γ
.

Continuity for HP∗ is more subtle than for HH∗, because CCper(A) has infinitely
many terms in negative degrees.

Theorem 5.17. [Nis, Proposition 2.2] and [BrPl, Theorem 3]

(a) Suppose that limi→∞Ai is an inductive limit of algebras and that there exists
N ∈ N such that HHn(Ai) = 0 for all n ≥ N and all i. Then HP∗(limi→∞Ai) ∼=
limi→∞HP∗(Ai).

(b) Suppose that limi→∞Bi is a strict inductive limit of nuclear Fréchet algebras
and that there exists N ∈ N such that HHn(Bi, ⊗̂) = 0 for all n ≥ N and all i.
Then HP∗(limi→∞Bi, ⊗̂b) ∼= limi→∞HP∗(Bi, ⊗̂).

We return to our main players, H(G) and S(G). Theorem 5.17 enables us to apply
an argument like in (4.9) and (5.2). Recall that for s ∈ B(G) we picked Ks ∈ CO(G)
in Paragraph 5.2.

Lemma 5.18. [Sol2, (3.3) and (3.4)]
There are natural isomorphisms

HP∗(H(G)) ∼=
⊕

s∈B(G)HP∗(H(G)s) ∼=
⊕

s∈B(G)HP∗(H(G,Ks)
s),

HP∗(S(G), ⊗̂b) ∼=
⊕

s∈B(G)HP∗(S(G)s, ⊗̂b) ∼=
⊕

s∈B(G)HP∗(S(G,Ks)
s, ⊗̂).

It turns out that the isomorphisms (4.16) and (5.6) (which come from Theorems
4.13 and 5.11) are very suitable to determine HP∗(H(G)) and HP∗(S(G), ⊗̂b) in
representation theoretic terms. By [Sol11, (4.4) and (4.5)], Connes’ differential B
on HH∗(H(G)) and on HH∗(S(G), ⊗̂b) corresponds to the usual exterior differential
d on the differential forms in (4.18) and (5.6). Taking homology with respect to d
yields:

Theorem 5.19. [Sol11, Theorem 4.1 and (4.7)–(4.8)]
Let i ∈ {0, 1}. There are isomorphisms of vector spaces

HPi(H(G,Ks)
s) ∼= HPi

(
O(Xnr(L))⋊C[W e

s , ♮
−1
s ]

)
∼=

⊕
m∈Z≥0

(⊕
w∈W e

s
H i+2m

dR (Xnr(L)
w)⊗ (♮−1

s )w
)W e

s
,

HPi(S(G,Ks)
s, ⊗̂) ∼= HPi

(
C∞(Xu

nr(L))⋊C[W e
s , ♮

−1
s ], ⊗̂

)
∼=

⊕
m∈Z≥0

(⊕
w∈W e

s
H i+2m

dR (Xu
nr(L)

w)⊗ (♮−1
s )w

)W e
s
.

As Xu
nr(L) is W e

s -equivariant deformation retract of Xnr(L), Lemma 5.18 and
Theorem 5.19 recover [Sol2, Theorem 3.3] and [BHP, Conjecture 8.9]:

Corollary 5.20. The inclusions H(G,Ks)
s → S(G,Ks)

s and H(G)→ S(G) induce
isomorphisms on periodic cyclic homology.

Furthermore, by [Sol11, Lemma 4.4]HP∗(H(G,Ks)
s) can be realized as the subset

of HH∗(H(G,Ks)
s) consisting of differential forms that are locally constant on the

various varieties Xnr(L)
w, in the picture from (4.18).
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Similarly HP∗(S(G,Ks)
s, ⊗̂) has a canonical realization as the set of locally con-

stant differential forms in HH∗(S(G,Ks)
s, ⊗̂), in the picture (5.6).

These are instances of a more general phenomenon in geometric group theory,
already observed in [HiNi, Sch]. For any totally disconnected locally compact group
G′ there is a decomposition

(5.10) HH∗(H(G′)) = HH∗(H(G′))cpt ⊕HH∗(H(G′))ncpt.

The subscript cpt means ”supported on compact elements”: this part ofHH∗(H(G′))
only uses chains

f0 ⊗ f1 ⊗ · · · ⊗ fn ∈ H(G′)⊗(n+1)

such that f0(g0)f1(g1) · · · fn(gn) with gi ∈ G′ is zero unless g0g1 · · · gn lies in a
compact subgroup of G′. The subscript ncpt stands for ”supported on noncompact
elements”, which means that it comes from chains such that f0(g0)f1(g1) · · · fn(gn)
is zero whenever g0g1 · · · gn lies in a compact subgroup of G′.

Suppose in addition that G′ acts properly on an affine building, like any reductive
p-adic group does [Tit, §2]. Then the noncompact part of HH∗(H(G′)) disappears
in periodic cyclic homology, by [HiNi, Theorem 6.2] or [Sch, Theorem II].

Theorem 5.21. [HiNi, Theorems 1.1 and 4.2] and [Sch, Theorem I]
In the above setting there is an isomorphism

HPi(H(G′)) ∼=
⊕

m∈Z≥0

HHi+2m(H(G′))cpt.

For our group G acting on its Bruhat–Tits building, Theorem 5.19, (4.18) and
the aforementioned [Sol9, Lemma 4.4] recover Theorem 5.21 in a representation-
theoretic way.

6. Topological K-theory

K-theory started [Ati] as a way to classify vector bundles on a topological spaceX,
up to stable isomorphism. That gives a contravariant functor K0 from topological
spaces to abelian groups, and another functor K1 is obtained by composing K0

with the suspension functor for topological spaces. There are also higher functors
Kn, but by Bott periodicity these reduce to K0 or K1. The Z/2Z-graded functor
K∗ = K0 ⊕ K1 forms a generalized cohomology theory, so roughly speaking it
behaves like singular or C̆ech cohomology. K-theory for topological spaces can be
extended naturally to pairs of spaces X1 ⊃ X2.

In noncommutative geometry, topological K-theory is usually defined and studied
for C∗-algebras or Banach algebras, see for instance [Bla]. The (covariant) functor
K0 classifies finitely generated projective modules up to stable isomorphism. The
functor K1 can be obtained as K0 composed with a suspension functor for algebras.
Recall that by the Gelfand–Naimark theorem [FGV, Theorem 1.4] every commuta-
tive C∗-algebra has the form

C0(Y ) = {f ∈ C(Y ∪ {∞}) : f(∞) = 0},

where Y is locally compact Hausdorff space with one-point compactification Y ∪
{∞}. By the Serre–Swan theorem [FGV, §2.3 and Corollary 3.2.1] there is a natural
isomorphism

(6.1) Ki(C0(Y )) ∼= Ki(Y ∪ {∞}, {∞}) i = 0, 1.
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Most references state this only for i = 0, but the definitions of K1 in terms of K0 and
K1 in terms of K0 are analogous, and therefore (6.1) also holds for i = 1. Largely
due to the results of Gelfand–Naimark and Serre–Swan, K-theory of C∗-algebras is
at the heart of noncommutative geometry.

6.1. Versions and properties of K-theory.
Topological K-theory can also be defined for Fréchet algebras (in the sense of

Definition 5.1), see [Cun1, Phi2]. This generalizes K-theory for Banach algebras and
enjoys the following properties:

• Additivity. For any Fréchet algebras An (n ∈ N) and i ∈ {0, 1}:

Ki

(∏∞

n=1
An

)
∼=

∏∞

n=1
Ki(An).

• Stability. Ki(Mn(A)) ∼= Ki(A) for any Fréchet algebra A, and the same
with Mn(C) replaced by the algebra of compact operators on a separable
Hilbert space.
• Continuity [Bla, §5.2.4, §5.5.1 and §8.1.5]. If limn→∞Bn is an inductive
limit of Banach algebras, then

Ki

(
lim
n→∞

Bn

) ∼= lim
n→∞

Ki(Bn).

• Excision. Let 0 → A → B → C be an exact sequence of Fréchet algebras.
Then there exists a natural six-term exact sequence

(6.2)
K0(A) → K0(B) → K0(C)
↑ ↓

K1(C) ← K1(B) ← K1(A)
.

• Homotopy invariance. If ϕ0, ϕ1 : A → B are homotopic morphisms of
Fréchet algebras, then Ki(ϕ0) = Ki(ϕ1).

The suspension of a Fréchet algebra A is defined as

ΣA = {f ∈ C(S1;A) : f(1) = 0}.
There are natural isomorphisms

(6.3) K0(ΣA) ∼= K1(A) and K1(ΣA) ∼= K0(A).

The first is either a definition or [Phi2, Theorem 3.14] and the second is a reformu-
lation of Bott periodicity [Phi2, Theorem 5.5]. These isomorphisms are compatible
with excision, in the sense that the exact hexagon (6.2) can be rewritten as

(6.4)
K0(A) → K0(B) → K0(C)
↑ ↓

K0(ΣC) ← K0(ΣB) ← K0(ΣA)
.

Consider the split exact sequence of Fréchet algebras

(6.5) 0→ ΣA→ C(S1, A)
ev1−−→ A→ 0,

where the splitting sends a ∈ A to the constant function on S1 with value a. Topolo-
gical K-theory respects split exact sequences, so (6.5) and (6.3) induce isomorphisms

(6.6) Ki(C(S1, A)) ∼= Ki(ΣA)⊕Ki(A) ∼= K0(A)⊕K1(A) i = 0, 1.

