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ABSTRACT. This is a survey paper about representation theory and noncommu-
tative geometry of reductive p-adic groups G. The main focus points are:

1. The structure of the Hecke algebra H(G), the Harish-Chandra—Schwartz
algebra S(G) and the reduced C*-algebra C;(G).

2. The classification of irreducible G-representations in terms of supercuspidal
representations.

3. The Hochschild homology and topological K-theory of these algebras.

In the final part we prove one new result, namely we compute K.(C;(G))
including torsion elements, in terms of equivariant K-theory of compact tori.
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INTRODUCTION

This survey paper is based on a series of lectures delivered by the author in
February—March 2025, for the thematic trimester ” Representation theory and non-
commutative geometry”. The lectures focused on the themes of the trimester, for
reductive p-adic groups G. These notes serve the same general goals as the lectures
(with less time pressure):

e Describe the structure of various (topological) versions of the group algebra
of G.

e Explain the classification of irreducible G-representations in terms of super-
cuspidal representations of Levi subgroups.

e Discuss the computation of the Hochschild homology and the topological
K-theory of these group algebras.

The Hecke algebra H(G) of a reductive p-adic group G has been a popular object
of study. A lot is known about this algebra and its representations, and the more
abstract part of that theory has been consolidated in Renard’s textbook [Ren|. The
Harish-Chandra—Schwartz algebra S(G) is important in harmonic analysis and for
tempered G-representations. Further, the reduced C*-algebra C}(G) is crucial in
the noncommutative geometry of G. Although both topological algebras S(G) and
C}(G) have been known for more than half a century, the results about them are
scattered in the literature. We bring some of those results together in these notes

Roughly speaking, in Section [I] we will discuss the following relations between the
three group algebras of G:
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Group algebras

H(G) S(G) Cr(G)
Locally constant functions on group
compactly supported rapidly decaying ”C*-norm bounded”
Representations
smooth tempered tempered unitary

Fourier transform
algebraic sections  differentiable sections continuous sections

The classification of irreducible (smooth, complex) G-representations has two
main parts:

(i) supercuspidal G-representations,
(ii) irreducible representations in the parabolic inductions of a given set of super-
cuspidal representations of a Levi subgroup of G.

Part (i) is rather arithmetic, and outside the scope of these notes. We refer the
reader to the surveys [Afg [Fin]. Part (ii) is more geometric and highly relevant
for the noncommutative geometry of G. Moreover there is a beautiful solution to
(ii), which was already conjectured around 2012 by ABPS (Aubert, Baum, Plymen
and the author). We recall that every Bernstein block Rep(G)® in the category of
smooth G-representations comes with:

e a complex torus 7T; which parametrizes the underlying supercuspidal repre-
sentations,
e a finite group W; such that the centre of Rep(G)? is O(T;)"Vs = O(T,/Ws).

A simplified version of the ABPS conjecture says that there is a canonical bijection
between
5

e the set Irr(G)® of irreducible representations in Rep(G)®,
e the set of irreducible representations of the crossed product O(T;) x W.

Actually, in general one has to extend both Ty and W, by a finite group, and one
has to twist the group algebra of Wy by a 2-cocycle. For the sake of presentation,
we suppress those details in the introduction.

The proof of the ABPS conjecture [Sol9] entails several steps:

e Rep(G)® is made equivalent to the module category of the G-endomorphism
algebra of a progenerator ILs.

General analysis of the structure of Endg(1ls).

Relate localized versions of Endg(Ils) to graded Hecke algebras.

Study the representation theory of graded Hecke algebras.

Classify the irreducible representations of a graded Hecke algebra in terms
of those of a crossed product algebra.

e (Classify the irreducible representations of a crossed product algebra.

In Sections and We treat all these topics, in survey style (and in a different order).

After that we come to the noncommutative geometric part of the paper. Section
starts with an introduction to Hochschild homology for algebras, based on [Lod]
and focussing on algebras that are close to commutative. Then we discuss the
Hochschild homology of H(G) and of H(G)®, the summand of H(G) associated to
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Rep(G)*. The latter is computed via the Hochschild homology of graded Hecke
algebras. It turns out that H(G)® has the same Hochschild homology as the crossed
product O(Ts) x W,, which is known from [Nis].

Section [5|is dedicated to the Hochschild homology of topological algebras related
to S(G). There is a lot technique behind this, because it involves a mix of homologi-
cal algebra and functional analysis. We briefly discuss the setup and some examples
of such topological Hochschild homology groups. Let S(G)° be the summand of
S(G) associated to Rep(G)® and let T} be the compact real subtorus of T, that
parametrizes the unitary supercuspidal representations underlying Rep(G)°. Then

(1) HHy(S(G)°) = HHp(C™(T5') 3 W),

and the right hand side had already been computed earlier [Bry]. We point out that
HH,(C}(Q)) is less interesting: it recovers the cocenter C}(G)/[Ck(G), C)(G)] but
nothing more.

The isomorphism and its analogue for H(G)*® can be regarded as a version of
the ABPS conjecture in Hochschild homology. From there it is only a small step
to compute the periodic cyclic homology H Py of H(G) and S(G), again in terms of
crossed product algebras.

Finally we come to topological K-theory in Section [6] the most truly noncommu-
tative geometric part of the paper. We need K-theory both for Banach algebras and
for Fréchet algebras, and we recall some general results in the latter setting. Via
Chern characters, K-theory is related to periodic cyclic homology, which leads to
isomorphisms

(2) K.(C(G)) @2 C= K.(5(G))zC = HP.(S(G)).

These results can be compared with the Baum—Connes conjecture, which was proven
for G in [Laf]. We formulate the comparison with a completely algebraic counterpart
to the Baum—Connes conjecture from [HiNi].

To determine K, (C}(G)) including torsion elements, we abandon the survey style
and add some new results in the last three paragraphs. Our idea is to transfer the
setup used for H(G)* to the summand C(G)® of C}(G). We construct a progenera-
tor II¢ for the module category of C(G)*, and an action of C(T) x Wy on IIS. We
deduce isomorphisms

3) Ko (CH(G)) = Ku(C(T) x W) = Ky, (T5),

where the rightmost term denotes the Wjs-equivariant K-theory of the topological
space T}'. In Theorem the precise version of , T} and W, are replaced by
finite covers, and a twist by a 2-cocycle of the extension of Wy is involved. In the
end, that computes K, (C;(G)?) in terms of "twisted” Ws-equivariant vector bundles
on T}. That settles the ABPS conjecture in topological K-theory [ABPS2].
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Part A. Representation theory of reductive p-adic groups
1. GROUP ALGEBRAS

1.1. Example: GL;(F).

For a nice introduction to p-adic numbers we refer to [Goul. In this paragraph we
mention several well-known aspects of p-adic numbers without further comments.

Let F' be a non-archimedean local field. If F' has characteristic zero, then it is a
finite extension of the field of p-adic numbers @Q,, for some prime p. On the other
hand, if F' has characteristic p, then it is a finite extension of the local function field
F,((T)).

Let vp : F — Z U {oco} be the discrete valuation and fix an element wp with
vp(wr) = 1. Let op = vi'(Z>0U{co}) be the ring of integers of F and let wrop =
vt (Zso U {oc}) be its unique maximal ideal. The residue field kr = or /wrop is a
finite field of characteristic p, whose cardinality we denote by ¢p.

Example 1.1. In F' = Q, we have vp(p™a/b) = n for a,b € Z not divisible by p.
Further op = Z,, and we can take wp = p. Then kr = Z,/pZ, = Z/pZ = F).

In F =F,((T)) we have vp (> oo yanT™) = N when a,, € F, and ay # 0. Here
or = Fp[[T]] and one takes wp = T. Then kp = F,[[T]]/TF,[[T]] = F,.

On F one defines the absolute value |x|p = q;UF(m). We note that vp(0) = oo
and that [0|p = 0. The absolute value defines a metric dp(z,y) = |z — y|p on F,
with respect to which F is complete. Since the metric takes values in ¢% U {0}, the
image of dr does not contain any interval in R. Hence F' with the metric topology
is a totally disconnected Hausdorff space. It is not discrete though, for instance the
sequence (wi)o2; converges to 0 in F. By the completeness of F' with respect to
dr and the finiteness of kr, F' is locally compact. The ring o is compact.

We shall discuss various group algebras of algebraic groups over F. Let us start
with the simplest example of such a group: F* = GLi(F). Here and below, we
denote the group of invertible elements in a unital ring R by R*. For op that gives

0;(; =or \ WRop = 1)};1(0).
Notice that this is strictly smaller than op N F* = op\ {0}. In fact o is the unique
maximal compact subgroup of F*. We note that the valuation v induces a group
isomorphism F* /oy = Z.
For simplicity we look only at functions on F'* that are invariant under 0. As F'

is abelian, those are the same as oj-biinvariant functions on F*. Three interesting
algebras of such functions are:

e The Hecke algebra
(1.1) H(FX)%F = C[F* /o] = C[Z] = O(CX),

where O means regular functions on an affine variety.
e The Harish-Chandra—Schwartz algebra
(1.2)

S(F*)°F = S(F*/o%) = S(Z) = {Schwartz functions f : Z — C} = C*°(S?),

where S! is unit circle in C.
e The reduced C*-algebra

(1.3) Cr(FX)°F = G (F* [ofs) = C(Z) = O(S").
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Remarkable here is that, although F* is rather complicated and strange as a topo-
logical space (totally disconnected but not discrete), these three algebras of functions
on F* are very nice and well-behaved. They are among the standard examples of
algebras from a course on (respectively) algebraic geometry, differential geometry
and topology.

1.2. Definitions and first properties.

From now on G is a connected reductive algebraic group defined over F. We call
G = G(F) a reductive p-adic group (even though F' is not necessarily a p-adic field,
it may have positive characteristic). Of course G can be endowed with the Zariski
topology, but for the purposes of representation theory it is more useful to consider
a topology on F which comes from the metric topology on F.

We spell out this topology. Since G is a linear algebraic group, it can be embedded
in GL,, for some n € N. On the matrix ring M, (F') we define a norm by

I(aij)ij=1llp = max|a| .
That in turn yields a metric on GL,(F') by
(1.4) d(A, B) = max{|A - B| . ||A™" = B~'[|r},

where the term with the inverses is needed to make inversion on GL,,(F') continuous.
We restrict this to a metric d on G C GL,(F). While d depends on the choice of an
embedding G — GL,, the resulting topology on G does not. This makes G into a
totally disconnected locally compact group. (By convention locally compact groups
are Hausdorff.)

Since the metric on G only takes values in q% U {0}, every open ball in G is also
a closed ball. By the local compactness every closed ball is compact, so G has lots
of compact open subsets. Even better, G has many compact open subgroups.

Here is one construction of small compact open subgroups. The group

GLy(op) = {A € My(op) : det(A) € 0}
is compact and open in GL,(F'). Namely, M, (o) and
My, (op)* := {A € M,(oF) : det(A) € wrop}
are compact open subsets of M, (F'), so their difference is compact. Further
GLn(op) = My(0r) \ Ma(op)? = (Ma(0F) N GLa(F)) \ (Mn(0p)* N GLa(F)),

which is open in GL,(F). For any m € Z>o we have the ring homomorphism
op — op/wpop. This induces a group homomorphism

modw? : GLn(OF) — GLn(OF/w%HOF),
whose image is finite because
lop/whor| = qF < oc.
Then GLy(F)p = ker(modgm ) is an open subgroup of the compact group G Ly (or),
so automatically closed and compact. In fact GL,(F),, equals the closed ball of
radius ¢ around I,, in GL,(F). It follows that
(1.5) G :=GNGL,(F)p,

is a compact open subgroup of G. This is known as a congruence subgroup of G,
because it consists of matrices that are equal to the identity modulo wor. With
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respect to the metric d from (1.4, the group G, is the closed ball of radius ¢ and

the open ball of radius qllp/ 2_m, both around the unit element I,,. In particular the

decreasing sequence of compact open subgroup {Gy, : m € Z>¢} is a neighborhood
basis of I, in G.

We denote the set of compact open subgroups of G by CO(G). A large supply of
such subgroups comes from Bruhat—Tits theory, for which we refer to [KaPrl [Tit].
For each K € CO(G), the spaces G/K and K\G are discrete and countable. For the
latter, notice that G is a countable union of compact balls, and that each compact
subset of GG is covered by finitely many cosets of the open group K.

The above provides, among others, ways to partition G are as a disjoint union of
compact open subsets, just take the left cosets of one of the subgroups G,,. The
abundance of compact open subsets means that G admits many locally constant
functions. For instance, any function on the discrete space G /Gy, can be inflated to a
locally constant function on G. We let C*°(G) be the vector space of locally constant
functions f : G — C. It is an algebra with respect to pointwise multiplication. The
notation C'*° comes from manifolds, even though on a totally disconnected space like
G there is no good notion of differentiability for general functions. The reasoning is
that locally constant functions are the only functions on G that one can differentiate
for sure: all their partial derivatives are 0.

We fix a left Haar measure p on G. The group G is unimodular (because it is
reductive, see [Ren, §V.5.4]), so i is a also a right Haar measure. The convolution
product of two integrable functions f1, fo : G — C is defined as

(fr# o) (2) = /G fi(zg~") falg)dg = /G £1(9) Falg™ " 2)dg.

Here and later we suppress the Haar measures from the notations of integrals. We
note that the convolution product generalizes the multiplication in the full group
algebra C[G], with a modification for the measures of sets. For instance, let f; =
14,k, be the indicator function of a left coset of K; € CO(G). For x = g1k1g2ko with
k; € K; one computes

(Lpuscs * Loy () = /

192K2(g_1$)d9 :/ 192K2(h_19;1x)dh
9K

Ky
:/ 192K2(h_1k:192k2)dh:/ 1y, 16, (kgaks)dk
Ky K,

= u(K1g2ka N g2K2) = p(K1 N gaKagy ).
The support of fi * fy is always contained in supp(f1) - supp(f2), so

(1'6) 1g1K1 * 192K2 = N(Kl N 92K2.g2_1) 1g1K192K2'

This equation shows that the convolution product generalizes the multiplication in
the full group algebra C[G], with a modification for the measures of sets. If we would
replace p by the counting measure on GG and we would only use functions with finite
support, then would recover the multiplication in C[G].

Definition 1.2. The Hecke algebra 7 (G) is the vector space C°(G) of locally
constant compactly supported functions f : G — C, endowed with the convolution
product.
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The C-algebra H(G) is associative but not unital. Namely, from we see that
a unit element of H(G) would have to be supported only at the identity of G. But
{e} is open in G if and only if G is finite, which happens only when G = {e}.

For any K € CO(G), the K-biinvariant functions form a subalgebra

H(G, K) = C.(K\G/K)
of H(G). This subalgebra has
(K) = u(K)
as unit, as one can check like in (|1.6)).

Proposition 1.3. (a) H(G) = Ugeec) H(G K) = Up—1 H(G, Gm).

(b) The algebra H(G) has local units: for every finite subset S C H(G) there exists
an idempotent es € H(G) such that es s = s = seg for all s € S.

(¢) H(G) has countable dimension.

Proof. (a) Every f € H(G) is compactly supported and locally constant, so takes
only finitely many values in C. For each nonzero value z, f~!(z) is a compact open
subset of G. Since the G,, form a neighorhood basis of e in G, there exists m € N
such that f~!(z) is a union of G,,-double cosets. As f takes only finitely many
values, there exists an m that works for all values z # 0. Then f € H(G,Gy,).

(b) By part (a) there exist K; € CO(G) such that s € H(G, K;). Define K =
Nses K, this is a compact open subgroup because S is finite. Now s € H(G, K) for
all s € S, so eg = (K) has the required property.

(¢) The space Gy, \G/Gp, is countable, so H(G, Gy,) has countable dimension. Com-
bine that with part (a). O

On C.(G) we have the standard norms
£l = (/ £(9)'dg)"" withr € Roy and ]l = sup |£(g)].
G geG

Lemma 1.4. H(G) is dense in Co(G) for the norms || - ||, with r € R>q U {oco}.

Proof. Let f € C.(G). For m € Z>1 we define f,,, € H(G, G,) as follows: pick a set
of representatives {gm ; }; for G, \G /Gy, and put fr,(g) = f(gm.i) for g € Gpmgm,iGm.
By the continuity of f and the compactness of its support, the sequence (fm)oo_,

converges uniformly to f. Hence it also converges to f with respect to the norms
[RniP O

The Banach algebra L!(G) acts continuously on the Hilbert space L?(G), by
the convolution product. That yields an injective homomorphism from L'(G) to
B(L?(@)), the C*-algebra of bounded linear operators on L%(G). We make H(G)
and L'(G) into *-algebras by

fg) = flg™h).
Definition 1.5. The reduced C*-algebra C*(G) is the closure of L'(G) in B(L*(G)),

with respect to the operator norm.

By Lemma H(G) is dense in L(G), hence H(G) is also dense in C*(G). In
other words, C(G) can be regarded as the completion of H(G) for the operator
norm of B(L%(@G)). Lemma also says that H(G) is dense in L?(G). Therefore the
operator norm of H(G) acting on L?(G) equals the operator norm of H(G) acting
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on itself by left multiplication. Thus C}(G) can be constructed entirely in terms of
H(G), as a C*-completion of that *-algebra.
For K € CO(G), we let

C1(G,K) = (K)CHG)(K)

be the sub-C*-algebra of K-biinvariant functions in C}(G). In contrast with C(G),
the algebra C}(G, K) has a unit, namely (K). One may identify C}(G, K) with
the closure of H(G, K) = (K)YH(G)(K) in C}(G) or in B(L*(G)). It follows from
Proposition [T.3] that

1.7 CHG) = lim CHG,Gp) = lim CHG,K),
(1.7) r(G) = Jim GG, Gm) = Tim GG K)

where the limit is meant in the category of Banach algebras.

The original definition of the Harish-Chandra—Schwartz algebra of G [HC] is
rather complicated, we prefer the simpler construction in [Vig]. Using the embedding
G — GLy(F), we define a length function on G by

g — log (max {HgHFa ||9_1||F})

Then the function
0:G =R, o(g) =1+log (max{|g|lr g7 Ir})

is a scale, which means that it satisfies o(g7!) = o(g) and o(gg’) < o(g)o(g’). For
m € Zso we define a norm vy, on C.(G) by v (f) = |[o™ f||2-

Definition 1.6. For K € CO(G), S(G, K) is the completion of H(G, K) with respect
to the family of norms v, (m € Z~q). The Harish-Chandra—Schwartz algebra of G
is 8(G) = Ugeco(e) S(G, K), endowed with the inductive limit topology.

Thus S(G) consists of locally constant functions on G that decay rapidly. These
functions need not have compact support, but every one of them is biinvariant under
some K € CO(G). Some important properties of the algebras S(G, K) where proven
by Vignéras:

Theorem 1.7. [Vig, Propositions 10, 13, 28]

(a) S(G, K) is a nuclear Fréchet *-algebra with unit (K).
(b) S(G, K) is a dense subalgebra of C} (G, K), with a finer topology.
(¢) S(G,K)NCG,K)* =S8(G,K)*, and this set is open in S(G, K).

By Theorem [L.7}b and (1.7), S(G) is contained in C;(G). Like H(G) and C;(G),
the Harish-Chandra—Schwartz algebra of G is not unital. The same argument as for
Proposition b shows that S(G) does have local units, for instance the idempotents
(K) with K € CO(G).

The multiplication in S(G) is separately continuous, that is, for any fixed a € S(G)
the maps f +— fa and f — af are continuous [Wal, Lemme I11.6.1]. However, S(G)
is not a Fréchet algebra, because the topological vector space S(G) is not Fréchet.

It is a strict inductive limit of Fréchet spaces, but such spaces are not metrizable
[DiSc, Corollaire 4.2].
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1.3. Classes of representations of reductive p-adic groups.

In these notes, all representations will by default be on complex vector spaces.
The best notion of continuity for a representations of a reductive p-adic group is
smoothness.

Definition 1.8. A G-representation (m, V') is smooth if for all v € V' the stabilizer
group Gy, = {g € G : 7(g)v = v} is open in G. Equivalently, 7 is smooth if the map
m:G xV — V is continuous with respect to the discrete topology on V.

This is a rather crude inpretation of smooth, like C*°(G). It says that for any
fixed v € V the map G — V : g — m(g)v is locally constant.

Example 1.9. Let G act on H(G) by left translations:

(\g)f)(@) = flg~'z)  for g,z € G, f € H(G).
If f € H(G,K), then A\(k)f = f for all k € K. Hence (A\,H(G)) is a smooth
G-representation.

The motivation for considering the class of smooth representations comes from
profinite groups. Consider a projective limit of finite groups H = lngZ Then
each finite group H; is a quotient of H and ker(H — H;) is an open subgroup of
H. It is natural to impose that every irreducible H-representation factors through
H; for some i. Smoothness of H-representations enforces that (at least under the
small extra condition that H is its own profinite completion), and at the same time
is sufficiently flexible to enable direct limits of H-representations.

Recall that every compact totally disconnected Hausdorff group is a profinite
group, and conversely. In particular every compact subgroup of a reductive p-adic
group is profinite. Thus smoothness of a G-representation (7, V') means that for ev-
ery K € CO(G), the restriction 7|k belongs to the natural class of K-representations.

Every smooth G-representation extends to a representation of H(G) on V, by

(18) () = /G fo)mlghdg  feHE@)veV.

Since f € C°(G) and 7 is smooth, this integral boils down to a finite sum and there
are no convergence issues.

It is not quite true every H(G)-module gives rise to a (smooth) G-representation,
because H(G) is not unital. For instance, one could have a vector space W on which
H(G) acts by f-w =0 for all f € H(G),w € W. That does not correspond to any
G-representation, because G would have to act on W by invertible linear operators.

Definition 1.10. We say that an H(G)-module is nondegenerate if for each v € V'
there exists a K, € CO(G) such that (K,)v = v. Let Rep(G) be the category
of smooth G-representations and let Mod(#(G)) be the category of nondegener-
ate H(G)-modules. The morphisms in these categories are the C-linear maps that
intertwine the action of G or H(G).

Lemma 1.11. (a) The categories Rep(G) and Mod(H(G)) are naturally equivalent,
via (|1.8]).

(b) Every finitely generated smooth G-representation has countable dimension.

Proof. (a) Let V€ Mod(H(G)) and let v € V. For every compact open subgroup
K C K, we have
(K)v = (K)(Ky)v = (Ky)v = .
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This enables us to define an action w of G on V by

1. = i K) M,k -v.
(1.9) m(g)v Kelcr&G)u( ) gk v

As w(¢")v = m(g)v for all ¢’ € gK,, m is smooth. The functor
Mod(H(G)) — Rep(G) : V=7
is inverse to (|1.8)).

(b) Let (m,V) € Rep(G) be generated by m elements. By part (a) there exists a
surjection of H(G)-modules H(G)™ — V. Combine that with Proposition |1.3lc. O

A deeper result in the direction of Lemma [I.11]b is known as “uniform admissi-
bility” [Ber]. It is usually stated for irreducible representations, and it extends to
finite length representations because the restriction of a smooth G-representation to
a compact subgroup is always completely reducible.

Theorem 1.12. [Ber]
Let K € CO(G). There exists N(G,K) € N such that, for all (w,V) € Rep(G) of
finite length, dim VX is at most N(G, K) times the length of 7.

For an arbitrary G-representation (p, W), the space of smooth vectors is
W ={weW: (K)w=w for some K € CO(G)}.

Then p restricts to a smooth G-representation on W, called the smoothening of
(p, W). The group G acts on the space W* of linear functions A : W — C by

(P (PN (W) = Aplg Hw) — weW.
We define WV = W** to be the smooth part of the algebraic linear dual W*, so
the set of A : W — C that factor via p((K)) : W — WX for some K € CO(G).

Definition 1.13. Let (m, V) be a smooth G-representation. We call (7, V") the
(smooth) contragredient of 7. A matrix coefficient of 7 is a function of the form

G = C, eryl(g) = Ar(g)v) for some v € V,A € V.

Definition 1.14. A finite length smooth G-representation (7, V') is tempered if it
extends to a S(G)-module by the formula

() = /G fo)m(gdg  feS@)veV.

By [SSZ, Appendix, Proposition 1], Definition is equivalent with the more
common definition of temperedness in terms of growth of matrix coefficients [Wall
§II1.2]. For representations of infinite length the matrix coefficients do not say
enough, we need a more subtle version of temperedness. Consider the category
Mod(S(G)) of nondegenerate S(G)-modules. Since H(G) C S(G), every nonde-
generate S(G)-module restricts to a nondegenerate H(G)-module, which by Lemma
[[.11] can be regarded as a smooth G-representation.

Definition 1.15. The category of tempered smooth G-representations is the cate-
gory Mod(S(G)) of nondegenerate S(G)-modules.

Thus any tempered smooth G-representation is by definition endowed with an
extension to a S(G)-module. Notice that we do not put any continuity condition on
the action of S(G) on the module.

For a description of C(G)-modules, we need to look at unitary G-representations.
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Definition 1.16. Let V be a complex vector space with an inner product, and
let 7 be a G-representation on V. We say that 7 is pre-unitary if (w(g)v,v') =
(v, (g7 1)) for all v,v" € V. We say that (m,V) is unitary if in addition V is a
Hilbert space (so complete with respect to the norm from the inner product).

For any (pre-)unitary G-representation (m,V), the smoothening (m, V) is a
smooth pre-unitary G-representation. The pre-unitarity on V°° is equivalent to
requiring that

(m(f)v, vy = (v, w(f*)') for all v, € V.

In other words, 7(f*) = [, f(g~')7(g)dg is the adjoint of 7(f) : V™ — V>°. We
warn that a unitary G-representation on an infinite dimensional Hilbert space is
typically not smooth, because smoothness and completeness of the Hilbert space fit
badly together.

Every unitary G-representation (m, V') extends to a representation of the Banach
*_algebra L' (G). More precisely, the category of unitary L!'(G)-modules is naturally
equivalent to the category of unitary G-representations. We say that V is (topolog-
ically) irreducible if {0} and V are the only G-invariant closed linear subspaces of
V. There are functors

completion
(1.10) {smooth pre-unitary G-reps} {unitary G-reps} .

smoothening

These functors are bijective on irreducible representations, see [Sol6, §4.2] which is
based on [Ber]. In view of the complete reducibility of finite length unitary represen-
tations, it follows that restricts to an equivalence between the subcategories
of finite length objects on both sides.

Definition 1.17. Modc.(C;(G)) is the category of those C(G)-modules that are
Hilbert spaces on which C}(G) acts unitarily.

Via the natural homomorphism L'(G) — C}(G), C}(G)-modules can also be
regarded as unitary G-representations. However, not all unitary G-representations
give rise to C(G)-modules, only those that are weakly contained in L?(G).

We call unitary G-representations that extend to C;(G)-modules tempered. In
view of the continuity of the involved unitary operators, such an extension is always
given by the formula . Thus we have a natural identification

{tempered unitary G-representations} «— Modc.(C;(G)).

By the next result this is compatible with our notion of temperedness for smooth
G-representations.

Lemma 1.18. Modc.(C}(G)) consists precisely of the unitary G-representations
that extend to S(G)-modules.

Proof. Since S(G) embeds in C;}(G) (by Theorem[L.7)), every C;(G)-module (7, V) is
also a S(G)-module. Hence (7, V) is tempered in the sense of Definition except
that it need not be smooth as G-representation or nondegenerate as S(G)-module.

Consider a non-tempered unitary G-representation p. By Zorn’s lemma it has at
least one irreducible non-tempered subquotient p’. We will see in Lemma that
p' does not extend to a S(G)-module. Hence p cannot extend to S(G) either. [
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1.4. Normalized parabolic induction and Jacquet restriction.

Let P be a parabolic subgroup of G, that is, the F-points of a parabolic F-
subgroup of G. Let Up be its unipotent radical and let L be a Levi factor of P.
We briefly call L a Levi subgroup of G. Any (7, V) € Rep(L) may be regarded as
a smooth P-representation via the quotient map P — L. The smooth parabolic
induction ind%(r) is the vector space

ind3(V) = {f: G = V| f(pg) = =(p)f(g) for all p € p,g € G, f is locally constant}

endowed with the G-action by right translations. Then ind%(w) is a smooth G-
representation. The functor ind% : Rep(L) — Rep(G) is exact, but does not pre-
serve temperedness or pre-unitarity. To improve on that, one involves the modular
function ép of P. By [Sil, §1.2.1], it can be computed as

(1.11) 5p(lu) = | det (Ad(l) : Lie(Up) — Lie(Up) )}F le L,ueUp.

