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Introduction

In 1982 Macdonald [21] published his famous article Some conjectures for root sys-
tems. The questions posed there inspired a lot of new research, and by know most
of them are answered. This thesis deals with one of the most persisting conjectures:

Let R be a root system with exponents m1, . . . ,ml and take k ∈ N∪{∞}.
The constant term (depending only on q) of

∏
α∈R+

k∏
i=1

(1− qieα)(1− qi−1e−α) is
l∏

i=1

[
k(mi + 1)

k

]
q

.

Here

[
n
r

]
q

is the q-binomial coefficient of n and r. It is known that one can prove

this if the following conjecture holds:

Let g be a finite-dimensional complex semisimple Lie algebra with expo-
nents m1, . . . ,ml. The cohomology of g ⊗C C[z]/(zk) is a free exterior
algebra with kl generators. For each 1 ≤ i ≤ l, there are k generators of
cohomology degree 2mi + 1, and the z-weight of these generators are the
negatives of 0,mik + 1,mik + 2, . . . ,mik + k − 1.

This conjecture occupies a central place in my thesis. Although I did not succeed in
finding a complete proof, I strived to explain what appears to be the most promising
way to look at it.

Generally, in this thesis I sought to compute the cohomology rings of several
classes of Lie algebras, all intimately connected to finite-dimensional semisimple Lie
algebras. I aimed to make this accessible for anyone with a general knowledge Lie
groups and Lie algebras, describing other background at a more elementary level.

We start with a collection of well-known results for compact Lie groups, reductive
Lie algebras and their invariants. In the second chapter all necessary cohomology
theory for Lie algebras is developed. Here we prove one new result:
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Let g be a Lie algebra over a field a characteristic 0, h a subalgebra and V
a g-module, all finite-dimensional. Suppose that g and V are completely
reducible, both as g- and as h-modules. (So in particular g is reductive.)
Then H∗(g, h;V ) ∼= H∗(g, h)⊗ V g.

With this machinery we compute the cohomology of a compact Lie group (or equiv-
alently of a reductive Lie algebra) in a more algebraic way than usual.

In chapter 4 we introduce a Lie algebra g[z, s] = g⊗C C[z, s], where s2 = 0 and g
is complex, finite-dimensional and reductive. We try to compute the cohomology of
this Lie algebra, which unfortunately just falls short. Nevertheless we come across
a generalization of Chevalley’s restriction, which is probably new:

Let g be a finite-dimensional complex reductive Lie algebra with adjoint
group G, h a Cartan subalgebra and W the Weyl group. Then the
restriction map

Sg∗ ⊗
∧

(sg)∗ → Sh∗ ⊗
∧

(sg)∗

induces an isomorphism(
Sg∗ ⊗

∧
(sg)∗

)g[s] → (
Sh∗ ⊗

∧
(sh)∗

)W
.

After this we conjecture what the so-called restricted cohomology of g[z, s] should
look like, and derive the two afore-mentioned conjectures from this.
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Chapter 1

Compact Lie groups and reductive
Lie algebras

In this first chapter we state some general results on compact Lie groups and reduc-
tive Lie algebras. These are mostly well known, and their proofs can be found in
most standard books on Lie algebras. We refer especially to Carter [4], Humphreys
[15] and Varadarajan [24]. We start with an introduction to representations of Lie
groups and Lie algebras objects. Then we study the root space decomposition and
the corresponding root system of a reductive Lie algebra. This leads us to the Weyl
group, its invariants and the exponents of a reductive Lie algebra. We close with a
survey on harmonic polynomials.

1.1 Representations

In this thesis we will encounter many representations of Lie groups and Lie algebras.
For convenience we recall the terminology and a couple of examples. After that we
state a few standard results. From now on G is a real Lie group and g is a real
Lie algebra. Almost all the following is also valid for Lie algebras over an arbitrary
field, but but we prefer to keep the notation simpler.

Definition 1.1 Let V be a topological real vector space. A representation of G
on V is an analytic group homomorphism π : G → Aut V such that the map
G× V → V : (g, v) → π(g)v is continuous.

A representation of g on V is a Lie algebra homomorphism ρ : g → End V .

If the dimension of V is finite it can be shown that every continuous group
homomorphism G→ Aut V satisfies these conditions. We will often write g · v and
X · v for π(g)v and ρ(X)v (g ∈ G,X ∈ g, v ∈ V ) and say that G or g acts on the
module V .

For any subspace V ′ ⊂ V , we denote by G ·V ′, respectively g ·V ′, the subspace of
V spanned by all elements g · v (g ∈ G, v ∈ V ′), respectively X · v (X ∈ g, v ∈ V ′).
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Since e · v = v if e is the unit element of G, we always have V ′ ⊂ G · V ′. We call V ′

a G-submodule of V if G · V ′ ⊂ V ′, or equivalently if G · V ′ = V ′. Similarly V ′ is
a g-submodule of V if g · V ′ ⊂ V ′. In these cases V/V ′ is a submodule in a natural
way; it is called a quotient module. Note that g · V is a submodule of V , and that
it is not necessarily equal to V .

The module V is called irreducible if it has exactly two submodules: 0 and V
itself. More generally, V is completely reducible if for every submodule V ′ there is
another submodule V ′′ such that V = V ′ ⊕ V ′′. An equivalent condition is that V
must be the direct sum of some of its irreducible submodules.

The elements of V that are fixed by all π(g) are called the G-invariants. They
form a submodule V G of V on which G acts as the identity. (Such a group module
is called trivial.) The only element of V that is fixed by all ρ(X) is 0, for ρ(0) = 0.
Yet there is a notion of g-invariant vectors. Namely, an element v of V is g-invariant
if ∀X ∈ g : ρ(X)v = 0. Later on it will become clear why this is a reasonable
definition. These invariants also form a g-submodule V g of V on which g acts as 0.
(This is called a trivial Lie algebra module.)

From one representation we can construct many other representations. Firstly
there are the contragredient representations on the dual space V ∗. For f ∈ V ∗ they
are defined by

(g · f)(v) = f(g−1 · v) and (X · f)(v) = −f(X · v) = f(−X · v)

Secondly, if V ⊗n is the n-fold tensor product of V with itself (over R), then we
have representations of G and g on V ⊗n. We also denote them by π and ρ, and for
decomposable tensors they are given by

π(g)(v1 ⊗ · · · ⊗ vn) = π(g)v1 ⊗ · · · ⊗ π(g)vn

ρ(X)(v1 ⊗ · · · ⊗ vn) =
n∑

i=1

v1 ⊗ · · · ⊗ ρ(X)vi ⊗ · · · ⊗ vn

These actions send (anti-)symmetric tensors to (anti-)symmetric tensors. Therefore
we also get representations of G and g on the n-th degree parts SnV and

∧n V of the
symmetric and exterior algebras of V . For decomposable elements they are given
by similar formulas as above:

π(g)(v1 · · · vn) = π(g)v1 · · ·π(g)vn

ρ(X)(v1 · · · vn) =
n∑

i=1

v1 · · · ρ(X)vi · · · vn

π(g)(v1 ∧ · · · ∧ vn) = π(g)v1 ∧ · · · ∧ π(g)vn

ρ(X)(v1 ∧ · · · ∧ vn) =
n∑

i=1

v1 ∧ · · · ∧ ρ(X)vi ∧ · · · ∧ vn
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The zeroth tensor power of V is by definition R, and the standard representations
of G and g on R are simply

g · v = v and X · v = 0

These formulas together yield representations on the tensor algebra
TV =

⊕
n≥0 V

⊗n, on the symmetric algebra SV =
⊕

n≥0 S
nV and on the exterior

algebra
∧
V =

⊕
n≥0

∧n V . Observe that ρ(X) is a derivation of these algebras, for
all X ∈ g.

The third construction combines the other two. Recall that (V ∗)⊗n, SnV ∗ and∧n V ∗ are naturally isomorphic to the dual spaces of V ⊗n, SnV and
∧n V . For

decomposable elements these isomorphisms are given by

f1 ⊗ · · · ⊗ fn(v1 ⊗ · · · ⊗ vn) = f1(v1) · · · fn(vn)

f1 · · · fn(v1 · · · vn) =
∑
σ∈Sn

f1(vσ1) · · · fn(vσn)

f1 ∧ · · · ∧ fn(v1 ∧ · · · ∧ vn) =
∑
σ∈Sn

ε(σ)f1(vσ1) · · · fn(vσn)

where Sn is the permutation group on n symbols, with sign function ε. This leads
to the following representations on (V ∗)⊗n:

g · (f1 ⊗ · · · ⊗ fn)(v1 ⊗ · · · ⊗ vn) = f1(π(g)−1v1) · · · fn(π(g)−1vn)

X · (f1 ⊗ · · · ⊗ fn)(v1 ⊗ · · · ⊗ vn) = −
n∑

i=1

f1(v1) · · · fi(ρ(X)vi) · · · fn(vn)

and similarly for SnV ∗ and
∧n V ∗. Consequently we also obtain representations of

G and g on TV ∗, SV ∗ and
∧
V ∗, and g acts by derivations on these algebras.

If W is another module for G and g, then the direct sum V ⊕ W becomes a
module if we define for v ∈ V,w ∈ W, g ∈ G,X ∈ g:

g · (v, w) = (g · v, g · w) and X · (v, w) = (X · v,X · w)

Moreover we can give the tensor product V ⊗W a module structure by

g · v ⊗ w = g · v ⊗ g · w and X · v ⊗ w = X · v ⊗ w + v ⊗X · w

Now the natural map V ∗ ⊗W → Hom(V,W ) (which is an isomorphism if either
V or W has finite dimension) leads us to the following actions of G and g on
φ ∈ Hom(V,W ):

(g · φ)(v) = g ·
(
φ(g−1 · v)

)
and (X · φ)(v) = X · (φ(v))− φ(X · v)

Notice that the invariants of this module take a particularly nice form. For if φ is
G-invariant,

φ(g · v) = (g · φ)(g · v) = g · (φ(v))
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So
(
Hom(V,W )

)G
= HomG(V,W ). It is even more obvious that

(
Hom(V,W )

)g
=

Homg(V,W ).
The next result is valid for Lie algebras over arbitrary fields.

Theorem 1.2 If V and W are finite-dimensional and completely reducible
g-modules, then all the above representations of g are completely reducible.

Proof. This is a direct consequence of theorem 3.16.1 of [24]. 2

Now suppose that we only have a representation π of G on V , and that g is the
Lie algebra of G. Since the Lie algebra of Aut V is End V , we have an induced
Lie algebra homomorphism dπ : g → End V . This representation of g is called the
differential of π. It is given explicitly by

dπ(X)v =
∂

∂t
π(exp tX)v

∣∣
t=0

(1.1)

The representations of G on the spaces constructed from V also induce representa-
tions of g on these spaces. With the help of equation 1.1 it is easily verified that
these g-representations are just the ones given by above formulas, with ρ substituted
by dπ.

The next proposition explains the definition of the invariants of a Lie algebra
representation.

Proposition 1.3 Let G be a connected Lie group with Lie algebra g, π a represen-
tation of G on V and dπ its differential. Then the invariants for G and g coincide:
V G = V g. Moreover every G-submodule of V is also a g-submodule, and conversely.

Proof. If π(g)v = v ∀g ∈ G then by equation 1.1 dπ(X)v = 0 ∀X ∈ g. On the
other hand suppose that v ∈ V g. By our definition of a representation the map
πv : G → V : g → π(g)v is analytic, and all its partial derivatives (at e ∈ G) are
0. Since G is connected, πv is a constant map and πv(g) = πv(e) = v ∀g ∈ G.
Therefore V G = V g.

To simplify the notation, we drop π and dπ. It is direct consequence of equation
1.1 that for every subspace V ′ ⊂ V we have g · V ′ ⊂ G · V ′, so every G-submodule
is also a g-submodule.

Suppose that g · V ′ ⊂ V ′ 6= G · V ′. Then we can find g ∈ G, v1 ∈ V ′ such that
gv1 ∈ V \ V ′. Since G is connected we can write g = exp(Xn) · · · exp(X1) and

gv1 = exp(Xn) · · · exp(X1)v1 = . . . = exp(Xn) · · · exp(Xi)vi = . . . = vn

There is an i with vi ∈ V ′ but vi+1 = exp(Xi)vi /∈ V ′. Dropping the subscript i gives
us an analytic map f : [0, 1] → V/V ′ : t → exp(tX)v with f(0) = 0 and f(1) 6= 0.
It satisfies

f ′(t) =
∂

∂s
exp(sX)v

∣∣
s=t

=
∂

∂s
exp(sX) exp(tX)v

∣∣
s=0

= X(exp(tX)v) = Xf(t)
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In particular f ′(0) = Xf(0) = Xv = 0 ∈ V/V ′. But this is impossible, as one can
see by using the Taylor expansion of f . We conclude that V ′ = G ·V ′ and that every
g-submodule is also a G-submodule. 2

The quotient module V/g · V is called the space of coinvariants of V under g. If
V is especially complicated, we write coinvgV to avoid cumbersome notation. The
name is explained by the next result, in connection with proposition 1.3.

Lemma 1.4 Let V be a g-module. Then (V ∗)g is naturally isomorphic to (V/g·V )∗.
If the dimension of V is finite, also (V g)∗ and V ∗/g · V ∗ are naturally isomorphic.

Proof.