The isomorphism K∗(Mn(C)) ∼= K∗(A) can be regarded as an instance of Morita
invariance of topological K-theory. For unital Fréchet algebras, this can be pushed
further.
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Theorem 6.1. Let A and B be unital Fréchet algebras, such that A× ⊂ A and
B× ⊂ B are open. Suppose that A and B are Morita equivalent. Then the Morita
bimodules induce an isomorphism K∗(A) ∼= K∗(B).

Proof. Let P and Q be the bimodules implementing the Morita equivalence, so
P ⊗B Q ∼= A and Q⊗A P ∼= B. Since A and B are unital, P and Q are finitely gen-
erated and projective. Then C(S1, P ) and C(S1, B) are finitely generated projective
bimodules for C(S1, A) and C(S1, B), such that

C(S1, P )⊗C(S1,B)C(S1, Q) ∼= C(S1, A) and C(S1, Q)⊗C(S1,A)C(S1, P ) ∼= C(S1, B).

This provides a Morita equivalence between C(S1, A) and C(S1, B). The assump-
tions on A and B and the compactness of S1 imply that C(S1, A)× ⊂ C(S1, A) and
C(S1, B)× ⊂ C(S1, B) are open. According to [Phi2, Theorem 7.7], K0(C(S1, A))
is naturally isomorphic to the K-group of the monoid of finitely generated projective
C(S1, A)-modules. The same holds for C(S1, B). Therefore the maps

(6.7) K0(C(S1, A))←→ K0(C(S1, B))

induced by C(S1, Q)⊗C(S1,A) and C(S1, P )⊗C(S1,B) are group isomorphisms. The
decomposition

K0(C(S1, A)) ∼= K0(A)⊕K1(A)

from (6.5)–(6.6) comes from C0(S
1, {1})→ C(S1)→ C({1}). It works in the same

way for C(S1, B), so (6.7) respects those decompositions and yields isomorphisms

K0(A) ∼= K0(B) and K1(A) ∼= K1(B). □

The Serre–Swan theorem admits a generalization to Fréchet algebras, of which
we state a simplified version:

Theorem 6.2. [Phi2, Theorem 7.15]
Let Y be a locally compact Hausdorff space. Let A be a commutative Fréchet alge-
bra such that the maximal ideal space of the unitization A+ is Y ∪ {∞}, where ∞
corresponds to the canonical projection A+ → C. (For example A could be C∞(Y )
if Y is a compact smooth manifold.) Then there are natural isomorphisms

Ki(A) ∼= Ki(C0(Y )) ∼= Ki(Y ∪ {∞}, {∞}) i = 0, 1.

In Theorem 6.2 the natural map A → C0(Y ) induces an isomorphism on K-
theory. That phenomenon holds in much larger generality, and it is called the
density theorem in K-theory:

Theorem 6.3. [Bos, Théorème A.2.1]
Let ϕ : A → B be a morphism of Fréchet algebras. Let A+ be the unitization of A
from (4.1), and extend ϕ to ϕ+ : A+ → B+. Assume that:

• A×
+ (the set of invertible elements in A+) is open in A+,

• B×
+ is open in B+,

• ϕ(A) is dense in B,
• whenever a ∈ A+ and ϕ+(a) is invertible in B+, a is invertible in A+.

Then K∗(ϕ) : K∗(A)→ K∗(B) is an isomorphism.

Many versions of K-theory admit an extension to an equivariant setting. We focus
on equivariance with respect to actions of a finite group Γ. Atiyah [Ati] already
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defined the Γ-equivariant K-theory of a Γ-space Y . By design K0
Γ(Y ) classifies Γ-

equivariant vector bundles on Y , up to stable equivalence, and K1
Γ(Y ) is K0

Γ of the
suspension of X.

Recall that the classical Chern character assigns to a vector bundle over Y a class
in the C̆ech cohomology of Y . It gives rise to a natural transformation

(6.8) Ch : K∗(Y )→ H̆∗(Y ;Q).

If one replaces K∗(Y ) by K∗(Y )⊗Z Q, then (6.8) is often an isomorphism.
Suppose now that X is a compact Hausdorff space with a Γ-action. In this setting

Baum and Connes [BaCo] constructed a Γ-equivariant version of (6.8). Write

X̃ =
⊔

γ∈Γ
{γ} ×Xγ ,

and let Γ act on X̃ by γ1 · (γ2, x) = (γ1γ2γ
−1, γ1x).

Theorem 6.4. [BaCo, Theorem 1.19]
There are natural isomorphisms

K∗
Γ(X)⊗Z C ∼−→

(
K∗(X̃)⊗Z C

)Γ ∼−→ H̆∗(X̃;C)Γ ∼= H̆∗(X̃/Γ;C).

The map K∗
Γ(X) → H̆∗(X̃;C)Γ in Theorem 6.4 is called an equivariant Chern

character.
For the equivariant K-theory KΓ

∗ of Γ-C∗-algebras we refer to [Phi1], here we
restrict ourselves to a few remarks. The equivariant Serre–Swan theorem [Phi1,
Theorem 2.3.1] says that for any locally compact Hausdorff Γ-space Y there is a
natural isomorphism

(6.9) KΓ
∗ (C0(Y )) ∼= K∗

Γ(Y ∪ {∞}, {∞}).

Besides K∗
Γ, there is an equivalent way to introduce Γ-equivariance:

Theorem 6.5. [Jul]
For any Γ-C∗-algebra B, there is a natural isomorphism KΓ

∗ (B) ∼= K∗(B ⋊ Γ).

In view of Theorem 6.5, it makes sense to define

KΓ
∗ (A) = K∗(A⋊ Γ) for any Fréchet Γ-algebra.

When X is a compact Hausdorff Γ-space, Theorems 6.4, 6.5 and (6.9) combine to

(6.10) K∗(C(X)⋊ Γ)⊗Z C ∼= K∗
Γ(X)⊗Z C ∼= H̆∗(X̃;C)Γ.

Let ♮ : Γ × Γ → C× be a 2-cocycle. Recall from (2.3) that C[Γ, ♮] ∼= e♮C[Γ∗] for a
central extension Z∗ → Γ∗ → Γ, a character c♮ of Z

∗ and the associated idempotent
e♮ ∈ C[Z∗]. Since e♮ is a central idempotent in C(X)⋊ Γ∗, we can write

K∗(C(X)⋊C[Γ, ♮]) = K∗(e♮(C(X)⋊ Γ∗)) ∼= e♮K∗(C(X)⋊ Γ∗) ∼= e♮K
∗
Γ∗(X).

Definition 6.6. The ♮-twisted equivariant K-theory of a locally compact Hausdorff
Γ-space Y is

K∗
Γ,♮(Y ) := e♮K

∗
Γ∗(Y ∪ {∞}, {∞}) ∼= K∗(C0(Y )⋊C[Γ, ♮]).
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This is the K-theory of Γ∗-equivariant vector bundles over X on which Z∗ acts as
the character c♮. From (6.10) and [Sol10, proof of Theorem 1.2] we deduce that the
Γ∗-equivariant Chern character induces an isomorphism

(6.11) K∗
Γ,♮(X)⊗Z C ∼= e♮K∗(C(X)⋊ Γ∗)

∼−→

e♮H̆
∗
(⊔

γ∈Γ∗
{γ} ×Xγ

)Γ∗
∼=

(⊕
γ∈Γ

H̆∗(Xγ)⊗ ♮γ
)Γ

.

When X is in addition a smooth manifold, (6.10) and (6.11) can be composed with
Theorem 6.3 (for C∞(X)→ C(X) and related inclusions) to obtain

(6.12)
KΓ

∗ (C
∞(X))⊗Z C ∼= K∗(C

∞(X)⋊ Γ)⊗Z C ∼= H∗
dR(X̃)Γ,

K∗(C
∞(X)⋊C[Γ, ♮])⊗Z C ∼=

(⊕
γ∈Γ

H∗
dR(X

γ)⊗ ♮γ
)Γ

.

There is a natural transformation

(6.13) Ch : K∗ → HP∗

from K-theory for Fréchet algebras to periodic cyclic homology for Fréchet algebras,
also called the Chern character [Cun1]. It is constructed as the restriction of a
bivariant Chern character, and latter has a universal property which makes it unique
[Cun1, Korollar 6.5]. Therefore, for any smooth manifold Y ,

Ch : K∗(C
∞(Y ))→ HP∗(C

∞(Y ), ⊗̂) ∼= H∗
dR(Y )

agrees with the classical Chern character (6.8). This is also checked in a more
concrete, purely algebraic setting in [Lod, Proposition 8.3.9]. That compatibility of
Chern characters and Theorems 5.15.b and 6.2 imply:

Theorem 6.7. [Con, Sol1]
Let X be a compact smooth manifold.

(a) Ch⊗ id : K∗(C
∞(X))⊗Z C→ HP∗(C

∞(X), ⊗̂) is an isomorphism.
(b) Let Γ be a finite group acting on X and let ♮ be a 2-cocycle of Γ. Then

Ch⊗ id : K∗(C
∞(X)⋊C[Γ, ♮])⊗Z C→ HP∗(C

∞(X)⋊C[Γ, ♮], ⊗̂)

is an isomorphism.

In fact Theorem 6.7 applies in much larger generality. Firstly, twisted crossed pro-
ducts can be replaced by Γ-invariants for certain actions of Γ on matrix algebras over
C∞(X) [Sol1, Theorem 6]. Secondly, Theorem 6.5 also holds for many noncompact
manifolds X. Not for all though, because ⊗ZC does not commute with infinite direct
products [Sol1, Appendix].