Definition 1.19. The normalized parabolic induction of (7, V) € Rep(L) is I§(7) =
ind% (7r & 51/2) on the vector space

IS(V)={f:G = V| flulg) = 6*()m(1)f(g) for all u € Up,l € L,g € G,
f is locally constant}.

Let Xy (L) be the group of unramified characters of L, ie. characters whose kernel

contains every compact subgroup of L. For instance, ép and 5113/ % are unramified.
All the representations I§(m ® x) with x € Xy (L) can be realized on the same
vector space, as follows. We pick a good maximal compact subgroup Ky of G. The
Iwasawa decomposition [Tit, §3.3.2] says that

(1.12) G = PKy= KyP.
This implies that restriction of functions to Ky defines a linear bijection
(1.13) ind% (Vegy) = ind g 5 (Vegy).

As Kj is compact, its action on indggm p(Vzgy) does not depend on x, so that we
can identify it with ind% konp(Vr) as Ko-representations. We call this vector space

IJID(OQP(V ), and we will always think of I§ (7 ® x) as defined on IIID?OP(VN).
The following properties can be found in [Renl §IV.2.3, §VI.1.1, §VI.6.2, §VIL5]
and [Wal, Lemme II1.2.3].

Theorem 1.20. The functor I§ : Rep(L) — Rep(G) is evact and preserves pre-
unitarity, finite length, finite generation and temperedness.

Suppose that 7 is pre-unitary with respect to an inner product (, )y. In the
proof of Theorem it is shown that Ig(ﬂ') is pre-unitary with respect to the
inner product

(1.14) i f2) = /P {h(@)hlo)vds i f e IE0)

For any g € G there are canonical isomorphisms of G-representations
ind%(7) — m%Pg_l(g - )
(1.15) Bm = 150w
foo= e flg )]
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The version of for I§ () follows from that for ind%(7) and the equality of
modular functions d,p,-1 = g-dp : x — dp(g'zg).

The parabolic induction of an L-representation depends only a little on the choice
of a parabolic subgroup with Levi factor L:

Lemma 1.21. [ABPSI] Lemma 1.1]

Let P and P’ be parabolic subgroups with Levi factor L and let m € Rep(L) have
finite length. Then the finite length G-representations IS () and IS,(r) have the
same irreducible subquotients, counted with multiplicity.

Let (p, W) € Rep(G). The Jacquet module of p with respect to P is
Wy, =W/ W (Up) = W/span{p(u)w —w : uw € Up,w € W}.

This is the largest quotient of W on which Up acts trivially. It is naturally a smooth
L-representation, denoted py, and called the Jacquet restriction (or parabolic re-
striction) of p. Like ind%, it can be improved by a normalization.

Definition 1.22. The normalized Jacquet (or parabolic) restriction J§(p) is the
vector space Wy, with the L-action

L (w+W(Up)) = 35" W)pl)yw + W (Up).

The functor Jg has nice many properties, for instance exactness and preservation
of finite length [Ren, §VI1.6.4]. However, it does not preserve temperedness or pre-
unitarity. Frobenius reciprocity provides adjointness relations

Homg (p? lndg (7T)) Hom (pUpa 7T)7

(1.16) Hom(;(p,fg(ﬂ)) ; HomM(Jg(P)aW)-

There is a much deeper second adjointness relation, due to Bernstein:

Theorem 1.23. [Renl §VI1.9.6] -
Let P be the parabolic subgroup with Levi factor L that is opposite to P, ie. PNP =
L. There are natural bijections

Homg (indS (), p)
Home (€ (). p)
1.5. Description of the tempered dual.

For any algebra A, we denote by Irr(A) the set of irreducible A-representations up
to isomorphism. We endow it with the Jacobson topology, whose closed subsets are

V(S)={relrr(A):S C ker(m)} for S C A.

1112

In particular we have the space Irr(S(G)) of irreducible nondegenerate S(G)-modules.
We call that the tempered dual Irriemp(G).

More analytically, Irr(L!(G)) is the unitary dual Irry,(G) of G. It contains
Irr(C(G)), which is sometimes called the reduced (unitary) dual of G.

Lemma 1.24. Smoothening of G-representations defines a bijection
Irr(C(G)) — Irr(S(G)).

In particular every element of Ittiemp(G) is a pre-unitary smooth G-representation.
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Proof. The Plancherel formula for G [Wal| implies that every irreducible tempered
G-representation m belongs to the support of the Plancherel measure for G. That
is another way of saying that 7 is weakly contained in L?(G) [Dix, §18.8]. Hence 7
is pre-unitary and its Hilbert space completion is an element 7 of the reduced dual.
By , 7 is the smoothening of 7. O

We warn that not every pre-unitary irreducible smooth G-representation belongs
to Irryemp(G). For instance, the trivial G-representation is unitary but not tempered
(unless G = {e}). From now on we will be a little sloppy and call a pre-unitary
smooth G-representation unitary, as is customary.

By Schur’s lemma, the center Z(G) acts by a character on any irreducible G-
representation. If the representation is unitary, then its central character is unitary
as well. In that case |cy,| : G — R>q, the absolute value of the matrix coefficient
Cap, descends to a map G/Z(G) — R>g. This applies more generally to any G-
representation on which Z(G) acts by a unitary character.

Definition 1.25. Let 7 be a smooth G-representation that admits a unitary Z(G)-
character. We say that 7 is square-integrable modulo center if |cy ,| € L*(G/Z(G))
for every matrix coefficient cj , of 7.

If 7 is moreover irreducible, then it is called a discrete series representation. We
denote the set of discrete series G-representations (up to isomorphism) by Irrgise(G).

Every discrete series G-representation 7 is weakly contained in L?(G), so its
completion extends to a C}(G)-module. By Lemma 7 is tempered and unitary.
If Z(@G) is compact, then every discrete series G-representation can be embedded in
L*(G), which implies that it is an isolated point in Irr(C}(G)) = ITtemp(G) [Dix]
§18.4]. Sometimes discrete series are defined such that they can exist only when
Z(G) is compact.

Example 1.26. The most important example of a discrete series representation is
the Steinberg representation. It exists for any G and is defined as

Stg = indg(triv)/ ZngcG ind% (triv),
where B is a minimal parabolic subgroup of G. This representation is unitary
because triv € Rep(B) and ind%(triv) are so. See [Cas] for a proof that Stg is
irreducible and discrete series.

Recall that a character x : G — C* is unramified if it is trivial on every compact
subgroup of G. We will use the notations

Xnr(G) = {unramified characters of G},
X3.(G) = {unitary unramified characters of G}.

Let G' C G be the subgroup generated by all compact subgroups of G. It is an open
normal subgroup that contains the derived group of G. The quotient G/G! is a free
abelian group of the same rank as the F-split part of Z(G)°, say rank d. Although
the natural map Z(G) — G/G" need not be surjective, its image is sublattice of the
same rank d, so that image has finite index in G/G*.

There are isomorphisms of topological groups

Hom(G/G',C*) = X (G) = Homg(Z?,CX)

(1.17) Hom(G/G',S') = Xu(G) = Homgz(Z¢ S

111
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In this way X,;(G) acquires the structure of a complex algebraic torus and X} (G)
is the maximal compact real subtorus of Xy, (G).

For every discrete series G-representation m and every y € X' (G), 7 ® x is again
discrete series. The group

Xu(Gym) i={x € Xux(G) : m@ x = 7}

consists of characters that are trivial on Z(G), because 7 ® x needs to have the same
central character as . Since G/G'Z(@) is finite, the group X,,(G, ) is finite and
contained in X* (G). The bijection

(1.18) Xi(G)/ X (G, 1) = X (G)m = {1 @ x € ItTemp(G) : x € X1 (G)}

endows X' (G) we the topological structure of a compact real torus (but XY (G)w
does not have a multiplication). We will soon see that every set of the form XY (G)x
with 7 € Irrgisc(G) is a connected component of Irremp(G). These are the compo-
nents of Irrtemp(G) of minimal dimension, and when Z(G) is compact, they consti-
tute precisely the discrete part of Irriemp (G).

To describe the connected components of Irryemp(G) outside the discrete series,
we need the following result of Harish-Chandra.

Theorem 1.27. [Wal, Proposition I11.4.1]
Let 7 € InTtemp (G).

(a) There exists a parabolic subgroup P with Levi factor L and a discrete series
L-representation 8, such that 7 is a direct summand of 1§(5).

(b) The pair (L,6) is uniquely determined by m, up to G-conjugation and isomor-
phism of L-representations.

By Theorem the G-representation Ig(d) is tempered, unitary and of finite
length, so completely reducible. The following result is known as Harish-Chandra’s
disjointness theorem. It says in particular that Ig(é) does not depend on the choice
of a parabolic subgroup P C G with given Levi factor L.

Theorem 1.28. Let P = LUp and Q = MUp be parabolic subgroups of G and let
d € Irrgisc (L) and o € Irrqisc(M). The following are equivalent:

(i) There exists a g € G such that M = gLg~" and 0 = g - 6.

(ii) I§(0) and Ig(a) are isomorphic.

iii) I6(8) and IS (o) have an irreducible subquotient in common.
P q

Proof. Clearly (ii) is stronger than (iii), which by Theorem b implies (i). By
Lemma and the complete reducibility of I§(5) and IS (o), (i) implies (ii). O

On the set {(L,d) : L Levi subgroup of G, € Irrgisc (L)} we put the equivalence
relation ~ generated by G-conjugation, isomorphism of L-representations and ten-
soring L-representations by elements of X (L). We write

A(G) ={(L,9) : L Levi subgroup of G,6 € Irrgisc(L)}/ ~
and we denote its elements by [L, §]¢. To any 0 € A(G) we associate the set
T temp (G)o = {7 € IiTiemp(G) : 7 is a summand of IS () for some (L, d) € 0}.
From Theorems and one deduces:
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Corollary 1.29. The sets Irremp(G)o with 0 € A(G) are precisely the connected
components of Ittiemp(G), so

Ittemp (G) = |_| Irttemp (G)o-

EA(G)

We call this the Harish-Chandra decomposition of Irriemp(G) and we call the sets
Irremp(G)° Harish-Chandra components for G.

By the generic irreducibility of parabolically induced representations [Saul, Théo-
reme 3.2, in the family {I§(§®x) : x € X%(L)} the irreducible representations form
an open dense subset. Hence Irremp(G)r 5 looks like the compact torus Xy (L)d,
with some points on submanifolds of smaller dimensions replaced by finite packets
of inseparable points.

Example 1.30. G = SLy(F)
The set Irrgisc(G) is countable, apart from St are its elements are supercuspidal
representations.

Up to conjugation, the only proper Levi subgroup of G is the diagonal torus
T = F*. The set Irrgisc(T)/ X% (T) is naturally in bijection with Irr(oy), which
is countable because o} is profinite. The only further equivalences in A(G) come
from conjugation by Ng(T') = T'U s, T, where s, acts on T' by inversion. Hence the
non-discrete part of A(G) is Irr(0}) modulo inversion.

Let B be the Borel subgroup of upper triangular matrices in G. A representa-
tion I§(x) with x € Irrgise(T) = Trrypi(T') is reducible if and only if x has order
two. There are three such characters (if p > 2): the quadratic unramified character
X— and two ramified characters x,, x,x— (these fail when p = 2). Two repre-
sentations 1§ (x) and I§(x’) have common irreducible subquotients if and only if
X' € {x,5a(x) = x~'}, and in that case I§(x) = I§(x').

A class [T, x]lg € A(G) with x, := x| oX of order bigger than two gives rise
to a circle of irreducible G-representations, which is equivalent to the analogous
circle Irtgemp (G) mx-1]- When X, has order at most two, the isomorphisms from
conjugation with s, mean that Irr(G)r,,) looks a half-circle, with one or two double
points.

Altogether, the topological space Irriemp(G) looks like

Here "N x” just means countably many copies of something. We draw Stg close
to IrTemp (G) (1) because it is a subquotient of 1§ () for some x € Xy, (T).

1.6. Structure of S(G) and C}(G).

The algebra S(G) can be described by its Fourier transform, which relates closely
to the Plancherel formula for G [Wal]. By Theorem [I.27/a that means: S(G) is
determined by how it acts on the representations 1§ (§) with P = LUp a parabolic
subgroup of G and § € Irrgisc(L).

In view of Theorem [I.28 we need only one L and one P for each conjugacy class
of Levi subgroups of G. We fix a set of Levi subgroups L£ev(G) representing the
conjugacy classes of Levi subgroups, and for each L € £ev(G) we fix one parabolic
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subgroup P with Levi factor L. We have to analyse how the images of S(G) in
Endc(1§(6)) and in Endc(I§(d)) are related when I§(8) = 1§(5").

First we look at x1 € X/%(L,0). By definition there exists an isomorphism of
L-representations ¢,, : 6 — 0 ® X1, unique up to scalars. Since J and J ® x; are
unitary representations (on the same inner product space), we may assume that ¢,
is unitary. Then ¢,, defines a unitary L-isomorphism ¢ ® x — ¢ ® x1 ® x for all

X € X}1.(L). By the functoriality of Ig, we obtain a family of G-isomorphisms
(119) I, Pox):IE@E@x) = IFEox®©x)  xe XL

The formula ([1.14]) shows that I(x1, P, d, x) is unitary. Via ([1.13)), we can consider
I(x1, P,6,x) as an operator on the vector space III;OQP(V(;), then it does not depend
on .

Next we look at the other source of equivalences between parabolically induced
representations in Theorem [L.27 conjugation by elements w € Ng(L). Harish-
Chandra initiated the study of the integral operators

J(w,P,6,x): IS0®x) — IS(w-§@w-X)

(1.20) f = 9= Jyrppun, fuw ™ g)du] -

As a map from I [I({gm p(Vs) to itself, this integral depends rationally on x € X, (L)
and converges when |x| is large enough in a certain direction [Wal, Théoréme IV.1.1].
Using [Hei2, Lemma 1.8] one can normalize J(w, P,d,x) with x € XY (L) to a
unitary G-isomorphism

(1.21) J'(w,P,8,x): IS0 @ x) = IS(w-6 @w- ).

(This can be done so that J'(w, P,d,x) depends continuously on , but it is only
canonical up to functions from X% (L) to S'.) The definition of A(G) entails that
it suffices to look at § in set of representatives for Irrgise(L) /(X% (L) X Ng(L)). In
combination with the union over L € £ev(L), that yields a set of representatives for
A(G). In this setting we only need the isomorphisms for w € Ng(L) such
that w-0 € X" (L)o (as subsets of Irr(L), so up to isomorphism of representations).
Moreover w and wl with [ € L give essentially the same operators (1.20]) and (1.21)),
so we may let w run over a set of representatives for the finite group

Wy = {w € No(L)/L : w- 6 € X" (L)5}.

For each w in this set we choose a unitary L-isomorphism ¢, 5 : w-6 — § ® Xy s, for
some Y6 € X% (L). Then we can compose (I.21)) with I§(¢,.4) to obtain a family
of unitary G-isomorphisms

(1.22) I(w,P,6,x) : IF(0®@ x) 2 [F0 @ xws@w-X) X € Xph(L).
Definition 1.31. Write 0 = [L,d]g. We define W§ = W[eL 5] 8S the finite group of
diffeomorphisms of {6} x X (L) = X" (L) generated by x — x1 ® x with x1 €
Xur(L,6) and x — Xu,es @ w - x with w € Wh.

Thus W§ is an extension of Wy by Xy (L,0). We note that Xy, (L,d) is really
needed here, in general the action of W, on X} (L)d does not lift to a group action

on XY (L). Combining (1.19) and (1.22)), we obtain operators as in (1.22]) for all

w € W§, canonical up to functions X% (L) — S*. It follows that, for all w, w’ € W,
the operators

(1.23) I(w, P,5,w'(x)) o I(w', P,§,x) and I(ww',P,d,x)
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differ only by a function X% (L) — S*. This enables us to define a group action of
Wy on the algebra of functions from X% (L) to End@(IﬁomP(Vg)) by

(1.24) (w- F)(w(x)) = I(w, P,6,x) o F(x) o I(w, P, x)" "
X € Xii(L), F : X3t (L) = Ende (I p(V5)).

This action stabilizes various subalgebras, for instance C(XY.(L)) @ End& (I Ilggm pVs)-
Here End& (W), for a G-representation W, means the smooth vectors in Endc (W) as
G x G-representation. The algebra EndZ (W) has W as unique irreducible module,
and it is Morita equivalent to C via the bimodules W and WV.

For each f € §(G), the intertwining property of I(w, P,d, x) says that

(1.25) I(w, P,6,x) 0 IF(§ @ x)(f) = IF (6 © w(x))(f) o I(w, P,6, ).
Hence the operators IS (8 ® x)(f) are invariant for the W¢-action from (1.24)). Fur-
ther, since S(G) is a smooth G x G-representation, 1§ (6®x)(f) € End (III((SQP(V(;)).

The example (T.2)) shows that we can expect that IS (5 ® x)(f) is a smooth function
of x € X} (L). We are ready to state the Plancherel isomorphism for G, which is
due to Harish-Chandra.

Theorem 1.32. [Wal|
(a) The Fourier transform defines an isomorphism of topological *-algebras

WE
S@=D,, ;. cae (C=(Xu(L)) @ Bnd (10, (V) ).

(b) For any K € CO(G) with K C Ky, part (a) restricts to an isomorphism of unital
Fréchet *-algebras

S(G,K) = @
Here each space III((SQP(V(;)K has finite dimension, and it is nonzero for only
finitely many [L,d]q € A(G).

Theorem b applies arbitarily small K € CO(G), but not to all K € CO(G).
We may also replace Ky by another good maximal compact subgroup of G, so that
Theorem b applies to other K € CO(G). We call

WL 6

[L.6]GEA(G) <COO(X3§(L)) ® Endc (Iggmp(%)K))

e

W,
SOV = (C(X(0) & End (1, 03)))

a Harish-Chandra block of S(G). Then we can think of Theorem a as an explicit
“Harish-Chandra decomposition”

(1.26) S(G) = @MGGA(G) S(G)L.4)-

Example 1.33. G = SLy(G).
We extend the description of Irriemp(G) in Example to S(G). We take Ky =
SLy(or) and we represent W(G,T) = Sy in Ky. For [G,0]¢ € A(G) we have
Wg,s = {1} because Xy, (G) = {1}. Hence S(G)q,5 = Endg (Vs).

For every [T, x] € A(G), the group X,,;(T, x) is trivial because T'= Z(T). When
the order of x, = x| 0% is larger than two, the group W[%,Xo] is trivial and

S(G)Txe) = C(S") ® End (I 5C).
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For x, of order at most two we get a summand
~ [0.9] 1 KO SQ
S(G)ryg = (C(SY) @ End¥ (I),5C)) ™,

but the Ss-actions differ for y, = 1 and x, ramified quadratic (this case does not
occur when p = 2). It becomes easier if we are satisfied with a description up to
Morita equivalence. Namely, S(G) is Morita equivalent to

(C>(8) @ My(C))™ & Cgy & C(S") x Sy @ @ cosh @ @~ e

where Cg; comes from the Steinberg representation. This compares well with the
picture of Irtemp(G) in Example See ([2.5]) for the definition of crossed products
like C°°(S1) x Ss.

The reduced C*-algebra C;(G) admits a description similar to Theorem By
Lemma and we have to replace all pre-unitary tempered representations
by their Hilbert space completions, then they become C;*(G)-modules. We note that,
unlike Theorem [1.32] _b C}(G) does not have to act on the Hilbert space completion
of I G(V(g) via one of the finite dimensional subspaces I G(Vg)K . Instead it acts by
compact operators, because the compact operators form the closure of the algebra
of finite rank operators on a Hilbert space (with respect to the operator norm). We
denote the C*-algebra of compact operators on the Hilbert space completion of an
inner product space V by &(V). A study of the C*-norm on both sides of Theorem
[L32] leads to:

Theorem 1.34. [Ply]
The Fourier transform (or equivalently Theorem induces an isomorphism of
C*-algebras

we
* ~ u [L,d]
C*(G) = @{L’E]G&(G) (C(X (L) @ (15 mP(Vg))) .
Here the tensor products and the direct sum are taken in the sense of C*-algebras.

For any open subgroup K C Ky, this restricts to an isomorphism of unital C*-
algebras

We
CHOK) =@, | o (COGD) ® Ende (1 p (V) ) ).

Notice that C'(XY.(L)) is the C*-completion of C*°(X[.(L)), and that it genera-
lizes the example (1.10)) for GL,(F'). For [L,d]q € A(G) we write

WC
GGy = (COX(D) @ &I p(V2))) .
Like (|1.26]), Theorem m gives a Harish-Chandra decomposition
(1.27) A =D,, sene O @ira

In many cases C;(G)1, 5 is Morita equivalent to the crossed product C(Xj (L)) x

WL, 5 see [AfAul, Theorem 1.4].
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1.7. Description of the smooth dual.

By Lemma Irr(H(G)) is the space of irreducible smooth G-representations,
which we write simply as Irr(G). We endow it with the Jacobson topology from
H(G). The space Irr(S(G)) = IrTemp (G) of irreducible nondegenerate S(G)-modules
injects in Irr(H(G)) [SSZ, Appendix, Proposition 3]. However, the Jacobson topol-
ogy from S(G) on Irtiemp(G) is finer than the subspace topology from Irr(H(G)).
The typical example is S' C C*, where S! carries the Euclidean topology and C*
is endowed with the Jacobson topology.

Definition 1.35. Let (m,V) € Rep(G). We say that 7 is

e compact modulo center if all its matrix coefficients are compactly supported
modulo Z(G),

e cuspidal if J§(7) = 0 for all proper parabolic subgroups P of G,

e supercuspidal if 7 is irreducible and not isomorphic to any subquotient of
I§(p), for any proper parabolic subgroup P = LUp C G and any p € Rep(L).

From Frobenius reciprocity (1.16]) one sees that every supercuspidal G-represen-
tation 7 is cuspidal:

Homp, (Jg(w), J}Cj(ﬂ')) = Homg(w,fg(Jg(w))) =0,

so J§(m) = 0. Jacquet and Bernstein proved that the three notions in Definition
[1.35 coincide for irreducible representations:

Theorem 1.36. [Jac|, [Ren, Théoreme VI.2.1]
A smooth G-representation is compact modulo center if and only if it is cuspidal.
Moreover every irreducible cuspidal G-representation is supercuspidal.

Proof. We provide an argument for the second claim. Suppose that 7 € Irr(G) is
cuspidal but not supercuspidal. Then it is isomorphic to a subquotient of Ig(p), for
some smooth representation p of a proper Levi subgroup L C G. By [Renl, Lemme
VI1.3.6], 7 is also a subrepresentation of Ilg(p).ﬂ Frobenius reciprocity shows that

0 # Homy (, I§(p)) = Homa (JE (r). p),
so J§(m) # 0, contradicting the cuspidality of . O

Motivated by Theorem [1.36], we denote the set of supercuspidal G-representations
(up to isomorphism) by Irreys, (G).

If Z(G) is compact, then every 7 € Irreusp(G) is an isolated point of Irr(G). In
general, if m € Irreysp(G) and x € X (G), then m ® x is again supercuspidal. Let
X (G, ) be the stabilizer of 7 for the action of X,,(G) by tensoring. Like in (1.18),
we have a bijection

(1.28) X (G)/ Xnr(Gy 1) = X (G)m = {r @ x € Irr(G) : x € Xue(G)}.

This endows X, (G)7 with the structure of an algebraic variety, namely a complex
algebraic torus. It will turn out that X,,(G)m is a connected component of Irr(G),
of minimal dimension.

A supercuspidal representation need not be tempered or unitary, but in a sense
it is not far off. By Lemma every tempered supercuspidal representation is

1“Supercuspidale” in [Ren| is cuspidal in our terminology.
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unitary, and conversely every unitary supercuspidal representation is discrete series
so in particular tempered. In particular

Irteusp temp (G) := Itteusp (G) N IrTpemp (G)  is a subset of Irrgise(G).

The group of smooth characters Hom(G,RZ)) consists of unramified characters,
because R;D has no compact subgroups apart from {1}. We write

X.(G) = Hom(G,R%,),
a group isomorphic to Hom(Z4, R%;) = (RZ;)%. Then X,,(G) admits the polar
decomposition
(1.29) Xur(G) = X34 (G) x X L(G).
Lemma 1.37. [FISo, Lemma 4.2]

Tensoring provides a bijection

Irreusp temp (G) X X1(G) — Irreusp (G).

By Lemma and (1.29), we may identify
(1.30) Irteusp (G) / X (G) = Irreusp temp (G)/ X1 (G).

Like all irreducible tempered G-representations arise from discrete series represen-
tations via parabolic induction, all irreducible smooth G-representations arise from
supercuspidal representations via parabolic induction. That was shown by Jacquet
[Jac], while Bernstein proved the uniqueness in the next result.

Theorem 1.38. [Ren, Théoreme VI.5.4]
Let 7 € Irr(G). There exists a parabolic subgroup P = LUp of G and a 0 € Irreysp(L)
such that 7 is isomorphic to a subquotient of Ig(a). Moreover the pair (L,o) is
uniquely determined up to G-conjugation.

By (1.15) and Lemma every pair (M, 7) which is G-conjugate to (L, o)
yields a parabolically induced representation I, 8 (1) with exactly the same irreducible

constituents as I§ (). Nevertheless Ig (7) need not be isomorphic to I (c).
The G-conjugacy class of (L, o) in Theorem is called the supercuspidal sup-
port of m, denoted Sc(w). This can be regarded as a map

Sc: Irr(G) — {(L,0) : L C G Levi subgroup, o € Irreusp(L)}/G.

On the set of pairs (L,o) as above we put the equivalence relation generated by
G-conjugation, by isomorphism of L-representations by and (L,o ® x) ~ (L, o) for
X € Xur(G). We write

B(G) ={(L,0) : L C G Levi subgroup, o € Irreysp(L)}/ ~ .

By (1.30)), ®B(G) is a subset of A(G). The elements of B(G), denoted [L, 0]q, are
called inertial equivalence classes for G. To any s = [L, 0] one associates the set

Irr(G)* = {7 € Irr(G) : Se(w)/ ~ € s}
= {r € Irr(G) : 7 is a subquotient of I§(c ® x) for some x € Xy, (L)}.

Theorem [I.38] is the main step towards the Bernstein decomposition of the smooth
dual:
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Theorem 1.39. [Ren, Théoreme VI.7.1]
The sets Irr(G)® with s € B(G) are precisely the connected components of Irr(G),

s0 Irr(G) = [ ;e () Irr(G)°.

The set Irr(G)* endowed with the Jacobson topology from Irr(H(G)) is called
a Bernstein component of Irr(G). By [Sau, Théoreme 3.2], the representations
I§(0 ® x) are irreducible for x in a Zariski-open dense subset of X, (G). Fur-
ther, by Theorem m two representations I$ (o ® x) and I§, (0 ® ') have common
irreducible subquotients if and only if 0 ® X’ & n - (0 ® x) for some n € Ng(L).
Hence Irr(G)[L"ﬂ is a possibly nonseparated algebraic variety with maximal sepa-
rable quotient X,;(L)o/Ng(L), and such that the inseparable points live only over
some lower dimensional subvarieties of Xy, (L)o/Ng(L).

Example 1.40. G = SLy(F)
Every supercuspidal representation gives an isolated point in Irr(G).
Every inertial equivalence class [T, x| is determined by x, = x|,x. If ord(x.) > 2,
F

then all the representations I (') with x’ € Xy, (T)x are irreducible and mutually
inequivalent. There are still isomorphisms

(1.31) IO = I(s - X) = I§(X™") for s € Ng(T) \ T.
This gives countably many Bernstein components homeomorphic to C*, indexed by
{Xo € Irr(03) : ord(xo) > 2}/W(G,T).