(V ∗)g = {f ∈ V ∗ : ∀X ∈ g, v ∈ V − f(X · v) = 0}

=
{
f ∈ V ∗ : f

∣∣
g·V = 0

}
∼= (V/g · V )∗

If dimV <∞, we substitute V ∗ for V in these formulas, and take the dual spaces.
Then we obtain

(V g)∗ ∼= ((V ∗∗)g)∗ ∼= (V ∗/g · V ∗)∗∗ ∼= V ∗/g · V ∗

The composite isomorphism V ∗/g · V ∗ → (V g)∗ is just the restriction of functions
on V to V g, and this is natural. 2

1.2 Compact Lie groups and reductive Lie algebras

Now we come to the main subjects, compact Lie groups and reductive Lie alge-
bras. Compact Lie groups are arguably the most pleasant topological groups one
can encounter. They are manifolds, have a compatible group structure and (by
compactness) a Haar measure. This Haar measure is invariant under left and right
multiplication and the measure of the total group is normalized to 1. These obser-
vations already imply some useful facts about representations.

Proposition 1.5 Let G be a compact Lie group and π a representation of G on an
inner product space V . There exists an inner product on V such that

∀v, w ∈ V, g ∈ G : 〈π(g)v, π(g)w〉 = 〈v, w〉

Proof. Let 〈·, ·〉0 be any inner product on V and define

〈v, w〉 :=

∫
G

〈π(g)v, π(g)w〉0 dg

9



Of course one should check that this is an inner product, but this is trivial. Fur-
thermore

〈π(h)v, π(h)w〉 =

∫
G

〈π(g)π(h)v, π(g)π(h)w〉0 dg

=

∫
G

〈π(gh)v, π(gh)w〉0 dg

=

∫
G

〈π(g)v, π(g)w〉0 dg = 〈v, w〉

because dg is a Haar measure. 2

Corollary 1.6 Every inner product space is a completely reducible G-module.

Proof. If W is a submodule the orthoplement W⊥ with respect to 〈·, ·〉 is also a
submodule. For if w ∈ W, v ∈ W⊥, g ∈ G : 〈w, π(g)v〉 = 〈π(g−1)w, v〉 = 0 since
π(g−1)w ∈ W. 2

Lemma 1.7 Let G be a compact Lie group and π : G→ AutV a finite-dimensional
representation. Then dimV G =

∫
G

trπ(g)dg.

Proof. Put L :=
∫

G
π(g)dg ∈ End V . Now for all h ∈ G:

π(h)L = π(h)

∫
G

π(g)dg =

∫
G

π(hg)dg =

∫
G

π(g)dg = L (1.2)

By proposition 1.5 we can decompose V = V G ⊕W , where W is a submodule of G
with WG = 0. It is clear from the definition that L

∣∣
V G = 1. If w ∈ W , then Lw ∈ W

and is invariant by formula 1.2. Hence Lw = 0 and L
∣∣
W

= 0. Now we see

dimV G = trL = tr

(∫
G

π(g)dg

)
=

∫
G

trπ(g)dg

and the lemma is proved. 2

A consequence (or special case) of this lemma is the following.

Lemma 1.8 Let π : G → AutV be a representation of G on a finite-dimensional
real vector space V , and ρ : G→ Aut

∧
V the continuation of π. Then

dim(
∧
V )G =

∫
G

det(1 + π(g))dg

Proof. Suppose that L ∈ End VC is diagonalizable, with eigenvectors v1, . . . , vn and
eigenvalues λ1, . . . , λn. For I ⊂ {1, . . . , n} let vI be the wedge product of all vi with
i ∈ I, in increasing order. One of the first results on exterior algebras says that
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{vI : I ⊂ {1, . . . , n}} is a basis of
∧
VC. If L̄ is the induced endomorphism of

∧
VC,

then using LvI = λIvI ,

tr L̄ =
∑

I

λI =
n∏

i=1

(1 + λi)

But this is also det(1 + L), hence for diagonalizable L, tr L̄ = det(1 + L). Now the
set of all diagonalizable endomorphisms of VC is dense in End VC, so this holds for
all L ∈ End V ⊂ End VC.

In particular for all g ∈ G : tr ρ(g) = det(1 + π(g)). Now

dim(
∧
V )G =

∫
G

tr ρ(g)dg =

∫
G

det(1 + π(g))dg

by lemma 1.7. 2

Let us give some characterizations of semisimple and reductive Lie algebras.
These are in fact well known but deep results and their proofs can be found in
(for example) [24] and [15]. Recall that a simple Lie algebra is not abelian and has
exactly two ideals: 0 and itself. A Lie algebra is semisimple if its radical is 0, and
reductive if its radical equals its center. The Killing form of g is the symmetric
bilinear form

κ(X, Y ) = tr(adX adY )

This κ is invariant: ∀g ∈ G, ∀X, Y, Z ∈ g

κ(Ad(g)X,Ad(g)Y ) = κ(X, Y )

κ(X, [Y, Z]) = κ([X,Y ], Z)

Theorem 1.9 For a finite-dimensional Lie algebra g with over a field over charac-
teristic 0 the following statements are equivalent.

1. g is semisimple

2. g is the sum of its simple ideals

3. g = [g, g]

4. the Killing form of g is nondegenerate

5. every finite-dimensional g-module is completely reducible

Theorem 1.10 For a finite-dimensional Lie algebra g over a field of characteristic
0, the following statements are equivalent.

1. g is reductive

2. the adjoint representation of g is completely reducible

3. g = Z(g)⊕ [g, g], where Z(g) is the center of g and [g, g] is semisimple.
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For a compact Lie group G with Lie algebra g condition 2 of theorem 1.10 is valid.
For by proposition 1.5 the representation Ad: G → Aut g is completely reducible,
and by proposition 1.3, so is the induced representation dAd = ad : g → End V .
So g is a real reductive Lie algebra. Let us call a real Lie algebra of compact type
if there is a compact Lie group with that Lie algebra. It is definitely not true that
every finite-dimensional real reductive Lie algebra is of compact type.

Proposition 1.11 A finite-dimensional real reductive Lie algebra g is of compact
type if and only if for all X ∈ g adX is semisimple and has pure imaginary eigen-
values.

Proof. Suppose that G is a Lie group with Lie algebra g. From proposition 1.5
we know that Ad(G) can be considered to be a subgroup of the orthogonal group
O(g) of g. Therefore every adX is in the Lie algebra o(g) of O(g) which consists of
all skew-symmetric linear maps g → g. A standard result form linear algebra says
that adX is semisimple and has pure imaginary eigenvalues. The sufficiency of this
condition is much more difficult to prove. See theorem 4.11.7 of [24]. 2

Notice that it follows from this proposition that the Killing form of semisimple
Lie algebra of compact type is negative definite.

Now let gC = g ⊗R C be the complexification of g. Condition 2 of theorem 1.10
still applies, so gC is a complex reductive Lie algebra. This is very pleasant, as the
structure of complex reductive Lie algebras can be described in high detail. We do
this in the next section.

Choose a complex Lie group GC with Lie algebra gC. Considered as a real Lie
algebra, gC cannot meet the compactness condition of proposition 1.11, so GC is not
compact. But still, by theorem 4.11.14 of [24], GC can be chosen in such a way that
G is imbedded in it as the subgroup defined by g ⊂ gC. So every compact Lie group
of real dimension n can be considered as a subgroup of some complex reductive Lie
group of complex dimension n.

1.3 Structure theory

It is time to investigate the structure of reductive Lie algebras and compact Lie
groups. We start with Cartan subalgebras and the root space decomposition of
complex reductive Lie algebras. Then we consider root systems and we describe
Chevalley bases. These results are carried over to real Lie algebras of compact
type. The material in this section is the natural generalization of the classical
structure theory for semisimple Lie algebras. All the missing proofs can be found in
Humphreys [15] or Varadarajan [24].

Definition 1.12 Let g be a Lie algebra. A Cartan subalgebra (CSA) of g is a
nilpotent subalgebra that is its own normalizer in g. An element X of g is called

12



semisimple if adX is a semisimple endomorphism of g, and it is called regular if
the dimension of its centralizer is minimal among the dimensions of centralizers of
elements of g.

Assume that g has finite dimension. The regularity of an element is equivalent to
a certain coefficient of the characteristic polynomial of adX not being zero, so the
set of regular elements of g is Zariski open and in particular dense.

Now let g be not only finite-dimensional, but also complex and reductive. Then
the CSA’s are the maximal abelian subalgebras. Every CSA contains Z(g) and is of
the form t = Z(g)⊕h where h is a CSA of the complex semisimple Lie algebra [g, g].
All elements of h are semisimple, and every semisimple element of g is contained
in a CSA. (Since C is algebraically closed this means that all adH (H ∈ h) are
diagonalizable.) Moreover it is known that the union of all CSA’s (the set of all
semisimple elements) is Zariski open and dense in g.

The centralizer of a regular semisimple element is a CSA, and every CSA is of
this form. Furthermore every two CSA’s of g are conjugate under an element of
the adjoint group of g. The principal significance of this statement is that all of
the properties of g we will deduce do not depend on the choice of the CSA (up to
isomorphism). The dimension of any CSA is an important invariant of g and is
called the rank of g.

Fix a CSA t = Z(g) ⊕ h. The set {adH : H ∈ h} consists of commuting diago-
nalizable endomorphisms of g. Hence all these endomorphisms can be diagonalized
simultaneously and we obtain a decomposition in eigenspaces g =

⊕
α∈h∗ gα where

gα = {X ∈ g : ∀H ∈ h [H,X] = α(H)X} (1.3)

Since t is abelian and equals its own normalizer in g, g0 = t = Z(g)⊕ h. Put

R := {α ∈ h∗ \ 0 : gα 6= 0} (1.4)

The elements of R are called the roots of (g, t). Notice that R is finite because g
has finite dimension. Now we have the famous root space decomposition

g = Z(g)⊕ h⊕
⊕
α∈R

gα (1.5)

There is an enormous amount of theory on this root space decomposition, but we
will only concern ourselves with the most important and relevant results.

It can be proved that dim gα = 1 for all α ∈ R, and that [gα, gβ] = gα+β if
α, β, α + β ∈ R. By theorem 1.9 the Killing form κ of g is nondegenerate on [g, g].
However if Xα ∈ gα and Xβ ∈ gβ

α(H)κ(Xα, Xβ) = κ([H,Xα], Xβ) = −κ(Xα, [H,Xβ]) = −β(H)κ(Xα, Xβ)

so κ(Xα, Xβ) = 0 unless α = −β. Therefore κ is nondegenerate on g0 ∩ [g, g] = h.
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This means that to every α ∈ h∗ there corresponds a unique element Tα ∈ h
with α(H) = κ(Tα, H) ∀H ∈ h. Now we can transfer the Killing form to h∗ by
〈α, β〉 = κ(Tα, Tβ). It is obvious that 〈·, ·〉 is a nondegenerate symmetric bilinear
form on h∗.

The real span hR of {Tα : α ∈ R} is a subspace of h∗ of real dimension dimC h,
and h = hR ⊕ ihR. Its (real) dual space h∗R, is the real span of R. The Killing form
and 〈·, ·〉 are (real valued) inner products on hR and h∗R. Every α ∈ h∗R \ 0 defines a
reflection σα of h∗ that fixes α⊥:

σα(β) = β − 2
〈β, α〉
〈α, α〉

α = β − 〈β, α∨〉α

Now we can summarize some very important properties of R by saying that it is a
root system in h∗R. To make the consequences of this clear, we recall the basic theory
of root systems. After that we return to Lie algebras and postpone other important
facts about root systems to the next section. Now we begin with a few definitions.

Definition 1.13 Let V be a finite-dimensional real inner product space. A root
system R in V is a finite subset of V \ 0 satisfying the following conditions:

1. R spans V

2. if α ∈ R, the only scalar multiples of α in R are α and −α

3. if α, β ∈ R then 2〈β,α〉
〈α,α〉 ∈ Z

4. for all α ∈ R : σαR = R

The rank of R is dimV and is denoted by l. Furthermore R is irreducible if whenever
R = R1 ∪R2 with R1 ⊥ R2, R1 = ∅ or R2 = ∅.

Definition 1.14 A positive system of roots is a subset P of R such that R is the
disjoint union of P and −P , and

α, β ∈ P, α+ β ∈ R =⇒ α+ β ∈ P

Definition 1.15 A basis of R a subset ∆ of R such that

1. ∆ is a basis of V

2. every β ∈ R can be written (uniquely) as β =
∑

α∈∆ nαβα,
where either all nαβ ∈ N or all nαβ ∈ Z≤0.

The height of β (relative to ∆) is h(β) =
∑

α∈∆ nαβ. Thus we can say that α > β
if and only if h(α) > h(β). The roots that are > 0 clearly constitute a positive
system. We can also go back from a positive system to a basis, but this is more
difficult. If we have a positive system, we call a positive root indecomposable if it is
not the sum of two other positive roots. In this case the indecomposable roots form
a basis of R.
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Let us call an element v of V regular if for all α ∈ R : 〈v, α〉 6= 0. The set of
regular elements is the complement of a finite number of hyperplanes, so it is open
and dense in V . The connected components of this set are called the chambers of
the root system R. With the chamber containing v we associate the positive system
of all roots α for which 〈v, α〉 > 0. Conversely, with a basis or a positive system we
associate the chamber of all v ∈ V such that 〈v, α〉 > 0 for all α in ∆ or in P .

To summarize: there are natural bijections between the bases, positive systems
and chambers of R.

For v ∈ V \ 0, put v∨ = 2v
〈v,v〉 . One can easily check that R∨ := {α∨ : α ∈ R} is

also a root system in V . It is sometimes called the dual root system of R, but to
avoid confusion we will not use this name.