6.2. K-theory of C∗
r (G) and S(G), modulo torsion.

We survey the relations between the topological K-theory and the periodic cyclic
homology of C∗

r (G) and S(G). Recall from (1.7), Definition 1.6 and Theorem 1.45
that

C∗
r (G) = limK∈CO(G)C

∗
r (G,K) = limn→∞(G,Kn),

S(G) = limK∈CO(G) S(G,K) =
⋃∞

n=1 S(G,Kn).

The algebra S(G) is not Fréchet, so its topological K-theory presents new challenges.
While K-theories have been constructed for wider classes of topological algebras, it is
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unclear whether those functors commute with direct limits. To avoid such problems,
we simply define

K∗(S(G)) := lim
K∈CO(G)

K∗(S(G,K)).

Notice that this makes sense because each S(G,K) is a Fréchet algebra, see Theorem
1.7.a.

Proposition 6.8. There is a commutative diagram

limK∈CO(G)K∗(C
∗
r (G,K)) → K∗(C

∗
r (G))

↑ ↑
limK∈CO(G)K∗(S(G,K)) = K∗(S(G))

in which all the arrows are natural isomorphisms.

Proof. The continuity of K-theory for Banach algebras tells us that upper line is an
isomorphism, where the map is induced by the inclusions C∗

r (G,K) → C∗
r (G). By

Theorems 1.7 and 6.3

(6.14) the inclusion S(G,K)→ C∗
r (G,K) induces an isomorphism on K-theory.

Hence the left column of the diagram is a natural isomorphism. We define the map
in the right column of the diagram as the composition of the other maps. Then it
is a natural isomorphism, and it is induced by the inclusion S(G)→ C∗

r (G). □

Like in (5.2), one deduces from Propositions 1.47 and 6.8 and Theorems 6.2 and
6.3 that there are natural isomorphisms

(6.15)
K∗(C

∗
r (G)) ∼=

⊕
s∈B(G)K∗(C

∗
r (G,Ks)

s) ∼=
⊕

s∈B(G)K∗(C
∗
r (G)s)

K∗(S(G)) ∼=
⊕

s∈B(G)K∗(S(G,Ks)
s)

.

Example 6.9. Consider G = SL2(F ) and s = [T, triv]G. From Example 1.33 and
Theorem 1.34 we see that the Cr ∗ (G)s is Morita equivalent to(

C(S1)⊗M2(C)
)S2 ⊕ CSt := A⊕ CSt.

As K∗(CSt) = K0(C) = Z, we focus on A. By a suitable choice of coordinates, we
can achieve that S2 = {1, sα} acts by

(sαa)(z) = ( 1 0
0 z ) a(z

−1)
(
1 0
0 z−1

)
a ∈ C(S1)⊗M2(C), z ∈ S1.

This shows that every S2-orbit in S1 \ {−1} supports a unique irreducible A-repre-
sentation, while there are precisely two inequivalent irreducible A-representations
with C(S1)S2-character -1. The upper half circle is a fundamental domain for S2

acting on S1, and it is homeomorphic to [−1, 1] by taking real parts. Evaluation of
A at -1 yields a short exact sequence of C∗-algebras

0→ C0((−1, 1])⊗M2(C)→ A→ C2 → 0.

The associated six-term exact sequence is

K0
(
(−1, 1]

)
= 0 → K0(A) → K0(C2) = Z2

↑ ↓
K1(C2) = 0 ← K1(A) ← K1

(
(−1, 1]

)
= 0

.

Here K∗((−1, 1]) = 0 because the algebra C0((−1, 1]) is homotopy equivalent to 0.
We find that K∗(A) ∼= K0(A) ∼= Z2.
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With methods like in Example 6.9 one can compute K∗(C
∗
r (G)s) for many Bern-

stein blocks Rep(G)s, but the computations quickly become cumbersome.
To analyse K∗(S(G,Ks)

s) and K∗(C
∗
r (G,Ks)

s) in general, we relate them to the
previous section. Theorem 6.7 can be applied to the Fréchet algebras appearing in
the Plancherel isomorphism for S(G) (Theorem 1.32).

Theorem 6.10. [Sol1, Theorem 10 and Corollary 11]
For any K ∈ CO(G), the Chern character induces an isomorphism

K∗(S(G,K))⊗Z C→ HP∗(S(G,K), ⊗̂).

A combination of the results in this and the previous paragraph yields a descrip-
tion of K∗(C

∗
r (G)) modulo torsion:

Corollary 6.11. (a) Fix s = [L, σ]G ∈ B(G). There are isomorphisms

K∗(C
∗
r (G)s)⊗Z C ∼= K∗(C

∗
r (G,Ks)

s)⊗Z C ∼= K∗(S(G,Ks)
s)⊗Z C

∼= HP∗(S(G,Ks)
s, ⊗̂) ∼= HP∗

(
C∞(Xu

nr(L))⋊C[W e
s , ♮

−1
s ], ⊗̂

)
∼= K∗

(
C∞(Xu

nr(L))⋊C[W e
s , ♮

−1
s ]

)
⊗Z C

∼= K∗
(
C(Xu

nr(L))⋊C[W e
s , ♮

−1
s ]

)
⊗Z C ∼= KW e

s ,♮
−1
s
(Xu

nr(L))⊗Z C.

(b) There are isomorphisms

K∗(C
∗
r (G))⊗Z C ∼= K∗(S(G))⊗Z C ∼=

⊕
s∈B(G)

KW e
s ,♮

−1
s
(Xu

nr(L))⊗Z C.

Proof. (a) The first isomorphism is (6.15) and the second comes from (6.14). Then
we use Theorems 6.10 and 5.19. The fifth isomorphism is an instance of Theorem
6.7, the sixth comes from Theorem 6.3 and the last step is Definition 6.6.
(b) This follows from Proposition 6.8, (6.15) and part (a). □

Corollary 6.11 gives a description of the group K∗(C
∗
r (G)) modulo torsion. In

some cases that determines K∗(C
∗
r (G)) up to isomorphism, because it does not have

torsion elements:

Theorem 6.12. [Sol7, Theorem 5.3]
Let G be an inner form of GLn, or a symplectic group, or a special orthogonal group
(not necessarily F -split). Then K∗(C

∗
r (G)) is a free abelian group.

6.3. Relation with the Baum–Connes conjecture.
K-theory of group-C∗-algebras figures prominently in the Baum–Connes conjec-

ture [BCH, Val]. For any Hausdorff space Y with a proper G-action, Kasparov’s
equivariant KK-theory provides a notion of the G-equivariant K-homology KG

∗ (Y ).
There is an assembly map

µG,Y : KG
∗ (Y )→ K∗(C

∗
r (G)),

which can be defined in several (analytic) ways [Val, §6]. The Baum–Connes con-
jecture asserts that µG,Y is an isomorphism when Y is a classifying space for proper
G-actions, as in [BCH, §1].

For our reductive p-adic group G, we can take as Y the (extended) Bruhat–Tits
building BG, see [BCH, §6]. In this case the Baum–Connes conjecture is known to
hold, a celebrated result of V. Lafforgue [Laf].

There is a more algebraic version of equivariant K-homology, called (equivariant)
chamber homology, see [HiNi, §3] and [BHP, §2]. It is available for any totally
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disconnected locally compact group G′ acting on a polysimplicial complex X ′, and
can be defined as follows. LetX ′

n be the set of n-dimensional polysimplices ofX ′. For
every σ ∈ X ′

n, the stabilizer group G′
σ is compact, and we form its (complex-valued)

Hecke algebra H(G′
σ). The usual boundary operator for polysimplices induces a

boundary operator

∂∗ on
⊕

n≥0

⊕
σ∈X′

n

H(G′
σ),

which decreases the degrees by one. Taking G-coinvariants, we form the differential
complex with terms Cn =

(⊕
σ∈X′

n
H(G′

σ)
)
G′ . The homology of (C∗, ∂∗) is denoted

CHG′
∗ (X ′) =

⊕
n≥0

CHG′
n (X ′).

This is similar to HH∗(H(G′)), in the sense that it looks somewhat like a resolution
which could be used in the definition of HHn as a derived functor. Higson and
Nistor made that precise:

Theorem 6.13. [HiNi, Theorem 4.2]
Assume that, for every K ′ ∈ CO(G′), the fixed point set of K ′ in X ′ is nonempty and
contractible. Then there are natural isomorphisms

CHG′
n (X ′) ∼= HHn(H(G′))cpt,

where cpt means ”supported on compact elements” as in Theorem 5.21.

The definition of CHG′
∗ (X ′) can be reformulated with

⊕
σ∈X′

n/G
′ R(G′

σ)⊗Z C in-

stead of Cn, see [BHP, p. 215]. In that way one can regard equivariant chamber
homology as an algebraic combination of ordinary homology and virtual represen-
tations of compact subgroups. This is reminiscent of how the algebraic K-theory of
H(G) was computed in [BaLü].

Similar to (6.13), Voigt constructed an equivariant Chern character

ChG
′
: KG′

i →
⊕

m≥0
CHG′

i+2m.

Theorem 6.14. [Voi, §6]
Suppose that X ′ is a finite dimensional locally finite polysimplicial complex, and that
X ′/G′ is compact. Then

ChG
′ ⊗ id : KG′

i (X ′)⊗Z C→
⊕

m≥0
CHG′

i+2m(X ′) is an isomorphism.

For G acting on BG, the conditions in Theorem 6.13 are fulfilled by the CAT(0)-
property of BG and the Bruhat–Tits fixed point theorem [Tit, §2.3]. The conditions
on X ′ in Theorem 6.14 hold for BG by [Tit, §2.2 and §2.5].