When Yy, has order two, the representations I (x’) with X' € X,,,(T)x are reducible
if ¥/ is quadratic and irreducible otherwise, while the only equivalences among them
are . When y, = 1, characters x’' in Xy, (T)x are precisely the unramified
characters of T. The representation I (x_) with ord(x_) = 2 is a direct sum of
two irreducibles. If y € X..(T) sends a generator of T/T' = 7Z to qr or to ql}l,
then I§(x) has two irreducible constituents: St and the trivial G-representation.
All other representations 1§ () With X € Xu(T) are irreducible and satisfy (1.31)).
Altogether, we find that Irr(SLs(F')) is homeomorphic to

/\ /—\ IN x c* N x pt

The two discs with a hole in the middle represent C*/S? with S? acting by
inversion. It is interesting to compare this with the picture of Irryemp (SL2(F')) from

Example [T

St

We see that Irr(SLo(F)) is some sort of complexification of Irryemp(SLa(F)).
More precisely Irriemp(SL2(F')) is built from circles and points, and if we replace
each circle by C*, we obtain a space Irrtemp(SL2(F'))c with a natural bijection
to Irr(SLo(F')). However, the topology of Irrtemp(SL2(F))c is finer than that of
Irr(SLy(F)). For instance, I§(triv) and Stg are in different connected components
of Irtiemp(SL2(F'))c but in the same Bernstein component.
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The relation between Examples [I.30] and [1.40] generalizes to arbitrary reductive
p-adic groups [ABPS1]. Namely, Irriemp(G) is built from copies of X (L) for Levi
subgroups L C G. If we replace each occurrence of X!.(L) by its complexification
Xur(L), then we obtain a space Irriemp(G)c. By an extension of the Langlands
classification, Irriemp(G)c maps bijectively to Irr(G). This can be stated (rather
imprecisely) as
(1.32) Irr(G) is canonically in bijection with a complexification of Irriemp(G).

Hence, for any reductive p-adic group the smooth dual and the tempered dual are
equally difficult to determine.

1.8. Rough structure of H(G).
There are two stronger versions of Theorem [1.39, which are very useful to under-
stand Rep(G) and H(G). For s € B(G), we define

Rep(G)® = {7 € Rep(G) : every irreducible subquotient of 7 lies in Irr(G)*}.

In other words, Rep(G)® is the full subcategory of Rep(G) generated by Irr(G)°.
Further, we define a two-sided ideal of H(G) by

H(G)® ={f € H(G) : w(h) = 0 for all 7 € Irr(G) \ Irr(G)*}.
The next theorem is known as the Bernstein decomposition.

Theorem 1.41. [BeDe, Ren]
Each Rep(G)® is a block of Rep(G), that is, an indecomposable direct summand of
Rep(G). The category Rep(G) admits an orthogonal decomposition

Rep(G) = Hgg%(@) Rep(G)°.
Each two-sided ideal H(G)® of H(G) is indecomposable and H(G) = Deaq () H(G)®

By Lemma [I.11]a, Rep(G)® can be identified with Mod(#(G)®). These subcate-
gories are called Bernstein blocks of Rep(G) or for G.

To understand H(G), it suffices to classify B(G) and to understand each H(G)®.
However, in spite of Theorem and ([1.32)), the structure of Rep(G) is substan-
tially more complicated than that of Mod(S(G)). The main reason is that the
building blocks 1§(8) for Mod(S(G)) are unitary, while for H#(G) the building blocks
1§ (o) with o € Irrensp(L) need not be completely reducible.

Like the Plancherel isomorphism for S(G), one would like to understand H(G)
by the Fourier transform, which in this case means its action on the representations
I§(0) with ¢ € Irteysp(L). We proceed as in Paragraph By Lemma we
may assume that o € Irreysp temp (L), s0 that it is a discrete series representation.

For x1 € Xnr(L,0) we have the operator

I(x1,P,0,x) : IE (0 @ x) = IE (0 @ x1 ® X).
For w € Ng(L) there is the intertwining operator
J(w,P,o,x) : Ig(a®x) — Ig(w~a®w‘x)

from , which depends rationally x € X, (L) once we identify the underlying
vector spaces with [ Ilgng(Vg) as in . The operator J(w, P,o,x) may have
poles and zeros at some nonunitary x € Xn:(L), and that complicates things. Even
when we normalize it to J'(w, P, o, x) as in , it need not be injective for some
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X € Xur(L)o\ X (L)o. This means that the action (1.24) of Wz, ,; on C(X{, (L)) ®
End (I ggm pVo) does not stabilize the subalgebra O(Xn,(L)) ® Endg (I Ilggm Vo).
The (weaker) analogue of Theorem for H(G) is:

Theorem 1.42. [Heil]

(a) The Fourier transform (the action of H(G) on the representations 15 (o) with

~

o' € Irreysp (L)) determines an isomorphism of *-algebras H(G) =
W@
&y (COO( Xgr(L))®End(%°(I§§mP(VU))> " INO(X e (L)) QEndE (110, 5(Vo ).
[L,o]ceB(G)

(b) For every K € CO(G) with K C Ky, part (a) restricts to an isomorphism

e

(COO(X&(L)) ® End¢ (III((SHP(VJ)KD Wiz o)

N O(Xu(L)) ® Ende (155 p (Vo) ™).

HG,K) =P

[L,o]geB(G)

Here III((SOP(VU)K has finite dimension, and it is nonzero for only finitely many
[Lag]G € SB(G)

Notice that in Theorem the regular functions on X, (L) appear in the same
way as H(F*)°F = O(C*) in (L.1).

Example 1.43. Every o € Irrcusp(G) gives a summand

H(@) = End (V) = ey Mn(C)

of H(G). For an inertial equivalence class s = [T, x]¢ with x, = x| ox of order bigger
than two, W[?f Al is trivial and

H(G)* = O(Xne(T)) ® End® (158, (Cy)),

where Ko = SLy(op). Let x, € Irr(T') be ramified quadratic, and represent Sy =
W(G,T) in Ko, then

H(G) T 2 (O(X(T) ® Ende (C[S2])) ™ @ End (150, (C,,)%).
Finally, for the trivial character of 1" there is an affine Hecke algebra H,g such that
H(G)TY = Hog @ End (155, (trivy)?).

We find that H(G) is Morita equivalent to
Hat & O(Xpe(T)) % Sz & @jzl o) e @ C

This can be compared with the description of S(G) up to Morita equivalence, from
Example [I.33}

((c=(sh 0 M) * & Csi) @ (") 1 S2 & P (") & P, C.

=1
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1.9. Decompositions of S(G) and C}(G).

The Bernstein decomposition of H(G) induces decompositions of S(G) and C;(G).
Namely, let S(G)® be the closure of H(G)® in S(G) and let C}(G)® be the closure
of H(G)*® in C;(G). Theorem and the density of #(G) in S(G) and in C}(G)
imply the Bernstein decompositions

S(G) = Decnc) SG),

CrHG) = Diem) Cr(G),

where for C*(G) the direct sum is meant in the sense of Banach algebras. The two-
sided ideals S(G)* C S(G) and C}(G)* C C}(G) are often decomposable. Hence
the decompositions (|1.33)) are coarser than the Harish-Chandra decompositions in

(1.26)) and ((1.27]), which are block decompositions. For € A(G) and s € B(G), we
write

(1.33)

0 € A(G,s) when Irriemp(G)y C Irr(G)®.

We note that s itself is an element of A(G,s), in fact the only element that can be
represented by a supercuspidal representation of a Levi subgroup of G. From (|1.33])
and Theorems [[.32] and [[.34] we obtain

S(G) = Dreas (G

cr @) = @aeA(G,s) Cr (G-

The finite groups indexing the intertwining operators in Theorems [1.32] and [T.42] for
Rep(G)* are related:

(1.34)

Lemma 1.44. Ford € A(G,s), the group Wy is a subquotient of WE.

Proof. We write 0 = [M,6|¢ and s = [L, 0|, where M O L. Recall from Definition
[L.31] that

W[(;W,(S/XHT(M’ 5) = W[Mﬁ] and W[i’a]/an(L,O') = W[L,a}-

The group Wiyr5) C No(M)/M stabilizes Irtemp(G)(ar,5) C Irr(G)57), so stabilizes
Rep(G)[L9]. Hence Winr,s) can be represented in Staby, (ar,z)/n(Xur(L)o), which is
a subgroup of W, 5.

Suppose that (L, o ®x 1) represents Sc(d) and that x s € X (M, 0). Then (L,0®
XL(xamXx)|L) represents Sc(d ®x), for all x € XY (M). By the uniqueness of cuspidal
supports up to G-conjugation, there exists w € W[GLJ] such that w(oc ® xrx|r) =
o @ xr(xmx)|r for all xar € XY (M).

Hence the action of any element of Wi e o0 Xnr(M)o arises from an element of
Wi, o+ It follows that W, 5 is isomorphic to the quotient of StabW[eL ] (X5 (M)6)
by the elements that act trivially on Xy, (M)J. O

For K € CO(G) we put

H(G K = (K)H(G)(K) = H(G K)NH(G),
(1.35) S(G,K)* = (K)S(G)*(K) = S(G,K)NS(G),
CHG, Ky = (K)CHGP(K) = CHG.K)NCHGY.
Then S(G, K)* and C}(G)® are closures of H(G, K)®, and they are generated by

H(G, K)*® as two-sided ideals in, respectively, S(G, K) and C} (G, K). To understand
H(G)*, it suffices to consider H(G, K)® for K € CO(G) in a countably family:
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Theorem 1.45. [BeDel §2.2 and Corollaire 3.9]
There exists a decreasing sequence (K,)22, of compact open subgroups of G with the
following properties:

o Moz K = {1}

e Fach K, is a normal subgroup of the good maximal compact subgroup K.

o For each s € B(G) and each n € Zsg, H(G, Ky)® is either 0 or Morita
equivalent to H(G)*.

o The bimodules for such a Morita equivalence are (K,)H(G)® and H(G)*(K,,).

From Theorems [[.42] and [[.45 one concludes:
Corollary 1.46. There ezists a unique finite subset B(G, K,,) C B(G) such that

H(G,K,) equals @56%(GKn)H(G’K”)5

and is Morita equivalent to Dcq k) H(G)®
The sequence of sets (B(G, Ky))52 , increases and its union is B(G).

There are versions of Theorem and Corollary for S(G) and C}(G):

Proposition 1.47. Let K,, be as in Theorem [1.75

(a) For any s € B(G), S(G, K,,)* is either 0 or Morita equivalent to S(G)*. In the
latter case, the Morita bimodules are (K,)S(G)* and S(G)*(K,,).

(b) The algebra S(G, Kn) equals @qeaqc i,,) S(G, Kn)® and is Morita equivalent to
DBscnc i) S(G).

(¢) Parts (a) and (b) also hold for C} (G, K,,).

Proof. (a) If H(G, K,)* = 0, then also S(G, K,)* = 0. Therefore we may as-
sume that S(G, K,,)° is nonzero. We consider (K,)S(G)? and S(G)*(K,), which
are bimodules for S(G)® and S(G, K,,)°. Multiplication provides an isomorphism of
S(G, K,)*-bimodules

(1.36) (Kn)S(G) ®s(cys S(G)*(Kn) = S(G, Kn)?,
and an isomorphism of S(G)*-bimodules
(1.37) S(G)*(Kn) @s(G k) (Kn)S(G)* = S(G)(K)S(G)*

The right hand side of (1.37)) is an S(G)*-sub-bimodule of S(G)*, and by Theorem
it contains H(G)®. Since H(G)*® generates S(G)*® as an ideal, we deduce that
(1.38) S(G)(K,)S(G)* = S(G).

From (1.36)), (1.37)) and (1.38)) we see that (K,,)S(G)® and S(G)*(K,,) implement a
Morita equivalence between S(G)® and S(G, K,,)°.

(b) This follows from Corollary and part (a).
(c) This can be shown in the same way as parts (a) and (b). O

2. TWISTED GRADED HECKE ALGEBRAS

In this section we survey some algebras which will play an important role in the
analysis of the Hecke algebra of a reductive p-adic group.



28 P-ADIC GROUPS, REPRESENTATIONS AND NONCOMMUTATIVE GEOMETRY

2.1. Twisted crossed products.
Let T" be a finite group. A 2-cocycle for I' is a map i : I' x I' — C* such that

(2.1) 0(v17v2,73)8(71,72) = 8(71,7273)8(02,73)  for all y1,792,93 € T

To these data one associates the twisted group algebra C[I', f], which has a C-basis
{Ty : v € I'} and multiplication rules

Ty Ty, =t8(71,72) T4 for all y1,v2 €T

The condition means precisely that C[I',f] is an associative algebra. Repla-
cing T, by f(e,e)~!T., we can achieve that T, - T, = T, (at the cost of modifying
g). Therefore we may and will always assume that f(e,e) = 1. Then for
(71,72:78) = (e;e,7) shows that (e, ) = 1 while (Z1) for (71,72,75) = (7. ¢,¢)
shows that §(vy,e) = 1. In other words, the condition f(e,e) = 1 implies that T is
the unit element of C[T, ].

For any function f : I' — C*, one may pass to new basis elements T'/y = f(y)T.
In those terms, the multiplication rules read

(2.2) T, T, = Fy) f(v2) f (172) ™ (71, 72) T -
The map

b(f) : (y1,72) = FOn) F(r2) F(v2) ™"

is called the coboundary of f. Hence the algebra C[I',f] depends, up to rescaling,
only on § modulo coboundaries, that is, on the image of § in H?(I',C*). This
construction yields a map from the second group cohomology H?(T', C*) to twisted
versions of C[I'] up to isomorphism.

There exists a finite central extension I'* of I', such that the inflation to I'* x I'*
of any 2-cocycle f for I' represents the trivial class in H2(I'*,C*). It is known as
the Schur extension or multiplier of I" [CuRel §53]. Let Z* be the kernel of I'* — T'.
Then § determines a character ¢, of Z*, with central idempotent e, € C[Z*] C C[I'*],
such that

(2.3) C[T, 5] = e,C[I™).

From (2.3) one can recover f (up to some coboundary), as follows. Pick representa-
tives {v* : v € I'} for I" in I'*. Then {eyy* : v € I'} is a C-basis of ,C[I'"*], and § can
be defined by the formula

eV - epYs = (v, v2)es(11y2) ™

Moreover C[I"] = 6 cy€lr(Z7) eyC[I'*], so each C[I', ] is isomorphic to a direct sum-
mand of C[I'*]. As C[I'*] is semisimple, so is CI[T', f].

Example 2.1. For I' = S5 x So, the Schur multiplier is Qg, the quaternion group
of order eight. The group Qg has four irreducible representations of dimension one,
and one of dimension two, so C[Qg] = C* @ Mz (C).

We have Z* = Z(Qg) = {£1}, so there are precisely two inequivalent twisted
group algebras of I'. The first comes from ¢; = 1 € Irr(Z%), it is just C[I']. As
C[I'] = C4, this corresponds to the direct summand C* of C[Qg].

The second comes from ¢; = sign € Irr(Z*). It corresponds to the remaining
direct summand of C[Qs], so C[Sa x Sa, ] = M>(C) for any 2-cocycle § whose image
in H2(Sy x Sy, C*) is nontrivial.
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For g € I' we introduce the map
. _ —1p—1
(2.4) T C*, () =T T,T T Y
Onme checks that the restriction §9|,.(,) is a character of Zp(g). These characters
measure the difference between C[I', j] and C[I']. For instance, they can be used to
count the number of irreducible representations of C[T, f]:

Lemma 2.2. [Soll0, Lemma 1.1]
The cardinality of {g € T : §9]7,(g) = 1}/T-conjugacy} equals |Irr(C[L, ])|.

More precisely, for every conjugacy class C with the above property, define a trace
ve on CIL, 4| by ve(Ty) =1 if g € C and ve(Ty) = 0 otherwise. Then the vc form
a basis of the space of all traces on the semisimple algebra C[T',t].

Notice that Lemma generalizes the well-known equality between the number
of conjugacy classes and the number irreducible representations (over C) of a finite
group.

Suppose now that I" acts on a C-algebra A, by automorphisms. Then we can form
the crossed product algebra A x I', which is A ®¢ C[I'] which multiplication rules

(2.5) (a1 ® 71)(a2 ® y2) = a171(a2) ® 1172 for alla; € A,v; €T

More generally, for any 2-cocycle § of I' there is a twisted crossed product A x C[T", g].
It it the same vector space A @c C[I'], but now the multiplication is given by

(a1 @ Ty, ) (a2 ® Ty,) = a1v1(az) @ 4(v1,72) Tyive foralla; € A,v; €I

This is an associative algebra that contains A and C[I',] as subalgebras (for the
latter we need to assume that A is unital). There is a close relation between Irr(A)
and Irr(A x C[I',4]), known as Clifford theory. We refer to [RaRa, p. 24| for the
cases with § = 1, and to [AMSI], §1] for how to handle nontrivial f.

In the remainder of this paragraph we focus on the cases where A is commutative
and unital. More concretely, consider the algebra A = O(X) of regular functions
on some complex affine variety X. The upcoming arguments also work for smooth
functions on a closed manifold and for continuous functions on a compact Hausdorft
space, the main point is that A can be regarded as an algebra of C-valued functions
on Irr(A).

So, we assume that I" acts on X by homeomorphisms, and we form the twisted
crossed product

(2.6) B=AxC[, 4 = O(X) x C[T, 1.

The crossed product A x I' is self-opposite, so its left and right module categories
are equivalent. The analogue for the twisted crossed product B is more subtle. The
opposite algebra B° can be studied via the isomorphism

B%® = (AxC[[,5)® = AxC[, g1

(27) aT, > T 'a acAyel.

This enables us to identify right B-modules with left modules over A x C[T',~1].
We work out the classification of the irreducible left modules of the algebra B, a
simple case of Clifford theory.

Lemma 2.3. (a) B has finite rank as a module over its centre Z(B).
(b) All irreducible B-representations have finite dimension.
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Proof. (a) Firstly, O(X)!' = O(X/TI) is a central subalgebra of B. Since O(X) is
finitely generated and integral over O(X)"', O(X) has finite rank as O(X)"-module.
As Z(B) > O(X)I', B also has finite rank over Z(B).

(b) Let V' be an irreducible B-module. As B has countable dimension, so has V.
Hence Schur’s lemma applies, and says that Z(B) acts by scalars on V. With part
(a) it follows that the image of B in Endc (V') has finite dimension. Therefore B - v
has finite dimension for any v € V. But by the irreducibility B - v = V whenever
v # 0. O

Lemma|2.3|implies that the restriction of any irreducible B-module (7, V) to O(X)
has an O(X)-eigenvector, say v, with weight 2z € X. By Frobenius reciprocity

(2.8) Homp(indg xy(Cy), 7) = Homo x)(Cq, ) # 0,

so 7 is a quotient of indg(X)((Cw). For any v € I' and f € O(X), n(Tyf)v, € V is
an O(X)-eigenvector with weight yx. If 7 is irreducible, then it cannot have more
weights than these yz. It follows that the irreducible quotients of indg( x)(Cq) are

precisely the irreducible B-modules with O(X)'-character I'z.

Let I'; be the stabilizer of = in I'. For p € Irr(C[I'g,]), we form the irreducible
O(X) x C[I'g, i]-module x ® p, on which O(X) acts by evaluation at x and C[I'y, f]
acts by p. We write

m(z, p) = indgg%:g?f}m (z ® p).
We let I' act on
{(z,p):z € X,per(C[l's,1))}

by v(x, p) = (vx,vp), where yp(h) = p(T'hT,) for h € C[I'+, 1. The space
(2.9) (X//T)y ={(z,p) : 2 € X,p € Irr(C[Ty, 1)) } /T
is called a twisted extended quotient.

Theorem 2.4. Recall that B = O(X) x C[T', ].

(a) The B-module w(x, p) is irreducible.
(b) There is canonical a bijection

(X//T)y  — Trr(B)
(x>p)/N = 71'(1:,,0) ‘

Proof. (a) Consider the ideal I, = {f € O(X)'' : f(I'z) = 0} of O(X)''. By the
Chinese remainder theorem

O(X)/ I, 0(X) = OX)/{f € OX) : flra =0} =D Co
The irreducible B-modules with O(X)!-character I'z descend to modules of
B/IreB = (vaer/r.r CW) « CIL 8.

Let p € @%F /T, C,z be the idempotent which is 1 in C, and 0 in all other sum-
mands, then as bimodules:

p(B/IFa:B) = Cw K¢ C[Fa h]?
' p(B/IFmB)p = (C:v K¢ (C[anh] gc[rxah]a

(B/IroB)p(B/IrsB) = B/Ir,B.
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The first three of these equalities are straightforward, the last follows because
(B/IryB)p(B/Ir;B) contains Tva,y_l =7(p) and >_. cr/p, 7(p) = 1. From
we see that the bimodules p(B/Ir, B) and (B/Ir,B)p provide a Morita equivalence
between B/Ip, B and C[I';, i]. This equivalence sends z ® p € Irr(C, @¢ C[['y, ]) to

. B/Ir.B
(B/IryB)p ®C,®cC[Ta,] (r®p) = md@w;/rx Crye xC[Ta,f] (z®p),

which is therefore an irreducible B/Ir, B-module. Via inflation to B, we find that
indgg;:ggf}u] (r ® p) = 7(x, p) is irreducible.

(b) By the remarks before the theorem, every irreducible B-module has a unique
O(X)'-character T'z. The set of irreducible B-modules with that O(X)"-character

is naturally in bijection with Irr(B/Ir,B). The proof of part (a) yields a bijection

Irr(C, ® C[T'y,8])) — Irr(B/Ir,B)
T®p = w(zp)

Hence every element of Irr(B) has the form 7(x, p). The only freedom in the above
construction is the choice of z in I'x. Suppose that instead we pick yx € I'z. Then
conjugation by T, can be pulled through the entire construction, and we end up
with 7p instead of p. Thus 7(z,p) = 7w(yz,vp) and these are the only possible
equivalences between modules of this form. O

Twisted crossed products for free group actions are considerably easier.

Proposition 2.5. Suppose that the action of I" on X is free.

(a) The categories of finite length modules of O(X/T') and of B = O(X) x C[TI', ]
are naturally equivalent.
(b) Iff is trivial in H*(L,C*), then O(X) xC[T,t] is Morita equivalent to O(X/T).

Proof. (a) The O(X/T')-weights provide a decomposition of the category of finite
length modules

Modg(O(X) x C[I',f]) = @erx/r

and similarly for O(X/T"). Therefore it suffices to fix a I'-orbit I'z in X and to
consider finite length O(X)xCJ[I', i]-modules V such that all irreducible subquotients
of V]p(x/ry are isomorphic to Cr,.

With the notations from the proof of Theorem let

MOdﬂ(O(X> X (C[F> h])Fma

o —

O(X/D)r, = Im O(X/T)/It,

o —

O(X)p, = lIm O(X)/I1,0(X) =P ,_ O(X),,

Br, =B ®(9(X/F) O(X/F)Fz = @B/IIG:UB
n
be the formal completions of O(X/T"),O(X) and B with respect to the ideal ge-
nerated by Ir,. This completion operation does not change the category of finite
length modules whose only O(X/TI')-weight is I'z. As in (2.10]), one checks that the
bimodules pBr, and Br;p provide a Morita equivalence between

pBFxp = O(X/F)Fm and BFxPBFx = BFI'
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(The freedom of the action is used in the last equality.) That yields equivalences of
categories

Modq(B)rs 2 Modg (Brs) = Modg (O(X/T)p,) 2 Moda(O(X/T))rs.

(b) Suppose that § € H?(I',C>) is trivial. As explained after (2.2), B = O(X) x
C[I', f] is isomorphic to O(X) x I'. This enables us to construct the idempotent

= [T|” 12 LV ECT

We claim that BeB = B. For this, it sufﬁces to check that BeBFI = Bpm for all
x € X. Since I" acts freely on X, 1, |F| erl, € BeBry equals 1, € (’)( ),- As in the

proof of Theorem 2.4} it follows that BeBFm = Bry, proving our claim.
Now the isomorphisms of bimodules

eB=0O(X), Be= O(X), eBe= O(X/T"), BeB=B
show that eB and Be provide a Morita equivalence between B and O(X/I). O

For nontrivial j € H?(I',C*) one cannot say directly that Proposition b fails,
it depends on X. In the cases where X is irreducible as an algebraic variety, one
can improve on Proposition as follows.

Suppose that there is a Morita equivalence between B and O(X/I'). Let C(X)
be the quotient field of O(X) and tensor the Morita bimodules with C(X/I') over
O(X/T'). That yields a Morita equivalence between C(X)" = C(X/I') and

(2.11)  C(X/T) ®o(x/r) B = C(X/T) ®o(x/r) O(X) x C[I', 1] = C(X) x C[I, ).

By the next result and Proposition b, ([2-17)) is only possible if § € H2(T',C*) is
trivial.

Theorem 2.6. Let X be an irreducible algebraic variety, endowed with a faithful
action of a finite group T'. Then C(X) x C[T,t] is a central simple C(X)"-algebra.
It is Morita equivalent to C(X) x T if and only if § is trivial in H*(T',C*).

Proof. By the general theory of central simple algebras, C(X) x C[I', ] is one, see
for instance [Ker, §7.5]. By a result of Noether [Kerl, §7.7], C(X) x C[T, i] is Morita
equivalent to C(X) x I if and only if § is trivial in H?(I', C(X/T)>).

We claim that the natural map

H*(T',C*) — H*(I',C(X/T)*) is injective.

Suppose that ¢ € Z2(T',C*) is a 2-cocycle, which equals a 2-coboundary b(f) for
some f: ' — C(X/I')*. Write f = fi1/f2 for some f; € O(X/T) \ {0}, and pick
x € X such that fi(T'z)fa(T'z) # 0. Then f and b(f) can be evaluated at 'z, which
gives b(f(x)) = b(f)(x) = c¢(x) = c. Hence c is trivial in H2(T,C*). O

2.2. Definitions of graded Hecke algebras.

We will analyse the modules over the Hecke algebra of a reductive p-adic group
in terms of modules of graded Hecke algebras. Here we provide a short introduction
to those algebras, which were discovered by Lusztig [Lus].

We need the following data:

e a finite dimensional real vector space tg,
e the linear dual space ty,
e a reduced integral root system ® in ty, with a basis A,
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the Weyl group W = W (®), which acts on tg and on t},
a W-invariant parameter function k: & — C,

a formal variable r,

the complexifcations t of tg and t¥ of .

Definition 2.7. The graded Hecke algebra H(t, W, k,r) is the vector space O(t) ®
C[r] ® C[W] with multiplication rules

e C[W] and O(t) ® C[r] = O(t @ C) are embedded as subalgebras,

e C[r] is central,

o fora€ A and f € O(%):
(2.12) [ sa—sasalf) =k(a)r(f —sa(f))/c
The grading on H(t, W, k,r) is twice the usual grading on the polynomial algebra
O(t® C), while all nonzero elements of C[IW] have degree 0.

It is easy to check that f — s, (f) is divisible by v in O(t), so that (2.12)) is really
a relation in H(t, W, k,r). For f =z € t¥, (2.12) simplifies to
(2.13) T So — Sa - Sa(T) = k(a)rz(aY),
where a¥ € tg denotes the coroot of a. The elements o € t¥ and r have degree

two, so the relation (2.12)) is homogeneous. It follows that H(t, W, k,r) is a graded
algebra:

deg(zy) = deg(x) + deg(y) when x,y € H(t, W, k,r) are homogeneous.

Example 2.8. If ¢ is empty, then H(t, W, k,r) reduces to O(t) ® C[r]. For k =0
we have
H(t, W,0,r) = (O(t) x W) ® C[r].

In practice the central element r is often specialized to a complex number. In
view of the identity H(t, W, k, zr) = H(t, W, zk,r) for z € C, it suffices to consider
the specialization of r to 1. We define
(2.14) H(t, W, k) = H(t, W, k,r)/(xr — 1).

The vector space H(t, W, k) = O(t)®@ C[W] is graded in the same way as H(t, W, k,r).
However, the multiplication relation (2.12)) becomes

[ 8a =80 sa(f) =k(a)(f —salf))/c,
in H(t, W, k), which is usually not homogeneous. Therefore H(t, W, k) is not graded
as an algebra. Instead it is a filtered algebra, which means that for homogeneous
elements z,y € H(t, W, k), the product xy is a sum of terms of degrees at most
deg(z) + deg(y).