Now we return to Lie algebras and define

Hα := T∨α = Tα∨ ∈ hR

By the above, the sets {Hα : α ∈ R} and {Tα : α ∈ R} are root systems in hR.
We can construct bases of this R in a slightly more natural way than for an

arbitrary root system. Recall that an element of g is regular if the dimension of its
centralizer is minimal. But the centralizer of H ∈ h is Z(g) ⊕ h ⊕

⊕
α(H)=0 gα. So

the regular elements in h are just the ones with α(H) 6= 0 ∀α ∈ R and the regular
elements in hR are exactly the regular elements with respect to the two root systems
just above. Fix such a regular element H0 ∈ hR. We get positive system by defining
α > β if and only if α(H0) > β(H0). In this way we can extend the bijections above
(for chambers, positive systems and bases of R) to the chambers in hR. Thus a
regular element X of g for which adX has real eigenvalues determines not only a
CSA, but also a basis and a positive system of the corresponding root system.

As promised we give a Chevalley basis of g.

Theorem 1.16 Let g be a complex reductive Lie algebra, t = Z(g) ⊕ h a CSA, R
the root system of (g, t) and ∆ a basis of R. For α ∈ R, let Hα ∈ h be the element
corresponding to α∨. Choose any basis {Zi : 1 ≤ i ≤ r} of Z(g). Then it is possible
to select for every root α an Xα ∈ gα such that the following hold:

1. {Zi : 1 ≤ i ≤ r} ∪ {Hα : α ∈ ∆} ∪ {Xα : α ∈ R} is a basis of g.

2. [Hα, Xβ] = β(Hα)Xβ =
2κ(Hα,Hβ)

κ(Hβ ,Hβ)
Xβ = 2〈β,α〉

〈α,α〉 Xβ with β(Hα) ∈ Z

3. ∀α ∈ R : [Xα, X−α] = Hα is in the Z-span of {Hα : α ∈ ∆}

4. [Hα, Hβ] = 0 ∀α, β ∈ R.

5. if α, β ∈ R but α+ β /∈ R, then [Xα, Xβ] = 0

6. if α, β, α+ β ∈ R, then [Xα, Xβ] = cα,βXα+β with cα,β ∈ Z \ 0

7. cβ,α = c−α,−β = −cαβ = −c−β,−α
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This theorem describes g entirely in terms of the dimension of its center r, its
root system R and the structure constants cα,β. But it turns out that we can choose
the Xα so cleverly that even these constants can be deduced from the root system.
Therefore g is determined (up to isomorphism) by r and R. This leads to the well
known bijection between root systems and finite-dimensional complex semisimple
Lie algebras, the irreducible root systems corresponding to simple Lie algebras.

Example. Let us see how all this stuff works out in the case g = gl(n,C). The
center Z(g) of g consists of all scalar multiples of the identity matrix In, and

[g, g] = sl(n,C) = {A ∈ gl(n,C) : trA = 0}

which is known to be simple. The subalgebra d(n,C) of all diagonal matrices is
clearly abelian and equals its own normalizer in g, so it is a CSA of g. Then
h := d(n,C) ∩ sl(n,C) (the subalgebra of diagonal matrices with trace 0) is a CSA
of sl(n,C). We see that the rank of g is n and that the rank of sl(n,C) is n − 1.
Let Ei,j ∈ g be the matrix with the (i, j)-th entry 1 and the rest 0, and let λi ∈ g∗

be the (i, i)-th coordinate function. Then for any H ∈ h we have

[H,Ei,j] = (λi − λj)(H)Ei,j

So the root system is

R = {λi − λj : 1 ≤ i, j ≤ n, i 6= j}

and gλi−λj
= CEi,j. Now it is also clear that the Killing form restricted to d(n,C) is

κ(H,H ′) =
∑

1≤i,j≤n

(λi − λj)(H)(λi − λj)(H
′) = 2

∑
1≤i<j≤n

(λi − λj)(H)(λi − λj)(H
′)

Using this we calculate

κ(Ei,i, Ej,j) =

{
2(n− 1) if i = j
−2 if i 6= j

(1.6)

κ(Ei,i, H) = 2(n− 1)λi(H)− 2
∑
j 6=i

λj(H) = 2nλi(H) if H ∈ h (1.7)

κ(Ei,i − Ei+1,i+1, Ej,j − Ej+1,j+1) =

 4n if j = i
−2n if j = i+ 1 or j = i− 1

0 otherwise
(1.8)

So λi ∈ h∗ corresponds to 1
2n2 (nEi,i − In) ∈ h and for α = λi − λj we have

Tα =
Ei,i − Ej,j

2n
, Hα =

2Tα

κ(Tα, Tα)
= Ei,i − Ej,j

The set
∆ := {αi = λi − λi+1 : 1 ≤ i < n}

16



is a basis of R, with positive system P = {λi − λj : i > j}. Writing Hi for
Hαi

= Ei,i − Ei+1,i+1, we have a Chevalley basis

{In} ∪ {Hi : 1 ≤ i < n} ∪ {Ei,j : 1 ≤ i, j ≤ n, i 6= j}

of g. The regular elements in h are the diagonal matrices of trace 0 for which all
diagonal entries are different, and the Weyl chamber of hR determined by ∆ is

{A ∈ d(n,R) ∩ sl(n,R) : a1,1 > a2,2 > · · · > an,n}

The Lie algebra gl(n,C) is a most typical and natural example of a complex reduc-
tive Lie algebra, so we will reconsider it a couple of times.

Now we set out to find a compact real form of g. By this we mean a real subalgebra
gc of g of compact type such that, as vector spaces, g = gc ⊕ igc. By proposition
1.11 all the eigenvalues of adX(X ∈ gc) are pure imaginary. Since every root is real
valued on hR it is natural to start with ihR, the real span of {iHα : α ∈ ∆}. However
we cannot multiply with β(iHα) in gc, so no element of gβ can be in gc. Instead we
take for α > 0:

Yα := Xα −X−α and Y−α := i(Xα +X−α)

Let us put cγδ = 0 if γ + δ /∈ R. Then for H ∈ hR, α, β ∈ R,α > β > 0 we deduce
from theorem 1.16

[iH, iHα] = 0 [Yα, Yβ] = cα,βYα+β − cα,−βYα−β

[iH, Yα] = α(H)Y−α [Y−α, Y−β] = −cα,βYα+β − cα,−βYα−β

[iH, Y−α] = −α(H)Yα [Yα, Y−β] = cα,βY−α−β + cα,−βYβ−α

[Yα, Y−α] = 2iHα [Y−α, Yβ] = cα,βY−α−β − cα,−βYβ−α

(1.9)

Now the next theorem says that this gives a more or less standard compact real
form of g.

Theorem 1.17 Let g be a complex reductive Lie algebra, t a CSA, R the root system
and ∆ a basis of R and {Zi : 1 ≤ i ≤ r} any basis of Z(g). Define Hα and Yα(α ∈ R)
as above.
The real span of {Zi : 1 ≤ i ≤ r} ∪ {iHα : α ∈ ∆} ∪ {Yα : α ∈ R} is a compact real
form gc of g. The real span tc of {Zi : 1 ≤ i ≤ r} ∪ {iHα : α ∈ ∆} is a CSA of gc.
In particular every complex reductive Lie algebra is the complexification of a real Lie
algebra of compact type.
If g̃c is another compact real form of g that contains tc, then ∃H ∈ hR such that
exp(adH)g̃c = gc, so g̃c and gc are isomorphic.

Now assume that g is a real reductive Lie algebra and t is a CSA, and gC and
tC are the complexifications of g and t. We know that gC is reductive. Because t
is nilpotent, so is tC, and the normalizer of tC in gC is just the complexification of
Ng(t) = t, which is tC itself. So tC is a CSA of gC, and (gC, tC) has the Chevalley
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basis of theorem 1.16. It is absolutely not necessary that g is the subalgebra g0

of gC described in theorem 1.17. For example g could also be the real span of the
Chevalley basis. However, g doesn’t need to have a root space decomposition, as
the semisimple endomorphisms adH (H ∈ t) are not always diagonalizable.

If g is of compact type, theorem 1.17 does assure that g is conjugate (under an
element of the adjoint group of gC) to g0. This allows us to speak of the root system
of (g, t). Since all CSA’s of gC lead to isomorphic root systems, all CSA’s of g also
lead to isomorphic root systems.

Let G be a compact Lie group with Lie algebra g. Just as in the complex case, all
CSA’s of g are conjugate under Ad G. However, now every element of g is contained
in a CSA.

We examine the Lie subgroup T of G defined by a CSA t. Let A be the centralizer
of t in G. It is a closed and therefore compact subgroup of G. On the other hand
t is abelian and equals its own normalizer in g, so it is also its own centralizer in
g. Consequently, the Lie algebra of A is t, and the subgroup of G defined by t is
the identity component of A. So T is a compact connected abelian subgroup of
G. Moreover T cannot be contained in an abelian subgroup of higher dimension
because t is maximal abelian. This amounts to saying that T is a maximal torus of
G. (Recall that an n-dimensional torus is a Lie group isomorphic to Rn/Zn.)

This also goes the other way round. For suppose that T is a maximal torus of G,
with Lie algebra t ⊂ g. Then t is abelian and we claim that it is not contained in any
other abelian subalgebra of g. Assume the contrary. Then t is properly contained
in some CSA a of g, and therefore T would be properly contained in the (maximal)
torus defined by a. But this contradicts the maximality of T , so t is indeed maximal
abelian and a CSA of g.

So we have a bijection between the maximal tori of G and the CSA’s of g. A
deep theorem says that every element of G is contained a maximal torus, and that
all maximal tori are conjugate under Ad G. In suitable coordinates, exp : t → T is
just the (surjective) map Rn → Rn/Zn. Thus we have the following useful result:

Proposition 1.18 Let G be a compact Lie group with Lie algebra g. Then the
exponential map exp : g → G is surjective.

Example. If g = gl(n,C) then we can take G = GL(n,C) and

u(n) = {A ∈ gl(n,C) : A∗ = −A}

is a compact real form of g. It has a basis consisting of the elements Yi,j = Ei,j −
Ej,i, Yj,i = i(Ei,j + Ej,i) (1 ≤ j < i ≤ n), iHj(1 ≤ j < n) and iIn.

U(n) = {A ∈ GL(n,C) : A∗ = A−1}

is a compact Lie group with Lie algebra u(n). The set of all diagonal matrices
d(n,C) ∩ u(n) = id(n,R) is once again a CSA of u(n). Since the exponential map

18



u(n) → U(n) is the normal exponential for matrices, this CSA corresponds to the
subgroup

D(n,C) ∩ U(n) = {A ∈ D(n,C) : ∀i |aii| = 1} ∼= Rn/Zn

of U(n), where D(n,C) ⊂ GL(n,C) is the group of all invertible diagonal matrices.
The corresponding compact real form of [g, g] = sl(n,C) is su(n) = u(n)∩sl(n,C),

with compact Lie group SU(n) = U(n) ∩ SL(n,C). Furthermore d(n,C) ∩ su(n,C)
is a CSA of su(n) and it corresponds to the subgroup

D(n,C) ∩ SU(n) = {A ∈ D(n,C) : ∀i |aii| = 1, a11 · · · ann = 1} ∼= Rn−1/Zn−1

1.4 The Weyl group and invariant polynomials

In definition 1.13 of a root system R in V there figured the reflections σα : V → V ,

defined by σα(v) = v− 2〈v,α〉
〈α,α〉 α. The subgroupW of End V generated by {σα : α ∈ R}

is called the Weyl group of R. Since σα leaves R invariant, this holds for all elements
of W . By definition R spans V , so an element of W is completely determined by
its action on R. Moreover R is finite, so W can be regarded as a subgroup of the
finite group of all permutations of R. In view of proposition 1.5 we may assume that
we have a W -invariant inner product 〈·, ·〉 on V . The Weyl group of R is a typical
example of a finite reflection group on V . (This does not mean that all elements are
reflections, but that is generated by reflections.)

In the previous section we saw that there are natural bijections between the
chambers, the positive systems of roots and the bases of R. Theorem 10.3 of [15]
asserts that the Weyl group acts faithfully and transitively on these sets:

Theorem 1.19 Let R be a root system in V with Weyl group W . If C and C ′ are
chambers with corresponding bases ∆ and ∆′ and positive systems P and P ′, there
is a unique w ∈ W such that w(C) = C ′, w(∆) = ∆′ and w(P ) = P ′.

Let SV ∗ =
⊕

n≥0 S
nV ∗ be the ring of polynomials on V . The Weyl group acts on

SV ∗ by (w · p)(v) = p(w−1v). We are interested in the ring of W -invariant polyno-
mials (SV ∗)W . Clearly the homogeneous components of a W -invariant polynomial
are W -invariant themselves, so (SV ∗)W is a graded subspace of SV ∗. The structure
of (SV ∗)W was first discovered by Chevalley. See [4] for a proof.

Theorem 1.20 Let W be a finite reflection group on V . There exist dimV =
l algebraically independent homogeneous polynomials F1, . . . , Fl ∈ SV ∗ such that
(SV ∗)W = R[F1, . . . , Fl]. The Fi (and even their linear span) are not uniquely
determined, but if degFi = di, then the set {di : i = 1, . . . , l} does not depend on
the choice of the Fi.