The various homology theories associated to G, its group algebras and BG can be
combined in the following diagram, which is an extended version of [BHP, Proposi-
tion 9.4]:
(6.16)

KG
i (BG)

ChG

��

µG,BG // Ki(C
∗
r (G)) Ki(S(G))oo

Ch

��⊕
m≥0

CHG
i+2m(BG)

∼ ⊕
m≥0

HHi+2m(H(G))cpt ∼= HPi(H(G)) // HPi(S(G), ⊗̂b)
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Here the Chern character Ch : K∗(S(G))→ HP∗(S(G), ⊗̂b) is defined as the direct
limit over K ∈ CO(G) of Ch : K∗(S(G,K))→ HP∗(S(G,K), ⊗̂), which makes sense
by Theorem 5.17 and our definition of K∗(S(G)).

Theorem 6.15. (a) All the horizontal maps in the diagram (6.16) are natural iso-
morphisms.

(b) The vertical maps in (6.16) become isomorphisms if we apply ⊗ZC to the K-
groups.

(c) If we extend (6.16) with inverses of all the arrows that are isomorphisms, then
the diagram commutes.

Proof. (a) For the upper line we refer to [Laf] and Proposition 6.8. The first isomor-
phism on the lower line is Theorem 6.13, the second is Theorem 5.21 and the third
is Corollary 5.20.
(b) This follows from Theorems 6.14 and 6.10.
(c) See [Sol2, Theorem 3.7 and Lemma 3.9]. □

All the terms in (6.16) that do not involve BG admit a natural Bernstein de-
composition, see Lemma 5.18 and (6.15). We computed the summands associated
to an arbitrary s ∈ B(G) explicitly in Theorem 5.19 and Corollary 6.11. Thus the
isomorphisms µG,BG and Theorem 6.13 provide natural Bernstein decompositions of

KG
∗ (BG) and CHG

∗ (BG).
Unfortunately it remains inclear how to describe these decompositions in terms

of the action of G on its Bruhat–Tits building BG. This reflects the difficulty
of recovering the Bernstein decomposition via restrictions of G-representations to
compact open subgroups of G.

6.4. A progenerator of Mod(C∗
r (G)s).

These and the next paragraphs contain some new material, which aims to compute
K∗(C

∗
r (G)) including torsion elements. Fix s = [L, σ]G ∈ B(G), with a unitary σ ∈

Irrcusp(L). Recall from Proposition 3.4 that Rep(G)s has a canonical progenerator

Πs = IGP (indLL1(σ)).

For the remainder of the section, we pick K ∈ CO(G) such that

(6.17) H(G)s and H(G,K)s are Morita equivalent,

for instance Ks from (5.2). Then ⟨K⟩Πs is a progenerator of Mod(H(G,K)s). Fur-
thermore Proposition 1.47 shows that

(6.18) C∗
r (G)s and C∗

r (G,K)s are Morita equivalent.

We define
ics := Cr(G)s ⊗H(G)s Πs,
ics,K := Cr(G,K)s ⊗H(G,K)s ⟨K⟩Πs.

Lemma 6.16. (a)The C∗
r (G,K)s-module Πc

s,K is a progenerator of Mod(C∗
r (G,K)s).

(b) The C∗
r (G)s-module Πc

s is a progenerator of Mod(C∗
r (G)s) and Πc

s,K = ⟨K⟩Πc
s.

Proof. (a) The algebra H(G,K)s is unital and its module ⟨K⟩Πs is finitely generated
projective. So it is a direct summand of a free module of finite rank, say H(G,K)n.
Then Πc

s,K is a direct summand of (C∗
r (G,K)s)n, so it is finitely generated and

projective. For any nonzero M ∈ Mod(C∗
r (G,K)s) we have

HomC∗
r (G,K)s(Π

c
s,K ,M) ∼= HomH(G,K)s(⟨K⟩Πs,M) ̸= 0.
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Therefore Πc
s,K generates Mod(C∗

r (G,K)s).

(b) By part (a) and (6.18), C∗
r (G)s⟨K⟩ ⊗C∗

r (G,K)s Π
c
s,K is a progenerator of

Mod(C∗
r (G)s). It can be rewritten as

(6.19) C∗
r (G)s⟨K⟩ ⊗C∗

r (G,K)s C
∗
r (G,K)s ⊗H(G,K)s ⟨K⟩H(G)s ⊗H(G)s Πs =

C∗
r (G)s⟨K⟩ ⊗H(G,K)s ⟨K⟩H(G)s ⊗H(G)s Πs.

By (6.17) this reduces to Cr(G)s ⊗H(G)s Πs = Πc
s, which is therefore also a progen-

erator. It follows that

⟨K⟩Πc
s = ⟨K⟩C∗

r (G)s⟨K⟩ ⊗C∗
r (G,K)s Π

c
s,K = Πc

s,K . □

It is easier to work with Πc
s,K than with Πc

s because the algebra C∗
r (G,K)s is

unital and its irreducible modules have finite dimension. The upcoming results
have versions for Πc

s, which can be derived with arguments like in the proof of
Lemma 6.16.b. By Lemma 6.16.a there exists nc

s ∈ N and an idempotent ecs ∈
Mnc

s
(C∗

r (G,K)s) such that

Πc
s,K
∼= (C∗

r (G,K)s)n
c
secs.

Then EndC∗
r (G,K)s(Π

c
s,K)op, which by definition acts from the right on Πc

s,K , is iso-

morphic to ecsMnc
s
(C∗

r (G,K)s)ecs. In particular EndC∗
r (G,K)s(Π

c
s,K)op is isomorphic to

a corner in the Banach algebra Mnc
s
(C∗

r (G,K)s), so

(6.20) EndC∗
r (G,K)s(Π

c
s,K)op and EndC∗

r (G,K)s(Π
c
s,K) are Banach algebras.

As an instance of Proposition 3.1, we find that

(6.21) C∗
r (G,K)s and EndC∗

r (G,K)s(Π
c
s,K)op are Morita equivalent.

This works both as abstract rings and as Banach algebras, with the Morita bimodules

Πc
s,K and ecs(C

∗
r (G,K)s)n

c
s ∼= HomC∗

r (G,K)s(Π
c
s,K , C∗

r (G,K)s).

Recall the subset ∆(G, s) ⊂ ∆(G) from (1.34).

Lemma 6.17. There exist positive integers nd for d = [M, δ] ∈ ∆(G, s), such that

Πc
s,K
∼=

⊕
[M,δ]∈∆(G,s)

⟨K⟩IQMUQ

(
δ ⊗ C(Xu

nr(M))
)n[M,δ] as C∗

r (G,K)s-modules.

Proof. The H(G,K)s-module ⟨K⟩Πs is a direct integral (in an algebraic sense) of
the representations IGP (σ ⊗ χ) with χ ∈ Xnr(L). Tensoring with Cr(G,K)s kills all
nontempered irreducible subquotients. By Theorem 1.27 every irreducible tempered
subquotient of Πs arises as a direct summand of IGQ (δ), where Q ⊂ G is a parabolic

subgroup containing P , M is a Levi factor of Q containing L and δ ∈ Irr(M) is
square-integrable modulo centre. Then δ is a subquotient of IMM∩P (σ ⊗ χ) for some
χ ∈ Xnr(L). Sometimes the copy of IGQ (δ) in IGP (σ ⊗ χ) is annihilated by applying

Cr(G,K)s⊗H(G,K)s , because it belongs to a subrepresentation of IGP (σ⊗χ) generated
by elements from nontempered representations.

For each χM ∈ Xu
nr(M) the discrete series representation

(6.22) δ ⊗ χM is a subquotient of IMM∩P (σ ⊗ χM |Lχ).
Here (L, σ ⊗ χ) represents the cuspidal support of δ and, while χ is not unique,
there are only finitely many possibilities because Sc(δ) has only finitely many repre-
sentatives in Irr(L). It follows that Πc

s,K is a direct integral of the representations
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IGQ (δ ⊗ χM ) with [M, δ] ∈ ∆(G, s), and the number of times such a representations

appears as a subquotient of Πc
s,K depends only on [M, δ]. Each nd is nonzero because

Πc
s,K is a progenerator (Lemma 6.16.a).

We know the structure of C∗
r (G,K)s from Theorem 1.34 and (1.34). More con-

cretely, by (1.27) C∗
r (G,K)s has direct summands

C∗
r (G,K)[M,δ] =

(
C(Xu

nr(M))⊗ EndC
(
indK0

K0∩Q(Vδ)
K
))W[M,δ]

.

The projectivity of Πc
s,K as C∗

r (G,K)s-module (Lemma 6.16.a) implies that the

direct integral of the representations IGQ (δ ⊗ χM ) from (6.22) occurs in the form

⟨K⟩IGQ
(
C(Xu

nr(M))⊗ δ
)
. □

6.5. Construction of an action on the progenerator.
We want to define an action of C(Xu

nr(L)) ⋊ C[W e
s , ♮s] on Πc

s,K by C∗
r (G,K)s-

intertwiners, which for finite length tempered representations recovers Theorems
3.14 and 3.15. Unfortunately this will be a rather technical affair, because we have
to involve a lot of arguments from [Sol9]. The easy part is to let C(Xu

nr(L)) act
canonically on Πc

s and Πc
s,K , as follows.