Multiplication by z € C* on t induces an algebra isomorphism

H(t, W, k) — H(t, W, zk)
(2.15) fw = (foz)w

For z = 0 this becomes a projection
H(t, W, k) — C[W] C H(t, W, 0).

In addition to the data at the start of this paragraph, let I" be a finite group acting
linearly on ty, such that it stabilizes ®, A and k. Then I' acts on W by conjugation
in GL(t}) and on H(t, W, k) by

Y(fw) = (fory Nywy™)  feOH),weW,yeT.
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Definition 2.9. Let f: I' x I' = C* be a 2-cocycle. We call
H(t, WT, k1) = H(t, W, k) % C[T", 1]
a twisted graded Hecke algebra.

Notice that we allow I" = {e}, in which case H(¢, WT', k, ) reduces to H(t, W, k).
By , H(t, W, k,) is a direct summand of the algebra H(t, W, k) x I'*. There-
fore most results that have been proven for H(t, W, k) x I'* apply automatically to
H(t, W, k, ). We will tacitly use that several times.

We shall also want to consider the opposite algebras of twisted graded Hecke
algebras. These are of the same kind, because there is an algebra isomorphism

H(t, WT, k. 5)* = H( WL, k.5)
fwN, — N;lwlf feot),weWwW,yerl.
The centre of H(t, W, k) is known from [Lus, Proposition 3.11]:
Z(H(t, W, k)) = 0" = o/w).
We have Z(H(t, WT, k,1)) > O(t)"!, with equality if T' acts faithfully on t}. By
the same arguments as in Lemma [2.3a,
(2.17) H(t, WT, k, 1) has finite rank as module over its centre and over O(t)"T.

For another parameter function k', the algebras H(t, WT,k’,f) and H(t, WT, k,f)
are usually not isomorphic. Nevertheless they are always very similar, in several
ways. The clearest relation between these algebras can be seen when we include the
quotient field C(t/WT') = C()"T of O(t/WT). There are field isomorphisms

O(t) ®owr) C(t/WT) = C(
fr® f2/fs = fife/fs .
91 Mwewn ey w(92) @ [lyenr wig2) ™ < 91/92

In particular C(t) is naturally a subalgebra of C(t/WT') @ wr) H(t, WL, k, ). For
a € A we define

(2.18) 7o = (1+ 50)

(2.16)

(6%

A direct calculation shows that TSQQ =1. For vy € I" we put 7, = T, € C[I', ]
Theorem 2.10. [Lus, §5] and [Sol5l Proposition 1.5.1]
(a) The map s — Ts, extends to a group homomorphism
T W = (C(t/WT) @0 wr) H(t, WT, k1)) .
(b) There is an isomorphism of C(t/WT')-algebras
few — fTw :
We note that

COACIWT, 5] = C/WT) | @ OM=CIWT, 5] = C/WD) | @ HLWE,0,5).

Theorem shows that, upon including C(t/WT'), the dependence of H(t, WT, k, )
on k disappears.
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2.3. Representation theory.

In this paragraph we survey representations of a (twisted) graded Hecke algebra
H = H(t,W,k,5), in analogy with representations of reductive groups over local
fields. For more background on H-representations we refer to [KrRal, [Sol4].

The starting point is always representations of the maximal commutative subal-
gebra O(t).

Definition 2.11. Let (7, V') be a H-representation and let A € t. We write
Vi = {v €V :3N € Nsuch that (7(z) — 2(\)) v =0 for allz € t'}.

We say that A is an O(t)-weight (or simply a weight) of 7 if V) is nonzero. The set
of O(t)-weights of 7 is denoted Wt ().

With simple linear algebra one checks that:

Lemma 2.12. (a) Every nonzero weight space Vy contains an O(t)-eigenvector,
that is, a v # 0 such that w(z)v = z(AN)v for all z € t¥.
(b) If dim V' is finite, then V = @ cwi(x) Va-

Let Cy be the onedimensional O(t)-module with weight A\. With induction one
constructs the H-module

I(A) = indgyy (Cy).
By [BaMo2, Theorem 6.4], Wt(I(\)) = WTA.

Lemma 2.13. Let (7, V) be an irreducible H-representation.
(a) dim 'V is finite.
(b) 7 is a quotient of I(\), for some X € t.

Proof. (a) This is shown in the same way as Lemma
(b) Lemma ensures that 7 has an O(t)-weight, say A, with an eigenvector. Then
Frobenius reciprocity shows that

Homp (I(A), ) = Homp(y) (Cy, m) # 0.

Hence there exists a nonzero H-homomorphism from I(\) to 7, which by the irre-
ducibility of m must be surjective. O

In simplest noncommutative case, one can classify the irreducible H-representa-
tions by hand.

Example 2.14. We take tg = t}} = R, ® = {£1} and W = S5. We write k(o) = k €
C and we consider H = H(t, S2, k). There are two onedimensional H-representations:

e The trivial representation triv defined by triv|p
e The Steinberg representation St defined by St|o

= Cy and triv|cg,) = triv.
=C_j and St|(c[52] = sign.

£

All other irreducible representations are of the form I'(\) with A € C. As vector
spaces H = C[S2] ® O(t), so Resg[sﬂf()\) is the regular representation C[S3]. The
only proper Ss-invariant subspaces are

C(l1+s,) and C(1 — s,),

so if I(A) is reducible, then at least one of these two is an H-subrepresentation. For
z € t¥ (corresponding to x(1) € C) one computes in I(A), using (2.13]) with r = 1
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and oV = 2:

T (1+84) =T + 84 5a(7) + k(a)z(a¥) = (A + 2k — Asq)x(1)

- (1—=54) =2 — 84 5a(7) — k(a)z(a") = (A — 2k + Asy)x(1).
Hence C(1+s4) is an H-submodule of I(\) if and only if A = —k, while C(1—s,) is an
H-submodule of I(\) if and only if A = k. One can check that I(k) and I(—k) both
have length two, with irreducible subquotients triv and St. All the representations

I(\) with A € C\ {k, —k} are irreducible. By Lemma b, this exhausts Irr(H).
Frobenius reciprocity tells us that

HOIIIH (I(}\), [()\I)) = Homo(t) ((C)\, I()\/))

This is nonzero if and only if N = £\, because Wt(I(X\)) = SoN = {N, =N}
Therefore the irreducible representations I(A) and I()\') are isomorphic if and only
if M=+

Temperedness of H-representations is defined via their weights. Consider the
positive Weyl chamber
)T ={retg:z(a’)>0foralacA}
and the obtuse negative cone
te ={Aetr:z(N) <Oforallze ()"}

Example 2.15. Suppose that tg =t} = R? with the standard inner product. The
positive Weyl chamber and the obtuse negative cone for R = A; (from GL2) and

tR B

R = B5 look like

Definition 2.16. Let (m,V) be a finite dimensional H-representation. We call 7
tempered if Wt(7) C tg + itg. More restrictively, we say that 7 is discrete series if
it is irreducible and Wt(7) C int(tz) 4 itg. Here int(tz) denotes the interior of tg
as a subset of the R-span of the root system in tg dual to ®.

In terms of the canonical real part map R : t — tg, we can reformulate these
conditions as, respectively, RWt(7) C t; and RWt(m) C int(tg).

It is known from [Sol9, §9]E| that the notions of temperedness and discrete series
for representations of twisted graded Hecke algebras correspond to the synonymous
notions for representations of reductive p-adic groups.

Example 2.17. The representation I()) is tempered if and only if A € itg, be-
cause Wt(I(A)) = WA. It is never discrete series, because WHR(A) C tg cannot be
contained in the interior of ty.

Let H(C, So, k) be as in Example The Steinberg representation is tempered
if and only if R(k(a)) > 0. It is discrete series if and only if R(k(a)) > 0.

20ur discrete series representations are called tempered essentially discrete series in [Sol9].
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Definition 2.18. Irremp(H) is the set of irreducible tempered H-representations.
For a subset E C t, we let Irr(H) g be the set of irreducible H-representations 7 such
that Wt(m) C E. The same condition determines the subset Irriemp (H) . We define
Mod(H)g as the category of finite length H-representations all whose weights lie in
E. We say that an H-representation (7, V') has real weights if it lies in Mod(H)y,.

Example 2.19. Assume that & = 0. Then H(t, W,0) = O(t) x W, which we dis-
cussed in Paragraph[2.1] From Theorem [2.4]we see that the weights of any irreducible
O(t) x W-representation always form one full W-orbit WA C t. As WR()\) cannot
be contained in int(tg ), H(t, W, 0) does not have discrete series representations.
The conditions Wt(7) C itg and Wt(m) C tg together imply Wt(mw) = {0}, so
Itemp (O(t) X W)y, = Irr(O(t) x W) oy This set is naturally identified with Irr(W).

In general the representations in Irryemp, (H)y, can have more weights than just 0,
but not many, the conditions tempered and real weights are very restrictive. For an
algebra or group A, let R(A) be the Grothendieck group of the category of finite
length A-representations. When A is a group or a group algebra, R(A) is called the
representation ring of A (with the tensor product as multiplication).

Theorem 2.20. [Sol3, Theorem 6.5.c|] and [Sol8, Theorem 6.2.a]
Suppose that k is real-valued. The set {m|ciwry : ® € Iltemp(H)g } is Z-basis of
R(CWT, f]).

Example 2.21. Let H = H(C, Sa, k) be as in Example with & > 0. Then
Irrtemp (H) = {St, 1(0)}. We recall that St|c|g,] = sign and 1(0)|cs,) = C[S2]. These
form a basis of the representation ring of Sy, for instance triv = C[S3] — sign in
R(S3).

2.4. Parametrization of irreducible representations.
The best method to produce new H-representations is parabolic induction. For
the moment we do this without I", so for H(t, W, k).

Definition 2.22. Let P C A and let ®p C ® be the associated parabolic root

subsystem. Then H” = H(¢, W (®p), k) is called a parabolic subalgebra of H(t, W, k).

Parabolic induction is the functor indﬁg’w’k).

Example 2.23. If P is empty, then H” = O(t). If P = A, then H = H(t, W, k).

It is known [BaMoll Corollary 6.5] that parabolic induction preserves tempered-
ness. The vector space t decomposes as P+ @ CPY, where PV = {a" : a € P}.
Accordingly HP decomposes as a tensor product of algebras

(2.19) H” = H(CPY,W(®p), k) ® O(P+) = Hp @ O(P1).

When we think of H” as corresponding to a Levi subgroup M of a reductive group
G, Hp corresponds to the derived group of M.

For any Hp-representation (7p,Vp) and any AP € Pt we can form the H’-
representation (mp ® AT, Vp). By varying A', this construction yields continuous or
algebraic families of H”-representations.

We sketch how the classification of Irr(H) is obtained. A crucial role is played by
Theorem and therefore we assume throughout this paragraph that

(2.20) the parameter function k is real-valued.
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The condition implies [Slol Lemma 2.13]:
(2.21) every discrete series representation 7 of HY has Wt(7) ¢ RPY +i(tg N PL).

By completion with respect to central characters, as in [Lus, §7-8] and [Sol5l, §2.1],
one shows that for any A, p € tg there is an equivalence of categories

(2.22) Mod(HI(t, W, k)))w (ix+p) = Mod(HI(t, Wix, k))wiy-pi-

Notice that W;, = W) is again a Weyl group, from the root system {a € ® : a(\) =
0}. With (2.22]) one can reduce the issues in this paragraph from Mod(H) to H-
representations with real weights. By [AMS2] Proposition 2.7], (2.22)) restricts to a
bijection
Irrtemp (H(tv W, k))W(i)\—i—u) — Irrtemp (H(t? Wix, k))WM/L

Taking the union over all u € tr yields a bijection

Irrtemp (H(ta VV; k))Wi/\+iR — Irrtemp <H<t7 W’i)\v k))tR'
By Theorem restriction to C[WW;,] sends the last set to a basis of R(C[W;,]).
Theorem [2.4] provides a bijection

R(C[Win]) — R(O(t) x W)wix = R(H(t, W,0))wix,

and we note that this consists entirely of tempered representations. The composition
of all these maps is

(2 23) IrrtemP(H((tv VV; k))WiAJ"t}R - O’(R)(O(t) e W)WD\
: . CH(LWk . W -
indg "y g () = indg s, (Tlowa, ® 4A)

Now we let A run over tg, and we conclude that Irriemp(H) maps canonically to a
Z-basis of R(O(t) x W), = R(O(t) X W )temp-
Next we involve the Langlands classification for graded Hecke algebras, from [Eve].
We write
P =\ ePt:a®RA))>0 forallaeA\P}.

For each \f’ € P+ and each 7p € Irttemp (Hp), the H-representation ind%p (mp@Ap)
has a unique irreducible quotient. That sets up a bijection [Eve]

(2.24) UPCA [T emp (Hp) x PLH — Ter(H(t, W, k)) = Trr(H).

This also applies to O(t) x W = H(t, W,0). The Langlands classification and (2.23])
lead to a version of [Sol5, Theorem 2.3.1] for graded instead of affine Hecke algebras:

Theorem 2.24. Suppose that k is real-valued. There exists a natural bijection
Co : R(H(t, W, k) — R(H(t, W,0)) = R(O(t) x W)
satisfying the following properties.

(i) For p € Irtyemp(H(t, W, k), we have (o(p) = Co @ plepw)-
(ii) Co commutes with parabolic induction and with character twists:
. GHEWk . LOM)XW
o (deS; )(7rp ® )\P)) = mdogtg:W@p)(CO(WP) @A) for np € Irr(Hp), A\ € PL.
(i1i) Co preserves the underlying (virtual) C[W]-representations.
(iv) For any A\ € tg, (o sends virtual representations with O(t)-weights in i\ + tg
to virtual representations with O(t)-weights in i\ + tg.
(v) Co sends tempered representations to tempered representations, and restricts to
a bijection between the tempered parts on both sides.
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In Theorem (iv) (o may adjust the weights by elements of tg, and these
changes are always weights of a discrete series representation.
Further, with [Sol8| §6] (p can be refined to a bijection

(2.25) Crrr = Irr(H(t, W, E)) — Irr(O(t) x W).

Both Theorem and ([2.25) confirm what we already saw in Theorem that
H(t, W, k) and H(t, W,0) are very similar.

Example 2.25. We consider H = H(C, Sy, k) with & = k() > 0. With the classifi-
cation of Irr(H) from Example at hand, the maps {y and (y,; can be tabulated.

Irr(H) ROW = W)  Tre(O(t) x W)

1) w(A) = indggy " (V) m(\) AeC\ {k,—k}
1(0) 7(0) Co @ triv

St Co ® sign Co ® sign

triv m(k) — Cp ® sign (k)

Notice that for St and triv, (y changes the O(t)-weights, while (1, for I(0) =
ind%(t) (Cyp) is not compatible with parabolic induction. Further (o(triv) is not an
actual representation, and it is certainly not irreducible.

Now we generalize to the twisted graded Hecke algebras
(2.26) H(t, WT', k, ) = H(t, W, k) x C[T, t].
The equivalence of categories and the arguments leading up to also
work for these algebras, so there is a canonical map
Irriemp (H(t, WT', k,5)) = R(O(t) x C[WT, t])temp

whose image is a Z-basis of its range.

A parabolic subalgebra of H(t, WT', k, i) has the form H(t, W (®p)I'p, k, ), where
I'p C T is a subgroup stabilizing P. (In general there are several choices for I'p, and
in principle they are all feasible. Sometimes specific circumstances determine I'p.)
The tensor product decomposition generalizes only in the weaker form

H(t, W(®p)Tp, k, i) = (H(t, W(®p), k) ® O(P*)) x C[Tp, t].

This creates complications for the Langlands correspondence, the version for
H(t, WT', k, ) is more cumbersome, see [Sol8 Corollary 6.8].

Theorem 2.26. Theorem and hold also for H(t, WT', k,1).

To retain property (i), we can either start with representations of the parabolic
subalgebra HY = H(t, W (®p), k) (so with Tp = {e}), or we have to put an extra
condition on \F.

Proof. For representations with real weights, this is proven in [Sol8 Proposition
6.10.a]. The general case follows from that with ([2.22]). O

The property (2.21) can be used to obtain some information about families of
discrete series representations of parabolic subalgebras of (2.26)).

Lemma 2.27. For P C A and X € itg, let A(P,\) C Irr(H(t, W(®p)Tp, k, b))

be the set of discrete series representations occurring in indﬂg((i’)W(QP)FP’k’u)(CA+y for

some v € tg. Let C be a contractible subset of itg, such that (W(®p)I'p)y is the
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same for all X € C. Then all the sets A(P,\) with A € C' are canonically in bijection
with each other.

Proof. First we look at H(t,W,k) and its parabolic subalgebra H”. By (2.21),
A(P,)\) is empty unless A € i(tg N PY). From ([2.19)) we see that

(2.27) A(P,\) = A(P,0) ® Cy for X € i(tg N PY).

The set i(tg N PY) is precisely the fixed point set of W (®p) in itg. Therefore either
C Ci(tgNPY) or CNi(tgNPY) is empty. In the latter case A(P, ) is empty, while
in the former case provides a canonical bijection from A(P, \) to A(P,\') for
any \,\ € C.

Now we consider HY := H(t, W(®p)I'p,k,b), and we denote A(P,\) for that
algebra by A(P,\);. Notice that the discrete series condition from Definition [2.16]
is stable under the action of I'p on t. Therefore the restriction to HY of any 0, €
A(P, \) 4 has all irreducible subquotients in A(P, \). It follows that we can exhaust

P
A(P,\)+ with the irreducible subquotients of indEjS (0) for 6 € A(P,\).

P

By Clifford theory, as for instance in [RaRal p. 24] or [AMSI] §1], indﬁlt(é) is
completely reducible and its decomposition into irreducible representations is gover-
ned by its algebra of self-intertwiners, which is a twisted group algebra C[I'p;, is].

Write § = 6o ® A as in (2.27)). For v € I'p we have
V(60 @ A) = 7(do) ® ¥(A).

Consequently I'p s, is the same for all A € C'. The 2-cocycles f5,g) come a choice
of intertwining operators

I} o € Homge (7(50) ® 7(N), 60 ® N),

see [AMSI] (4)—(5)]. We can choose these independently of A € C, so h50®,\ does

not depend on A € C either. Hence the entire decomposition of 1ndIHI (60 ® A)
depends continuously on A € C. Together with the contractibility of C, that yields

a canonical leeCtIOHS between the sets of irreducible subquotients of md (50 ® A)

and of 1ndHP(5O ®@ ), for any A\, \ € C. When we carry this out for all 6 € A(P,\),
we obtain the desired bijection A(P,\)y — A(P,\)4. O

3. PROGENERATORS AND THEIR ENDOMORPHISM ALGEBRAS

We look in more detail at the structure of the Hecke algebra of a reductive p-adic
group G. In Paragraph we surveyed it in terms of harmonic analysis, but that
description does not suffice to say much about the representation theory of H(G).

The Bernstein decomposition (Theorem reduces the issue to understanding
each Bernstein block Rep(G)*, so we will focus on one such block. We will study
it by means of a finitely generated projective generator, a progenerator for short.
This strategy is very general, it can be employed whenever one has a ring A and a
progenerator P for Mod(A). The main point is the following result from category
theory:
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Proposition 3.1. [Roc, Theorem 1.8.2.1]
There are equivalences of categories
Mod(A) +— Ends(P) —Mod = Mod(Enda(P))
M — Hom 4 (P, M)
V ®Enayp) P 14

Here End 4 (P)—Mod denotes the category of right End o(P)-modules. The bimodules
for the Morita equivalence between A and End4(P)° are P and Hom (P, A).

Progenerators are quite common in the representation theory of reductive p-adic
groups, although sometimes implicitly. Namely, suppose that (K, p) is a type for
Rep(G)?, in the sense of Bushnell and Kutzko [BuKu]. Then ind%(p) is a progen-
erator of Rep(G)°. Moreover the Hecke algera H(G, K, p), as defined in [BuKul
§2], is the opposite algebra of Endg(ind%(p)), and the equivalence of categories
Rep(G)* = Mod(H(G, K, p)) from [BuKul, Theorem 4.3] is just an instance of Propo-
sition 311

In this paper we will not use types, because we want to treat all Bernstein blocks,
whereas types are not always available. Whenever one has a type (K, p), the algebra
H(G, K, p) is Morita equivalent to the G-endomorphism algebra of any other pro-
generator for Rep(G)?, so in that sense the choice of a progenerator does not really
matter.

3.1. The cuspidal case.
Let L = L(F') be a reductive p-adic group (which in the next paragraphs will be
a Levi subgroup of G). Let o € Irr(L) be supercuspidal and consider the Bernstein
block Rep(L)*t with s;, = [L,o]r. Recall from Theorem that Reslio is a
compact L!'-representation. Compact representations are always projective [Renl,
Proposition IV.1.6], because they behave like representations of compact groups.
We note that Res? o has finite length because [L : Z(L)L!] is finite. Let

H5L = il’ld£1 (Resﬁl O')

be the smooth compact induction, from L' to L, of . Here compact means that
the underlying vector space is

{f:G =V, | f(kl) =c(k)f(l) for all k € L',1 € L, supp(f) is compact in L/L'}.

Proposition 3.2. (Bernstein, see [Ren, Proposition VI.4.1])
The L-representation Ils, is a progenerator of Rep(L)®L.

We note that II;, is canonical, in the sense that it depends only on [L, o]z,
or equivalently only on Xy, (L)o. Thus Propositions and give a canonical
equivalence of categories
(3.1) Rep(L)") = Endy, (T, ) — Mod.

There are isomorphisms of L-representations

Il,, = ind% (Reskio) = C[L/LY ® 0 =2 O(Xw(L)) @ 0,
where L acts diagonally on the tensor products. Since L/L! is commutative, the
multiplication action of C[L/L'] 2 O(X,,;(L)) on C[L/L'] is by L-intertwiners. This
gives an embedding

(3.2) O(Xur(L)) = Endy, (O(Xn(L)) ® 0) = End (115, ).



42 P-ADIC GROUPS, REPRESENTATIONS AND NONCOMMUTATIVE GEOMETRY

Recall the finite group Xn,(L,0) = {x € Xur(L) : 0 @ x = o}. It acts on Xy, (L) by
translations, and there is a homeomorphism
(3.3) Xuor(L)/ X (L, o) — Trr(L)°F.

For x € Xy, (L, o), the choice of a nonzero element of Homy (0,0 ® x) gives rise to
an element T, € Endy(Il,, ), which lifts the multiplication action of x on Xy.(L).
We define a 2-cocycle f;, of Xy, (L,0) by

(3'4) TyTy, = h5L (Xb X2)TX1X2'

Theorem 3.3. [Sol9, Proposition 2.2 and (2.25)]
The elements T\, with x € Xn:(L,0) determine an algebra isomorphism

EndL(HsL) = O(an(L)) X (C[an(L’G)a uSL]
From Theorem [3.3] one sees that the centre is
(3.5) Z(Endg(s,) =2 O(Xne (L)) 59 = O(Xpp (L) / X (L, o)) = O(Trr(L)°L).
This is also the centre of the category Rep(L)*t. By Proposition there are
equivalences of categories of finite length representations
(3.6) Repq(L)*r = Endy (15, ) — Modg = O(Irr(L)*) — Modg.

By Proposition[2.5]b the restriction to finite length can be omitted if i, is trivial, but
by ([2.11) and Theorem [2.6]it is necessary if 5, is nontrivial in H?(X,,(L,o),C>).
An example of the latter situation is [Sol9, Example 2.G].

3.2. The non-cuspidal case.

Let P = LUp be a parabolic subgroup of G with Levi factor L. Recall that
s = [L,0]¢ and s;, = [L,o]r. The following result of Bernstein is quite deep, in
particular it uses the second adjointness relation (Theorem .

Proposition 3.4. The G-representation
I, := I§ (11, ) = IS (ind% (Resk o))

is a progenerator of Rep(G)*®. It is canonical, in the sense that up to isomorphism
it depends only s.

From Propositions [3.1] and [3.2] we obtain a canonical equivalence of categories
(3.7) Rep(G)® = Endg(Ils) — Mod.

Example 3.5. Suppose that G is quasi-split and that s = [T, 1] for a maximal
torus T of G. Then, by [Blo, Théoréeme 2]

1T, = 1§ (indL, (triv)) = I§(C[T/TY]) = C[G/I]
for an Iwahori subgroup I of G. In this case
Endg(Ily) 2 Endg(C[G/1)) = H(G, 1),

so in words Endg(Il) is isomorphic to the Iwahori-Hecke algebra of G. It is known
from [IwMa] that H(G, I) has the structure of an affine Hecke algebra. The equiva-
lence between the module category of H(G, I) and the category of Iwahori-spherical
G-representations from [Bor] is a special case of the equivalence obtained from
Propositions and combined with an isomorphism between H(G,I) and its
opposite algebra.
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However, in general the structure of Endg(Il) is considerably more involved, and

we will only approach it in several steps. The first observation in this direction is
that (3.2) and the functor I§ provide an embedding

(3.5) (X (L)) = Endg(Il,).
Recall that

Ws = Staby,y/n([L,0]r) = {w € Ng(L) : w-0 € Xy (L)o}/L.
The action of Ng(L) on Irr(L) induces an action of Wy on Irr(L)°E.

Example 3.6. We consider the special case W, = {e}, which is very common. Let
7, p € Rep(L)*L. Recall that Bernstein’s geometric lemma |[Ren, Théoreme VI.5.1]
provides a filtration of the L-representation JSI§ (7). The condition W, = {e}
implies that from the irreducible subquotients of this filtration only 7 itself belongs
to Rep(L)°t. From that and Frobenius reciprocity we obtain

Homg (1§ (w), I§ (p)) = Homy (JEIE (), p) = Homy (, p).

Therefore the functor 1§ : Rep(L)** — Rep(G)® is an equivalence of categories. In
particular Ig induces an algebra isomorphism
Endy, (IT;) — Endg(1§(11s, ) = Endg(Ils).

This is a very satisfactory outcome, but of course things are more complicated
(and more interesting) when Wy # {e}.

Recall that the Bernstein centre of G' [BeDe] is the centre of the category Rep(G).
It can also be expressed in terms of distributions on G [MoTal, Proposition 3.2g].
Some aspects of the Bernstein decomposition involve the Bernstein centre:

Theorem 3.7. [BeDe]
There are natural isomorphisms

Z(Rep(G)*) = Z(Endg(IL)) 2 O(Irr(L)*)W+ = O(Irr(L) = /W),

Recall from Definition that W¢ is an extension of Wy by Xy (L, o), which
acts on Xy, (L). By construction, the quotient map

X (L) = Irr(L)*E s x = 0@ x
induces a homeomorphism
Xoe(L)/WE = Irr (L) /W
Knowing this, Theorem [3.7] says that
(3.9) Z(Endg(Il,)) = O(Xur (L) = O(Xur(L)/WE).

As we saw in (1.22)) and Theorem the group W¢ acts on the family of repre-
sentations I§ (o ® x) with x € Xy, (L), but by operators that depend rationally on
x and may have poles. Moreover, from (|1.23|) and (3.4]) we see that in general this

is only a projective action of W7. Still, from these one can construct, as done in
[Sol9l §4], an embedding

(3.10) CIWy, 1] = Enda(Ils) @o(x,. (p)/we C(Xue(L)/ W),

for a suitable 2-cocycle s generalizing (1.23)). This and the next result can be
compared with Theorem [2.10]
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Theorem 3.8. [Sol9, Corollary 5.8]
The embeddings (3.8) and (3.10) combine to an algebra isomorphism

Endg(Is) @o(x,. (2)/we) C(Xnr(L)/ W) = C(Xne (L)) x C[W, s].

In Theorem [3.8]it is necessary to include the quotient field C(Xp(L)/W¢), unlike
in Theorem [3.3] without that Theorem [3.§ would only hold in special cases. Since
W acts faithfully on Xy (L), C(Xn (L)) has dimension |W¢| over C(Xy(L)/WE).
Theorem [3.§ shows that

dimex,, (1)we) Enda(Is) @o(x,, (2)/we) C(Xne(L)/WE) = [WE.