These Fi and di are called primitive invariant polynomials and primitive degrees,
of W and of R. Because R spans V, V W = 0 and there are no W -invariant linear
functions. In particular di ≥ 2 for all i.
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Let VC be the complexification of V . Every p ∈ SV ∗ can be extended to a
(complex valued) polynomial p̃ on VC. The Weyl group acts complex linearly on VC
and on SV ∗

C . Clearly p̃ is W -invariant if p is. On the other hand if q ∈ (SV ∗
C )W we

can write (in a unique way) q = q̃1 + iq̃2 with qi ∈ SV ∗. Now wq̃i = p̃i for some
pi ∈ SV ∗, so q = wq = p̃1 + ip̃2. Because of the uniqueness, we see that q1 and q2
must be W -invariant. Thus we deduced

(SV ∗
C )W = C[F̃i, . . . , F̃l] (1.10)

Now we collect more information on the primitive degrees di. In the following
we regard t both as a formal variable and as a complex number, whatever is more
appropriate.

Proposition 1.21 The Poincaré polynomials of (SV ∗)W and (SV ∗
C )W are

l∏
i=1

(1− tdi)−1 =
1

|W |
∑
w∈W

det(1− tw)−1 (1.11)

Proof. Taken from [4], proposition 9.3.1. Since (SV ∗)W and (SV ∗
C )W are polynomial

rings with independent generators of degrees d1, . . . , dl, a standard result says that
their Poincaré polynomials are P (t) =

∏l
i=1(1− tdi)−1.

Because W is finite we can diagonalize w ∈ EndVC, with eigenvalues λw1, . . . , λwl.
Let w(n) be the induced endomorphism of SnV ∗

C , so that the eigenvalues of w(n) are
{λn1

w1 · · ·λ
nl
wl : n1 + · · ·+ nl = n}. A little thought suffices to see that the coefficient

of tn in
∑

w∈W det(1− tw)−1 is the sum of these eigenvalues, i.e. the trace of w(n).
So

1

|W |
∑
w∈W

det(1− tw)−1 =
1

|W |
∑
w∈W

∞∑
n=0

trw(n)tn

Applying lemma 1.7 for every n shows that this equals∑∞
n=0 dim (SV ∗

C )W tn = P (t). 2

Corollary 1.22
d1d2 · · · dl = |W |

Proof. Multiplying equation 1.11 with (1− t)l gives

l∏
i=1

(1 + t+ · · ·+ tdi−1)−1 =
1

|W |
∑
w∈W

l∏
i=1

1− t

1− tλwi

Now we take the limit t→ 1. All terms on the right hand side vanish, except those
with w = 1, so we find

∏l
i=1 d

−1
i = |W |−1. 2

For the rest of this section we fix a basis ∆ of R with corresponding positive
system R+. The length l(w) of an element w ∈ W is defined as the minimum
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number of terms in an expression w = σα1σα2 · · ·σαn , with all αi ∈ ∆. (By default,
l(1) = 0). A standard result says that l(w) is the number of α > 0 such that wα < 0.
This obviously depends on the choice of a basis, but by theorem 1.19 the number of
elements of a given length does not.

In the previous section we defined the height of a root β =
∑

α∈∆ nαβα as h(β) =∑
α∈∆ nαβ ∈ Z. Just as above, this depends on the basis, but the number of roots

of a given height does not.
Let L(R) be the subgroup of V generated by R; it is a lattice of maximal rank. In

order to write L(R) as a multiplicative group, we let e(L(R)) be set of all e(α) with
α ∈ L(R). The multiplication on e(L(R)) is e(α)e(β) = e(α + β). It is clear that
e(L(R)) is an abelian group, isomorphic to L(R). Now we can construct the group
algebra Q[R]. It is the set of all finite sums

∑n
i=1 cie(αi) with ci ∈ Q and αi ∈ R,

and the multiplication on Q[R] is the linear continuation of the multiplication on
e(L(R)). By introducing a grading on R one shows that Q[R] has no zero divisors.
Let Q(R) be its fraction field. The following identities in Q(R)(t) are due to Weyl,
Solomon and Macdonald, while their proofs can all be found in [4].

Theorem 1.23

l∏
i=1

tdi − 1

t− 1
=
∑
w∈W

tl(w) =
∑
w∈W

∏
α>0

te(−wα)− 1

e(−wα)− 1
=
∏
α>0

th(α)+1 − 1

th(α) − 1

The last term of this equality is connected to the sequence (rn)∞n=1, where rn is
the number of roots of height n. Surprisingly, the equality enables us to show that
this sequence is weakly decreasing.

Lemma 1.24 l = r1 ≥ r2 ≥ r3 ≥ . . .

Proof. Since any basis of R has l = dimV elements, r1 = l. Suppose that the
sequence is not weakly decreasing. There are only finitely many roots, so we can
find N such that rN−1 < rN but rn−1 ≥ rn for all n > N . Let P (t) be the polynomial
of theorem 1.23. It equals∏

h(α)<N−1

(
th(α)+1 − 1

th(α) − 1

)
(tN+1 − 1)rN

(tN−1 − 1)rN−1(tN − 1)rN−rN−1

∏
h(α)>N

(
th(α)+1 − 1

th(α) − 1

)

and Q(t) = (tN+1 − 1)rN
∏

h(α)>N

(
th(α)+1−1
th(α)−1

)
is a product of terms tn − 1. Let ζ be

a primitive N -th root of unity. Because P (t) is a polynomial, ζ cannot be a pole
of it. But ζ is only a zero of tn − 1 if n = kN for some k ∈ N. So Q(t) contains
some terms (at least rN − rN−1) of this form. Let k0 be the smallest k for which
this happens. Then the primitive k0N -th roots of unity have a higher multiplicity

as zeros of P (t) then ζ. But that is impossible, since P (t) =
∏l

i=1
tdi−1
t−1

. 2
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So the sequence (rn)∞n=1 is a partition of |R+| = |R|/2. Let us form the dual
partition. It consists of l = r1 nonzero terms mi := #{n : rn ≥ i}. Notice that also
m1 + · · ·+ml = |R+| = |R|/2.

Definition 1.25 Let rn be the number of roots of height n in a root system R. The
numbers mi = #{n : rn ≥ i}, i = 1, . . . , l are called the exponents of R.

Lemma 1.26 If d1 ≥ d2 ≥ . . . ≥ dl, then di = mi + 1.

Proof. It is readily seen that∏
α>0

th(α)+1 − 1

th(α) − 1
=

l∏
i=1

tmi+1 − 1

t− 1

But by theorem 1.23 this equals
∏l

i=1
tdi−1
t−1

and obviously mi ≥ mi+1. 2

Now we reconsider the situation of the previous section. Once again G is a
compact Lie group with Lie algebra g, gC is the complexification of g and GC is
a complex Lie group with Lie algebra gC. Furthermore t = Z(g) ⊕ h and tC =
Z(gC) ⊕ hC are CSA’s, T and TC are the connected Lie subgroups they define,
R ⊂ ih∗ is the corresponding root system, and finally W is the Weyl group of R.
Now R is isomorphic to the root system R′ = {iTα : α ∈ R} in h. Moreover

(iTα)⊥ = {H ∈ h : 〈iTα, H〉 = 0} = {H ∈ h : α(H) = 0} = kerα ∩ h

so α and iTα induce the same reflection of h. Thus we can identify W with a
subgroup of End h or of End hC. This is a good way of looking at the Weyl group,
for now the previous theory applies to polynomials on h and those are more natural
than polynomials on h∗. Another advantage is that this makes it possible to realize
the Weyl group in another way.

Theorem 1.27 With the above notation, the adjoint actions of NG(T ) and NGC(TC)
on h and on hC induce isomorphisms of NG(T )/T and NGC(TC)/TC with W .

Proof. Combine theorems 4.9.1 and 4.13.1 of [24] with section 1.3. 2

Let us determine the W -invariant polynomials on t. Put l = dim t = rank g and
r = dimZ(g), so that l − r = dim hR = rank R. By theorem 1.20 the ring of W -
invariant polynomials on h is R[F1, . . . , Fl−r] for certain homogeneous polynomials
Fi of degree di. The Weyl group acts as the identity on Z(g), so all polynomials on
Z(g) are W -invariant. If {Fi : 1 + l − r ≤ i ≤ l} is any basis of Z(g)∗,

(St∗)W = R[F1, . . . , Fl] (1.12)

and similarly in the complex case. These Fi are called primitive invariant polynomi-
als of (g, t). We know from theorem 1.26 that the numbers di − 1 (i = 1, . . . , l − r)
are the exponents of R, so it is natural to make the next definition.
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Definition 1.28 The exponents of g and of gC are the exponents of its root system,
plus dimZ(g) times 0.

It is interesting to compare theW -invariant polynomials on t with the G-invariant
polynomials on g. By proposition 1.3 the latter form the ring (Sg∗)G = (Sg∗)g. The
fact that this ring is defined without any reference to Lie groups, CSA’s and Weyl
groups makes the following even more remarkable. If p ∈ (Sg∗)G, p

∣∣
t

is invariant

under NG(T ), so by theorem 1.27 p
∣∣
t
∈ (St∗)W . Suppose that p

∣∣
t

= 0. Since
every element of g is contained in a CSA, p = 0 on g. Thus we have an injective
map (Sg∗)G → (St∗)W . Chevalley’s restriction theorem says that this map is also
surjective. See [4], theorem 23.1 for a proof.

Theorem 1.29 The restriction of polynomials on g to t gives an algebra isomor-
phism (Sg∗)G = (Sg∗)g → (St∗)W , and the same in the complex case.

The elements of (Sg∗)G that correspond to the Fi will be called primitive invari-
ant polynomials for g.

Example. We return to our standard example g = u(n), gC = gl(n,C). A root α
induces the same reflection of h as Tα and in fact

σα(H) = H − 2κ(Tα, H)

κ(Tα, Tα)
Tα = H − α(H)Hα

In particular if α = λi − λj, σα interchanges Ei,i and Ej,j, and fixes the Ek,k with
i 6= k 6= j. So the Weyl group of gC can be identified with the symmetric group Sn

on n symbols, acting in the natural way on the CSA tC = d(n,C). Therefore the
W -invariant polynomials on t = id(n,R) are the symmetric polynomials, and it is
well known that these form a ring R[F1, . . . , Fn], where

Fm = im
∑

1≤i1<···<im≤n

λ1λ2 · · ·λm (1.13)

is the m-th elementary symmetric polynomial. The Fm are also the coefficients of
the characteristic polynomial on t:

det(A+ µIn) = µn +
n∑

i=1

µn−iFi(A) for A ∈ t

The characteristic polynomial on tC is invariant under conjugation by elements of
GC = GL(n,C), so the extensions of the Fm to GC-invariant polynomials on gC are
still the coefficients of this characteristic polynomial. This also holds for su(n) and
sl(n,C), but then the trace function F1 is identically 0.

With respect to the basis ∆ of R, the height of λi−λj is i−j. Hence, if we look at
a matrix, we see that there are n−k roots of height k, for 0 < k ≤ n. So by definition
the exponents of su(n) and sl(n,C) are mi = n− i for 0 < i < n. This in accordance
with lemma 1.26, as dm = degFm = m and {dm : 1 < m ≤ n} = {2, 3, . . . , n}. Note
also that the exponents of g and gC are {0, 1, . . . , n− 1}.
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1.5 Harmonic polynomials

In this section we examine the natural companions to the invariant polynomials, the
harmonic polynomials. See Helgason [13] for more background.

The inner product on V gives rise to an isomorphism φ : V → V ∗ by φv(v′) =
〈v, v′〉. This isomorphism intertwines the actions of the Weyl group:

(w · φv)(v′) = (φv)(w−1v′) =
〈
v, w−1v′

〉
= 〈wv, v′〉 = (φ(wv))(v′)

Extend this to an algebra isomorphism φ : SV → SV ∗ and put Dp = φ−1p.
We also have an inner product on SV :

〈v1 · · · vn, v
′
1 · · · v′m〉 =

{ ∑
τ∈Sn

〈v1, v
′
τ1〉 · · · 〈vn, v

′
τn〉 if m = n

0 if m 6= n

Now we define an inner product on SV ∗ and a nondegenerate paring between SV
and SV ∗ by putting for p, q ∈ SV ∗

〈p, q〉 = 〈Dp, q〉 = 〈Dp, Dq〉

We can (and will) identify SV with algebra of all differential operators on V , with
constant coefficients. This means that v ∈ V corresponds to the derivation ∂v of
SV ∗ that extends the linear functional λ → λ(v) on V ∗. (This can be seen as the
partial derivative in the direction of v.) With straightforward calculations one can
verify that for all D ∈ SV, p ∈ SV ∗, w ∈ W :

(wD)(wp) = w(Dp) (1.14)

〈D, p〉 = (Dp)(0) (1.15)

Just as for W -invariant polynomials, the set of all W -invariant differential oper-
ators (SV )W is a graded subalgebra of SV . However we are not really interested
in this subalgebra, as it is merely isomorphic to (SV ∗)W by the isomorphism φ.
Instead we define the harmonic polynomials, that will be of utmost importance in
chapter 3.

Definition 1.30 For any Z-graded algebra A =
⊕

n∈ZA
n put A+ =

⊕
n>0A

n.
A polynomial p ∈ SV ∗ is called harmonic if for all D ∈ (S+V )W : Dp = 0.
The set of all harmonic polynomials is denoted by H.

It is easy to see that H is a graded subspace of SV ∗, and because of equation 1.14
it is also a W -submodule.