The set of tempered representations in Xnr(L)σ is Xu
nr(L)σ, and by Lemma 1.37

every σ⊗χ can be written uniquely as σ⊗χ |χ|−1⊗|χ|, where σ⊗χ |χ|−1 is unitary
and χ ∈ X+

nr(L). We let f ∈ C(Xu
nr(L)) act on IGP (σ ⊗ χ) as multiplication by

f(χ |χ|−1). This can be restricted to tempered subquotients and in particular to
any IGQ (δ⊗ χM ) occurring in IGP (σ⊗ χ). When we vary χM in Xu

nr(M), we see that

this integrates to an action of f on IGQ (C(Xu
nr(M))⊗ δ), namely

(6.23) IGQ applied to multiplication by [χM 7→ f(χM |Lχ |χ|−1)] on C(Xu
nr(M))⊗δ.

Via Lemma 6.16 this gives rise to a canonical action of C(Xu
nr(L)) on Πc

s by G-
intertwiners, which restricts to an action of C(Xu

nr(L)) on Πc
s,K by C∗

r (G,K)s-
intertwiners.

Recall from Theorem 3.8 or [Sol9] that

(6.24) EndG(Πs)⊗O(Xnr(L)) C(Xnr(L)) ∼= C(Xnr(L))⋊C[W e
s , ♮s].

Here W e
s appears as a set of intertwining operators Tw that multiply as in C[W e

s , ♮s].
More precisely, the specialization

Tw : IGP (σ ⊗ χ)→ IGP (σ ⊗ w(χ))

is rational as a function of χ ∈ Xnr(L). On the other hand, from Theorem 3.13 or
the underlying [Sol9, Proposition 7.3] we obtain

C[W e
s , ♮s] ⊂ H(t,Ws,σ⊗χ, kσ⊗χ, ♮σ⊗χ) ⊂ EndG(Πs)

an
Uσ⊗χ

.

Here Uσ⊗χ is a neighborhood of X+
nr(L)χ in Xnr(L), a superscript an stands for

complex analytic functions and EndG(Πs)
an
Uσ⊗χ

consists of endomorphisms of

Πs ⊗O(Xnr(L)) C
an(Uσ⊗χ). To construct an action of C[W e

s , ♮s] on Πc
s and on Πc

s,K ,

we will need to combine both pictures of C[W e
s , ♮s].

Example 6.18. Consider G = SL2(F ) and s = [T, triv]. Lemma 6.17 works out to

Πc
s,K = ⟨K⟩IGB

(
C(Xu

nr(T ))
)
⊕ ⟨K⟩StG.
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By [Sol9, (5.20)] the operator Tsα has only one singularity, at χ(h∨α) = qF , or equi-

valently for χ = δ
1/2
B . In particular Tsα is regular on Xu

nr(T ), which means that the
action of Tsα on

Πs ⊗O(Xnr(T )) C(Xnr(T ))

from (6.24) extends naturally to an action on

Πs ⊗O(Xnr(T )) C(Xu
nr(T )) = IGB (C(Xu

nr(T ))

and on ⟨K⟩IGB (C(Xu
nr(T )). Let us check that the specialization of this action at any

χ ∈ Xu
nr(T ) recovers Theorem 3.14.

When sα(χ) ̸= χ, that follows from [Sol9, Lemma 8.2]. When sα(χ) = χ, we have
χ = χ− or χ = triv. For χ−, the relevant Hecke algebra is O(t) ⋊ C[Ws,χ− ] with
Ws,χ− = S2. Via [Sol9, Lemma 7.1], Tsα specialized at χ− is identified with a scalar
multiple of Nsα . The same identification is used in the constructions for Theorem
3.14. For trivT the relevant Hecke algebra is H(t, S2, log(qF )), and [Sol9, Lemma
7.1] identifies the specialization of Tsα at trivT with

τsα = −1 + (Nsα + 1)
h∨α

log(qF ) + h∨α

from Theorem 2.10. Now the group Ws has two incarnations {1, Nsα} and {1, τsα},
both of which act on the specialization of Πs at χ = trivT . By direct calculations one
checks that the two actions of Ws on IGB (trivT ) are both equivalent to the regular
representation.

We move on to the Steinberg representation. There are short exact sequences

(6.25)
0 → StG → IGB (δ

1/2
B ) → trivG → 0,

0 → trivG → IGB (δ
−1/2
B ) → StG → 0.

The standard intertwining operator

J(sα, B, trivT , δ
1/2
B ) : IGB (δ

1/2
B )→ IGB (δ

−1/2
B )

annihilates StG and sends trivG ∼= IGB (δ
1/2
B )/StG bijectively to trivG ⊂ IGB (δ

−1/2
B ).

Similarly

J(sα, B, trivT , δ
−1/2
B ) : IGB (δ

−1/2
B )→ IGB (δ

1/2
B )

induces an isomorphism IGB (δ
−1/2
B )/trivG → StG. The specialization of Tsα at

IGB (δ
1/2
B ) equals J(sα, B, trivT , δ

−1/2
B ) times a function of χ ∈ Xnr(L) which has

a pole at δ
1/2
B . The specialization of Tsα at IGB (δ

−1/2
B ) equals J(sα, B, trivT , δ

1/2
B )

times a nonzero scalar. In both cases Tsα induces a ”singular map” from StG to StG,
0 in one direction and∞ in the other direction. When we apply C∗

r (G,K)s⊗H(G,K)s

to the K-invariant vectors in (6.25), ⟨K⟩IGB (δ
−1/2
B ) becomes ⟨K⟩StG because trivG is

killed. By this tensoring the entire representation IGB (δ
1/2
B ) is annihilated, because it

is generated by vectors from a copy of the nontempered representation trivG. There-
fore (6.25) gives rise to only one copy of ⟨K⟩StG in Πc

s,K . The EndG(Πs)-module

HomG(Πs,StG) ∼= HomG(I
G
B (δ

−1/2
B ),StG) ∼= C

admits an action of the graded Hecke algebra H(t, S2, log(qF )). The element Nsα of
that algebra acts as -1 on HomG(Πs, StG), because it corresponds to the Steinberg



P-ADIC GROUPS, REPRESENTATIONS AND NONCOMMUTATIVE GEOMETRY 77

representation StH of H(t, S2, log(qF )). In [Sol9, (7.7) and Proposition 7.3],

(6.26) Tsα is mapped to τsα .

There is still a singularity involved, because StH(h
∨
α) = − log(qF ), see Example 2.14.

But in the end we want to relate to Theorems 3.14 and 3.15, which run via Theorem
2.24. In Theorem 2.24, ζ0 sends tempered H(t, S2, log(qF ))-modules to tempered
H(t, S2, 0)-modules. This means that we actually have to map Tsα to an element of
H(t, S2, 0), namely

(6.27) −1 + (Nsα + 1)
h∨α

0 + h∨α
= Nsα .

In this way the singularity disappears. Since Nsα acts as -1 on StH and on ζ0(StH) =
C0 ⊗ sign, Tsα acts as -1 on HomG(Πs, StG) in Theorem 3.14.a. This forces us to
define that Tsα acts as -1 on StG and on

⟨K⟩StG ∼= C∗
r (G,K)s ⊗H(G,K)s ⟨K⟩IGB (δ

−1/2
B ).

Summarizing: we constructed a group action of {1, Tsα} on Πc
s and on Πc

s,K , such
that the induced action on

HomG(Π
c
s, I

G
B (χ)) ∼= HomC∗

r (G,K)s(Π
c
s,K , ⟨K⟩IGB (χ))

is equivalent to the action of {1, Nsα} on that space (as in Theorem 3.14).

Example 6.18 and [Lus, §8] guide us to the desired action on Πc
s,K .

Theorem 6.19. There exists an action of C[W e
s , ♮s] on Πc

s,K by C∗
r (G,K)s-inter-

twiners, such that:

(a) It combines with (6.23) to an action of C(Xu
nr(L))⋊C[W e

s , ♮s] on Πc
s,K .

(b) Part (a) provides a homomorphism of Banach algebras

ϕs,K : C(Xu
nr(L))⋊C[W e

s , ♮s]→ EndC∗
r (G,K)s(Π

c
s,K).

Proof. We start by defining the action locally. Consider σ′ := σ ⊗ χ′ for some
χ′ ∈ Xu

nr(L). Let Uχ′ be a small neighborhood of X+
nr(L)χ

′ in Xnr(L), as in [Sol9,
§7] and Theorem 3.14. We use the analytic localization Πs ⊗O(Xnr(L)) C

an(Uχ′) of
Πs at Uχ′ , like in (3.15)–(3.16). This can also be done with Πc

s,K instead of Πs.

By (3.14), any element of W e
s can be written uniquely as γw, where γ sends

Φ(G,Z◦(L))σ′ to Φ(G,Z◦(L))γσ′ and w ∈ W (Φ(G,Z◦(L))σ′). Then Tγ has no sin-
gularities on Uχ′ [Sol9, (6.7)]. We define the action of γ to be that of Tγ , at least
locally over Uχ′ . That intertwines the G-action and is consistent with [Sol9, §8],
although the latter is not explicit in [Sol9].