This can be stated more precisely in terms of central simple algebras. Namely, it
follows from Theorems 2.6 and 3.8 that:

Corollary 3.9. Endg(Ils) ®o(x,, (£)/we) C(Xur(L) /W) is a central simple algebra
over C(Xy,(L)/WE). It is Morita equivalent to C(Xp, (L)) x WE if and only if tis is
trivial in H*(WE, C*).
3.3. Localization on the Bernstein centre.

For any W;-stable subset U C Irr(L)*L, one can consider

Rep(G)}; = {m € Rep(G)® : Sc(n’) € (L, U) for all irreducible subquotients 7’ of 7}.
In view of Theorem this category can be obtained from Rep(G)® by imposing
conditions on how the Bernstein centre Z(Rep(G)*®) may act on the representations.

Often it is more prudent to restrict to finite length representations. That will be

indicated by a subscript fl, so Repg(G)j;. When U, for i in some (possibly infinite)
index set, are disjoint Ws-invariant subsets of Irr(L)°L, there is a decomposition

(3.11) Repy(G)0,u, = @Z Repg(G)y, s

This does not work with representations of arbitrary length, and it is an important
reason why it is easier to work with representations of finite length.

To proceed, we make the relation between End¢(Il;) and supercuspidal supports
explicit. Let @ = MUg be a parabolic subgroup of G' containing P = LUp, so that
sy = [L, ol is defined. Then the functor Ig provides an embedding

End (I1;,,) — Endg(I1,).

Lemma 3.10. [Sol7, Lemma 5.1]
(a) The equivalences of categories (3.7)) are compatible with parabolic induction: they
form a commutative diagram
Rep(G)* = Endg(Ils) — Mod
0 Ig 1 ind .
Rep(M)*™ = End(I,,) — Mod
(b) The equivalences of categories (3.7) are compatible with parabolic restriction:
they form a commutative diagram
Rep(G)° = Endg(Ils) — Mod
lprg, o Jg J Res
Rep(M)*™ = Endy(Ils,,) — Mod
Here prg,  : Rep(M) — Rep(M)*M is the projection from the Bernstein decom-
position.

SM
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From Lemma (3.5) and Theorem [3.7] we see that the equivalence of cate-
gories ([3.7]) is compatible with supercuspidal supports, in the following sense.

Corollary 3.11. Suppose that m € Irr(G)° has supercuspidal support (L,o ® x).
Then Homg (s, 7) € Irr(Endg(ILs)) has central character W(o®x) € Irr(L)°E /W,
or equivalently WEx € Xne(L)/WE.

Corollary enables us to analyse the representation theory of Endg(Ils) by
putting conditions on the supercuspidal supports. For a W¢-stable subset U’ C
Xnr(L) we define

Endg(IIs)—Modys = {V € Endg(Il;)—Mod : all O(X,,,(L))-weights of V lie in U’}

and its subcategory Endg(Il;) — Modg .
If U equals {o ® x : x € U'}, then (3.7) and Corollary provide equivalences
of categories

(3.12) Rep(G)y = Endg(Ils) — Modyr  and  Repq(G)y = Endg(ILs) — Modg 7.

When U’ C X, (L) is open (with respect to the Zariski topology or with respect to
the analytic topology), we can analyse Endg(Il;) — Modg ¢ by localizing Endg (I1,)
with respect to an ideal of Z(Endg(Ils)) = O(Xyn(L)/WE) or by involving complex
analytic functions on U’. For specific U’, this localization may be Morita equivalent
to a localization of a simpler algebra.

From now we assume

(3.13) o € Irreygp(L) is unitary (or equivalently tempered).

By Lemma that is no restriction on s or s;,. We are interested in the category
Rep(G)5+ (L)Wao? which will be related to a twisted graded Hecke algebra.

Let X*(Z°(L)) be the lattice of F-rational characters Z°(L) = Z(£)° — GLy
and let ®(G, Z°(L)) be the set of @ € X*(Z°(L)) that appear in the adjoint action
of Z°(L) on the Lie algebra of G. This is not necessarily a root system, but it is
always a generalized root system in the sense of [DiF1i].

For a reduced root o € ®(G, Z°(L)), let L, be the reductive group generated by
L and the root subgroups of GG associated to the multiples of a. Then L is a maximal
proper Levi subgroup of L,. We say that «a belongs to ®(G, Z°(L)), if, for some
Xo € Hom(L/Z(Ly),Rs0) \ {1}, the representation If?PmLa)(a ® Xo) is reducible.
By [Sol12, Corollary 1.3 and (1.8)] and [Hei2, Proposition 2.13],

®(G,Z°(L))s C X*(Z°(L)) is a reduced root system.

For a € ®(G,Z°(L)), C X*(Z°(L)), the above unramified character x, is unique
up to inversion. It can be captured with one real number ¢, ., as follows. Put
L2 = meXm(L,a) ker y and let kY (a version of the coroot V) be the generator of

(L2NLL)/L' 2 Z from [Sol9, (A.2)]. Then g, o € Rs1 is the unique number such
that Xo(hy) € {¢o,0s 50} For explicit computations of the numbers ¢y, we refer
to [Soll2] [Ohal.
We introduce the data for our twisted graded Hecke algebra.
e t = Lie(X,y (L)) = Hom(L,C) 2 Hom(Z(L),C) =2 X*(Z(L)) ®z C.
e R, ={h):a € ®G,2°(L)),} C L2/L' is a root system by [Sol9, Propo-
sition 3.1]. The set R} of hY for which «a appears in LieUp is a positive
system in R,.
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e The parameter function k, : R, — Rx¢ given by ks (hY) =10g(¢s.a)-
e The finite group W, acts on R,. It can be written as

(3.14) Wso = W(R,) x Ty, where I', is the stabilizer of R .

e The 2-cocycle fj, given by the multiplication rules for the intertwining opera-
tors in ([1.23). It records how much w +— I(w, L(P N L,),0,x = 1) deviates
from a group homomorphism. We note that f§, depends on a normalization
of these intertwining operators.

Let H(t, Ws 5, ko, i) be the algebra as in Definition determined by the above
data.

Example 3.12. Consider G = SLy(F), the diagonal torus 7' = L and o = trivy.
In this setting t = Hom(7,C*) = C, W, = N¢g(T)/T = Sy and the group I'ys is
trivial for all o’ € X,,,(T"). For various o', the algebras H(t, W; ,, ko) are:

e H(C, Sy,log(qr)) for o’ = trivry,

e H(C, S3,0) = O(C) x Sy for o’ € X;,;(T) quadratic,

e H(C,{e},0) = O(C) for other ¢’ € X,,(T).

For open U C X, (L), let C**(U) be the algebra of complex analytic functions
on U. We define the analytic localization of Endg(Ils) on U as
(3.15) Endg(I15) QO (Xnr (L)) c().
This is an algebra if U is W-stable.
We note that the map
exp, : t = Irr(L)°F, x+— exp(z)® o

restricts to a diffeomorphism from tg := X*(Z°(L)) to X[ (L)o. Analytic localiza-
tion of Endg(Ils) on a small tabular open neighborhood of X[ (L)W; in Irr(L)°t
can be compared with analytic localization of H(t, Ws 5, ks, i5) on a small tubular
open neighborhood U, of tg in t, an algebra of the form

(316) H(t, W570—7 ko—, HU’) ®O(t/Wﬁ7g) Can(Uo_)Ws,U .
Arguments involving these localizations lead to:

Theorem 3.13. [Sol9, Corollary 8.1]
There are equivalences of categories

Repﬂ(G)iqr(L)WsU > Endg(Ils) — Modg v+ w0 = H(t, Ws 0, ko, o) — Modag ¢,

nr

such that

(a) Once a 2-cocycle by has been fized (by a normalization of the involved intertwi-
ning operators), the equivalences are canonical.

(b) The equivalences preserve temperedness.

(¢) me Irr(G)fXﬂL)W , s discrete series if and only if the image of w in
Irr (H(t, We o, ko, o)) is discrete series and rk(Ry) equals dimp(Z(L)/Z(G)).

(d) The equivalences are compatible with parabolic induction and restriction, in the
same sense as Lemmal3.10.

(e) For 7 € Irr(G)i(;;(L)Wsa with Sc(r) represented by o ® x € X (L)o, the as-

soctated H(t, Wy 5, ko, is)-module has central character Wy slogx € tr/Wsq.
Equivalently, exp, translates central characters into supercuspidal supports.
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Via Lemma Repﬁ(G)i(+ (L)Weo is equivalent to the category of finite length

H(G)*-modules all whose supercuspidal supports lie in X, (L)Wso/W,. Theorem
is our final answer to the question about the structure of H(G)*® and Endg (Ils),
in terms of their module categories.

3.4. The ABPS conjecture.
The big advantage of Theorem [3.13]is that it allows us to study G-representations
via graded Hecke algebras. In particular all the results from Section [2] can now be

applied to Repﬂ(G)i(;rr(L)Wgo" Let R(G)ant(L Weo be the Grothendieck group of

Repﬂ(G)i(;;(L)Wsa' From (2.16) and Theorems 2.24|7 2.26| and [3.13| we conclude:
Theorem 3.14. Fiz a 2-cocycle t, as in Theorem [3.13

(a) There exist canonical group isomorphisms

R(G)yt (ywo ¢ BEe()P) g ), ¢ R(H(L Weg, ko, b51))

These isomorphisms are compatible with parabolic induction and they preserve

temperedness.
(b) Part (a) can be refined canonically to a bijection

Irr(G) L Irr (O(t) x C[Ws,, h;l])tR.

tr”

S

Xih (L)W,
It preserves temperedness, but it need not respect parabolic induction or super-
cuspidal supports/central characters.

Next we want to combine instances of Theorem for all 0/ = y, ® 0 €
Irriemp (L)%, Recall from Theorem [3.8 and (2.16)) that

Ende () @0 (X, (1)/we) C(Xne(L)/Wy) 2 C(Xur(L)) x C[W, ;1]
By [Sol9, Lemma 7.1] and Clifford theory, there are equivalences of categories
O(t) x C[Ws 47, 5] — Modg ¢, = O(Xne(L) X C[W, o7, 10r] — Modg . x+(1)
= O(Xnr(L) x CIWE, 8] — Modyg ey x4(1):

Theorem 3.15. [Sollll Theorem 2.5]
Theorem |3.14.a and (3.17)) induce a canonical group isomorphism

¢V R(G)* = R(O(Xux(L)) % C[Wy, ;1)
with the following properties:

(3.17)

(a) ¢V and its inverse preserve temperedness. Moreover ¢V sends tempered repre-
sentations to tempered representations (so not to virtual representations).

(b) If xu € XY(L) and all irreducible subquotients of m € R(G)® have cuspi-
dal support in o @ WExu XL (L), then all O(Xu(L))-weights of ¢V(m) lie in
W5€XUX$(L)-

(¢) In the setting of (b), suppose that m € Irtiemp(G)*. Then

v . 1O(Xnr (D)) XC[WE bt
CY(m) = indg ) i ) 00 © )
where Ty, € Mod — C[(WE)y,, 05 1] is obtained like in Theorem .a.

(d) ¢V commutes with parabolic induction and with unramified twists, in the sense

that for a parabolic subgroup Q@ = MUg D P and x € Xu(M):

V/1G 3 O(XHY(L))XC[WEE>u;1] V
C (IQ (T ® X)) - lndO(Xm(L))XIC[WBEM,h;l} (CM(T) ® X|L)
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We point out that in Theorem the canonicity holds after f, has been fixed,
the choice of the 2-cocycle f is (in general) not canonical.

Recall from that the irreducible representations of twisted crossed product
algebras can be parametrized by twisted extended quotients. Combining Theorems

b and Theorem [2.4]b leads to:

Theorem 3.16. [Sol9, Theorem 9.9
(a) There exists a family § of 2-cocycles ;1 (0 € ItTyemp(L)*E) and bijections

Irr(G)?X;;(L)Wsa — (tR//Ws,a)ugl
Irr(G)* ——  (Irx(L)%2 /)W),
Irrtemp(G)5 — (Irrtemp (L)EL //Wﬁ)ﬂ

(b) For o' € X}.(L)o we write ;s = 5. The bijections from part (a) combine to a
bijection from Irr(QG) to the set of G-orbits in

L,o',p): L C G Levi subgroup, o' € Irteusy(L), p € Irr(C[Stabg (L, ') /L, 1) ).
P o

Theorem proves a version of the ABPS conjecture, as formulated in [ABPS2],
§2.3]. This was built upon several earlier versions of the conjecture, starting with
[ABP, Conjecture 1].

Notice that the last space in Theorem [3.16/b projects naturally onto the variety
of supercuspidal supports for G, by forgetting the p’s. The fibers of that map are
finite, and parametrized by Irr(C[Stabg(L,o")/L,b']). However, like in Theorem
[B:14lb, the bijections in Theorem do not always translate the supercuspidal
support map for G-representations into the natural projection (L,o’,p) — (L,0’).
In general it has to be corrected by some element of X (L), the absolute value of a
Z°(L)-weight of some discrete series representation of L.

We may regard Stabg (L, 0’)/L as mo(Stabg (L, 0”)), where 7 is meant as algebraic
varieties over F. We can modify the notion of a twisted extended quotient by
replacing stabilizers by component groups of stabilizers. (That does not make a
difference if we divide by finite groups like we did so far.) Let us denote such
twisted extended quotients by //;. Then Theorem b can be reformulated as a
bijection

(3.18) 1 (G) «—s (|_| Irrcusp(L)> /G

This is a remarkably simple way to parametrize all irreducible smooth G-represen-
tations in terms of the supercuspidal representations of its Levi subgroups.

LCG Levi subgroup
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Part B. Noncommutative geometry of reductive p-adic groups
4. HOCHSCHILD HOMOLOGY FOR ALGEBRAS

Hochschild (co)homology, which appeared first in [Hoc], is a (co)homology theory
for associative algebras over commutative rings. (Nowadays there are notions of
Hochschild homology in categorical settings, but they are outside the scope of this
paper.) We focus on algebras over fields, to make the definitions easier.

Let A be a unital algebra over a field k and let A°P? be the opposite algebra. Let
M be an A-bimodule, or equivalently a A ®; A°P-module.

Definition 4.1. Let n € Z>¢. The nth homology of A with coefficients in M is
H, (A, M) = TorA®x4" (A, M).
The n-th Hochschild homology of A is
HH,(A) = H,(A, A) = Tor &4 (4, A).
One can compute HH,(A) as the homology of an explicit differential complex

(A®™ d,,)°_, [Lod, §1.1]. This shows that HH, is a functor from unital k-algebras
to k-vector spaces. We abbreviate

HH,.(A) = @;’;O HH,(A).

There are two good ways to generalize Definition to non-unital algebras.
e Assume that for every finite set S C A there exists an idempotent eg € A
such that ega = a = seg for all @ € S. Such an algebra is called locally unital.
For locally unital algebras we can still use Definition without significant
changes. This will be useful for Hecke algebras of reductive p-adic groups.
e Let Ay be the vector space A @ k with multiplication
(4.1) (a1,k1)(az, k2) = (a1a2 + kiaz + kaai, kikz).
This algebra has unit (0, 1), contains A as an ideal and is called the unitiza-
tion of A. We note that A — A, is a functor. We define
HH, (A) = coker(HH, (k) - HH,(A})),
where the map is induced by the inclusion k£ — A..

4.1. Basic properties of HH,.
In this paragraph A is a locally unital algebra and M is an A-bimodule.

1. Degree zero. One can compute the zeroth Hochschild homology groups
directly from the definition:
Ho(A, M) = A®agao0 M = M/[M, Al,
where [M, A] C M is the k-span of {ma —am : m € M,a € A}. In particular
HHy(A) = A/[A, 4],

a vector space known as the cocenter of A.
Let R¢(A) be the Grothendieck group of the category of finite dimensional A-
representations. There is a natural pairing
HHy(A) x Rf(A) — k
(a, ) — tro(a)
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This is the main use of Hochschild homology in representation theory.

2. HH, as derived functor. Let A + P, be a projective A ®; A°P-module
resolution. By Definition 4.1

(4.2) Ho(A, M) = Hy, (P, ®ag, 00 M).

For example, if A = k, then we can take the resolution k < Py = k < P; = 0. With
that we find

k n=0

(4.3) HH, (k)= H,(Py <+ 0) {0 n>0"

By 1. above, the Hochschild homology functors H H,, can be regarded as derived
functors of the cocenter functor. Loosely speaking, that means that H H, is the uni-
versal derived functor with the tracial property that it kills all commutators. Thus
HH,(A) is a rather subtle invariant of A, which contains a lot of information. On
the other hand, it is often quite difficult to determine the Hochschild homology of
an algebra.

3. Additivity. For another locally unital algebra B, there is a natural isomor-
phism [Lod, Theorem 1.2.15]

HH,(A® B) =~ HH,(A) ® HH,(B).

4. Continuity. Consider a direct limit of locally unital algebras lim; A;. The
properties of Tor yield a natural isomorphism

5. Module structure over the centre. When A is unital, H.(A, M) and
HH,(A) are naturally modules over the centre Z(A). This follows for instance from
the Z(A)-module structure of P, ® og, aor M in (4.2)).

6. Morita invariance. The Hochschild homology of A depends only on the
category of left A-modules. More precisely, suppose we have an equivalence of
categories Mod(A) — Mod(B). Then A and B are Morita equivalent and there
exist projective bimodules P and () implementing the equivalence of categories.
These also yield an equivalence of categories

Mod(A4 ®; A?) = Mod(B ®y B°)
M = PoaM®saQ

which sends A to P ® 4 Q = B. This induces an isomorphism
(4.4) HH,(A) = HH,(B),

see [Lod, Theorem 1.2.7]. If A is unital, then B is naturally a Z(A)-algebra and
(4.4) is Z(A)-linear.
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Example 4.2. Let I' be a finite group and consider A = C[I']. With additivity,
Morita invariance and (4.3)) we compute

HH,(C[I) = HH, (P Ende(Vr)) = €

o @ HH,(C) = @welrr(r) C n=0 .
welrr(T) 0 0

HH,, (Endc(Vy))

welrr(T) welrr(T)

More concisely: HHy(C[I']) = Z(C[I']) and HH,(C[I']) = 0 for n > 0. The Z(A)-
module structure is just multiplication.

7. Localization. We suppose that A is unital. Let S C Z(A) be subset which is
closed under multiplication, and contains 1 but not 0. Recall that the localization
of A with respect to S is

S1A={s"'a:5€S,ac A},
where s~'a means (s~!,a) modulo the equivalence relation (s 'sg,b) ~ (s, s2b)
for s1,59 € S and b € A. The operations in S™'A are like in the quotient field
of a domain. Then S~'A is a k-algebra and S~'M is an S~!'A-bimodule. Since
localization is an exact functor, there are natural isomorphisms [Lod, Proposition
1.1.17]
ST H, (A, M) = H,(S7*A, 87 M),

(45) ST'HH,(A) =~ HH,(S™'A).

This can be used to reduce the determination of HH,(A) to a local problem on the
spectrum of Z(A).

4.2. Hochschild homology of some commutative algebras.
We start with an example that shows very regular behaviour.

Example 4.3. Take A = k[z], so that A ®; AP = k[z,y]. There is a projective
bimodule resolution

klz,y]
With (4.2)) we find

mod (2—y) Py = k[x, 1] <—mlﬂt TV p = klx,y] + Py =0.

klx] n=0,1

HH,(k[z]) = Hn(P. @y klz]) = Hu (k2] & k[z]) = {o "

However, in general the Hochschild homology of A may be nonzero in degrees far
above the Krull dimension of A.

Example 4.4. Consider B = k[z]/(2?) and the B-bimodules P, = k[z,y]/(z?,y?) =
B ®y, B for all n > 0. They form a projective resolution

B« mod (z—y) Py mult z—y P, mult z+y Py mult z—y Ps mult z+y

We compute, assuming that the characteristic of k£ is not 2:
k[z]/(z?) n=>0
HH,(B)=H,(BELB&EBEBE ..) = {kz)/(z) =k n odd
zklz]/(z?) = kxz n >0 even
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The difference between Examples (4.3]) and (4.4]) is that A = k|[z] is the coordinate
ring of a non-singular algebraic variety, while B = k[z]/(2?) is not reduced. Example
(4.3) is a simple case of the Hochschild—Kostant—Rosenberg theorem:

Theorem 4.5. [HKR]
Let V' be a nonsingular affine variety over an algebraically closed field k. Let O(V)
be the k-algebra of regular functions on V and let Q"(V') be the O(V')-module of
differential n-forms on V.

There is a natural isomorphism of O(V')-modules HH,(O(V)) = Q™(V).

Theorem provides an interpretation of HH,(A): it is a kind of differential
forms on Irr(A). For commutative algebras that can be made quite precise [Lod,
§1.3], while for non-commutative algebras it means that HH,(A) can be regarded
as some "non-commutative differential forms”. However, this interpretation only
applies well to nice algebras, for Example shows that HH,(A) is very sensitive
to changes like non-reducedness.

4.3. Hochschild homology of finite type algebras.
Besides commutative algebras, there are some classes of algebras which are close
to commutative and whose Hochschild homology can be computed reasonably well.
Let V be a complex affine variety. Recall that an O(V)-algebra is a C-algebra A
with an algebra homomorphism from O(V') to the centre of the multiplier algebra
of A. In other words, O(V') acts on A and

flara2) = f(a1)as = a1 f(ag) forall f € OV), a; € A.

For any unital O(V)-algebra A, the action of O(V) comes from an algebra homo-
morphism O(V) — Z(A). If B is a nonunital O(V)-algebra, then B @ O(V) has the
structure of a unital O(V)-algebra, like B in (4.1)).

Definition 4.6. We say that an O(V')-algebra A has finite type if A has finite
rank as O(V)-module. An arbitrary C-algebra has finite type if it is a finite type
O(V)-algebra for some complex affine variety V.

Example 4.7. M,(O(V)) is a finite type O(V)-algebra.
Let K € CO(G) and let s = [L, 0]g. By Theorem the unital algebra H(G, K)*®
from (1.35]) has finite rank over

O(Xne(L)/WE) = O(Irr(L)°F) =2 Z(Rep(G)?).

The algebra H(G, K) is a finite type O(V)-algebra for V' = L Irr(L)°L /W;, where s
runs over the finite subset of B(G) such that H(G, K)® is nonzero.

Standard algebraic techniques like those described in Paragraph can be used
to study Hochschild homology of finite type algebras, and to some extent reduce it
to the case of commutative algebras [KNS, §2-3]. If A is a unital finite type algebra
and n € Z>q, then HH,(A) is an O(V)-module of finite rank.

Consider a non-singular affine C-variety V', and let I' be a finite group acting on
V' by automorphisms. Brylinski [Bry] and Nistor [Nis| generalized the Hochschild—
Kostant—Rosenberg theorem to the crossed product O(V) x ' = O(V) x C[I'] from
Paragraph [2.1]

More generally we may involve a 2-cocycle § : I' x I' — C*. By Lemma the
twisted crossed product O(V') x C[I, ], is a finite type O(V/T")-algebra. We recall
the map 7 : I' = C* from .
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Theorem 4.8. [Soll0, Theorem 1.2 and (1.17)]
There exists an isomorphism of O(V)'-modules

a0y xCr) = @ @unensO=(@arne uV)F.
~v€l'/conjugacy vyel
This generalizes (and relies on) the aforementioned result of Brylinski—Nistor,
which can be recovered by setting § = 1. In view of Theorems and
we may regard (@’VGF Q"V7) ® h”)r as a kind of differential forms on the twisted
extended quotient (V//T);.

4.4. Hochschild homology of graded Hecke algebras.

Let H(t, W, k) be a graded Hecke algebra, as in (2.14)), and let H(t, WT, k,f) =
H(t, W, k) x C[I', i] be a twisted graded Hecke algebra, as in Definition Recall
from Theorem that the algebras H(t, WTI',k’ 1) with varying parameters k' :
® — C are all very similar, and that for ¥ = 0 we recover the simpler algebra
O(t) x C[WT,g]. That can also be seen in Hochschild homology:

Theorem 4.9. [Sol3, Theorem 3.4] and [Soll0, (2.5)—(2.6)]
There exist isomorphisms of vector spaces

~ * g\ W
HH(H(LW,E) = HH,(E(LW,0) (@ (1)
HHL(E(WE k) = HE(HGWE0,8) = (@00 @ () @
Theorem comes from the filtration of H(t, WT', k, ) by degrees, and from an
associated spectral sequence that converges to HH,(H(t, WT', k,f)). We point out
that the isomorphisms in Theorem [4.9| are usually not linear over O(t)" or O(t)"1'.

From now on we assume that k is real-valued, like in Paragraph Then we
have the natural bijection

o : R(H(t, WT',k, 1)) — R(O(t) x C[WT, t])
from Theorems [2.24] and [2.26]

Theorem 4.10. [Sol10, Corollary 2.10 and Proposition 2.11]
(o induces a natural C-linear bijection

HH,(C) : HH.(O(t) x C[WT, 4)) — HH,(H(t, WT, k,1)).

12

)WF

The map HH,((p) can be characterized as follows. For any tempered o € Irr(Hp)
there is an algebraic family of H-representations

§po = {indgr(c ®Cy) : A€ PVt C t}.
This family gives rise to an algebra homomorphism
Fpo: H=H(tWT, k1) — O(P'}") @ Endc (indi, (0 @ Cp)).
By Morita invariance and Theorem [£.5] we have
HH,(O(PY*!) ® Endc (indfjpr (0 ® Cp))) = HH,(O(PY1)) = Q*(PV).
The same can be done with Fp (), and in Theorem there is an equality
(4.6) HH.(Fpy)oHH.(Co) = HH.(Fpgy(o)) : HH(O(t) x CIWT, ) — Q*(PY1h).
Conversely, imposing for all families of the form §p, determines HH,({p).
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Example 4.11. Consider t = C and R = {£1}. By Theorem 4.9

Czl®@C n=0
HH,.(H(t, W, k)) = HH,(O(C) x S3)) = Q*(C)%2 ® Q*({0}) = { C[z2]2dz n=1.
0 n>1

With Theorem and (4.6) we can make this more explicit. The first family of
representations to consider comes from P = () and the module Cy of Hy = O(t).
Then ((Cp) = Cp and

Foco : HH.(O(C) x 83) — Q*(C)

can be identified with the projection Q*(C)%2 @ Q*({0}) — Q*(C)*2. The Steinberg
representation of H(t, W, k) forms another family of representations. It satisfies
(o(St) = signg, ® Co and HH,((o(St)) identifies with the projection Q*(C)%2 &
Q*({0}) — Q*({0}). Hence

(4.7) HH,(Fyc,) ®HH(((St)) : HH,(O(C) x S3) — Q*((C)S2 @ Q*({0})
is a C-linear bijection. With it follows that
(4.8) HH(Fyc,) ® HH.(St) : HH,(H(t, W, k)) — Q*(C)*2 @ Q*({0})

is also a C-linear bijection. Via and , HH,(() corresponds to the iden-
tity on Q*(C)*2 @ Q*({0}). The summand C = Q*({0}) in HH,(H(t,W, k)) has
O(C)2-weight +k because it comes from St, while Q*({0}) has O(C)%2-weight 0 in
HH,.(O(C) x S). Therefore HH,({) is not O(C)>2-linear.

4.5. HH.(H(G)): cuspidal Bernstein blocks.

Let G be a reductive p-adic group and let H(G) be its Hecke algebra, as in Section
Our goal is to compute HH,(H(G)) in terms of the representation theory of G.
By Proposition b H(G) has local units, so in relation to Hochschild homology
we may treat it as a unital algebra. Recall that by the Bernstein decomposition
(Theorem H(G) = Dsem) H(G)®. By the additivity and the continuity of
HH,:

HH,(H(G)) = HH( lim @H(G)ﬁ) >~ lim HH*(@H(G)5>

SCB(G),S finite ecS SCB(G),S finite ecS

(4.9) = lim HH.(H(G)) =P HH,.(H(G)).

" SCB(G),S finite N s€S SEB(Q)

This means that to compute HH,(H(G)), it suffices to classify B(G) and to de-
termine H H,(H(G)?) for each Bernstein block Rep(G)® of Rep(G). We will treat
B(G) as a black box and we will focus on HH,(H(G)?) for one arbitrary s € B(G).
We write s = [L, 0] and let TI; = 1§ (ind%, (Resk, o)) be the projective generator of
Rep(G)* = Mod(H(G)*) from Paragraph[3.2l By Morita invariance, the equivalence
of categories induces a natural isomorphism

(4.10) HH,(H(G)®) = HH,(Endg(I1,)°P).
In the cuspidal cases this quickly leads to a nice description.