Theorem 1.31 Use the above notation and let J be the ideal of SV ∗ generated by
(S+V ∗)W . Then SV ∗ = J ⊕H and the multiplication map µ : (SV ∗)W ⊗H → SV ∗

is an isomorphism.
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Proof. Suppose that p ∈ J and u ∈ H. By theorem 1.20 we can write p =
∑l

i=1 piFi.
Now

〈p, u〉 = 〈Dp, u〉 = Dpu(0) =
l∑

i=1

Dpi
DFi

u(0) = 0

since DFi
∈ (S+V )W ; so H ⊥ J . Contrarily if u ⊥ J then for all p ∈ (S+V ∗)W :

〈Dpu,Dpu〉 = DDpuDpu(0) = DpDDpuu(0) = 〈pDpu, u〉 = 0

since pDpu ∈ J . So 〈p, u〉 = Dpu = 0 and u ∈ H. Thus we established H = J⊥ and
SV ∗ = J ⊕H.

Note that 1 ∈ (SV ∗)W , so that H ⊂ imµ. Now we prove by induction to n that
SnV ∗ ⊂ imµ. For n = 0 we have R ⊂ H ⊂ imµ. Let n > 0 and p ∈ SnV ∗. Because
SV ∗ = J ⊕H and H and J are graded, we can find u ∈ Hn such that p − u ∈ Jn.
Write p − u =

∑l
i=1 piFi. We may assume that the pi are homogeneous of degree

lower than n, so by the induction hypothesis pi ∈ imµ. Write pi =
∑ni

j=1 aijbij with

aij ∈ (SV ∗)W and bij ∈ H. Now

p = u+
l∑

i=1

piFi = µ

(
1⊗ u+

l∑
i=1

ni∑
j=1

Fiaij ⊗ bij

)
Suppose that µ is not injective. Because J and H are graded, there exist homoge-
neous polynomials ai ∈ (SV ∗)W and bi ∈ H such that 0 = µ (

∑
i ai ⊗ bi) =

∑
i aibi.

We may even assume that the bi are linearly independent and that b1 does not be-
long to the ideal generated by the other bi’s. But this contradicts lemma 9.2.1 of
[4]. 2

Remark. We followed the proof of theorem 4.15.28 in [24]. The theorem can be
generalized substantially to infinite groups, see Helgason [13] or Kostant [17]. For
example if G is a complex reductive Lie group with Lie algebra g then it holds with
V = g and W = G.

A as consequence of theorem 1.31, H inherits an algebra structure from SV ∗/J .
Note though that this not the normal multiplication of polynomials, as H is not
closed under this multiplication (this will become clear from the next corollary).

Corollary 1.32 The Poincaré polynomial of H is

PH(t) =
l∏

i=1

(1 + t+ · · ·+ tdi−1)

and dimH = |W |.
Proof. By theorem 1.31 and proposition 1.21

PH(t) = PSV ∗(t)/P(SV ∗)W (t) = (1− t)−l

l∏
i=1

(1− tdi) =
l∏

i=1

(1 + t+ · · ·+ tdi−1)
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Now

dimH = PH(1) =
l∏

i=1

di = |W |

by corollary 1.22. 2

In exercise 4.70.b of [24] Varadarajan suggested a way to determine theW -module
structure of H:

Proposition 1.33 As a W -module, H is isomorphic to the regular representation
R[W ].

Proof. Pick a regular element v ∈ V . Since W acts faithfully and transitively on
the chambers, the orbit Wv consists of precisely |W | elements. Let us denote by
a subscript v the polynomials that vanish in v. Clearly (SV ∗)W = (S+V ∗)W

v ⊕ R.
Theorem 1.31 gives

SV ∗ ∼= (SV ∗)W ⊗H =
(
(S+V ∗)W

v ⊕ R
)
⊗H ∼=

(
(S+V ∗)W

v ⊗H
)
⊕H

Now µ
(
(S+V ∗)W

v ⊗H
)
⊂ (SV ∗)Wv and codim (SV ∗)Wv = |Wv| = |W | = dimH.

Therefore SV ∗ = (SV ∗)Wv ⊕ H and µ
(
(S+V ∗)W

v ⊗H
)

= (SV ∗)Wv. Consider the
map α : SV ∗ → R[W ] : f →

∑
w∈W f(wv)w. Obviously α is surjective and kerα =

(SV ∗)Wv. Moreover for w′ ∈ W :

α(w′f) =
∑
w∈W

(w′f)(wv)w =
∑
w∈W

f(w′−1wv)w = w′

(∑
w∈W

f(wv)w

)
= w′(αf)

We conclude that α : H → R[W ] is a W -module isomorphism. 2

Of course there are also complex harmonic polynomials on VC. They are by
definition the elements of SV ∗

C that are annihilated by (S+V ∗
C )W . With a deduction

similar to that after theorem 1.20 one sees that this set is nothing else than the
complexification HC of H. Consequently everything we say about H will also be
true in the complex case (with some obvious modifications).

Let us consider the polynomial π = φ
(∏

α>0 α
)
. Because the Weyl group maps

positive systems to positive systems, for all w ∈ W : wπ = π or wπ = −π. In fact
wπ = π if l(w) = #{α > 0 : wα < 0} is even and wπ = −π if l(w) is odd. Let
ε(w) be the determinant of w ∈ EndV . From det σα = −1 and the definition of
the length of w it follows that wπ = ε(w)π. We say that π transforms by the sign
character ε of W or that π ∈ (SV ∗)ε.

Suppose that p ∈ (SV ∗)ε. If α(v) = 0,

p(v) = p(σ−1
α v) = (σαp)(v) = ε(σα)p(v) = −p(v) (1.16)

so p(v) = 0. Because p vanishes if φ(α) does and φ(α) is an irreducible element
of SV ∗ and, it must divide p. But this is valid for all α ∈ R and the elements
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φ(α) for α > 0 are coprime, so π divides p. Their quotient p/π is W -invariant, so
p ∈ π(SV ∗)W . On the other hand every element of π(SV ∗)W transforms by the sign
character of W , so (SV ∗)ε = π(SV ∗)W .
Now it easy to show that π is harmonic. For all D ∈ (S+V ∗)W equation 1.14 gives

w(Dπ) = (wD)(wπ) = D(wπ) = ε(w)Dπ

so Dπ ∈ (SV ∗)ε. But degDπ < deg π, so Dπ = 0 and π ∈ H. Moreover it follows
from corollary 1.32 that the maximal degree of an harmonic polynomial is

l∑
i=1

(di − 1) =
l∑

i=1

mi = |R+| = deg π

and that dimH|R+| = 1. We conclude that H |R+| = Rπ.
Remark. It is known that the partial derivatives of π span H. In practice this

provides a reasonable way to determine H.

Now we have enough tools to examine yet another kind the of Weyl group in-
variants. The algebra of differential forms on V with polynomial coefficients is
SV ∗ ⊗

∧
V ∗. In section 1.1 we described how the Weyl group acts on it. The W -

invariants of this algebra were first described by Solomon. Our proof comes from
Helgason [13], proposition 3.10.

Theorem 1.34 Let F1, . . . Fl be primitive polynomial invariants in (SV ∗)W , and d
the exterior differential on V . For any I ⊂ {1, . . . , l} let dFI be the wedge product
of all dFi with i ∈ I, in increasing order.
Then (SV ∗ ⊗

∧
V ∗)W is a free (SV ∗)W -module with basis {dFI : I ⊂ {1, . . . , l}}.

Proof. The Fi are algebraically independent, so by lemma 3.7 of [13]

dF1 ∧ · · · ∧ dFl 6= 0. Let x1, . . . , xl be a basis of V ∗, and put F = det
(

∂Fi

∂xj

)
i,j

, so

that
dF1 ∧ · · · ∧ dFl = Fdx1 ∧ · · · ∧ dxl (1.17)

The left hand side 1.17 is W -invariant and dx1 ∧ · · · ∧ dxl transforms by the sign
character of W , so F ∈ (SV ∗)ε. However degF =

∑l
i=1(di − 1) = deg π, so F = cπ

for some c ∈ R×.
Now we want to show that the dFI are linearly independent over R(x1, . . . , xl),

since in that case they are also linearly independent over R[x1, . . . , xl] = SV ∗. On
the contrary, suppose that we have a nonzero relation

∑
I fIdFI = 0, with fI ∈

R(x1, . . . , xl). Take an I such that FI 6= 0 and #I is minimal. Taking the wedge
product with dFIc (Ic = {1, . . . , l} \ I) gives us

fIdF{1,...,l} = fIcπdx1 ∧ · · · ∧ dxl = 0

This contradiction proves the linear independence.
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The set {dFI : I ⊂ {1, . . . , l}} has 2l elements, and that is exactly the dimension
of
∧
V ∗, so it is a basis of R(x1, . . . , xl)⊗

∧
V ∗ over R(x1, . . . , xl).

An arbitrary ω ∈ (SV ∗ ⊗
∧
V ∗)W can be written in a unique way as ω =

∑
I fIdFI ,

with fI ∈ R(x1, . . . , xl). We show by induction to the number of nonzero fI ’s that
∀I : fI ∈ (SV ∗)W .

This is clear if ω = 0.
Just as above, find an J such that fJ 6= 0 and #J is minimal. Up to sign, we get

ω ∧ dFJc = fJdF{1,...,l} = fJcπdx1 ∧ · · · ∧ dxl ∈ (SV ∗ ⊗
∧
V ∗)W .

So fJ is W -invariant and fJπ ∈ SV ∗. Consequently fJπ ∈ (SV ∗)ε = π(SV ∗)W and

fJ ∈ (SV ∗)W . Now also ω′ = ω − fJdFJ ∈ (SV ∗ ⊗
∧
V ∗)W . But ω′ =

∑
I 6=J fIdFI ,

so by the induction hypothesis all fI are in (SV ∗)W . 2

Reeder [23] observed that this theorem enables us to compute the W -invariants
in H⊗

∧
V ∗:

Proposition 1.35 (SV ∗/J ⊗
∧
V ∗)W is a free exterior algebra with l generators

dFi ∈
(
(SV ∗/J)mi ⊗

∧1 V ∗)W . Likewise (H⊗
∧
V ∗)W is a free exterior algebra

with l generators in degrees (mi, 1).

Proof. By theorem 1.31 SV ∗/J ∼= H. Hence every element of (SV ∗/J ⊗
∧
V ∗)W

has a (unique) representant in (H⊗
∧
V ∗)W and is the projection of an element of

(SV ∗ ⊗
∧
V ∗)W . By theorem 1.34, the last space is⊕

I⊂{1,...,l}

(SV ∗)WdFI =
⊕

I⊂{1,...,l}

(S+V ∗)WdFI ⊕ RdFI

Since (S+V ∗)W ⊂ J , the set {dFI : I ⊂ {1, . . . , l}} spans (SV ∗/J ⊗
∧
V ∗)W over

R. To prove that it is a basis it suffices to show that dim (H⊗
∧
V ∗)W = 2l. By

proposition 1.33 H⊗
∧
V ∗ is the W -module contragredient to

R[W ]∗ ⊗
∧
V ∼= Hom(R[W ],

∧
V ) := M

Fortunately MW = HomW (R[W ],
∧
V ) and it is easy to see that the map

MW →
∧
V : ψ → ψ(1) is a linear bijection. Therefore

dim (H⊗
∧
V ∗)W = dimMW = dim

∧
V = 2l

as we wanted. 2

We conclude this chapter by considering the harmonic polynomials on a CSA of
a reductive Lie algebra. Let g be a real Lie algebra of compact type, t = Z(g) ⊕ h
a CSA, R ⊂ ih∗ the root system and W the Weyl group.
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Since every differential operator on Z(g) is W -invariant, the only harmonic poly-
nomials on Z(g) are the constants. So the harmonic polynomials on t are just the
harmonic polynomials on h, extended in the natural way to t. In particular this
set of harmonic polynomials still affords the regular representation of W . Using
equation 1.12 and theorem 1.31 we also still have

J ⊕H = St∗ ∼= (St∗)W ⊗H (1.18)

where J is the ideal of St∗ generated by (S+t∗)W .
Because the roots have pure imaginary values on h, we must modify the polyno-

mial π to
∏

α>0 iα. If we do this and substitute V by t, the proofs of theorem 1.34
and proposition 1.35 go through in the same way. Consequently (St∗/J⊗

∧
t∗)W is a

free exterior algebra with l generators dFi ∈
(
(St∗/J)mi⊗

∧1
t∗
)W

, and (H⊗
∧

t∗)W

is a free exterior algebra with l generators in degrees (mi, 1). (But it is more difficult
to give these generators explicitly.)

These things are also valid in the complex case. The corresponding results are
obtained by adding subscripts C to all appropriate objects and doing everything
over C.
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Chapter 2

Cohomology theory for Lie
algebras

We use the De Rham cohomology of compact connected Lie groups to motivate the
definitions of Lie algebra cohomology. Cohomology relative to a subalgebra and with
coefficients in a module are also treated. These ideas are based on Chevalley and
Eilenberg [6]. We close the chapter with a few isomorphism theorems on reductive
(sub-)algebras.

I will use a star (*) for many different purposes, so let me state these explicitly
to avoid confusion. For a sequence of abelian groups (Ap)p, A

∗ :=
⊕

pA
p. For a

vector space V over a field F, V ∗ is the dual space, consisting of all linear maps
V → F. If φ : V → W is a linear map between vector spaces, φ∗ : W ∗ → V ∗

is called the dual or transpose map and it is defined by φ∗f = f ◦ φ for f ∈ W ∗.
A variation on this is the case of a linear endomorphism φ of a vector space V
with a nondegenerate symmetric bilinear form. Then the adjoint map φ∗ is defined
by 〈φ∗v, w〉 = 〈v, φw〉. And finally for a differentiable map ψ : M → N between
manifolds, ψ∗ : Ω(N) → Ω(M) denotes the retraction of differential forms.