The Weyl group W (Φ(G,Z◦(L))σ′) is generated by simple reflections sα, so we
look at one of those. By [Sol9, (5.20)], the only poles of Tsα on Uχ′ are at χ(h∨α) =

qσ′,α (for Tsα considered from the left) and at χ(h∨α) = q−1
σ′,α (considered from the

right). By [Sol9, (6.11)], there is a group isomorphism Ws,σ′ ∼= (W e
s )χ′ . Next [Sol9,

Lemma 7.2]

(6.28) identifies the specialization of Tsα at Uχ′ with fχ′
sαT

χ′
sα ,

where fχ′
sα ∈ C(Xnr(L)) without zeros or poles on Xu

nr(L), and T
χ′
sα is a version of

Tsα defined with respect to σ⊗χ′ as basepoint. The action of Tsα specialized at any

point of χ1X
+
nr(L) with χ1 ∈ Xu

nr(L) ∩ Uχ′ will be defined as that of fχ′
sαT

χ′
sα .
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As fχ′
sα restricts to a continuous function on Xu

nr(L) and we already defined how

C(Xu
nr(L)) acts on Πc

s,K , the task at hand is to define how T χ′
sα acts. In [Sol9,

Proposition 7.3], T χ′
sα is mapped to

(6.29) τsα = −1+(Nsα +1)
h∨α

log(qσ′,α) + h∨α
∈ H(t,Ws,σ′ , kσ′ , ♮σ′)⊗O(t)

Ws,σ′ C(t)Ws,σ′

from (2.18). Recall from Theorem 2.10.a that both

(6.30) {τw : w ∈Ws,σ′} and {Nwτr : w ∈W (Φ(G,Z◦(L))σ′), r ∈ Γσ′}
satisfy the multiplication rules for the standard basis elements of C[W e

s , ♮s].
Consider Q = MUQ ⊂ P and δ ∈ Irrdisc(M) which arises as a subquotient of

IML(M∩P )(σ ⊗ χ) for some χ ∈ Uχ′ , and such that ⟨K⟩IGQ (δ) is a quotient of Πc
s,K . If

χ(h∨α) /∈ {qσ′,α, q
−1
σ′,α}, then we let T χ′

sα acts on this copy of ⟨K⟩IGQ (δ) as τsα (which

is regular there). If χ(h∨α) ∈ {qσ′,α, q
−1
σ′,α}, then τsα has a singularity at σ ⊗ χ, and

we let T χ′
sα act as Nsα instead. Notice that in both cases we act by a G-intertwiner.

The dichotomy τsα/Nsα is analogous to [Lus, §8.8]. The arguments from [Lus, §8]
show that the above leads to an action of the group

(6.31) {T χ′
w : w ∈W (Φ(G,Z◦(L))σ′)}

on the sum of the copies of IGQ (δ) that arise in the above way. The main idea in [Lus,

§8] is a more precise version of (6.30), with τsα or Nsα depending on one Ws,σ′-orbit
in Uχ′ . Next we can vary δ, which yields an action of (6.31) on the localization of
Πc

s,K at Uχ′ .

From Theorem 3.8 and the multiplication rules in C[W e
s , ♮s] we see that TγTsαT −1

γ

equals Tγsαγ−1 for all simple roots α ∈ Φ(G,Z◦(L))σ′ , and hence

TγTwT −1
γ = Tγwγ−1 for all w ∈W (Φ(G,Z◦(L))σ′).

Then (6.28) says that

(6.32) Tγfχ′
sαT

χ′
sα T

−1
γ = (fχ′

sα ◦ γ
−1)TγT χ′

w T −1
γ = f

γ(χ′)
γsαγ−1T

γ(χ′)
γsαγ−1 .

The relations between T χ′
sα , τ

χ′
sα and Nsα = Nχ′

sα look the same after replacing χ′ by
γ(χ′), so (6.32) implies that

Tγfχ′
sατ

χ′
sαT

−1
γ = f

γ(χ′)
γsαγ−1τ

γ(χ′)
γsαγ−1 and Tγfχ′

sαN
χ′
sαT

−1
γ = f

γ(χ′)
γsαγ−1N

γ(χ′)
γsαγ−1 .

It follows that, as operators on a localization of Πc
s,K at Uγ(χ′):

Tγ ◦ Tsα ◦ T −1
γ = Tγsαγ−1 .

Combining instances of this relation leads to

Tγ ◦ Tw ◦ T −1
γ = Tγwγ−1 and Tγ ◦ Tw◦ = Tγwγ−1 ◦ Tw

as operators on localized versions of Πc
s,K . Consider now w2, γ2 like w, γ, only with

respect to γ(χ′) instead of χ. We compute

Tγ2 ◦ Tw2 ◦ Tγ ◦ Tw = Tγ2 ◦ Tγ ◦ Tγ−1w2γ ◦ Tw = ♮s(γ2, γ)Tγ2γ ◦ Tγ−1w2γw

= ♮(γ2, γ)Tγ2w2γw = ♮(γ2w2, γw)Tγ2w2γw

as operators from

Πc
s,K ⊗O(Xnr(L)) C

an(Uχ′) to Πc
s,K ⊗O(Xnr(L)) C

an(γ2w2γwUχ′).
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This shows that our actions defined locally near X+
nr(L)χ

′ extend to an action of
C[W e

s , ♮s] defined locally near W e
s X

+
nr(L)χ

′.
Next we check that the above constructions do not depend on the choice of the

neighborhoods Uχ′ (as long as they have the shape from [Sol9, §7]). Suppose that
we have another set Uχ′′ like Uχ′ , and that Uχ′′ ∩Uχ′ is nonempty. We need to verify
that our locally defined actions coincide on

Πc
s,K ⊗O(Xnr(L)) C

an(Uχ′ ∩ Uχ′′).

We may pick χ2 ∈ Uχ′ ∩ Uχ′′ with a neighborhood Uχ2 of X+
nr(L)χ2 contained in

Uχ′ ∩ Uχ′′ . If we can compare the actions relative to Uχ′ and Uχ2 and the actions
relative to Uχ′′ and Uχ2 , then a comparison between Uχ′ and Uχ′′ follows. Therefore
it suffices to consider the case where Uχ′′ ⊂ Uχ′ .

The conditions on Uχ′′ from [Sol9, §7] ensure that

Φ(G,Z◦(L))σ′ ⊃ Φ(G,Z◦(L))σ′ .

We consider w, γ, sα as above. For γ the actions with respect to Uχ′ and Uχ′′ are
defined in exactly the same way, so they agree where they are both defined.

Suppose that the action of Tsα (from Uχ′) is defined via that of τsα in (6.29).

Then Tsα acts on IGQ (δ) in the same way as Tsα on Πs⊗O(Xnr(L))C(Xnr(L)). In that
case the action with respect to Uχ′′ is defined just like that.

Suppose now that Tsα acts on IGQ (δ) via Nsα in (6.29). Then χ(h∨α) ∈ {qσ′,α, q
−1
σ′,α}

with χ ∈ Uχ′ ∩ Uχ′′ . In that case (6.29) holds also with respect to σ ⊗ χ′′ instead of

σ′. Further fχ′′
sα Nχ′′

sα = fχ′
sαN

χ′
sα because

fχ′′
sα τχ

′′
sα = fχ′

sατ
χ′
sα in H(t, ⟨sα⟩, kσ′ , ♮σ′)⊗O(t) C(t).

The action of Tsα on IGQ (δ) with respect to Uχ′′ is defined to be that of fχ′′
sα Nχ′′

sα =

fχ′
sαN

χ′
sα . This concludes the definition of an action of C[W e

s , ♮s] on Πc
s,K .

(a) By Theorem 2.10.b and the multiplication rules in C(Xnr(L)) ⋊ C[W e
s , ♮s], we

have, as operators on Πc
s,K :

(6.33) Tw ◦ f = (f ◦ w−1) ◦ Tw for all w ∈W e
s and f ∈ O(Xnr(L)).

The action of Tw is defined via its action on the specializations of Πc
s,K at the

various χ ∈ Xnr(L), so (6.33) extends to f ∈ C(Xnr(L)). Then it holds also for
f ∈ C(Xu

nr(L)), regarded as X+
nr(L)-invariant function on Xnr(L). Therefore the

actions of C[W e
s , ♮s] and C(Xu

nr(L)) on Πc
s,K combine in the required way.

(b) Part (a) provides an algebra homomorphism ϕs,K , and from (6.20) we know that
both source and target are Banach algebras. It remains to check the continuity of
ϕs,K . On the finite dimensional algebra C[W e

s , ♮s] continuity is automatic, so we may
focus on C(Xu

nr(L)). From (6.23) we see that its action on Πc
s,K is a direct sum of

actions of the following kind. First a projection C(Xu
nr(L))→ C(X) for some closed

subspace X ⊂ Xu
nr(L), then multiplication by f |X on some vector bundle over X.

In terms of the isomorphism

EndC∗
r (G,K)s(Π

c
s,K)op ∼= ecsMnc

s
(C∗

r (G,K)s)ecs

and the description of C∗
r (G,K)s in Theorem 1.34, this means that ϕs,K |C(Xu

nr(L))
is

a finite direct sum of homomorphisms of the form C(Xnr(L)) → C(X). Those are
continuous, so ϕs,K is continuous. □
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Theorem 6.19 gives rise to a version of Theorem 3.15 for C∗
r (G,K)s.

Lemma 6.20. Let π ∈ Irrtemp(G) ∩ Repfl(G)s
X+

nr(L)Ws(σ⊗χ)
with χ ∈ Xu

nr(L), and

recall from Theorem 3.15 that

ζ∨(π) = ind
O(Xnr(L))⋊C[W e

s ,♮
−1
s ]

O(Xnr(L))⋊C[W e
s,χ,♮

−1
s ]

(Cχ ⊗ πχ).

Then, as left modules over
(
C(Xu

nr(L))⋊C[W e
s , ♮s]

)op ∼= C(Xu
nr(L))⋊C[W e

s , ♮
−1
s ] via

Theorem 6.19:

HomC∗
r (G,K)s(Π

c
s,K , ⟨K⟩π) ∼= ind

C(Xu
nr(L))⋊C[W e

s ,♮
−1
s ]

C(Xu
nr(L))⋊C[W e

s,χ,♮
−1
s ]

(Cχ ⊗ πχ).