Proposition 4.12. Suppose that s is cuspidal, that is, L = G. There is a natural
isomorphism of O(Irr(G)*®)-modules

HH,(H(G)*) = Q" (Irr(G)*).
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Proof. From Theorem and (2.16)) we know that
Endg(IL)” = O(Xw(G)) % C[Xu (G, 0), 85 ']
Then Theorem [4.§] says that

(4.11)  HH,(Endg(Il;)) = (@Xexm(aa) Q" (Xne(G)Y) ® (ﬂ;l)")

Here Xy, (G, o) acts on Xy, (G) by multiplication, so Xy, (G)X is empty unless x = 1.
As (171! = 1, the right hand side of ([#.11)) reduces to Q*( X (G))*(¢9). Then
(4.11) (from right to left) can be written as

(4.12) Q" (X (G)) X (G9) 5 HH, (X0e(G)) — HH,, (Endg (I,

Xur(G,0)

where the first arrow comes from Theorem [£.5] and is natural, while the second
arrow is induced by the inclusion O(Xy;(G)) — Endg(1I57). By that inclusion
is natural once o € Irr(G)® has been chosen.

The action of Xy, (G, 0) on Xy (G) is free, and X, (G)/Xne(G,0) = Irr(G)® by

(4.13) Q" (X (@) ¥ (G = Q"X (G) / X (G, 0)) = Q" (Ix(G)°).
The composition of (4.10)), (4.11)) and (4.13) is the required isomorphism
(4.14) HH,(H(G)") = Q"(Irr(GQ)?).

The isomorphism (4.13)) depends only on the choice of ¢ in Irr(G)*. That cancels out

with the same choice in (4.12)), so the composition of (4.11)) and (4.13]) is natural.
As (4.10]) is also natural, so is (4.14)).
Recall from (3.1) that

(4.15)  Z(Endg(Il,)) = Z(Ende(Ils)) 2 O(Xu(G)) (@) = O(Iir(G)*).

We saw in (4.4) that (4.10) intertwines the actions of (4.15), and by Theorem
the same holds for (4.11). Further (4.13]) is by definition O(Irr(G)*)-linear, and we

conclude that (4.14) is O(Irr(G)*)-linear as well. O

4.6. HH.(H(G)): non-cuspidal Bernstein blocks.

In this paragraph s = [L,0]g with L # G. We want to determine H H,(H(G)?),
where Mod(H(G)®) is a non-cuspidal Bernstein block of Rep(G). It is isomorphic to
HH,(End;(115)°P), but we do not understand Endg(1ls) well enough to handle this
directly. Instead, we will approach it via localization on the Bernstein centre, as in
Paragraph Recall from Theorem that the Bernstein centre for H(G)® is

Z(Rep(G)®) = O(Trr (L)L) =2 O( Xy, (L) /WE).
We may and will assume that o € Irreusp(L)°F is tempered. It is known from
[Sol9, §7] that the “analytic localization” of Endg(Ils) at XL (L)Wso is isomorphic
to the “analytic localization” at tg of a twisted graded Hecke algebra, denoted
H(t, Ws 5, ko, o) in Theorem However, since X, (L)Wso is not Zariski-closed

in Irr(L)%L /Ws, we cannot localize there by means of subsets of Z(Rep(G)?).
The best we can achieve in that way is: for any x € X,.(L), take

Sy = {s € Z(Rep(G)*) : s(o ® x) # 0}
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and consider SQIHH* (H(G)®). This can be related to the localization of
H(t, Ws 5, ks, o) With respect to a maximal ideal Ij,g, of its centre. By (4.5) and
Theorem that relates

SyTHH.(H(G)*) = HH, (S '"Endg(I15) %)

to a localization of H H, (H(t, Ws oy ko, hg)) at log . That provides a description of
the localization of HH,(H(G)®) at one arbitrary point of Irr(L)% /W.

Thus HH,(H(G)*) gives a sheaf over Irr(Z(Rep(G)?)), whose stalks we under-
stand. In [Solll], this entire sheaf is reconstructed by a convoluted glueing pro-
cedure. The main tools for that are algebraic families of G-representations like in

[9).
Let M C G be a Levi subgroup containing L, and let (7,V;) € Irriemp(M)*M.
This gives a family of representations

gM,T = {IgM(T ® XM) XM € an(M)}
and a homomorphism of O(Irr(L)?)"=-algebras
(4.16) Farr : H(G)® — O(Xpe(M)) @ End® (I8,,(V5)).

By the Morita equivalence of C with End(1§,,(V;)), the smooth part of the G x G-
representation Endc(1§,,(V;)), Far- induces a O(Irr(L)*)Ws-linear map

(4.17) HH,(Fun,r) : HH (H(G)®) = HH.(O(Xne(M))) = Q" (X0 (M)).
Applying Theorem to Fasr yields a family of O(Xy, (L)) x C[W¢E, b7 ]-modules

— iy @K (DNCWE ] v .
SM,CXI(T) - {lndO(an(L))N(C[W;AJ,h;l](CM(T) ® XM) * XM G XIII‘(M)}'

As in (£.17), this induces a O(Xp,(L))"* -linear map
HH.(Frrcy,r) : HH(O(Xan(L)) % CIWY, 5.Y]) = HH. (O(Xie(M))).
Theorem 4.13. [Sollll Theorem 2.14]
There exists a unique C-linear bijection
HH,(¢") : HH, (O(Xui(L)) % C[Wy, 5, Y]) = HHo(H(G)°)
such that, for all families Fp; as above,

HHy(Farr) o HHA(CY) = HHn (Farey, ()

In general H H,,(¢) does not respect the actions of O( Xy, (L))" = O(Trr(L):)Ws,
but it can be described precisely how it deviates from O(Irr(L)%=)Ws-linearity [Sol11,
Theorem B]. On the part of HH,(H(G)®) that comes from Irtiemp(G)ars With
[M,8]c € A(G,s), the deviation is given by an element 75 € X,L.(M) such that § is
a constituent of 1§ (o’ ® r5) for a unitary o’ € Xy, (L)o.

From Theorems [4.§ and we obtain a C-linear bijection

(4.18) HH,(H(G)) — (@

This map can also be constructed via families of (virtual) G-representations, see
[Sol1ll Theorem 2.13.b].

e

—1\w wq
wes VXl D)" © (557)")
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Example 4.14. We consider G = SLy(F') and s = [T, triv]g. Then W¢ = Sy, =1
and Theorem [4.13] says that

HH,(H(G)*) 2 HH.(O(Xn(T)) % S3).
We use three families of representations to construct this isomorphism:
Sr1={I5(x) : x € Xu(D)},

Sast = {St} and Fgo = {m4 — 71—}, where Ig(x_) = 74 @ w_ for the unique
X— € Xu(T) of order two. These induce O(Xy,(T))%2-linear maps

HH,(Fry): HH,(H(G)*) = HH, (O(X(T)) ® End%o(lg(triv))) = 0" Xn (7)),
HH,(Fast) : HH,(H(G)®) - HH,(Endg (Vg;)) = Q" ({St}),
HH,(Fg2) =HH,(ry) — HH,(r_) : HH,(H(G)*) - HH,(O({x-1}))-

The sum of the three maps is an isomorphism of O(X,(T))%2-modules

(4.19) HH,(H(G)*) = Q"(Xur(T))™ © Q"({St}) ® Q" ({x-})-
The right hand side of is isomorphic to
(4.20) HH,(O(T) x Sy) = (Q”(an(T)) ® Q" ({triv}) @ Q"({X_}))SQ,

and the canonical map from (4.19) to (.20 is almost linear over O(X,(T))%? =
Z(Rep(G)*). The only deviation from O(Xy,(T))*2-linearity is that the Z(Rep(G)?)-
character of St does not agree with triv € Xy, (T")/Sa.

5. HOCHSCHILD HOMOLOGY FOR TOPOLOGICAL ALGEBRAS

We would like to compute the Hochschild homology of topological algebras ap-
pearing in the representation theory of p-adic groups, like C*°(X) x T or S(G). The
definition of Hochschild homology in Section [4] can be applied to any algebra, so in
particular to C*°(X) or C(X) for a smooth manifold X. However, that does not
give interesting results, because the functor H H, from Definition does not take
the topology of an algebra into account. The best way to improve that is by using
a topological tensor product.

As is common in noncommutative geometry, we will work mostly with Fréchet
algebras. For later use we define precisely which algebras we mean by that.

Definition 5.1. A Fréchet algebra is a C-algebra A such that:

e A is a Fréchet space,
e the topology on A can be defined by a countable family of seminorms p which
are submultiplicative: p(ab) < p(a)p(b) for all a,b € A.

The submultiplicativity implies that for any Fréchet algebra A the multiplication
map A x A — A is continuous. The class of Fréchet algebras contains all Banach
algebras and spaces of smooth functions C*°(X).

For two Fréchet spaces V' and W, we denote their completed projective tensor
product by V&W. This is a completion of V @ W and a Fréchet space, with the
following universal property: for any Fréchet space Z there is a natural bijection
between

e the set of continuous C-linear maps from VW to Z,
e the set of continuous C-bilinear maps from V x W to Z.
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Example 5.2. For two smooth manifolds X and Y, there is an isomorphism of
Fréchet spaces
C®(X)HOC®(Y) =2 C®(X xY).

For a Fréchet algebra A, there is also a notion of the completed projective tensor
product of A-modules. Let V' be a right Fréchet A-module and let W be a left
Fréchet A-module. Then V&4 W is a completion of V ® 4 W which, like V&W, has
a universal property with respect to A-balanced C-bilinear continuous maps from
V x W to a Fréchet space Z. Concretely, this works out to

V®AW:V®W/Span{va®w—v®aw:vEV,aEA,wGW},

where the bar means closure.

To define Hochschild homology for Fréchet algebras one needs homological algebra
in a topological setting, for which we refer to [Tay]. For Fréchet algebras we will
always do that with respect to &, and we often suppress that from the notations.

Definition 5.3. Let A be a unital Fréchet algebra. For n € Zx, Tor” denotes the
n-th derived functor of ® 4. The n-th Hochschild homology of A is

HH,(A) = HH,(A, &) = Tor2®47 (4, A).
For a possibly non-unital Fréchet algebra B we put
HH,(B) = coker(HH,(C) - HH,(B)).
Each HH, is a functor from Fréchet spaces to topological vector spaces. These
functors share several properties with their purely algebraic counterparts:
e One can compute H H,(A) as the homology of an explicit differential complex
(A®™ d,,).
In degree zero the definition shows that HHy(A) = A/[A, A].

Additivity holds for unital Fréchet algebras.

HH,(A) has the structure of a Z(A)-module.
Morita invariance holds for unital Fréchet algebras.

Continuity of HH,(?,®) is problematic, because a direct limit of Fréchet algebras
is often not a Fréchet space.

We point out that Hochschild homology works badly for Banach algebras. Con-
sider a commutative Banach algebra B, for instance C'(Y") for a compact Hausdorff
space Y. Then HHy(B,®) = B and

(5.1) HH,(B,®) =0 for n € Zy.

In fact (5.1) also holds for large classes of noncommutative Banach algebras [Joh].
Roughly speaking Hochschild homology detects some differentiable structure, and
Banach algebras are too complete for that.

5.1. Comparison between algebraic and topological settings.

For a smooth manifold X, we write Q7 (X) for the space of smooth differential
n-forms on X. The following version of the Hochschild—Kostant—Rosenberg theorem
(Theorem was discovered by Connes, in the case of compact manifolds [Con].

Theorem 5.4. [Tell
There is a natural isomorphism of Fréchet C*(X)-modules

HHp(C%(X)) = Qg (X))
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Let I be a finite group acting on X by diffeomorphisms, and let §: I' x I' — C*
by a 2-cocycle. Then we can form the crossed product C°°(X) x I' and the twisted
crossed product C*°(X) x C[I', y]. Like in the algebraic setting, HH, (C*>(X) x I)
was computed by Brylinski [Bry]. That can be generalized to a topological version
of Theorem [4.8t

Theorem 5.5. [Sollll Proposition 3.12]
There exists an isomorphism of Fréchet C*°(X)'' -modules

H,(C*®(X) % C[I',q]) = (@761“ Qr (X)) ® hv)F.

From on the one hand Theorems [4.5] and [4.§ and on the other hand Theorems
and we see that there is a clear analogy between H H,, in an algebro-geometric
setting and H H,, in a differential geometric setting. This can be made precise for
larger classes of (noncommutative) algebras.

Let V be a complex affine variety and let X be a real analytic manifold which
is contained and Zariski-dense in V. Then O(V') embeds in C*°(X) and C*°(X) is
a O(V)-module (usually of infinite rank). Assume that a finite group I" acts on V
by automorphisms of algebraic varieties, and that I' stabilizes X. Then X/I' is an
orbifold and C*°(X)! is (by definition) the ring of smooth functions on X/T.

Let A be a finite type O(V)F-algebra, as in Definition The algebra

C>(X)" @pyr A
has finite rank over C°°(X), and by [KaSo, Lemma 1.3] it is a Fréchet algebra.
Example 5.6. The crossed product O(V') x I is a finite type O(V/I')-algebra and
C(X/T) @ory O(V) x I' = C™(X) x T

Theorem 5.7. [KaSo, Theorems C and D]

Let V. X,T', A be as above and assume that T,(X) g C =T,(V) for allx € X.
(a) C=(X)T is flat over O(V)L.

(b) There is an isomorphism of Fréchet C*(X)' -modules

H, (C™(X)' @pr A) 2 C®(X)" @0y HHn(A).

One can recover Theorems [5.4] and [5.5] from Theorems [£.5] and by applying
Theorem [5.7], see [KaSol, §4]. In a similar way, Theorem-wﬂl help us to determine
HH,(S(G, K)y) for some ? € A(G).

5.2. Hochschild homology of S(G).

Let G be a reductive p-adic group and let S(G) be its Harish-Chandra—Schwartz
algebra, as in Definition [T.6] We want to describe its Hochschild homology in terms
of representation theory, like we did for HH,(#(G)) in Paragraphs [4.5| and

However, since S(G) is not a Fréchet space, Definition will probably produce
suboptimal results. The best solution for that technical problem is to consider
S(G) as a bornological algebra [MeyI] and to use Hochschild homology based on
the completed bornological tensor product b |Mey2 Chapter I]. This fits with
Definition n because for Fréchet spaces ®;, and ® agree [Mey2, Theorem I1.87].
The functor HH,(?7,®;) enjoys continuity properties for strict inductive limits of
Fréchet algebras, which we state only in two concrete cases.
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Theorem 5.8. [BrPl, Theorem 2| and [Mey2, Theorem 1.93]
Let (Kp)S_y be as in Theorem [1.45 and let s € B(G). There are natural isomor-

phisms of topological vector spaces

HH,(S(G),®,) = HH,( lim S(G, Kp),®p) = lim HH,(S(G, Km))
HHo(S(G), &) = HHn( lim S(G,Kpn), &) = lim HH,(S(G, Kn)°).

For each s € B(G) we pick m(s) € Zso such that s € B(G, K, (5)), and we write
Ks = Ky (s)- By Proposition a all the spaces HH, (S(G, K,,)?) with m > m(s)
are isomorphic. From Theorem Corollary and Proposition b we obtain

HH,(S(G), &) = lim HH, (D, Gacy S(G Em)?)
(5:2) = lim D, o, THASG Kn))
= lim P HH(SGF, &) = D HHu(S(G), o).
s€B(G,Km) s€B(G)

From ([5.2)) we see that, in order to determine H H,,(S(G), ®y), it suffices to compute
HH,(S(G, K,)*) for each s € B(G). This brings us back to unital Fréchet algebras.

We recall from Theorem and ((1.36) that
S(G K. =P S(G, K;) NS(G)a
Wi

= @[L,a]GeA(G,S) (COO(Xﬁfr(L)) © Ende (IK0 . ,(V5)% )> .

Write s = [M, 0]g with o unitary supercuspidal and recall that s € A(G,s). That
brings us in a good position to apply the results from the previous paragraph.

0EA(G,5)

Lemma 5.9. (a) There is an isomorphism of Fréchet algebras
S(G, K) N S(G)pral = CX(XEMNY Gy e H(G, KL
(b) There is an isomorphism of Fréchet C™(X%.(M))Vs -modules
HH,(S(G, Ko) NS(G)arole) = C(Xt(MNYF @0 x,, anyws HHn(H(G, Ko)7).

Proof. (a) In Theorem the underlying intertwining operators do not have sin-
gularities on X (M )o, so the Fourier transform induces an algebra isomorphism

Wy
H(G, Ko g 2 (OCXar (M) ) © B (185, (V5) "))
It follows that
W€

CX (X MN™ Do, (s HIG Ka)* = (CX(X (M) @ Bnde (I, p (Vo))
By Theorem b, the right hand side equals S(G, Ks) N S(G)ar,0], -
(b) In view of part (a), this is an instance of Theorem O

Unfortunately it remains difficult to determine HH, (S(G, Ks) N S(G)[p1,0],) in

Lemma [5.9\b, because the O(X,(M))"+-module structure of HH,(H (G, K,)?) is
tricky.
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Example 5.10. Consider G = SLy(F) and s = [T, trivlg. By Lemma [5.9b and
(4.19)) we have
HHy,(S(G)s, @) = C%(X30(T))™ @0 (x,,(1y)5 HHn(H(G))
2 C® (X (1)) o (s (V' (Xur(T)™ & Q" ({St}) © Q"({x-}))-

Here Q"({St}) drops out, because its O(Xy,(T"))-character does not lie in X!.(T).
The other two summands of H H,,(H(G)?) carry the O(X,,(T))-action expected from
the notations. We find

(5.3) HHy(S(G)s, @) 2 Q0 (X (1)) @ O, (X 1)
As S(G)* = S(G)s ©S(G) g s and S(G)(g,s¢) is Morita equivalent to C, yields
(5.4) HH,(S(G)*, &) 2= Q, (X (T))% @ O, ({x-1) & Q"({St}).

Theorem shows that (5.4)) is isomorphic to HHy, (C™(X%(T)) x Sa).

There is a version of Lemma[5.9}a for @ € A(G, s) which are not represented by a
supercuspidal representation [Sollll Lemma 3.3], but it is more complicated and does
not fit in the framework of Theorem To handle HH,,(S(G, Ks)NS(G)y) for such
0 we use families of representations, like in Paragraph [£.6] For a parabolic subgroup
P =LUp C G and 7 € IrTyemp (L) we have a family of tempered representations

Le={E(r@xe): xo € X (L)}
and a homomorphism of C*° (X% (M))"s-algebras
Fi . S(G, K,)* — C®(X%(L)) ® Endg (Ifngo ()Y,

Recall ¢V from Theorem It preserves temperedness and the tempered part of
R(O(Xn:(M))) can be identified with R(C™ (XY (M))), so ¢V restricts to a group

isomorphism
(5.5) Gu t R(S(G)*) = R(C™(X[p(M)) x CIWE, 57]).
In particular ¢, (37 ) = 87 cv(r 18 a family of C™®(XYE(M)) x C[WE, 7 -modules.

Theorem 5.11. [Sollll Theorem 3.13]
There exists a unique isomorphism of Fréchet spaces

HH,(¢)) : HH (C™(X,3 (M) x C[Wy,8571) — HH,(S(G, K)?)
such that
for all families of tempered representations §7 .

From Theorems and we obtain an isomorphism of Fréchet spaces

6.6 HH(SGES) = (@, . M (00" e 6)")

This isomorphism can also be constructed more directly, with suitable families of
tempered representations.
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Example 5.12. We given an overview of HH, (S(G)*, ®;) for all Bernstein blocks
of G = SLy(F). For s = [G,0|g with 0 € Irreusp(G), we have
HH,(S(G,K,)*) = HHo(S(G, K,)*) = C.

For s = [T, x]¢ with Ol"d(X’o;) > 2 we have
HH,(S(G, Ks)*) = HH, (C™(X3(T))) 22 Q4 (X (T) =2 QL ().
For s = [T, x2]¢ with Ord(Xg‘U;) = 2, (5.6) shows that

HH,(S(G, Ks)?) 2 HHy (C®(X3(T)) % S2) = Q8 (X (1)) @ Q4 ({1, -1)).
Finally, for s = [T triv]g, we already determined H H,,(S(G, K;)*) in Example
5.3. Trace Paley—Wiener theorems for #(G) and S(G).

The structure of
HHy(H(G)) = H(G)/[H(G), H(G)]
can be described with the trace Paley—Wiener for reductive p-adic groups, which we
recall now. The main ingredient is the trace pairing

HHy(H(G)) x R(G) — C
(f, ) = trw(f)
To see that this pairing is well-defined, pick K € CO(G) such that f € H(G, K). For
(7, V) € Repy(G), trw(f) equals tr7(f)|yx. As dime VX is finite (Theorem [1.12)),

trw(f)|yx € C is defined.
We say that a linear form A € Homz(R(G), C) is regular if

e ) is supported on finitely many Bernstein blocks of Rep(G),
e for every parabolic subgroup P = LUp and every « € Irr(L), the function
X(L) = C:x = AIS (7 ® X)) is regular.
We denote the C-vector space of such A by Homgz(R(G), C)reg.
Theorem 5.13. [BDK]
The trace pairing induces an isomorphism of Z(Rep(G))-modules
HHy(H(G)) — Homyz(R(G), C)yeg-

Next we consider a twisted crossed product A x C[I',f] as in , where T' is
a finite group and A denotes either C°°(X) for a smooth manifold or O(X) for a
non-singular affine C-variety. From Theorems and we know that there are
isomorphisms of A'-modules

HHy(C™(X) x C[T', ) = ( c=(xM) @)’

~yel
~ 00 ¥ ¥ Zr(v)

a @Wef/conjugacy (C (X ) 2 ) ’

and similarly with O instead of C*°. The specialisation of HHy(A) at an arbitrary
character I'z € X/T" of A" can be identified with

(5.8) C{TV 1y € Tay B2, (7) = 1, modulo Fm-conjugation}.

From Theorem and Lemma one deduces that ([5.8)) pairs nondegenerately with
the Grothendieck group of the category of finite dimensional AxCIT', f]-modules with
Al-character I'z. This implies that the trace pairing

(5.9) HHy(AxC[l',g]) x R(Ax C[T,t]) — C is nondegenerate.

(5.7)
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Reasoning in such ways, one can recover Theorem [5.13] from Theorems and
see [Sollll, Proposition 2.9.b].

As we saw in Paragraph(5.2] there are versions of Theorems3.15|and [4.13|for S(G).
That makes the existence of a trace Paley-Wiener theorem for S(G) plausible, and
suggests that it should involve smooth rather than regular functions. We call
a linear form A € Homz(R(S(G)), C) smooth if:

e ) is supported on finitely many Bernstein blocks of Rep(G),
e for every parabolic subgroup P = LUp and every 7 € Irtyemp (L), the function

Xu(L) = C:x = MIS(T®x)) is smooth.
We denote the C-vector space of such linear forms by Homyz(R(S(G)), C)wc.

Theorem 5.14. [Sollll Theorem D.ii and (3.4)]
The trace pairing induces an isomorphism of Z(Rep(G))-modules

HHy(S(G), &) = S(G)/[S(G), S(G)] — Homz(R(S(G)), C)oo

5.4. Periodic cyclic homology.

Periodic cyclic homology of algebras consists of two functors H Py, HP; from al-
gebras to vector spaces. They are periodic in the sense that H P, 42, = HP, for
all n,m € Z. The functor HP, = HFy ® HP, plays an important role in non-
commutative geometry, because it is an analogue of DeRham cohomology (which
can be defined for commutative algebras). Its functorial properties are analogous to
those of topological K-theory (see Paragraph, in particular it is Morita invariant
[Cun2| and there are six-term exact sequences associated to short exact sequences of
algebras [CuQu]. In practice, these make it possible to determine H P,(A) for many
algebras A.

The periodic cyclic homology of a C-algebra A is defined as the homology of
an explicit infinite double complex CCpe,(A) with spaces A®" [Lod, §5.1]. A part
of CCler(A) computes HH,(A), and as a result HP,(A) and HH,(A) are closely
related. In many cases H P,(A) can be computed as the homology of HH,(A) with
respect to a new differential B discovered by Connes.

Periodic cyclic homology is also defined for topological algebras, when one fixes a
topological tensor product. We focus on Fréchet algebras and ®. Then H P, (4, ®) is
the homology of a double complex CCpe, (A4, ®) obtained from CCje,(A) by replacing
all terms A®" by A®",

We can now formulate the Hochschild-Kostant—Rosenberg—Connes theorem. In
these cases H P,(A) is computed from HH,.(A) (which is known from Theorems
and as the homology with respect to usual d for differential forms.

Theorem 5.15. [Lod| §5.1.12] and [Conl, [Tel|
Let i € {0,1} and let Hjp denote de Rham cohomology with complex coefficients.

(a) Let V be a nonsingular complex affine variety. There is a natural isomorphism

HPOW) =  Hi"™(V).

mGZZQ

(b) Let X be a smooth manifold. There is a natural isomorphism

HP(0®(X),0) =D HiF™(X).

mGZZO
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Suppose that in the setting of Theorem [5.15] a finite group I' acts on V and on
X, by automorphism in the appropriate category. Then we can combine Theorem
.18 with Theorems and to obtain:

Corollary 5.16. There are isomorphisms
HP.(O(V) x C[I, i]) = (Dyer Hig(V7) ®17) .
HP(C(X) % C[[,4],®) = (D,er Hin(X7)@47) .

Continuity for H P, is more subtle than for H H,, because C'Cpe,(A) has infinitely
many terms in negative degrees.

Theorem 5.17. [Nis, Proposition 2.2] and [BrPl, Theorem 3]

(a) Suppose that lim;_oo A; is an inductive limit of algebras and that there exists
N € N such that HH,,(A;) = 0 for alln > N and alli. Then HP,(lim;_, o A;) =
limi_>oo HP* (Az) .

(b) Suppose that lim;_,~ B; is a strict inductive limit of nuclear Fréchet algebras
and that there exists N € N such that HH,,(B;,®) = 0 for alln > N and all i.
Then H Py (lim;_,o Bj, ®p) = lim; oo H Py (B;, ®).

We return to our main players, #(G) and S(G). Theorem [5.17]enables us to apply
an argument like in and (5.2). Recall that for s € B(G) we picked K, € CO(G)
in Paragraph

Lemma 5.18. [Sol2, (3.3) and (3.4)]
There are natural isomorphisms

HP.(H(G) % @uewiey HP(HOY) = @) HP. (G KL,
HP, (S(G)7 ®b) @56%(G) HP, (S(G)57 ®b) @56%(6‘) HP, (S(G7 KS)Ev ®)'
It turns out that the isomorphisms and (which come from Theorems
and [5.11)) are very suitable to determine HP,(H(G)) and HP,(S(G),®y) in
representation theoretic terms. By [Sollll (4.4) and (4.5)], Connes’ differential B
on HH,(H(G)) and on HH,(S(G), ®}) corresponds to the usual exterior differential

d on the differential forms in (4.18) and (5.6). Taking homology with respect to d
yields:

Theorem 5.19. [Sollll Theorem 4.1 and (4.7)—(4.8)]
Let i € {0,1}. There are isomorphisms of vector spaces

HP,(H(G,K:)*) = HP;(O(Xu(L)) x C[WE, 5571])

r
)

Pt
11l

= Gamezzo (GaweW; HZ%Qm(an(L)w) ® (hs_l)w) Wsea
HPi(S(G’K5)5’®) = HR(COO(qufr(L)) X C[Wﬁe’hs_l]v@) Wwe
> @cr., (Buews Hif " (Xi(D") @ (1))

As X}.(L) is W¢-equivariant deformation retract of Xn,(L), Lemma and
Theorem recover [Sol2, Theorem 3.3] and [BHP, Conjecture 8.9]:

Corollary 5.20. The inclusions H(G, Ks)* — S(G, Ks)® and H(G) — S(G) induce

isomorphisms on periodic cyclic homology.