A bit of terminology for (co-)homology. A differential complex (in the sense of
homology) is a sequence (Cp)p∈Z of abelian groups with homomorphisms ∂p : Cp →
Cp−1 such that ∂p−1 ◦ ∂p = 0. We define Zp = ker ∂p and Bp = im ∂p+1. Since
Bp ⊂ Zp we can put Hp = Zp/Bp and call this the p-th homology group of the
complex (C∗, ∂). The elements of Cp are called p-chains, ∂ is the boundary map or
differential, Zp consists of the p-cycles and Bp is group of p-boundaries. A differential
complex (in the sense of cohomology) is a sequence (Cp)p∈Z of abelian groups with
homomorphisms dp : Cp → Cp+1 such that dp ◦ dp−1 = 0. We define Zp = ker dp and
Bp = im dp−1. Moreover Hp := Zp/Bp is the p-cohomology group of the complex
(C∗, d). The elements of Cp are the p-cochains, d is called the coboundary map
or the differential, Zp consists of the p-cocycles and Bp is group of p-coboundaries.
Usually Cp and Cp are vector spaces, in which case d and ∂ must be linear. Often
these spaces are only specified for p ≥ 0, and then we assume that they are 0 for
p < 0. In this case B0 = 0 and H0 = Z0.
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2.1 De Rham cohomology and Lie group actions

For Lie groups the natural cohomology theory is that of De Rham, because it uses
the manifold structure. As we will see, it also enables us to take advantage of the
group structure.

Recall the basic notions of De Rham cohomology for a (C∞-)manifold M . For
p ∈ N let Ωp(M) denote the real vector space of all smooth p-forms on M , and
let dp : Ωp(M) → Ωp+1(M) be the exterior differential. We call the elements of
Zp

DR(M) = ker dp closed p-forms and the elements of Bp
DR(M) = im dp−1 exact

p-forms. Since dp ◦ dp−1 = 0 we have Bp
DR(M) ⊂ Zp

DR(M). The p-th De Rham
cohomology group of M is defined as

Hp
DR(M) = Zp

DR(M)/Bp
DR(M)

We summarize this by saying that H∗
DR(M) is computed by the differential complex

(Ω∗(M), d). For ω ∈ Ωp(M) and η ∈ Ωq(M) we have

d(ω ∧ η) = dω ∧ η + (−1)pω ∧ dη

which expresses the fact that d is an anti-derivation. This means that the wedge
product of two closed forms is closed. Moreover if η is closed and ω = dτ is exact

d(τ ∧ η) = dτ ∧ η − (−1)pτ ∧ dη = ω ∧ η

so ω ∧ η is exact. Therefore Z∗
DR(M) is a ring (even a real algebra) and B∗(M)

is an ideal in this ring. It follows that H∗
DR(M) is a ring with the wedge product.

A glance at the properties of this wedge product shows that H∗
DR(M) is in fact an

associative anti-commutative graded real algebra.

Assume now that a Lie group G acts smoothly on M . This means that we
have a group homomorphism φ of G into the group of diffeomorphisms M → M ,
such that the map (g,m) → φ(g)m is C∞. We have the induced linear maps
φ(g)∗ : Ωp(M) → Ωp(M) and for every g ∈ G and ω ∈ Ω∗(M) we put ωg := φ(g)∗ω.

First of all we observe that any smooth path from e (the unit element of G) to
g gives a smooth homotopy between idM and φ(g). Consequently φ(g)∗ induces the
identity map on H∗

DR(M). In particular for all g in the connected component of e,
ωg and ω are cohomologous (i.e. ωg − ω is exact).

It is easy to see that (ωg1)g2 = ω(g1g2) (this is a right representation of G) and
(ω ∧ η)g = ωg ∧ ηg. We call ω G-invariant if ∀g ∈ G : ωg = ω. Furthermore we
denote by Ωp(M)G the vector space of all G-invariant p-forms. Then d(Ωp(M)G) ⊂
Ωp+1(M)G since the maps φ(g)∗ commute with d. Thus (Ω∗(M)G, d) is a differ-
ential complex, with cohomology H∗

DR(M ;G). Now Bp
DR(M ;G) = Bp(M)G ⊂

Bp
DR(M) so the inclusion of Ω(M)G in Ω(M) induces an algebra homomorphism

φG : H∗
DR(M ;G) → H∗

DR(M).
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From now on G will be compact, and dg is the Haar measure of G, such that the
measure of G is 1. We can average any differential form ω ∈ Ω(M) over G :

(Iω)m :=

∫
G

(ωg)mdg =

∫
G

φ(g)∗(ωφ(g)m)dg (2.1)

It is not trivial to verify that Iω is a smooth differential form. The crucial point
is that taking a partial derivative (in a direction on M) of a function on M × G
commutes with integrating it over G, because G is compact. This also gives

d(Iω) = d

(∫
G

φ(g)∗ωdg

)
=

∫
G

d(φ(g)∗ω)dg =

∫
G

φ(g)∗(dω)dg = I(dω) (2.2)

The idea behind this averaging is of course that Iω is G-invariant :

(Iω)h = φ(h)∗(Iω) = φ(h)∗
(∫

G

φ(g)∗ωdg

)
=

∫
G

φ(h)∗φ(g)∗ωdg

Now φ(h)∗φ(g)∗ = (φ(g)φ(h))∗ = φ(gh)∗ so the above equals∫
G

φ(gh)∗ωdg =

∫
G

φ(g)∗dg = Iω

Because the measure of G is 1, Iω = ω if ω ∈ Ω(M)G.

Lemma 2.1 If G is a compact Lie group acting smoothly on a manifold M , then
φG : H∗

DR(M ;G) → H∗
DR(M) is injective.

Proof. Let ω ∈ Ω(M)G be such that ω = dη for some η ∈ Ω(G). Then

d(Iη) = I(dη) = Iω = ω

so ω ∈ B∗
DR(M)G and φG is injective. 2

In general φG is not surjective and H∗
DR(M ;G) is not isomorphic to H∗

DR(M),
even if M is connected.

Example. Take M = S2 and G = {1,−1} with the obvious action φ. It is well
known that H0

DR(S2) = R, H1
DR(S2) = 0 and that

ω →
∫

S2

ω : H2
DR(S2) → R

is an isomorphism. Moreover H0
DR(S2) consists of constant functions on S2 and

these are G-invariant. So also H0
DR(S2;G) = Z0

DR(S2;G) = R. However, for a
G-invariant 2-form ω :∫

S2

ω =

∫
S2

φ(−1)∗ω =

∫
φ(−1)∗S2

ω = −
∫

S2

ω
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because multiplication by -1 reverses the orientation of S2. Therefore
∫

S2 ω = 0 and
ω ∈ B2

DR(S2). We conclude from lemma 2.1 that H2
DR(S2;G) = 0.

On the other hand, if G is connected then the following important theorem says
that φG is an isomorphism.

Theorem 2.2 Let G be a connected compact Lie group acting smoothly on a man-
ifold M . Then the inclusion of Ω(M)G in Ω(M) induces an isomorphism of the
graded algebras H∗

DR(M ;G) and H∗
DR(M). That is, H∗

DR(M) can be computed using
only G-invariant differential forms.

Remark. We already saw that ∀g ∈ G ωg − ω is exact. So we would like to pick
αg such that dαg = ωg − ω, then define α =

∫
G
dαgdg and conclude that

dα =

∫
G

dαgdg =

∫
G

(ωg − ω)dg = Iω − ω

The problem is that
∫

G
dαgdg is not defined, let alone smooth, unless the coordinates

of (g,m) → (αg)m are smooth functions on G×M . While it is not too hard to find an
αg, this last condition poses difficult problems. For example in [24], ch. 2, exercise
29, Varadarajan constructed an ηexp X with dηexp X = ωexp X − ω. This is smooth in
X ∈ g, but not in g ∈ G because the exponential map is not invertible.

Proof. Following [6] we make a little trip to singular homology theory. De
Rham’s theorem (see [22]) states that Hp

DR(M) is the dual space of the p-th singular
homology group Hp(M) of M . This implies that two closed p-forms ω, η ∈ Zp

DR(M)
are cohomologous if and only if

∫
σ
ω =

∫
σ
η for every smooth closed p-chain σ in M .

Since ωg and ω are cohomologous we have for such σ∫
σ

Iω =

∫
σ

(∫
G

ωgdg

)
=

∫
G

(∫
σ

ωg

)
dg =

∫
G

(∫
σ

ω

)
dg =

∫
σ

ω

Thus Iω an ω are cohomologous. Because Iω ∈ Zp
DR(M ;G) this means that φG is

surjective. Combining this with lemma 2.1 proves that φG is an isomorphism. 2

2.2 The definition of the cohomology of a Lie algebra

In this section we relate the De Rham cohomology of a compact Lie group to its Lie
algebra. This leads us to the definition of the cohomology of a Lie algebra.

If G is a (compact) Lie group, Ge the connected component of the unit element
and Gx another connected component, then Ge and Gx are diffeomorphic. In fact
for any x ∈ Gx the left multiplication map lx : Ge → Gx is a diffeomorphism.
Consequently the cohomology rings of Ge and Gx are isomorphic and H∗

DR(G) is
isomorphic to the direct sum of a finite number of copies of H∗

DR(Ge).
Therefore in this section G will always be a connected compact Lie group, with

Lie algebra g. Let us apply theorem 2.2 to the case M = G, acting on itself by
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left multiplication. The G-invariant forms are precisely the left invariant forms.
But the map ω → ωe is an algebra isomorphism between the space of left invariant
forms and the exterior algebra

∧
g∗ on the dual space of the Lie algebra g, so the

cohomology of G can be computed from a complex whose spaces are
∧p

g∗. To
determine the coboundary map d on this complex we return to general differential
forms. It is known ([25], proposition 2.25) that for ω ∈ Ωp(G) and smooth vector
fields X0, . . . , Xp on G:

dω(X0, . . . , Xp) =
p∑

i=0

(−1)iXi(ω(X0, . . . , X̂i, . . . , Xp))

+
∑

0≤i<j≤p

(−1)i+jω([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xp)
(2.3)

If we take ω and all Xi left invariant, then ω(X0, . . . , X̂i, . . . , Xp) is a left invariant

function, i.e. a constant. Hence Xi(ω(X0, . . . , X̂i, . . . , Xp)) = 0 and the first sum
in 2.3 vanishes. Since dω is also left invariant, it is completely determined by the
remaining equation. We conclude that, under the identification of the left invariant
p-forms with

∧p
g∗, for X0, . . . , Xp ∈ g :

dω(X0, . . . , Xp) =
∑

0≤i<j≤p

(−1)i+jω([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xp) (2.4)

By definition d
∣∣V0 g∗

= 0. This d is called the Koszul differential for g.

A similar formula was derived by Chevalley and Eilenberg in theorem 9.1 of [6].
They used another isomorphism between (

∧
g)∗ and

∧
(g∗) and the highly unusual

definition [Xi, Xj] := XjXi −XiXj, which explains the difference.
We would like to use equation 2.4 as a definition on any Lie algebra g, but do

not yet know whether d squares to zero. To prove this, we must first show that d is
an anti-derivation of

∧
g∗.

Lemma 2.3 Let g be a Lie algebra and d :
∧p

g∗ →
∧p+1

g∗ the linear map defined
by equation 2.4. Then for ω ∈

∧p
g∗, η ∈

∧q
g∗ :

d(ω ∧ η) = dω ∧ η + (−1)pω ∧ dη

Proof. Recall that the wedge product is defined by

(ω ∧ η)(X1, . . . , Xp+q) =
∑

σ∈Sp+q

ε(σ)

p! q!
ω(Xσ1, . . . , Xσp)η(Xσ(p+1), . . . , Xσ(p+q))

We prove the lemma by induction to p.
For p = 0, ω is a scalar, dω = 0 and the lemma is obvious.
The difficult part is p = 1. Then ω ∈ g∗ and the formula reads

d(ω ∧ η) = dω ∧ η − ω ∧ dη
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With a little thought one sees that for any α ∈
∧r

g∗

dα(Y0, . . . , Yr) =
∑

σ∈Sr+1

ε(σ)

2(r − 1)!
α([Yσ1, Yσ0], Yσ2, . . . , Yσr)

We apply this to ω ∧ η:

d(ω ∧ η)(X1, . . . , Xq+2) =
∑

σ∈Sq+2

ε(σ)

2 q!
(ω ∧ η)([Xσ2, Xσ1], Xσ3, . . . , Xσ(q+2))

=
∑

σ∈Sq+2

ε(σ)

2 q!
ω([Xσ2, Xσ1])η(Xσ3, . . . , Xσ(q+2)) +

∑
σ∈Sq+2

q+2∑
i=3

(−1)iε(σ)

2 q!
ω(Xσi)η([Xσ2, Xσ1], Xσ3, . . . , X̂σi, . . . , Xσ(q+2))

Since dω(Y1, Y2) = ω([Y2, Y1]) the second line of this equation is
dω ∧ η(X1, . . . , Xq+2). So we must show that the double sum equals

−ω ∧ dη(X1, . . . , Xq+2) =
∑

σ∈Sq+2

−ε(σ)

(q + 1)!
ω(Xσ1)dη(Xσ2, . . . , Xσ(q+2))

=

q+2∑
i=1

(−1)iω(Xi)dη(X1, . . . , X̂i, . . . , Xq+2)

Let Si
q be the stabilizer of the element i in Sq. Then the last sum is

q+2∑
i=1

(−1)iω(Xi)
∑

σ∈Si
q+2

ε(σ)

2(q − 1)!
η([Xσ2, Xσ1], Xσ3, . . . , X̂i, . . . , Xσ(q+2))

An inspection of the earlier double sum shows that every term appears q times, and
is equal to a term of the last double sum. The difference in the coefficients (q! versus
(q− 1)!) makes that these double sums are equal. This proves the lemma for p = 1.