Proof. Both ζ∨(π) and HomC∗
r (G,K)s(Π

c
s,K , ⟨K⟩π) are determined by their specializa-

tions at χ ∈ Xu
nr(L), and for both the operation to go from there to the full module

is ind
C[W e

s ,♮
−1
s ]

C[W e
s,χ,♮

−1
s ]

. Therefore it suffices show that the specialization of

HomC∗
r (G,K)s(Π

c
s,K , ⟨K⟩π) at Uχ is isomorphic to Cχ ⊗ πχ, as left module of

C(Xu
nr(L))⋊C[W e

s , ♮
−1
s ]. By definition C(Xu

nr(L)) acts on

HomC∗
r (G,K)s(Π

c
s,K , ⟨K⟩π)⊗O(Xnr(L)) C

an(Uχ)

by evaluation at X+
nr(L)χ, or equivalently evaluation at χ. Thus we only need to

show that HomC∗
r (G,K)s(Π

c
s,K , ⟨K⟩π) is isomorphic to πχ as right C[W e

s , ♮s]-module,

where HomG(Πs, π) is isomorphic to πχ as right module for

C[W e
s , ♮s] ⊂ H(t,Ws,σ⊗χ, kσ⊗χ, ♮σ⊗χ).

In the way we set it up, HomC∗
r (G,K)s(Π

c
s,K , ⟨K⟩π) is acted upon by a copy of

C[W e
s , ♮s] which is generated by three kinds of elements:

(i) Tγ for γ ∈ Γσ⊗χ,

(ii) T χ
sα for simple roots α ∈ Φ(G,Z◦(L))σ⊗χ such that χ(h∨α) /∈ {qσ⊗χ,α, q

−1
σ⊗χ,α},

(iii) Nχ
sα for simple roots α ∈ Φ(G,Z◦(L))σ⊗χ such that χ(h∨α) ∈ {qσ⊗χ,α, q

−1
σ⊗χ,α}.

We can regard HomC∗
r (G,K)s(Π

c
s,K , ⟨K⟩π) ∼= HomG(Πs, π) as a module over

H(t,Ws,σ⊗χ, kσ⊗χ, ♮σ⊗χ)⊗O(t/Ws,σ⊗χ) C
an(Uχ)

Ws,σ⊗χ),

as in (3.16). In that algebra we continuously scale the parameters kσ⊗χ,α to 0 (or
equivalently deform qσ⊗χ,α to 1), like in (2.15) and Paragraph 2.4. Such continuous
deformations do not change representations of the finite dimensional semisimple
algebra C[W e

s , ♮s]. In the limit case kσ⊗χ,α = 0, qσ⊗χ,α = 1 the difference between T χ
sα

and Nχ
sα disappears, see (6.27). Hence HomC∗

r (G,K)s(Π
c
s,K , ⟨K⟩π) as a representation

of C[W e
s , ♮s] as generated by elements of the above kinds (i), (ii) and (iii) is equivalent

to HomG(Πs, π) as representation of C[W e
s , ♮s] as generated by the Tγ with γ ∈ Γσ⊗χ

and theNχ
sα for simple roots α ∈ Φ(G,Z◦(L))σ⊗χ. The latter representation recovers

exactly how πχ is constructed in [Sol9, §7]. □

6.6. K∗(C
∗
r (G)s) via the progenerator.

The goal of this paragraph is to compute K∗(C
∗
r (G)s) in representation theoretic

terms. The improvement on Paragraph 6.2 is that we do not need to tensor with
C over Z, so that we can also detect torsion elements in K∗(C

∗
r (G)s). Our main

tools are the progenerator from Paragraph 6.4 and the below general technique to
compute K-groups.
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Let X be a compact Hausdorff space which has the structure of a finite simplicial
complex. Let A and B be C(X)-Banach algebras, by which we mean that C(X)
acts on A via a Banach algebra morphism from C(X) to the centre of the multiplier
algebra of A (and similarly for B).

Lemma 6.21. [Sol5, Lemma 5.1.3]
Suppose that ϕ : A → B is a homomorphism of C(X)-Banach algebras, such that
for each simplex σ of X the specialization

ϕσ,∂σ : C0(X, ∂σ)A/C0(X,σ)A→ C0(X, ∂σ)B/C0(X,σ)B

induces an isomorphism on K-theory. Then K∗(ϕ) : K∗(A)→ K∗(B) is an isomor-
phism.

Recall that K ∈ CO(G) has been chosen in (6.17). In this paragraph we abbreviate

A = C(Xu
nr(L))⋊C[W e

s , ♮
−1
s ], B = EndC∗

r (G,K)s(Π
c
s,K)op, X = Xu

nr(L)/W
e
s .

Clearly A is a C(X)-Banach algebra, and via ϕs,K : A→ B we make B into a C(X)-
Banach algebra. We may regard C(X) as the algebra of X+

nr(L)-invariant continuous
functions on Xnr(L)/W

e
s
∼= Xnr(L)σ/Ws. The latter algebra acts naturally on the

family of representations IGP (σ⊗χ) with χ ∈ Xnr(L), namely f acts as multiplication
by

(6.34) f(σ ⊗ χ) = f(σ ⊗ χ |χ|−1) = f(χ |χ|−1).

From Theorem 3.7 we see that C(X) almost acts by elements of the Bernstein centre
of Rep(G)s, but not entirely because it consists of continuous rather than regular
(algebraic) functions. Taking one step back, we can say that

(6.35) C(X) acts on finite length G-representations via Z(Repfl(G)s).

From the Fourier transform of C∗
r (G,K)s (Theorem 1.34 and (1.34)), we see that the

same recipe yields an action of C(X) on C∗
r (G,K)s. Moreover (6.35) implies that

C(X) acts via a map to Z(C∗
r (G,K)s), which makes C∗

r (G,K)s into a C(X)-Banach
algebra. Comparing (6.23) and (6.34), we deduce that the Morita equivalence (6.21)
is C(X)-linear.

It is known from [Ill] that the manifold Xu
nr(L) admits a smooth W e

s -equivariant
triangulation. This means that Xu

nr(L) can be made into a finite simplicial complex,
such that all points in the interior of one simplex have the same stabilizer in W e

s .
Then we can divide by the action of W e

s , which produces a convenient triangulation
of X = Xnr(L)

u/W e
s . Let τ

′ be a simplex in Xu
nr(L) (from the chosen triangulation)

and write τ = W e
s τ

′/W e
s , which is a simplex in X.

Lemma 6.22. The C∗-algebra C0(X, ∂τ)A/C0(X, τ)A is Morita equivalent to
C0(τ, ∂τ)⊗ C[W e

s,τ ′ , ♮
−1
s ], and there is an isomorphism

K∗
(
C0(X, ∂τ)A/C0(X, τ)A

) ∼= K∗(C0(τ, ∂τ))⊗Z R
(
C[W e

s,τ ′ , ♮
−1
s ]

)
.

Proof. We can write

C0(X, ∂τ)A/C0(X, τ)A ∼= C0(W
e
s τ

′,W e
s ∂τ

′)⋊C[W e
s , ♮

−1
s ]

=
(⊕

w∈W e
s /W

e
s,τ ′

C0(wτ
′, w∂τ ′)

)
⋊C[W e

s , ♮
−1
s ].

This is Morita equivalent to C0(τ
′, ∂τ ′)⋊C[W e

s,τ , ♮
−1
s ] via the bimodules

1τ ′C0(W
e
s τ

′,W e
s ∂τ

′)⋊C[W e
s , ♮

−1
s ] and C0(W

e
s τ

′,W e
s ∂τ

′)⋊C[W e
s , ♮

−1
s ]1τ ′ .
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Since all points of τ ′ \ ∂τ ′ have the same stabilizer in W e
s , that algebra equals

(6.36) C0(τ
′, ∂τ ′)⊗ C[W e

s,τ ′ , ♮
−1
s ] ∼= C0(τ, ∂τ)⊗ C[W e

s,τ ′ , ♮
−1
s ].

The K-theory of (6.36) is easy to compute, because C[W e
s,τ , ♮

−1
s ] is a direct sum of

matrix algebras Mni(C). Every such summand contributes a copy of K∗(C0(τ, ∂τ))
to the K-theory of (6.36). On the other hand ⊕iK0(Mni(C)) = ⊕iZ is naturally
isomorphic to the representation ring of C[W e

s,τ ′ , ♮
−1
s ]. We deduce that

K∗
(
C0(X, ∂τ)A/C0(X, τ)A

) ∼= K∗
(
C0(τ, ∂τ)⊗ C[W e

s,τ ′ , ♮
−1
s ]

)
∼= K∗(C0(τ, ∂τ))⊗Z R

(
C[W e

s,τ ′ , ♮
−1
s ]

)
. □

The analogue of Lemma 6.22 for C∗
r (G,K)s is more involved.

Proposition 6.23. (a) The Banach algebra

C0(X, ∂τ)C∗
r (G,K)s/C0(X, τ)C∗

r (G,K)s

is homotopy equivalent to the tensor product of C0(τ, ∂τ) and a finite dimen-
sional semisimple algebra.

(b) Its K-theory is

K∗(C0(τ, ∂τ))⊗R
(
Modfl(C

∗
r (G,K)s)X+

nr(L)Ws(σ⊗χ)

)
.

(c) The same holds for the Banach algebra C0(X, ∂τ)B/C0(X, τ)B.