Furthermore, by [Solll, Lemma 4.4] H P,(H(G, K)*) can be realized as the subset
of HH,(H(G, K;)*) consisting of differential forms that are locally constant on the
various varieties X,,(L)", in the picture from (4.18).
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Similarly HP,(S(G, Ks)°,®) has a canonical realization as the set of locally con-
stant differential forms in HH.(S(G, K,)*, ®), in the picture (5.6).

These are instances of a more general phenomenon in geometric group theory,
already observed in [HiNil [Sch]. For any totally disconnected locally compact group
G’ there is a decomposition

(5.10) HH,(H(G')) = HH,(H(G"))ept & HH.(H(G"))nept.

The subscript cpt means ”supported on compact elements”: this part of HH,(H(G"))
only uses chains

fo@fi® @ fn € H(G)PMHD

such that fo(g0)fi(g1) - fn(gn) with g; € G’ is zero unless gogi ---gn lies in a
compact subgroup of G’. The subscript ncpt stands for ”supported on noncompact
elements”, which means that it comes from chains such that fo(g0)f1(g1) - fn(gn)
is zero whenever gog; - - - gn lies in a compact subgroup of G’.

Suppose in addition that G’ acts properly on an affine building, like any reductive
p-adic group does [T1t], §2]. Then the noncompact part of HH,(H(G’)) disappears
in periodic cyclic homology, by [HiNi, Theorem 6.2] or [Sch, Theorem II.

Theorem 5.21. [HiNi, Theorems 1.1 and 4.2] and [Sch, Theorem I]
In the above setting there is an isomorphism

HP,(H(G)) =D, _, HHirom(H(G))ept.

For our group G acting on its Bruhat-Tits building, Theorem [5.19] (#.18)) and
the aforementioned [Sol9, Lemma 4.4] recover Theorem [5.21] in a representation-
theoretic way.

TI’LEZZO

6. ToroLOGICAL K-THEORY

K-theory started [Ati] as a way to classify vector bundles on a topological space X,
up to stable isomorphism. That gives a contravariant functor K from topological
spaces to abelian groups, and another functor K' is obtained by composing K°
with the suspension functor for topological spaces. There are also higher functors
K™, but by Bott periodicity these reduce to K or K!. The Z/2Z-graded functor
K* = K @ K' forms a generalized cohomology theory, so roughly speaking it
behaves like singular or Cech cohomology. K-theory for topological spaces can be
extended naturally to pairs of spaces X1 D Xo.

In noncommutative geometry, topological K-theory is usually defined and studied
for C*-algebras or Banach algebras, see for instance [Bla]. The (covariant) functor
K classifies finitely generated projective modules up to stable isomorphism. The
functor K7 can be obtained as Ky composed with a suspension functor for algebras.
Recall that by the Gelfand-Naimark theorem [FGV], Theorem 1.4] every commuta-
tive C'*-algebra has the form

Co(Y) = {f € C(Y U{oo}) : f(o0) = 0},

where Y is locally compact Hausdorff space with one-point compactification ¥ U
{o0}. By the Serre-Swan theorem [FGV] §2.3 and Corollary 3.2.1] there is a natural
isomorphism

(6.1) K;(Co(Y)) =2 K' (Y U{oo},{o0}) i=0,1.
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Most references state this only for i = 0, but the definitions of K in terms of K° and
K in terms of K are analogous, and therefore also holds for ¢ = 1. Largely
due to the results of Gelfand—Naimark and Serre-Swan, K-theory of C*-algebras is
at the heart of noncommutative geometry.

6.1. Versions and properties of K-theory.
Topological K-theory can also be defined for Fréchet algebras (in the sense of

Definition , see [Cunll [Phi2]. This generalizes K-theory for Banach algebras and
enjoys the following properties:

e Additivity. For any Fréchet algebras A,, (n € N) and i € {0,1}:

K ( Hzo:l A") = H:ozl Ki(An).

e Stability. K;(M,(A)) = K;(A) for any Fréchet algebra A, and the same
with M, (C) replaced by the algebra of compact operators on a separable
Hilbert space.

e Continuity [Bla, §5.2.4, §5.5.1 and §8.1.5]. If lim,,_,o B, is an inductive
limit of Banach algebras, then

KZ( lim Bn) >~ lim K;(B,).
n—oo n— oo

e Excision. Let 0 - A — B — C be an exact sequence of Fréchet algebras.
Then there exists a natural six-term exact sequence

Ko(A) — Ko(B) — Ko(0O)
(6.2) 1 L
e Homotopy invariance. If ¢g,¢; : A — B are homotopic morphisms of
Fréchet algebras, then K;(¢o) = Ki(¢1).
The suspension of a Fréchet algebra A is defined as
YA={feC(SHA): f(1) =0}
There are natural isomorphisms
(63) K()(ZA) = Kl(A) and K1(2A) = K()(A)
The first is either a definition or [Phi2, Theorem 3.14] and the second is a reformu-

lation of Bott periodicity [Phi2, Theorem 5.5]. These isomorphisms are compatible
with excision, in the sense that the exact hexagon (6.2) can be rewritten as

Ko(A) — Ko(B) — Ko(C)

(6.4) 1 L
K()(ZC) — KQ(EB) — Ko(ZA)

Consider the split exact sequence of Fréchet algebras

(6.5) 0= XA CSHA) A0,

where the splitting sends a € A to the constant function on S! with value a. Topolo-
gical K-theory respects split exact sequences, so and induce isomorphisms
(6.6)  K;(C(S',A) = K;(ZA) @ K;(A) = Ko(A) @ Ki(A)  i=0,1.

The isomorphism K, (M,(C)) = K,(A) can be regarded as an instance of Morita
invariance of topological K-theory. For unital Fréchet algebras, this can be pushed
further.



P-ADIC GROUPS, REPRESENTATIONS AND NONCOMMUTATIVE GEOMETRY 67

Theorem 6.1. Let A and B be unital Fréchet algebras, such that A C A and
B* C B are open. Suppose that A and B are Morita equivalent. Then the Morita
bimodules induce an isomorphism K,(A) = K.(B).

Proof. Let P and @ be the bimodules implementing the Morita equivalence, so
PRpQ=Aand Q®4 P = B. Since A and B are unital, P and @ are finitely gen-
erated and projective. Then C(S', P) and C(S', B) are finitely generated projective
bimodules for C(S', A) and C(S*, B), such that

C(Slvp)(g)C(Sl,B) C(Sva) = C(SlaA) and C(SlaQ)®C(5’1,A)C(517P) = C(S17B)

This provides a Morita equivalence between C(S', A) and C(S!, B). The assump-
tions on A and B and the compactness of S imply that C(S*, A)* C C’(S1 A) and
C(S', B)* c C(S', B) are open. According to [Phi2, Theorem 7.7], Ko(C(S*, A))
is naturally isomorphic to the K-group of the monoid of finitely generated projective
C(St, A)-modules. The same holds for C(S!, B). Therefore the maps

(6.7) Ko(C(SY, A)) «+— Ko(C(S, B))

induced by C(S', Q)®¢(s1,4) and C’(Sl,P)®C(S17B) are group isomorphisms. The
decomposition

Ko(C(S", A)) = Ko(A) @ Ky (A)
from cornes from Co(S1, {1}) — C(SY) — C({1}). Tt works in the same

way for C ) respects those decompositions and yields isomorphisms
K()(A) gKo(B) and Kl(A) gKl(B) O

The Serre-Swan theorem admits a generalization to Fréchet algebras, of which
we state a simplified version:

Theorem 6.2. [Phi2, Theorem 7.15]

Let Y be a locally compact Hausdorff space. Let A be a commutative Fréchet alge-
bra such that the maximal ideal space of the unitization Ay is Y U {oo}, where oo
corresponds to the canonical projection Ay — C. (For example A could be C*°(Y')
if Y is a compact smooth manifold.) Then there are natural isomorphisms

Kz(A) ng(CO(Y)) %JKZ(YU{OO}7{OO}) iZO,l.

In Theorem the natural map A — Cp(Y) induces an isomorphism on K-
theory. That phenomenon holds in much larger generality, and it is called the
density theorem in K-theory:

Theorem 6.3. [Bos, Théoreme A.2.1]
Let ¢ : A — B be a morphism of Fréchet algebras. Let Ay be the unitization of A
from (4.1)), and extend ¢ to ¢4 : Ay — By. Assume that:

o AY (the set of invertible elements in A ) is open in A,

e B is open in By,

e ¢(A) is dense in B,

e whenever a € Ay and ¢4 (a) is invertible in By, a is invertible in A .
Then K. (¢) : K.(A) — K.(B) is an isomorphism.

Many versions of K-theory admit an extension to an equivariant setting. We focus
on equivariance with respect to actions of a finite group I'. Atiyah [Ati] already
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defined the I'-equivariant K-theory of a I-space Y. By design K2(Y) classifies I'-
equivariant vector bundles on Y, up to stable equivalence, and K% (Y) is KIQ of the
suspension of X.

Recall that the classical Chern character assigns to a vector bundle over Y a class
in the Cech cohomology of Y. It gives rise to a natural transformation

(6.8) Ch: K*(Y) — H*(Y;Q).

If one replaces K*(Y) by K*(Y) ®z Q, then is often an isomorphism.
Suppose now that X is a compact Hausdorff space with a I'-action. In this setting
Baum and Connes [BaCo] constructed a I'-equivariant version of . Write

Y — v
X - |—|'y€1_‘{7} X X )

and let T act on X by 71 - (2, x) = (71727_1,’)’133)-

Theorem 6.4. [BaCo, Theorem 1.19]
There are natural isomorphisms

Ki(X)®zC 5 (K*(X) 0, C)" & H*(X;0)F = H*(X/T;C).

The map Ki(X) — H* (X;C)' in Theorem ﬂ is called an equivariant Chern
character.

For the equivariant K-theory K! of I'-C*-algebras we refer to [Phil], here we
restrict ourselves to a few remarks. The equivariant Serre-Swan theorem [Phill,
Theorem 2.3.1] says that for any locally compact Hausdorff I'-space Y there is a
natural isomorphism

(6.9) K, (Co(Y)) =2 Kf(Y U {oo}, {oo}).
Besides K}, there is an equivalent way to introduce I'-equivariance:

Theorem 6.5. [Jul]
For any T-C*-algebra B, there is a natural isomorphism KI'(B) = K,.(B x T).

In view of Theorem it makes sense to define
KI'(A) =K, (AxT) for any Fréchet I'-algebra.
When X is a compact Hausdorff I'-space, Theorems and combine to
(6.10) K. (C(X) xT) @z C = Ki(X) ©z C~ H*(X;C).

Let § : I' x I' = C* be a 2-cocycle. Recall from (2.3) that C[I',] = e,C[I"*] for a
central extension Z* — I'* — I', a character ¢, of Z* and the associated idempotent
ey € C[Z*]. Since ey is a central idempotent in C'(X) x I'*, we can write

K.(C(X) x C[T, 1)) = K. (e5(C(X) % %)) = e, K, (C(X) x ) = e, Kih. (X).

Definition 6.6. The f-twisted equivariant K-theory of a locally compact Hausdorff
T'-space Y is

Kr4(Y) := ey Kr (Y U {oo}, {oo}) = K. (Co(Y) » C[T, 1)
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This is the K-theory of ['*-equivariant vector bundles over X on which Z* acts as
the character ¢;. From (6.10) and [Sol10), proof of Theorem 1.2] we deduce that the

[-equivariant Chern character induces an isomorphism

(6.11) Kf(X)®zC= K (C(X) xT*) =

(U0 00)” = (@), 0 o)

When X is in addition a smooth manifold, (6.10)) and (6.11]) can be composed with
Theorem (for C*°(X) — C(X) and related inclusions) to obtain

KI(C™(X)) ®2 C = K. (C®(X) x T) @z C = Hjp(X)",
K(C®(X) < Ol ) @2 C= (@) Hin(X) 01

There is a natural transformation

(6.13) Ch:K,— HP,

(6.12)

from K-theory for Fréchet algebras to periodic cyclic homology for Fréchet algebras,
also called the Chern character [Cunl]. It is constructed as the restriction of a
bivariant Chern character, and latter has a universal property which makes it unique
[Cunll Korollar 6.5]. Therefore, for any smooth manifold Y,

Ch: K,(C®(Y)) = HP,(C®(Y),®) = Hip(Y)

agrees with the classical Chern character . This is also checked in a more
concrete, purely algebraic setting in [Lod, Proposition 8.3.9]. That compatibility of
Chern characters and Theorems b and imply:

Theorem 6.7. [Con| [Soll]

Let X be a compact smooth manifold.

(a) Ch®id: K,(C®(X)) ®z C — HP,(C*®(X),®) is an isomorphism.

(b) Let T be a finite group acting on X and let fj be a 2-cocycle of I'. Then

Ch®id: K,(C®(X) x C[I',1]) ®z C — HP,(C>®(X) x C[I, ], ®)
s an isomorphism.

In fact Theorem [6.7]applies in much larger generality. Firstly, twisted crossed pro-
ducts can be replaced by I'-invariants for certain actions of I' on matrix algebras over
C*°(X) [Solll, Theorem 6]. Secondly, Theorem also holds for many noncompact
manifolds X . Not for all though, because ®7C does not commute with infinite direct
products [Solll, Appendix].

6.2. K-theory of C}(G) and S(G), modulo torsion.

We survey the relations between the topological K-theory and the periodic cyclic
homology of C}(G) and S(G). Recall from (1.7), Definition and Theorem
that

C:(G) = thECD(G’) C:(Gv K) = hmn—mo(G; Ky),
S(G) = thECD(G) S(G, K) = UZO:I S(G, Kn)

The algebra S(G) is not Fréchet, so its topological K-theory presents new challenges.
While K-theories have been constructed for wider classes of topological algebras, it is
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unclear whether those functors commute with direct limits. To avoid such problems,
we simply define

K.(8(G)) = lim  K.(S(G, K).

Notice that this makes sense because each S(G, K) is a Fréchet algebra, see Theorem
L Za.
Proposition 6.8. There is a commutative diagram
limgecna) K+(CF (G, K)) — K. (Cr(G))
T T
theca(G)K*(S(GaK)) = K.(S(G))

in which all the arrows are natural isomorphisms.

Proof. The continuity of K-theory for Banach algebras tells us that upper line is an
isomorphism, where the map is induced by the inclusions C} (G, K) — C;(G). By
Theorems [1.7] and [6.3]

(6.14) the inclusion S(G, K) — C; (G, K) induces an isomorphism on K-theory.

Hence the left column of the diagram is a natural isomorphism. We define the map
in the right column of the diagram as the composition of the other maps. Then it
is a natural isomorphism, and it is induced by the inclusion S(G) — C}(G). O

Like in (5.2)), one deduces from Propositions and and Theorems and
that there are natural isomorphisms

K*(C:(G)) - @56%(6’) K*(C;(G7 Kﬁ)s) = @56%(6‘) K*(C:(G>5)
K, (S(G)) = @seB(G) K*(S(G, Ks)s) ’
Example 6.9. Consider G = SLy(F') and s = [T, triv]g. From Example and
Theorem we see that the C, % (G)*® is Morita equivalent to

(C(SY) ® My(C))™ & Cg; := A @ Cgy.

As K.(Cgt) = Ko(C) = Z, we focus on A. By a suitable choice of coordinates, we
can achieve that Sy = {1, so} acts by

(saa)(2z) = (§ D) alz"") ({.%) a € C(S') ® My(C),z € S*.

021

(6.15)

This shows that every Sp-orbit in S*\ {—1} supports a unique irreducible A-repre-
sentation, while there are precisely two inequivalent irreducible A-representations
with C(S1)%2-character -1. The upper half circle is a fundamental domain for Sy
acting on S!, and it is homeomorphic to [—1,1] by taking real parts. Evaluation of
A at -1 yields a short exact sequence of C*-algebras

0 — Co((—1,1)) ® My(C) - A — C? = 0.
The associated six-term exact sequence is
K°%((-1,1]) =0 — Ko(A) — Ko(C*) =22
/]\

! .
Ki(C*=0 <+ Ki(4) « K'((-1,1)=0

Here K.((—1,1]) = 0 because the algebra Cy((—1,1]) is homotopy equivalent to 0.
We find that K, (A4) =& Ko(A) = Z2.
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With methods like in Example [6.9] one can compute K, (C;(G)*) for many Bern-
stein blocks Rep(G)®, but the computations quickly become cumbersome.

To analyse K,(S(G, K;)*) and K.(C; (G, K;)®) in general, we relate them to the
previous section. Theorem can be applied to the Fréchet algebras appearing in
the Plancherel isomorphism for S(G) (Theorem [1.32)).

Theorem 6.10. [Solll Theorem 10 and Corollary 11]
For any K € CO(G), the Chern character induces an isomorphism

K.(S(G,K))®zC — HP,(S(G,K),®).

A combination of the results in this and the previous paragraph yields a descrip-
tion of K, (C}(G)) modulo torsion:

Corollary 6.11. (a) Fiz s = [L,0]|q € B(G). There are isomorphisms
K.(CH(G)) @z C= Ki(CF (G, Ks)*) @2 C= Ki(S(G, Ks)®) @2, C

= HP,(S(G, Ks)*,®) = HP, (C®(X{,(L)) x CIWy, 5,71, &)

> K. (O®(X5 (L)) » W, 5,1]) @2 C

= K (C(XA(L)) % CIWE, 551]) 2. € = Ky 1 (X4(L)) 92 C.
(b) There are isomorphisms

K.(CH(@) @2 C=KAS(@) 22 C= P, o Kive g (Xii(1)) €2.C.

Proof. (a) The first isomorphism is and the second comes from (6.14). Then
we use Theorems and The fifth isomorphism is an instance of Theorem
the sixth comes from Theorem and the last step is Definition

(b) This follows from Proposition and part (a). O

Corollary gives a description of the group K,.(C}(G)) modulo torsion. In
some cases that determines K, (C(G)) up to isomorphism, because it does not have
torsion elements:

Theorem 6.12. [Sol7, Theorem 5.3]
Let G be an inner form of GLy,, or a symplectic group, or a special orthogonal group
(not necessarily F-split). Then K.(C}(Q)) is a free abelian group.

6.3. Relation with the Baum—Connes conjecture.

K-theory of group-C*-algebras figures prominently in the Baum—Connes conjec-
ture [BCH, [Val]. For any Hausdorff space Y with a proper G-action, Kasparov’s
equivariant KK-theory provides a notion of the G-equivariant K-homology K&(Y).
There is an assembly map

ey KZ(Y) = Kl (CH(G)),

which can be defined in several (analytic) ways [Val, §6]. The Baum-Connes con-
jecture asserts that pgy is an isomorphism when Y is a classifying space for proper
G-actions, as in [BCH, §1].

For our reductive p-adic group G, we can take as Y the (extended) Bruhat—Tits
building BG, see [BCH, §6]. In this case the Baum—Connes conjecture is known to
hold, a celebrated result of V. Lafforgue [Laf].

There is a more algebraic version of equivariant K-homology, called (equivariant)
chamber homology, see [HiNi, §3] and [BHP, §2]. It is available for any totally
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disconnected locally compact group G’ acting on a polysimplicial complex X', and
can be defined as follows. Let X/ be the set of n-dimensional polysimplices of X’. For
every o € X/ the stabilizer group G/, is compact, and we form its (complex-valued)
Hecke algebra H(G.). The usual boundary operator for polysimplices induces a

boundary operator
/
O on @nZO @JEX;L H(Go),

which decreases the degrees by one. Taking G-coinvariants, we form the differential
complex with terms Cy, = (D, cx/ %(G/U))G,. The homology of (Cy, dy) is denoted

cHY (X') =P - CHS' (X").

This is similar to HH,(H(G")), in the sense that it looks somewhat like a resolution
which could be used in the definition of HH, as a derived functor. Higson and
Nistor made that precise:

Theorem 6.13. [HiNi, Theorem 4.2]
Assume that, for every K' € CO(G'), the fized point set of K' in X' is nonempty and
contractible. Then there are natural isomorphisms

CHY (X') = HHy(H(G'))ept,
where cpt means "supported on compact elements” as in Theorem [5.21]

The definition of CHS (X') can be reformulated with Doex: o R(GG) @7, C in-
stead of C),, see [BHP, p. 215]. In that way one can regard equivariant chamber
homology as an algebraic combination of ordinary homology and virtual represen-
tations of compact subgroups. This is reminiscent of how the algebraic K-theory of
H(G) was computed in [Balil].

Similar to , Voigt constructed an equivariant Chern character

Ch : K& — @mzo CHE -

Theorem 6.14. [Voi, §6]
Suppose that X' is a finite dimensional locally finite polysimplicial complezx, and that
X'/G" is compact. Then

Ch @id : K& (X') ©7 C — EBmzo CHng(X') is an isomorphism.

For G acting on BG, the conditions in Theorem are fulfilled by the CAT(0)-
property of BG and the Bruhat-Tits fixed point theorem [Tit], §2.3]. The conditions
on X’ in Theorem hold for BG by [Titl, §2.2 and §2.5].

The various homology theories associated to G, its group algebras and BG can be
combined in the following diagram, which is an extended version of [BHP, Proposi-
tion 9.4]:
(6.16)

K (BG)

HG,BG

Ki(C*(@G)) Ki(8(G))

r

Ch€ Ch

@ CHE,, (BG) == @ HHiom(H(G))epr = HP,(H(G)) —= HP(S(G), &)

m>0 m>0
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Here the Chern character Ch : K.(S(G)) — HP.(S(G), ®y) is defined as the direct
limit over K € CO(G) of Ch: K,(S(G,K)) — HP.(S(G, K),®), which makes sense
by Theorem and our definition of K,(S(G)).

Theorem 6.15. (a) All the horizontal maps in the diagram (6.16)) are natural iso-

morphisms.
(b) The vertical maps in (6.16) become isomorphisms if we apply @7C to the K-
groups.

(¢) If we extend (6.16]) with inverses of all the arrows that are isomorphisms, then
the diagram commutes.

Proof. (a) For the upper line we refer to [Laf] and Proposition . The first isomor-
phism on the lower line is Theorem [6.13] the second is Theorem [5.2I] and the third

is Corollary [5.20]

(b) This follows from Theorems and
(c) See [Sol2, Theorem 3.7 and Lemma 3.9]. O

All the terms in that do not involve BG admit a natural Bernstein de-
composition, see Lemma and . We computed the summands associated
to an arbitrary s € B(G) explicitly in Theorem and Corollary Thus the
isomorphisms ¢ e and Theorem provide natural Bernstein decompositions of
K& (BG) and CHE (BG).

Unfortunately it remains inclear how to describe these decompositions in terms
of the action of G on its Bruhat—Tits building BG. This reflects the difficulty
of recovering the Bernstein decomposition via restrictions of G-representations to
compact open subgroups of G.

6.4. A progenerator of Mod(C}(G)*).

These and the next paragraphs contain some new material, which aims to compute
K.(C}(Q)) including torsion elements. Fix s = [L, o]g € B(G), with a unitary o €
Irreusp(L). Recall from Proposition [3.4] that Rep(G)® has a canonical progenerator

Il = IS (ind% (0)).
For the remainder of the section, we pick K € CO(G) such that
(6.17) 3'-[(G)5 and H(G,K)® are Morita equivalent,
for instance K, from . Then (K)II; is a progenerator of Mod(H(G, K)*). Fur-
thermore Proposmon shows that

(6.18) C:(G)s and C(G, K)® are Morita equivalent.
We define '

i = Cr(G) @) s,

ig,K = Cr(Ga K)5 ®”H(G K)s <K>H5.

Lemma 6.16. (a) The C7 (G, K)*-module IIg ;¢ is a progenerator of Mod(Cy (G, K)*).
(b) The C:(G)*-module 115 is a progenerator of Mod(Cy(G)*) and II{ ; = (K)ILE.

Proof. (a) The algebra H(G, K)® is unital and its module (K)IL, is finitely generated
projective. So it is a direct summand of a free module of finite rank, say H(G, K)".
Then II{ ; is a direct summand of (C7(G,K)®)", so it is finitely generated and
projective. For any nonzero M € Mod(C} (G, K)*) we have

HOH].C: (G,K)s (HE,K7 M) = HomH(G’K)E (<K>H5, M) 7é 0.
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Therefore II¢ K generates Mod(C’*(G K)*).
(b) By part (a) and - Cr (G (K) ®@cx(a,k) 1§ i is a progenerator of
Mod(C} (G)*). It can be rewrltten as

(6.19) C(G)K) ®cx (i) Cr (G, K)° @3y a,x)s (K)H(G)® @yg)s s =
Cr(G)Y(K) @y a, k) (K)H(G)® @qyye L.
By (6.17) this reduces to C\.(G)* ®4()s s = II§, which is therefore also a progen-
erator. It follows that
(KIS = (K)CH(G)(K) @c; (ak)e s re = TG e O

It is easier to work with II{ - than with II because the algebra C7(G, K)*® i
unital and its irreducible modules have finite dimension. The upcoming results
have versions for II{, which can be derived with arguments like in the proof of
Lemma [6.16lb. By Lemma [6.16la there exists n{ € N and an idempotent ef €
My (Cr (G, K)*) such that

o = (CHG K™
Then Endcx (g, x)s (IIg ;¢ )P, which by definition acts from the right on IIf ., is iso-
morphic to egMne(CF (G, K)®)eg. In particular Endesx (g, ks (1L ;)7 is isomorphic to
a corner in the Banach algebra M,¢(C) (G, K)*), so
(6.20) Ende:s (g k) (15 k) and  Endgs (g k) (15 i) are Banach algebras.
As an instance of Proposition we find that
(6.21) Cr(G,K)* and Ende: (g k)s (g ) are Morita equivalent.
This works both as abstract rings and as Banach algebras, with the Morita bimodules
I and  eg(Cr(G,K)°)™ = Homgy (g ks (g i, G (G, K)°).
Recall the subset A(G,s) C A(G) from (1.34).
Lemma 6.17. There exist positive integers ny for 09 = [M,0] € A(G,s), such that

kS @ <K>I]€[UQ (6 ® C(XE(M)))"™M  as C*(G, K)*-modules.
[M,0)€A(G,s)

Proof. The H(G, K)*-module (K)II, is a direct integral (in an algebraic sense) of
the representations I (o ® x) with x € Xy (L). Tensoring with C,.(G, K)® kills all
nontempered irreducible subquotients. By Theorem every irreducible tempered
subquotient of II; arises as a direct summand of IS (0), where @ C G is a parabolic
subgroup containing P, M is a Levi factor of @) containing L and § € Irr(M) is
square-integrable modulo centre. Then ¢ is a subquotient of I ]]\‘/[40 plo® x) for some
X € Xnr(L). Sometimes the copy of Ig(é) in I§ (0 ® x) is annihilated by applying
Cr (G, K)*®y(a,K)s» because it belongs to a subrepresentation of G(o®x) generated
by elements from nontempered representations.
For each xnr € X\ (M) the discrete series representation

(6.22) §® xum is a subquotient of IV p(0® xarlLX).

Here (L,0 ® x) represents the cuspidal support of § and, while x is not unique,
there are only finitely many possibilities because Sc(d) has only finitely many repre-
sentatives in Irr(L). Tt follows that IT¢ ¢ is a direct integral of the representations
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Ig(é ® xm) with [M, 0] € A(G,s), and the number of times such a representations
appears as a subquotient of II{ ;- depends only on [M, §]. Each ny is nonzero because
IL{ ¢ is a progenerator (Lemma|6.16}a).

We know the structure of C’,‘,‘IZG:,K)5 from Theorem and (1.34). More con-
cretely, by C}(G, K)® has direct summands

* u : Wiaz.g
CHG, K)[M,é] = (C(an(M)) ®EndC(1nd§ng(%)K)> M .

The projectivity of IIg ;- as C(G, K)*-module (Lemma 6.16}&) implies that the
direct integral of the representations IS (6 ® xpr) from (6.22)) occurs in the form

(K)I§(C(X(M)) ®6). O

6.5. Construction of an action on the progenerator.

We want to define an action of C(Xy(L)) x C[Wy, 4] on II{ ;- by C7(G, K)*-
intertwiners, which for finite length tempered representations recovers Theorems
and Unfortunately this will be a rather technical affair, because we have
to involve a lot of arguments from [Sol9]. The easy part is to let C'(XY.(L)) act
canonically on II7 and II{ ., as follows.