Assume now that formula the lemma holds for all p < r, that ω1 ∈ g∗ and that
ω2 ∈

∧r−1
g∗.

d(ω1 ∧ ω2 ∧ η) = dω1 ∧ ω2 ∧ η − ω1 ∧ d(ω2 ∧ η)
= dω1 ∧ ω2 ∧ η − ω1 ∧ dω2 ∧ η + (−1)pω1 ∧ ω2 ∧ dη =

= d(ω1 ∧ ω2) ∧ η + (−1)pω1 ∧ ω2 ∧ dη

Because
∧r

g∗ is spanned by elements of the form ω1 ∧ ω2, the lemma is proved. 2

Corollary 2.4 d ◦ d = 0
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Proof. We take ω ∈
∧p

g∗. The corollary is obvious for p = 0 while for p = 1 and
X, Y, Z ∈ g:

d(dω)(X, Y, Z) = dω([X,Z], Y )− dω([X, Y ], Z)− dω([Y, Z], X)

= ω([Y, [X,Z]])− ω([Z, [X, Y ]])− ω([X, [Y, Z]])

= ω([Y, [X,Z]]− [Z, [X,Y ]]− [X, [Y, Z]]) = 0

by the Jacobi identity. Because d is an anti-derivation (lemma 2.3) it follows that
d(dω) = 0 for all ω ∈

∧
g∗. 2

Definition 2.5 Let g be any Lie algebra. The (cohomology) Koszul complex for g
has spaces Cp(g) =

∧p
g∗ and (Koszul) differential d defined by equation 2.4. Its

cohomology H∗(g) is called the Lie algebra cohomology of g.

Corollary 2.4 makes this a good a definition. Moreover exactly the same argument
as for De Rham cohomology shows that the wedge product is well defined on H∗(g).
This makes H∗(g) into an associative graded anti-commutative algebra.

A direct consequence of this definition, theorem 2.2 and the work in this section
is the following theorem.

Theorem 2.6 Let G be a compact connected Lie group with Lie algebra g. Then
H∗

DR(G) and H∗(g) are isomorphic as graded algebras.

In view of De Rham’s theorem it would be nice if we could define the homology of
g in such a way that its dual space would be H∗(g). This is achieved by taking the
dual complex of (C∗(g), d), i.e. taking the dual spaces of C∗(g) and the transpose
maps.

Definition 2.7 Let g be Lie algebra. The (homology) Koszul complex for g has
spaces Cp(g) =

∧p
g and boundary map ∂ : Cp(g) → Cp−1(g) defined by

∂(X1∧ . . .∧Xp) =
∑

1≤i<j≤p

(−1)i+j[Xi, Xj]∧X1∧ . . .∧ X̂i∧ . . .∧ X̂j ∧ . . .∧Xp (2.5)

Its homology H∗(g) is called the homology of g.

By definition ∂
∣∣
C0(g)

= ∂
∣∣
C1(g)

= 0. It follows from d ◦ d = 0 (or from a direct

verification) that ∂ ◦ ∂ = 0. Notice that

2∂(X1 ∧ . . . ∧Xp) = 2
∑

1≤i<j≤p

(−1)iX1 ∧ . . . ∧ X̂i ∧ . . . ∧ [Xi, Xj] ∧ . . . ∧Xp

=
∑
i6=j

(−1)iX1 ∧ . . . ∧ X̂i ∧ . . . ∧ [Xi, Xj] ∧ . . . ∧Xp

=
∑
i6=j

(−1)iad Xi(X1 ∧ . . . ∧ X̂i ∧ . . . ∧Xp)

(2.6)
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However, in general ∂ is not an (anti-)derivation and H∗(g) has no multiplication.
This makes cohomology more convenient than homology.

Example. Let g be the two-dimensional Lie algebra (over the field F) with basis
{X, Y } and commutator [X, Y ] = X. Then ∂(Y ∧X) = X while obviously ∂X =
∂Y = 0. Hence ∂ is not an (anti-)derivation. Clearly Cp(g) = Cp(g) = 0 for p > 2.
Now we can easily calculate the homology of g:

H0(g) = Z0(g)/B0(g) = C0(g)/0 = F
H1(g) = Z1(g)/B1(g) = C1(g)/FX ∼= FY
H2(g) = Z2(g)/B2(g) = 0/0 = 0

Let {ω, η} be the dual basis of g∗. We have d
∣∣V0 g∗

= d
∣∣V2 g∗

= 0 and

dω(Y ∧X) = ω(X) = 1 = (η ∧ ω)(Y ∧X)

dη(Y ∧X) = η(X) = 0

The cohomology of g is thus identified as

H0(g) = Z0(g)/B0(g) = C0(g)/0 = F
H1(g) = Z1(g)/B1(g) = Fη/0 = Fη
H2(g) = Z2(g)/B2(g) = C2(g)/FY ∧X = 0

So indeed Hp(g) and Hp(g) are dual in a natural way.

The (co-)homology of Lie algebras behaves well under direct sums.

Proposition 2.8 Let g and h be finite-dimensional Lie algebras over a field F. Then
H∗(g ⊕ h) ∼= H∗(g) ⊗F H

∗(h) and H∗(g ⊕ h) ∼= H∗(g) ⊗F H∗(h). The degree of
Hp(g) ⊗Hq(h) is p + q and similarly for the homology case. Moreover the product
on H∗(g)⊗F H

∗(h) is

(ω1 ⊗ η1) ∧ (ω2 ⊗ η2) = (−1)pq(ω1 ∧ ω2)⊗ (η1 ∧ η2)

for η1 ∈ Hp(g) and ω2 ∈ Hq(h).

Proof. Identify
∧

(g ⊕ h) with
∧

g ⊗
∧

h and the same for their dual spaces. Take
a ∈ Cp(g) and b ∈ Cq(h). Because [g, h] = 0 it is easy to see that

∂(a ∧ b) = ∂ga ∧ b+ (−1)pa ∧ ∂hb

and similarly for cohomology. Now the proposition is reduced to Künneth’s formula,
which is a standard result from homological algebra. 2

Now we return to the Lie group G to find an expression for the cohomology of a
reductive Lie algebra that is often useful. Besides the action of left multiplication,
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G also acts on itself by right multiplication. (To be precise, one takes the action
φ(x) = rx−1 .) Then the G-invariant differential forms are the right invariant forms,
and these also compute the De Rham cohomology of G. Following this track one
can identify the right invariant forms with

∧
g∗ and find another complex on g that

computes the cohomology of G. There is nothing wrong with this approach, but it
is less customary than the left invariant case and only leads to equivalent results.

It is much more interesting to combine these actions. We let the compact con-
nected Lie group G × G act on G by φ(x, y) = lxry−1 . The G × G-invariant forms
are both left and right invariant, and they are called the invariant forms on G. For
a left invariant form ω ∈

∧p
g∗ the condition r∗x−1ω = ω is equivalent to c∗xω = ω,

where cx : G→ G : y → xyx−1 is conjugation by x. Since dcx = Ad(x) ∈ Aut(g) we
have for X1, . . . , Xp ∈ g :

c∗xω(X1, . . . , Xp) = ω(Ad(x)X1, . . . ,Ad(x)Xp) = Ad(x)∗ω(X1, . . . , Xp) (2.7)

So with respect to the representation x → Ad(x−1)∗ the invariant forms can be

identified with (
∧

g∗)G. Because G is connected, the invariants of a G-representation
are the invariants of the associated representation of g. Here the g-representation is
X → −(ad X)∗ and

−(adX)∗ω(X1, . . . , Xp) =

p∑
i=1

ω(X1, . . . , [Xi, X], . . . , Xp) = ω(−adX(X1∧. . .∧Xp))

Now we can state the result we are after.

Theorem 2.9 Let G be a compact connected Lie group with Lie algebra g. Then
H∗

DR(G) is isomorphic to the ring of invariant forms (
∧

g∗)G = (
∧

g∗)g.

Proof. In view of theorem 2.2 and the above, H∗
DR(G) can be computed from

((
∧

g∗)g , d). But for ω ∈ (
∧p

g∗)
g

and X0, . . . , Xp ∈ g

2dω(X0 ∧ . . . ∧Xp) = ω(2∂(X0 ∧ . . . ∧Xp))

=

p∑
i=0

(−1)p+1ω(ad Xi(X0 ∧ . . . ∧ X̂i ∧ . . . ∧Xp)) = 0

So all the coboundary maps are 0 and the complex equals its cohomology. 2

One can also prove in a purely algebraic way that for any reductive Lie algebra
g the space of invariant forms (

∧
g∗)g is isomorphic to H∗(g). For abelian Lie

algebras this is clear and for semisimple Lie algebras the proof of theorem 19.1 in
[6] goes through in characteristic unequal to zero, with some slight modifications.
An application of proposition 2.8 would conclude such a proof.
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2.3 Relative Lie algebra cohomology

Searching for a definition of the cohomology of a Lie algebra relative to a subalgebra,
we turn our attention to homogeneous spaces. In this section G is a Lie group, H
is a closed Lie subgroup, M the homogeneous space G/H and π : G→M the map
g → gH. Before we proceed, we must introduce some notations. If a is an element of
a vector space V , ε(a) :

∧
V →

∧
V will be the linear map b→ a∧ b. The transpose

map
∧
V ∗ →

∧
V ∗ is denoted by i(a). For f ∈

∧p V ∗ and b1, . . . , bp−1 ∈ V we have

i(a)f(b1, . . . , bp−1) = f(a, b1, . . . , bp−1)

Using the definition of the wedge product, a straightforward calculation shows that
i(a) is an anti-derivation of

∧
V ∗.

Lemma 2.10 The retraction π∗ : Ω(M) → Ω(G) is an isomorphism between Ω(M)
and the subspace of Ω(G) consisting of all those ω for which

i(X)ω = 0 if dπ(X) = 0 (2.8)

r∗hω = ω ∀h ∈ H (2.9)

Proof. Since π is surjective, π∗ is injective. If η ∈ Ω(M), then π∗η obviously satisfies
condition 2.8. Moreover π ◦ rh = π so

r∗hπ
∗η = (π ◦ rh)

∗η = π∗η

and condition 2.9 is also satisfied.
On the other hand, suppose that ω ∈ Ωp(G) satisfies conditions 2.8 and 2.9.

Define η ∈ Ω(M) by

η(Y1, . . . , Yp)(gH) = ω(X1, . . . , Xp)(g) if dπ(Xi) = Yi

Because of 2.8 this does not depend on the choice of the Xi. Using 2.9 and the fact
dπ(Xi − drhXi) = dπXi − dπdrhXi = 0 we obtain

ω(X1, . . . , Xp)(gh
−1) = (r∗h−1ω)(drhX1, . . . , drhXp)(g)

= ω(drhX1, . . . , drhXp)(g)

= ω(X1, . . . , Xp)(g)

So η is a well defined element of Ω(M) and π∗η = ω. 2

The next result will not be used, but it is interesting enough to state explicitly
because it describes to cohomology of g relative to the subgroup H of G.

Proposition 2.11 Let G be a compact Lie group, H a closed Lie subgroup and g and
h their respective Lie algebras. Then H∗

DR(G/H) is isomorphic to the cohomology
of the complex with spaces

Cp(g, H) = {ω ∈
∧p(g/h)∗ ⊂

∧p
g∗ : ∀h ∈ H Ad(h)ω = ω}

and the Koszul differential (for g).
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Proof. We let G act on M by l̄x : gH → xgH. Since l̄xπ = πlx, π
∗ gives an iso-

morphism between the G-invariant forms on M and the left invariant on G that
satisfy conditions 2.8 and 2.9. For left invariant forms and vector fields, dπ is just
the projection g → g/h. Then condition 2.8 means i(X)ω = 0 if X ∈ h, i.e.
ω ∈

∧
(g/h)∗. From equation 2.7 we know that condition 2.9 is equivalent with

Ad(h)∗ω = ω ∀h ∈ H. Now theorem 2.2 completes the proof. 2

To express the complex (C∗(g, H), d) entirely in terms of g and h we must assume
that H is connected. Then it follows from the same argument as after equation 2.7
that Cp(g, H) = (

∧p(g/h)∗)
h

with respect to the representation X → −(ad X)∗. To
generalize this to other Lie algebras we need the following

Lemma 2.12 Let g be any Lie algebra and d the Koszul differential. For all ω ∈∧p
g∗ and Y ∈ g :

d(i(Y )ω) + i(Y )dω = −(ad Y )∗ω

Proof. Take X1, . . . , Xp ∈ g.

d(i(Y )ω)(X1, . . . , Xp) =
∑

1≤i<j≤p

(−1)i+jω(Y, [Xi, Xj], X1, . . . , X̂i, . . . , X̂j, . . . , Xp)

dω(Y,X1, . . . , Xp) =
∑

1≤i<j≤p

(−1)i+jω([Xi, Xj], Y,X1, . . . , X̂i, . . . , X̂j, . . . , Xp)

+

p∑
i=1

(−1)iω([Y,Xi], X1, . . . , X̂i, . . . , Xp)

We see that the double sums over i and j cancel and what remains is

(d(i(Y )ω) + i(Y )dω) (X1, . . . , Xp) =

p∑
i=1

(−1)iω([Y,Xi], X1, . . . , X̂i, . . . , Xp)

= −
p∑

i=1

ω(X1, . . . , [Y,Xi], . . . , Xp)

= −(ad Y )∗ω(X1, . . . , Xp)

This is valid for all Xi ∈ g, so we’re done. 2

Now it is easy to see that(∧p(g/h)∗
)h

=
⋂
Y ∈h

ker i(Y ) ∩ ker(ad Y )∗

is closed under d. For all ω ∈
(∧p(g/h)∗

)h
and Y ∈ h:

i(Y )dω = −d(i(Y )ω)− (ad Y )∗ω = 0 (2.10)

−(ad Y )∗dω = d(i(Y )dω) = d(−(ad Y ∗ω) = 0 (2.11)
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This justifies the next definition.