Proof. (a) From Theorem 1.34 we see that

C0(X, ∂τ)C∗
r (G,K)s/C0(X, τ)C∗

r (G,K)s

is a direct sum of algebras of the form
(6.37)(
C0(X

u
nr(M)cc(δ) ∩X+

nr(L)τ̃ , X
u
nr(M)cc(δ) ∩X+

nr(L)∂τ̃)⊗ EndC
(
IGQ (Vδ)

K
))W[M,δ] ,

where τ̃ = W e
s τ

′ ⊂ Xu
nr(L), Xu

nr(M) is identified with its restriction to L and
cc(δ) ∈ Xnr(L) is chosen such that δ is a quotient of IML(M∩P )(σ ⊗ cc(δ)). The

set of summands (6.37) whose specialization at a point W e
s χ ∈ τ is nonzero depends

only on which discrete series representations appear in the parabolic inductions (for
the various Levi subgroups of G containing L) of σ ⊗ χ′ with χ′ ∈ X+

nr(L)χ.
We claim that, when χ varies continuously over Xu

nr(L), this set of discrete series
can only jump when W e

s,χ changes. Clearly this is an issue that can be studied locally
on Xu

nr(L), and that can be done like in Theorem 3.13. In [Sol9, §7], Theorem
3.13 is in fact proven in larger generality, not for Repfl(G)s

X+
nr(L)Ws(σ⊗χ)

but for

Repfl(G)sWsUσ⊗χ
where Uσ⊗χ is a small neighborhood of X+

nr(L)(σ⊗χ). This reduces

our claim to the analogous claim for

H(t,Ws,σ⊗χ, kσ⊗χ, ♮σ⊗χ)−Modfl,UR ,

where UR is a small neighborhood of tR in t, such that UR/tR is a Ws,σ⊗χ-invariant
ball around 0 in itR. Now we have to consider discrete series representations in the
parabolic inductions of Cλ+ν ∈ Irr(O(t)), where ν ∈ tR and λ varies in UR ∩ itR.
This version of our claim is proven in Lemma 2.27.
One nice feature of the chosen triangulation ofXu

nr(L) is that all points of τ
′\∂τ ′ have

the same stabilizer in W e
s . Together with the above claim, that implies that every

summand (6.37) has a nonzero specialization at every point of τ \∂τ ⊂ Xu
nr(L)/Ws∨ .



P-ADIC GROUPS, REPRESENTATIONS AND NONCOMMUTATIVE GEOMETRY 83

For a given summand (6.37), we can choose wδ ∈ Wse such that wδτ
′ is contained

in Xu
nr(M)X+

nr(L)cc(δ). Then (6.37) reduces to

(6.38)
(
C0(wδτ

′, wδ∂τ
′)⊗ EndC

(
IGQ (Vδ)

K
))W[M,δ],τ ′ .

The groupW[M,δ] is a subquotient ofW
e
s (Lemma 1.44), so by the equivariance of the

triangulation of Xu
nr(L) every element of W[M,δ],τ ′ acts trivially on τ ′. Furthermore

wδτ
′, wδ∂τ

′ is W[M,δ],τ ′-equivarianty contractible, so can apply [Sol1, Lemma 7]. It
says that, if we replace C0(wδτ

′, wδ∂τ
′) by C∞(wτ ′) in (6.38), then the algebra

becomes homotopy equivalent to its specialization at any point of wδτ
′ \wδ∂τ

′. For
(6.38) itself the proof of [Sol1, Lemma 7] can be followed up to [Sol1, (20)], and then
it says that (6.38) is homotopy equivalent to

(6.39) C0(wδτ
′, wδ∂τ

′)⊗ EndC
(
IGQ (Vδ)

K
)W[M,δ],χ for any χ ∈ wδτ

′ \ wδ∂τ
′.

We note that EndC
(
IGQ (Vδ)

K
)W[M,δ],χ is a finite dimensional semisimple algebra. Now

we consider the direct sum over all summands (6.37) of

C0(X, ∂τ)C∗
r (G,K)s/C0(X, τ)C∗

r (G,K)s.

We obtain a tensor product of

C0(τ, ∂τ) ∼= C0(wδτ
′, wδ∂τ

′)

with a finite dimensional semisimple algebra.
(b) The algebra (6.39) is of the same kind as (6.36). The arguments in the proof of
Lemma 6.22 show that

(6.40) K∗(6.37) ∼= K∗(6.39) ∼= K∗(C0(wδτ
′, wδ∂τ

′))⊗Z R
(
EndC

(
IGQ (Vδ)

K
)W[M,δ],χ

)
.

Identifying χ with W e
s χ ∈ τ \ ∂τ , we can take the direct sum of the groups

R
(
EndC

(
IGQ (Vδ)

K
)W[M,δ],χ

)
, over all involved instances of (6.37). By Theorem 1.34

that gives precisely
R
(
Modfl(C

∗
r (G,K)s)X+

nr(L)Ws(σ⊗χ)

)
.

That and (6.40) provide the required description of

K∗
(
C0(X, ∂τ)C∗

r (G,K)s/C0(X, τ)C∗
r (G,K)s

)
.

(c) From part (a) and the C(X)-linear Morita equivalence between C∗
r (G,K)s and

B ∼= ecsMnc
s
(C∗

r (G,K)s)ecs, we deduce that (a) holds for C0(X, ∂τ)B/C0(X, τ)B. The
involved finite dimensional semisimple algebra may not be the same as before, but
it is Morita equivalent to that from part (a).

The calculation of K∗(C0(X, ∂τ)B/C0(X, τ)B) is the same as in part (b), and
also follows from Morita equivalence. □

The following result shows that the K-groups in Lemma 6.22 and Proposition 6.23
are isomorphic.

Lemma 6.24. (a) The map

R
(
C[W e

s,χ, ♮
−1
s ]

)
→ R

(
Modfl(C

∗
r (G,K)s)X+

nr(L)Ws(σ⊗χ)

)
induced by ⊗C(Xu

nr(L))⋊C[W e
s,χ,♮s]Π

c
s,K is a group isomorphism.

(b) Let ϕs,K,τ,∂τ : C0(X, ∂τ)A/C0(X, τ)A → C0(X, ∂τ)B/C0(X, τ)B be the homo-
morphism of Banach algebras induced by ϕs,K . Then K∗(ϕs,K,τ,∂τ ) is an iso-
morphism.
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Proof. (a) For

π ∈ Irrtemp(G)s
X+

nr(L)Ws(σ⊗χ)
∼= Irr(C∗

r (G,K)s)X+
nr(L)Ws(σ⊗χ),

Theorem 6.19 shows that ζ∨(π) is equivalent to HomC∗
r (G,K)s(Π

c
s,K , ⟨K⟩π), in the

sense that both have the same central character W e
s χ and the same C[W e

s,χ, ♮
−1
s ]-

representation πχ. In combination with Theorem 3.14.a we find that

(6.41) ϕ∗
s,K ◦HomC∗

r (G,K)s(Π
c
s,K , ?) :

R
(
Modfl(C

∗
r (G,K)s)X+

nr(L)Ws(σ⊗χ)

)
→ R

(
C[W e

s,χ, ♮
−1
s ]

) ∼= R(Mod(A)W e
s χ)

is a group isomorphism. The inverse of this map is ⊗C(Xu
nr(L))⋊C[W e

s,χ,♮s]Π
c
s,K .

(b) From Lemma 6.22, Proposition 6.23 and (6.41) we see that K∗(ϕs,K,τ,∂τ ) is the
tensor product of the identity on K∗(C0(τ, ∂τ)) and the isomorphism from part
(a). □

Our preparations to apply Lemma 6.21 are complete.

Theorem 6.25. Let s ∈ B(G) and choose K ∈ CO(G) as in (6.17). There are
isomorphisms of Z/2Z-graded groups

K∗
(
C(Xu

nr(L))⋊C[W e
s , ♮

−1
s ]

) K∗(ϕs,K)
−−−−−−→ K∗

(
EndC∗

r (G,K)s(Π
c
s,K)op

) ∼= K∗(C
∗
r (G,K)s).

Proof. Lemma 6.24 shows that the conditions of Lemma 6.21 are fulfilled. Then
Lemma 6.21 tells us that K∗(ϕs,K) is an isomorphism. The second isomorphism
follows from the Morita equivalence (6.21) and Theorem 6.1. □

Recall from Definition 6.6 that we interpreted K∗
(
C(Xu

nr(L)) ⋊ C[W e
s , ♮

−1
s ]

)
as

the K-theory of ♮−1
s -twisted W e

s -equivariant vector bundles on Xu
nr(L). From (6.15),

Theorem 6.25 and Definition 6.6 we conclude:

Corollary 6.26. There are isomorphisms

K∗(C
∗
r (G)) ∼=

⊕
s∈B(G)

K∗(C
∗
r (G,Ks)

s) ∼=
⊕

s∈B(G)
K∗

W e
s ,♮

−1
s
(Xu

nr(L)).

We note that Theorem 6.25 and Corollary 6.26 prove [ABPS2, Conjecture 5], a
version of the ABPS conjecture in topological K-theory.
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86 P-ADIC GROUPS, REPRESENTATIONS AND NONCOMMUTATIVE GEOMETRY

[Fin] J. Fintzen, “Supercuspidal representations: construction, classification, and characters”,
arXiv:2510.12883, 2025 (to appear in Proc. Symp. Pure Math.)

[FlSo] J. Flikkema, M. Solleveld, “Intertwining operators for representations of covering groups of
reductive p-adic groups”, arXiv:2502.18128v2, 2025
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p-adique”, Comment. Math. Helv. 76 (2001), 388–415
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