The set of tempered representations in Xy (L)o is X% (L)o, and by Lemma [1.37]
every o ® x can be written uniquely as o ® x |x| ™' ®|x|, where o ® x |x| ™! is unitary
and x € X (L). Welet f € C(XY%(L)) act on I§(c ® x) as multiplication by
f(x|x|™%). This can be restricted to tempered subquotients and in particular to
any IS((S ® x ) occurring in I§ (o ® x). When we vary ys in X% (M), we see that
this integrates to an action of f on IS(C(XI?T(M)) ® J), namely

(6.23) I§ applied to multiplication by [xar — f(xalrx |x|™)] on C(X4(M)) @0

Via Lemma this gives rise to a canonical action of C(X}\.(L)) on II¢ by G-
intertwiners, which restricts to an action of C(X.(L)) on II ; by C;(G, K)*-
intertwiners.

Recall from Theorem [3.8 or [Sol9] that
(6.24) Endg(Ils) ®@0(x,. (1)) C(Xnr (L)) = C(Xur(L)) x C[W{, ).

Here WE appears as a set of intertwining operators 7, that multiply as in C[W¢, ts].
More precisely, the specialization

Tw: Ig(0 ®x) = I (0 ® w(x))
is rational as a function of x € X;;(L). On the other hand, from Theorem or
the underlying [Sol9, Proposition 7.3] we obtain
C[Wy, 8] C H(t, Ws.o0x: kowx, h0®x) - EndG’(Hﬁ)?JZ@X-

Here U,gy is a neighborhood of X (L)x in X, (L), a superscript an stands for

complex analytic functions and Endg(Hg)“(};@X consists of endomorphisms of

s ®@0(x,.(1)) C*" (Usey). To construct an action of C[Wy, ] on IIg and on I f,
we will need to combine both pictures of C[W¢E, .

Example 6.18. Consider G = SLy(F') and s = [T, triv]. Lemma works out to
sk = (KI5 (C(X5(T))) @ (K)Ste.
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By [Sol9, (5.20)] the operator T, has only one singularity, at x(hY) = qr, or equi-
valently for y = 6]{-;/ ?. In particular Ts,, is regular on X (T'), which means that the
action of T, on

s ®0(x,, (1)) C(Xne (1))
from extends naturally to an action on

ILs ©0(x,. (1)) C(Xi(T)) = IF(C(X3(T))

and on (K)I$(C(X%(T)). Let us check that the specialization of this action at any
X € X!.(T) recovers Theorem

When s4(x) # X, that follows from [Sol9, Lemma 8.2]. When s,(x) = x, we have
X = x— or x = triv. For x_, the relevant Hecke algebra is O(t) x C[W;, _] with
Wsx_ = S2. Via [Sol9, Lemma 7.1}, T, specialized at x_ is identified with a scalar
multiple of N;,. The same identification is used in the constructions for Theorem
3.14] For trivy the relevant Hecke algebra is H(t, Sa,log(¢r)), and [Sol9, Lemma
7.1] identifies the specialization of 75, at trivy with

ha
log(qr) + hy
from Theorem Now the group W, has two incarnations {1, N, } and {1, 7s,},
both of which act on the specialization of I at xy = trivy. By direct calculations one
checks that the two actions of W, on I§(trivy) are both equivalent to the regular

representation.
We move on to the Steinberg representation. There are short exact sequences

Ts, = —1+ (Ng, +1)

(6.25) 0 — Stg — 13(61/2) — trivg — 0,
0 — trivg — I9(65;7%) — Stg — 0.

The standard intertwining operator
J(sa, B, trivy, 61%) : IS(61%) — 1§(65'%)

annihilates Stg and sends trivg = I§(8 1/2)/8‘5@ bijectively to trive C 1§ (0 1/2).
Similarly

T (50 B, trive, 657%) 1 1§(65"%) — 15(51%)

induces an isomorphism Ig(&;l/ )/trive — Stg. The specialization of T, at
IG(51/2) equals J(sq, B, triVT,é_l/z) times a function of xy € Xy, (L) which has
a pole at (5}3/2. The specialization of Ty, at IS (5 1/2) equals J(SQ,B,trivT,é}Bﬂ)
times a nonzero scalar. In both cases s, 1nduces a ”singular map” from Stg to Stg,
0 in one direction and oo in the other direction. When we apply C; (G, K)*®yy(q, k)

to the K-invariant vectors in (/6.25)), (K)IG(é_l/ ) becomes (K )Stq because trivg is

killed. By this tensoring the entire representation Ig(&g 2) is annihilated, because it
is generated by vectors from a copy of the nontempered representation trivg. There-
fore (6.25) gives rise to only one copy of (K)Stg in I x. The Endg(Ils)-module

Homg (T, Ste) = Homa(I§(55"%), Ste) = C

admits an action of the graded Hecke algebra H(t, S2,log(¢qr)). The element Ny, of
that algebra acts as -1 on Homg (11, Stg), because it corresponds to the Steinberg
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representation Sty of H(t, S2,log(qr)). In [Sol9, (7.7) and Proposition 7.3],
(6.26) Ts., is mapped to 75, .

There is still a singularity involved, because Sty (h)) = —log(gr), see Example
But in the end we want to relate to Theorems and which run via Theorem
2.241 In Theorem (o sends tempered H(t, So,log(gr))-modules to tempered
H{(t, S, 0)-modules. This means that we actually have to map 7s, to an element of
H(t, S2,0), namely

6.27 1+ (I, 1 i N,

(6.27) + (Ve + )5 = M.

In this way the singularity disappears. Since Ny, acts as -1 on Sty and on (o(Sty) =
Cp ® sign, Ts, acts as -1 on Homg(Ils, St) in Theorem a. This forces us to
define that 7, acts as -1 on Stg and on
~ * —1/2
(K)Ste = CF (G, K)* @ (FIF(05").

Summarizing: we constructed a group action of {1,7;,} on II{ and on II ;- such
that the induced action on

Homg (115, 15 (x)) = Homey g,x) (115 - () T5 (X))
is equivalent to the action of {1, N, } on that space (as in Theorem (3.14)).
Example and [Lus, §8] guide us to the desired action on IIf x-.

Theorem 6.19. There exists an action of CIW¢, ts] on 1S i by Cr (G, K)®-inter-
twiners, such that:

(a) It combines with (6.23)) to an action of C(Xy(L)) x C[W;,bs] on II{ &
(b) Part (a) provides a homomorphism of Banach algebras

b5+ C(X (L)) % CIWS, bs] = Endey (g, x0) (15 ) -

Proof. We start by defining the action locally. Consider ¢’ := o ® x’' for some
X' € X%(L). Let Uy be a small neighborhood of X (L)x’ in X, (L), as in [Sol9)
§7] and Theorem We use the analytic localization Ils ®¢(x,, (L)) C"(Uy) of
IL; at U, like in (3.15)—(3.16]). This can also be done with IL{ ;c instead of Ils.

By , any element of WS can be written uniquely as yw, where v sends
®(G,Z°(L)) to ®(G,Z°(L))ye and w € W(®(G,Z°(L))s). Then T, has no sin-
gularities on U,/ [Sol9, (6.7)]. We define the action of v to be that of 7, at least
locally over U,s. That intertwines the G-action and is consistent with [Sol9, §8],
although the latter is not explicit in [Sol9].

The Weyl group W(®(G, Z°(L)), ) is generated by simple reflections s,, so we
look at one of those. By [Sol9, (5.20)], the only poles of 7,, on U, are at x(hy) =
o' (for Ts, considered from the left) and at x(hy) = q;,}a (considered from the
right). By [Sol9} (6.11)], there is a group isomorphism W ,» = (W¢),,. Next [Sol9,
Lemma 7.2]

(6.28) identifies the specialization of T, at U,s with f;fl/ 7';5,

where fﬁ‘; € C(Xnr(L)) without zeros or poles on X (L), and 7?5 is a version of
7., defined with respect to o ® x’ as basepoint. The action of Ty, specialized at any

point of y1 X (L) with x; € X% (L) N U, will be defined as that of fX 75X .
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As fgf: restricts to a continuous function on XY (L) and we already defined how
C (X (L)) acts on II{ r, the task at hand is to define how TX acts. In [Sol9,
Proposition 7.3], 7;’5 is mapped to
he, W,
H(t, W, o1, g, b ,
10g(qor) + 1y, (& Waors kot Bor) @ g e

from . Recall from Theorem a that both

(6.30) {tw:we W} and {Ny7:we W(P(G,Z°(L))y),r €Tor}

satisfy the multiplication rules for the standard basis elements of C[W¢, s].
Consider Q = MUg C P and ¢ € Irrgisc(M) which arises as a subquotient of

I%MHP) (0 ® x) for some x € U/, and such that <K>18(5) is a quotient of IT¢ ;. If

x(hY) ¢ {qglja,q;/%a}, then we let 7;’5 acts on this copy of <K>I8(5) as Ts,, (which

is regular there). If x(hY) € {qo’ 0,4,/ }, then 7, has a singularity at o ® x, and

(6.29) 15, = —1+4 (N5, +1)

we let 7;’5 act as N, instead. Notice that in both cases we act by a G-intertwiner.
The dichotomy 75, /N, is analogous to [Lus| §8.8]. The arguments from [Lus, §8]
show that the above leads to an action of the group

(6.31) {TX :w e W(D(G, Z°(L)) o)}
on the sum of the copies of I, 8 (6) that arise in the above way. The main idea in [Lus,
§8] is a more precise version of , with 75, or Ny, depending on one Wj ,/-orbit
in U,s. Next we can vary J, which yields an action of on the localization of
Hi x at Uy

From Theorem |3.8 and the multiplication rules in C[W¢, fi;] we see that 7;7;a7'7_1
equals 7., -1 for all simple roots a € ®(G, Z°(L)),, and hence

Ty Tw 7'7 = Tywy—1 forall w e W(®(G, Z°(L))o).

Then ([6.28) says that
(6.32) TAXTX T = (F oy DRTX T = L T

The relations between 75X ,ng and Ns, = N, gf; look the same after replacing x’ by
v(x'), so 2) implies that
X X - 1) () X NX T— 7(x (x)
T saTSaT fvsav Tysar™1 and Ty fg N3 T fvs o vsa'v
It follows that, as operators on a localization of II{ - at U, y:

To T 0Ty = Ty
Combining instances of this relation leads to
T T o T_ 7;w’y and Ty © 7;120 = 7ij'y_1 o 7;0

as operators on localized versions of II{ . Consider now wsg, ¥ like w,y, only with
respect to y(x’) instead of x. We compute

Tyg O Jwy © 7jy o Ty = 7;2 ° Ty ° 7jy—1w2'y © - hs(Vza )TYQ’Y °© 7jy—1w2’yw
= h 72)’7)7;211)27111 = h(’)/?wZaryw)ryng’yw
as operators from

g ¢ ®o(xu(r)) C"(Uy)  to 15 x @o(x,. (1)) C" (ew2ywlU,).
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This shows that our actions defined locally near X, (L)X extend to an action of
C[W¢, ] defined locally near WEX (L)'

Next we check that the above constructions do not depend on the choice of the
neighborhoods U,/ (as long as they have the shape from [Sol9, §7]). Suppose that
we have another set U, like U,/, and that U,» NU,, is nonempty. We need to verify
that our locally defined actions coincide on

I3 i ©0(x (1)) O (U NUy).

We may pick x2 € Uy N Uy with a neighborhood Uy, of X.(L)x2 contained in
Uy NUyr. If we can compare the actions relative to U,, and U,, and the actions
relative to U,» and U,,, then a comparison between U,, and U, follows. Therefore
it suffices to consider the case where U,» C U, .

The conditions on U,» from [Sol9, §7] ensure that

(G, Z°(L))or > B(G, Z°(L)) .

We consider w, 7, s, as above. For < the actions with respect to Uy, and U, are
defined in exactly the same way, so they agree where they are both defined.
Suppose that the action of Ty, (from U,/) is defined via that of 75, in (6.29).
Then 7s, acts on 18(5) in the same way as T, on Ils ®o(x,, (1)) C(Xur(L)). In that
case the action with respect to U, is defined just like that.
Suppose now that 7, acts on Ig(é) via Ny, in (6.29). Then x(hY) € {¢o q;,%a

with x € Uy NU,». In that case (6.29) holds also with respect to o ® x” instead of
o'. Further fX NX = f& NZX because

XX = XX in H(t, (sa), kors o) @0 C(1).

The action of 7T, on 18(5) with respect to U~ is defined to be that of f};/Ng‘: =

sﬁ:N sXa/ . This concludes the definition of an action of C[W¢, ;] on IIf 4.
(a) By Theorem b and the multiplication rules in C(Xy, (L)) x C[WE, ], we
have, as operators on H; K

(6.33) Twof=(fow™)oTy, for all w € W7 and f € O(Xn(L)).

The action of 7, is defined via its action on the specializations of IIg i at the
various x € Xy (L), so extends to f € C(Xy(L)). Then it holds also for
f € C(XE(L)), regarded as X (L)-invariant function on Xy, (L). Therefore the
actions of C[W;, ] and C(X{ (L)) on II{ ;- combine in the required way.

(b) Part (a) provides an algebra homomorphism ¢s , and from we know that
both source and target are Banach algebras. It remains to check the continuity of
¢s k. On the finite dimensional algebra C[IWW, 5] continuity is automatic, so we may
focus on C(X}.(L)). From we see that its action on II{ ;- is a direct sum of
actions of the following kind. First a projection C(X} (L)) — C(X) for some closed
subspace X C X!.(L), then multiplication by f|x on some vector bundle over X.
In terms of the isomorphism

Endey(,x)s (5 5 )7 = egMne (Cr (G, K)®)eg
and the description of C*(G, K)* in Theorem this means that és k|c(xu (1)) 18

a finite direct sum of homomorphisms of the form C(Xy, (L)) — C(X). Those are
continuous, so ¢ i is continuous. O
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Theorem gives rise to a version of Theorem for C (G, K)*.

Lemma 6.20. Let m € Irremp(G) N Repp(G)5,+ with x € X¥*.(L), and

r(L)Ws(0®x)
recall from Theorem that

Vv o O(an(L))X(C[Wsevhs_l}
¢V(m) = me(Xm(L))x(C[W;X,u;l](CX ® Ty).

Then, as left modules over (C(X2 (L)) % ClIVE, 1])” = C(X2(L)) = CWE, 5] via
Theorem [6.19:

. C(XE(L)xC[We bt
Home (6. )e (U5 e, (K)m) = indg B | € e my).

12

Proof. Both ¢V () and Homes (¢ ks (I ¢, (K)) are determined by their specializa-
tions at x € X (L), and for both the operation to go from there to the full module
Wyl

(Weots ]
Home: (q,i)ys (I g, (K)m) at Uy is isomorphic to Cy ® my, as left module of

C(XY(L)) x CIWE, b71]. By definition C(X% (L)) acts on

S
Home: g, k)= (Il 1, (K) ) @0 (x0e(z)) C*"(Uy)

by evaluation at X[ (L), or equivalently evaluation at y. Thus we only need to
show that Home: (g, ks (Ig g, (K)7) is isomorphic to my as right C[Wy, is]-module,

is indg . Therefore it suffices show that the specialization of

S
where Homg (Ilg, ) is isomorphic to 7y, as right module for

C[Wgea hs] C H(ta WE,O’@)@ ka@xa ho’@x)'

In the way we set it up, Homes (g, x)s (Il§ g, (K)7) is acted upon by a copy of
C[WE, bs] which is generated by three kinds of elements:

(i) Ty for v € Toey,

(ii) 75 for simple roots a € ®(G, Z°(L))sgy such that x(hY) ¢ {dooy,as q;@l@ma}’
(iii) NV, for simple roots o € ®(G, Z°(L))swy such that X(hY) € {gooy.a: Gomy.al-
We can regard Homey (g, x)s (Ig i, (K)m) = Home(Ils, 7) as a module over

H(ta Wﬁ,o’@)(v ko’®X7 hU@X) ®O(£/W570®X) Can(UX)Ws’mgX))

as in . In that algebra we continuously scale the parameters kygy,o to 0 (or
equivalently deform ¢y, o to 1), like in and Paragraph Such continuous
deformations do not change representations of the finite dimensional semisimple
algebra C[W¢, bs]. In the limit case kygy,a = 0, ¢ogy.o = 1 the difference between 7%
and N, disappears, see . Hence Home: (g, ks (Hg x> (K)) as a representation
of C[W¢, 5] as generated by elements of the above kinds (i), (ii) and (iii) is equivalent
to Homg (11, ) as representation of C[W¢, 5] as generated by the 7, with v € T'sgy
and the N, for simple roots & € ®(G, Z°(L)),gy- The latter representation recovers
exactly how 7, is constructed in [Sol9, §7]. O

6.6. K.(C(G)?) via the progenerator.

The goal of this paragraph is to compute K, (C}(G)®) in representation theoretic
terms. The improvement on Paragraph [6.2] is that we do not need to tensor with
C over Z, so that we can also detect torsion elements in K, (C;(G)®). Our main
tools are the progenerator from Paragraph [6.4] and the below general technique to
compute K-groups.
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Let X be a compact Hausdorff space which has the structure of a finite simplicial
complex. Let A and B be C(X)-Banach algebras, by which we mean that C(X)
acts on A via a Banach algebra morphism from C(X) to the centre of the multiplier
algebra of A (and similarly for B).

Lemma 6.21. [Sol5, Lemma 5.1.3]
Suppose that ¢ : A — B is a homomorphism of C(X)-Banach algebras, such that
for each simplex o of X the specialization

bo.00 1 Co(X,00)A/Cy(X,0)A — Co(X,00)B/Co(X,0)B

induces an isomorphism on K-theory. Then K.(¢) : K.(A) — K.(B) is an isomor-
phism.

Recall that K € CO(G) has been chosen in (6.17)). In this paragraph we abbreviate
A=C(X (D) x CWe 5, B =Endes g,k (5 )7, X = X (L)/We.

Clearly A is a C(X)-Banach algebra, and via ¢5 i : A — B we make B into a C(X)-
Banach algebra. We may regard C'(X) as the algebra of X, (L)-invariant continuous
functions on Xy (L)/W¢ = Xy (L)o/Ws. The latter algebra acts naturally on the
family of representations Ig(a®x) with x € X, (L), namely f acts as multiplication
by

(6.34) flowx)=fleexIxI™) = fixIxI™).
From Theorem we see that C'(X) almost acts by elements of the Bernstein centre
of Rep(G)?, but not entirely because it consists of continuous rather than regular
(algebraic) functions. Taking one step back, we can say that

(6.35) C(X) acts on finite length G-representations via Z(Repg(G)*).

From the Fourier transform of C}*(G, K)* (Theorem [1.34]and (1.34))), we see that the
same recipe yields an action of C(X) on C;(G, K)*. Moreover ([6.35) implies that
C(X) acts via a map to Z(C(G, K)*), which makes C}(G, K)* into a C'(X)-Banach
algebra. Comparing ([6.23) and (6.34)), we deduce that the Morita equivalence
is C'(X)-linear.

It is known from [III] that the manifold X (L) admits a smooth W¢-equivariant
triangulation. This means that X.(L) can be made into a finite simplicial complex,
such that all points in the interior of one simplex have the same stabilizer in W¢.
Then we can divide by the action of W¢, which produces a convenient triangulation
of X = Xy (L)*/WE. Let 7/ be a simplex in X! (L) (from the chosen triangulation)
and write 7 = WEr'/WE, which is a simplex in X.

Lemma 6.22. The C*-algebra Co(X,07)A/Co(X,T)A is Morita equivalent to
Co(T,01) @ C[WE_,,07Y], and there is an isomorphism

5,7/

K, (Co(X,07)A/Co(X,T)A) 2 K.(Co(r,07)) ®2 R(CWE,,5:71]).

5,7/

Proof. We can write
Co(X,07)A/Co(X,T)A = Co(Wer', WEDT') 3 CIWE, 4]
e p—1
= (@wewg/WjT, Co(wT’, waT’)) x C[WE s
This is Morita equivalent to Co(7',07") x C[W¢ _,

Ly Co(WET , WEIT') x CWE, 871 and  Co(Wer', WEIT') x C[WE, b7 1.

i 11 via the bimodules
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Since all points of 7/ \ 97" have the same stabilizer in W¢, that algebra equals

(6.36) Co(r',07") @ CIW{ 11,5571 = Co(r,07) @ CIWE 1,171
The K-theory of (6.36) is easy to compute, because C[W¢,, ;] is a direct sum of

matrix algebras M, (C). Every such summand contributes a copy of K. (Co(7,0T))
to the K-theory of (6.36). On the other hand ®;Ky(M,,(C)) = &,;Z is naturally

isomorphic to the representation ring of C[W¢ . 5 1. We deduce that

K, (Co(X,07)A/Co(X,7)A) 2 K, (Co(r,07) ® C[WE ., 57"

5,7

= K.(Co(r,0m) ®z R(CWy .5, 1). O
The analogue of Lemma for C*(G, K)® is more involved.
Proposition 6.23. (a) The Banach algebra
Co(X,07)Cr(G, K)*/Co(X, 7)C (G, K)*

is homotopy equivalent to the tensor product of Co(7,07) and a finite dimen-
stonal semisimple algebra.
(b) Its K-theory is

(¢) The same holds for the Banach algebra Co(X,07)B/Co(X,T)B.

Proof. (a) From Theorem we see that
Co(X,01)Cr(G,K)*/Co(X,T)Cr (G, K)*

is a direct sum of algebras of the form
(6.37)
(C’O(Xﬁ‘r(M)cc(é) N X (D)7, XY (M)ce(d) N X[ (L)O7) @ Endc (IS(V(;)K))W[M"S],

where 7 = Wer' ¢ XE(L), XU (M) is identified with its restriction to L and
cc(d) € Xu(L) is chosen such that ¢ is a quotient of I%MQP)(J ® cc(d)). The
set of summands whose specialization at a point W¢x € 7 is nonzero depends
only on which discrete series representations appear in the parabolic inductions (for
the various Levi subgroups of G containing L) of o ® x’ with x' € XJ.(L)x.

We claim that, when x varies continuously over X (L), this set of discrete series
can only jump when Wy, changes. Clearly this is an issue that can be studied locally
on X%.(L), and that can be done like in Theorem In [Sol9, §7], Theorem
is in fact proven in larger generality, not for Repﬂ(G)*;(n+r (L)W (o) but for

Repﬁ(G)?,VsUam where U, g, is a small neighborhood of X;}.(L)(o ® x). This reduces
our claim to the analogous claim for

H(t7 Ws,a@xa k0®xv hU@X) - MOdﬂ,UJRv

where Ug is a small neighborhood of tg in t, such that Ur/tg is a W ;g,-invariant
ball around 0 in itg. Now we have to consider discrete series representations in the
parabolic inductions of Cyy, € Irr(O(t)), where v € tg and A varies in Ug N itg.
This version of our claim is proven in Lemma [2.27]

One nice feature of the chosen triangulation of X (L) is that all points of 7/\ 97’ have
the same stabilizer in W¢. Together with the above claim, that implies that every
summand has a nonzero specialization at every point of 7\ 01 C X[ (L)/Wv.
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For a given summand (6.37)), we can choose ws € Wge such that ws7’ is contained
in X% (M)X(L)ce(d). Then (6.37) reduces to
(6.38) (Co(wst', ws07") © Ende (IS (V5) X)) Vol

The group Wy 4] is a subquotient of W (Lemma, so by the equivariance of the
triangulation of X (L) every element of Wy 5 -+ acts trivially on 7. Furthermore
wsT', wsOT' is Wipy 5 -equivarianty contractible, so can apply [Soll, Lemma 7]. It
says that, if we replace Co(ws7’,ws07") by C°°(wr’) in (6.38), then the algebra
becomes homotopy equivalent to its specialization at any point of ws7’" \ wsd7’. For
itself the proof of [Solll Lemma 7] can be followed up to [Solll, (20)], and then
it says that is homotopy equivalent to

(6.39)  Co(wst’,ws07") @ Endc (IS(V:;)K)W[M"”’X for any x € wst" \ wsOT'.
We note that Endc (1 8 (Vo) X) Wirdlx ig a finite dimensional semisimple algebra. Now
we consider the direct sum over all summands of
Co(X,07)CH(G,K)*/Cy(X,T)Cr (G, K)®.
We obtain a tensor product of
Co(r, 07) = Co(wsT’, wsOT")

with a finite dimensional semisimple algebra.
(b) The algebra ([6.39) is of the same kind as (6.36]). The arguments in the proof of
Lemma [6.22] show that

(6.40) K.([637) = K.(6:39) = K.(Co(wst', ws07")) @z R(Endc (1§ (%)K)WW*‘”'X)-

Identifying x with WEx € 7\ d7, we can take the direct sum of the groups

R(End(c (IS(W)K)W[M"”’X), over all involved instances of (6.37). By Theorem [1.34
that gives precisely

R(Modﬁ(C:(G,K)s)X$(L)W5(U®X)).
That and (6.40)) provide the required description of
K. (Co(X,07)CH(G, K)*/Co(X,7)Cr (G, K)?).

(c) From part (a) and the C'(X)-linear Morita equivalence between C)(G, K)* and
B = eiM:(Cr (G, K)*)eS, we deduce that (a) holds for Cy(X,07)B/Co(X,7)B. The
involved finite dimensional semisimple algebra may not be the same as before, but
it is Morita equivalent to that from part (a).

The calculation of K,(Co(X,07)B/Co(X,T)B) is the same as in part (b), and
also follows from Morita equivalence. O

The following result shows that the K-groups in Lemma and Proposition |6.23
are isomorphic.

Lemma 6.24. (a) The map
R(C[W;X, hs_l]) - R(MOdﬁ(C}k(GaK)E)X;rr(L)Wﬁ(g@X))

nduced by ®C(X,’fr(L))NC[Wix,hs]Hg,K is a group isomorphism.
(b) Let ¢s i ror : Co(X,0m)A/Co(X,7)A — Co(X,07)B/Co(X,T)B be the homo-
morphism of Banach algebras induced by ¢s k. Then K.(¢s Kk r0:) is an iso-

morphism.
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Proof. (a) For

7 € IrTpemp (G) = Irr(Cr (G, K)*) o+

5
Xif (L)Ws(0@x) nr (L) Ws (0®@x)?
Theorem shows that ¢¥(7) is equivalent to Home: (g, ks (II i, (K)7), in the

sense that both have the same central character W¢x and the same C[W¢ ;1]
representation my. In combination with Theorem [3.14}a we find that

(6.41) g ¢ o Homen (g rys (g g, 7)
R(Moda(C; (G, K)) xt (ywaiomy)) — BCIWey, 151]) 2 R(Mod(A)wey)

is a group isomorphism. The inverse of this map is ®@c(xu ( L))NC[Wﬁx,hs}Hg, K-

(b) From Lemma Proposition and (6.41]) we see that K, (¢s i ror) is the
tensor product of the identity on K.(Co(7,07)) and the isomorphism from part
(a). O

Our preparations to apply Lemma [6.21] are complete.

Theorem 6.25. Let s € B(G) and choose K € CO(G) as in (6.17). There are
isomorphisms of 7/27Z-graded groups
u e L— K*(¢5» ) C o ~ *

K. (C(X3(L) % C[W, 5;1]) ——" K. (Endes(o.x) (Tl ) ) = K. (CF (G, K)*).
Proof. Lemma shows that the conditions of Lemma are fulfilled. Then

Lemma tells us that K,(¢s k) is an isomorphism. The second isomorphism
follows from the Morita equivalence (6.21]) and Theorem O

Recall from Definition that we interpreted K, (C (X% (L)) x C[W¢,5;1]) as
the K-theory of i !-twisted W-equivariant vector bundles on X% (L). From (6.15)),
Theorem [6.25] and Definition [6.6] we conclude:

Corollary 6.26. There are isomorphisms

* ~ * 5\ ~v * u
K*(Cr (G)) - @EG‘B(G) K*(Cr (G’KE) ) - @EG‘B(G) KWS«e’hs—l(an(L))'

We note that Theorem and Corollary prove [ABPS2, Conjecture 5], a
version of the ABPS conjecture in topological K-theory.
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