Definition 2.13 Let g be a Lie algebra and h a subalgebra. The complex
(C∗(g, h), d) has spaces Cp(g, h) = (

∧p(g/h)∗)
h ⊂

∧p
g∗ and Koszul differential d.

Its cohomology H∗(g, h) is called the cohomology of g relative to h.

Since (adY )∗ is a derivation and i(Y ) is an anti-derivation, C∗(g, h) is closed
under multiplication. Moreover d is still an anti-derivation, so the wedge prod-
uct makes H∗(g, h) into an anti-commutative graded algebra. Because this wedge
product is associative, the algebra is associative. Combining this definition with
proposition 2.11 yields

Theorem 2.14 Let G be a compact connected Lie group, H a closed connected Lie
subgroup and g and h their respective Lie algebras. Then H∗

DR(G/H) and H∗(g, h)
are isomorphic as graded algebras.

We also want to define relative Lie algebra homology. For this sake we du-
alize the complex (C∗(g, h), d). By lemma 1.4, (

∧p(g/h)∗)h is the dual space of
coinvh

∧p(g/h), with respect to the representation that extends the adjoint repre-
sentation of h on g/h. The dual map ∂ of d is still given by the equations 2.5 and
2.6. Because d maps Cp(g, h) to itself, ∂ is well defined.

Definition 2.15 Let g be a Lie algebra and h a subalgebra. Put
Cp(g, h) = coinvh

∧p(g/h) and let ∂ : Cp(g, h) → Cp−1(g, h) be the linear map defined
by equation 2.5. The homology of the complex (C∗(g, h), ∂) is called the homology of
g relative to h.

A few basic properties of relative Lie algebra (co-)homology are collected in the
next proposition. The proofs are deferred to the more general proposition 2.24.

Proposition 2.16 Let g be a Lie algebra over a field F, h a subalgebra and K an
extension field of F. Then 1 - 5 and the homology analogues of 4 and 5 hold, and
the isomorphisms 3 and 4 are natural.

1. H0(g, h) = H0(g, h) = F

2. Hp(g, h) = Hp(g, h) = 0 for p > dim g/h

3. Hp(g, h) ∼= Hp(g, h)∗

4. Hp(g⊗F K, h⊗F K) ∼= Hp(g, h)⊗F K

5. If h is an ideal, H∗(g, h) = H∗(g/h) and the action of g on this space is trivial

For an infinite-dimensional Lie algebra g it is not necessarily true that Hp(g, h) ∼=
Hp(g, h)∗ because (g∗)∗ might not be isomorphic to g.
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We consider the simplest possible example. Take

G = SU(2) =
{
A ∈ GL(2,C) : detA = 1, A∗ = A−1

}
This group acts on P1(C) and H =

{(
eiθ 0
0 e−iθ

)
: θ ∈ R

}
is the stabilizer of

(1 : 0) ∈ P1(C). Hence G/H is diffeomorphic with P1(C). The Lie algebra of G is

g = su(2) = {A ∈ gl(2,C) : tr A = 0, A∗ = −A}

and H corresponds to the subalgebra h =

{(
λi 0
0 −λi

)
: λ ∈ R

}
. Notice that g

is definitely not a complex Lie algebra because

(
1 0
0 −1

)
/∈ g. In fact g has a real

basis consisting of

X0 =

(
i 0
0 −i

)
, X1 =

(
0 −1
1 0

)
, X2 =

(
0 i
i 0

)
,

One computes that

[X0, X1] = −2X2 , [X0, X2] = 2X1 , [X1, X2] = −2X0

Now we identify g/h with the span of X1 and X2. Clearly h · (g/h) contains X1 and
X2, so it equals g/h and C1(g, h) = 0. Furthermore

ad X0(X1 ∧X2) = [X0, X1] ∧X2 +X1 ∧ [X0, X2] = −2X2 ∧X2 +X1 ∧ 2X1 = 0

Hence h ·
∧2(g/h) = 0 and C2(g, h) =

∧2(g/h). From this we see that

H0(g, h) = R , H1(g, h) = 0 , H2(g, h) =
∧2(g/h) ∼= RX1 ∧X2

Let {f0, f1, f2} be the dual basis g∗, so that (g/h)∗ is the span of f1 and f2.

C1(g, h) = ((g/h)∗)h = {f ∈ (g/h)∗ : f([X0, X]) = 0 ∀ X ∈ g/h}
⊂ {f ∈ (g/h)∗ : f(X1) = f(X2) = 0} = 0

C2(g, h) =
(∧2(g/h)∗

)h
= {ω ∈

∧2(g/h)∗ : (ad X0)
∗ω = 0} =

∧2(g/h)∗

since ω(ad X0(X1 ∧X2)) = ω(0) = 0. It follows directly that

H0(g, h) = R , H1(g, h) = 0 , H2(g, h) =
∧2(g/h)∗ ∼= Rf1 ∧ f2

So Hp(g, h) and Hp(g, h) are naturally dual. Moreover we computed that the coho-
mology of P1(C) has dimHp

DR(P1(C)) = 1 for p = 0 or p = 2 and 0 otherwise. This
is in accordance with well known results from algebraic topology.
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2.4 Lie algebra cohomology with coefficients

For a paracompact Hausdorff space M and a principle ideal domain K, there exists
a notion of the sheaf cohomology H∗(M ;S), for a sheaf of K-modules S over M . It
is known ([25]) that if M a differentiable manifold, K = R and M×R is the constant
sheaf, then H∗

DR(M) ∼= H∗(M ;M×R). With this isomorphism one can more or less
generalize De Rham cohomology to a cohomology theory with coefficients in real
vector spaces.

Bearing this in mind it is natural to look for a sensible definition of Lie algebra
(co-)homology with coefficients in a vector space over the right field. Unfortunately
sheaf cohomology is not given by such nice formulas as De Rham cohomology, so we
cannot use the same procedure as in the last two sections. However if we look more
carefully, we can still find a clue.

Once again let G be a Lie group with Lie algebra g, and identify the tangent
space Tx(G) to G at x with g by means of the isomorphism dlx. For η ∈

∧p
g∗ and

f ∈ C∞(G) we can regard η⊗ f as an element of Ωp(G) by (η⊗ f)x = f(x)(dl−1
x )∗η.

This gives rise to an isomorphism

HomR
(∧p

g, C∞(G)
) ∼= ∧g∗ ⊗ C∞(G) → Ωp(G)

Now for left invariant vector fields X0, . . . , Xp ∈ g formula 2.3 becomes

d(η ⊗ f) =

p∑
i=0

(−1)iη(X0, . . . , X̂i, . . . , Xp)Xi · f

+
∑

0≤i<j≤p

(−1)i+jη([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xp)f

This uses not only that C∞(G) is a vector space but also that it is a g-module.
Therefore we will only have coefficients in Lie algebra modules.

Let H be a closed connected Lie subgroup of G with Lie algebra h ⊂ g. What
is the image of π∗ : Ω(G/H) →

∧p
g∗ ⊗R C∞(G) ? Because of condition 2.8,

im π∗ ⊂
∧p(g/h)∗ ⊗R C

∞(G). In view of equation 2.7 condition 2.9 becomes

η ⊗ f = r∗h(η ⊗ f) = Ad(h−1)∗η ⊗ f ◦ rh

The H-invariants of this last representation are the invariants of the associated
representation of h, which for Y ∈ h is η ⊗ f → η ⊗ Y f − (ad Y )∗η ⊗ f . So
the decomposable h-invariants satisfy η ⊗ Y f = (ad Y )∗η ⊗ f . We conclude that
im π∗ = Homh(

∧p
g, C∞(G)). This is enough to make a final definition of Lie algebra

cohomology, which generalizes the earlier two.

Definition 2.17 Let g be a Lie algebra, h a subalgebra and ρ : g → End V a
representation of g. Define Cp(g, h;V ) = Homh(

∧p
g/h, V ) and for X0, . . . , Xp ∈
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g, ω ∈ Cp(g, h;V )

dω(X0, . . . , Xp) =

p∑
i=0

(−1)iρXi(ω(X0, . . . , X̂i, . . . , Xp))

+
∑

0≤i<j≤p

(−1)i+jω([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xp)

Then (C∗(g, h;V ), d) is called the Koszul complex for g, h and V . Its cohomology
H∗(g, h;V ) is the cohomology of g relative to h with coefficients in V . For h = 0 we
get the complex (C∗(g;V ), d) and this computes the cohomology H∗(g;V ) of g with
coefficients in V .

In fact we only defined d as a linear map Cp(g;V ) → Cp+1(g;V ). To justify
the definition we must check that d maps Cp(g, h;V ) into Cp+1(g, h;V ) and that
d ◦ d = 0.

Lemma 2.18 Denote by LY the representation 1⊗ρY −(ad Y )∗⊗1 of g on Cp(g;V ).
Then ∀ω ∈ Cp(g;V )

d(dω) = 0 (2.12)

LY ω = d(i(Y )ω) + i(Y )dω (2.13)

d(LY ω) = LY (dω) = d(i(Y )dω) (2.14)

Proof. 2.12 is proved by a somewhat tiresome direct calculation. Write d = dV +dg,
where dV is the first sum in definition 2.17 and dg is the Koszul differential for
g (tensored with idV ). We know that dg ◦ dg = 0. Take X1, . . . , Xp+2 ∈ g, η ∈∧p

g∗ and v ∈ V . For notational simplicity let X i denote X1, . . . , X̂i, . . . , Xp+2 and
similarly for a multi-index I and XI .

dV dg(η ⊗ v)(X) =

p+2∑
k=1

(−1)k+1Xk ·
(
dg(η ⊗ v)(Xk)

)
=

p+2∑
k=1

(∑
i<j<k

+
∑

k<i<j

)
(−1)i+j+k+1η([Xi, Xj], X

ijk)Xk · v

+
∑

i<k<j

(−1)i+j+kη([Xi, Xj], X
ijk)Xk · v
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dgdV (η ⊗ v)(X) =
∑
i<j

(−1)i+jdV (η ⊗ v)([Xi, Xj], X
ij)

=
∑
i<j

(−1)i+jη(X ij)[Xi, Xj] · v

+
∑
i<j

(∑
k<i

+
∑
k>j

)
(−1)i+j+kη([Xi, Xj], X

ijk)Xk · v

+
∑

i<k<j

(−1)i+j+k+1η([Xi, Xj], X
ijk)Xk · v

dV dV (η ⊗ v)(X) =

p+2∑
i=1

(−1)iXi · dV (η ⊗ v)(X i)

=

p+2∑
i=1

(−1)iXi ·

((∑
j<i

−
∑
i<j

)
(−1)jη(X ij)Xj · v

)

=

(∑
j<i

−
∑
i<j

)
(−1)i+jη(X ij)Xi · (Xj · v)

=
∑
j<i

(−1)i+jη(X ij)(XiXj −XjXi) · v

=
∑
j<i

(−1)i+jη(X ij)[Xi, Xj] · v

Now we simply add these three terms and everything cancels. Since elements of the
form η ⊗ v span Cp(g;V ) this proves that d ◦ d = 0.
2.13 is less elaborate. Using the same notation and lemma 2.12 we obtain

d(i(Y )ω) + i(Y )dω = dg(i(Y )ω) + i(Y )dgω + dV (i(Y )ω) + i(Y )dV ω

= −(ad Y )∗ω + dV (i(Y )ω) + i(Y )dV ω

So it suffices to show that dV (i(Y )ω) + i(Y )dV ω = ρY ω, but this is a direct conse-
quence of the definitions.
2.14 follows from 2.12 and 2.13 2

Because Cp(g, h;V ) =
⋂

Y ∈h ker i(Y ) ∩ kerLY , formulas 2.13 and 2.14 directly

imply that dCp(g, h;V ) ⊂ Cp+1(g, h;V ).
Notice that if V = C∞(G) , LY is the Lie derivative with respect to Y and

formulas 2.13 and 2.14 are known for arbitrary manifolds, differential forms and
vector fields, e.g. [25], proposition 2.25.

If V = F is the trivial module the complex (C∗(g, h;V ), d) reduces to (C∗(g, h), d),
soH∗(g, h; F) = H∗(g, h). In this situation we have the wedge product on C∗(g, h;V )
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and on H∗(g, h;V ), and d is an anti-derivation. In general there is no such multi-
plication since we cannot multiply elements of V . To compensate for this we use
paired modules, a notion that was introduced in [14].

Definition 2.19 Two g-modules V1 and V2 are paired to a third module V3 if there
is a bilinear map λ : V1 × V2 → V3 such that

∀X ∈ g, v1 ∈ V1, v2 ∈ V2 : X · λ(v1, v2) = λ(X · v1, v2) + λ(v1, X · v2)

Equivalently we can require that λ : V1⊗V2 → V3 is an homomorphism of g-modules.

For example the trivial module F and an arbitrary module V are paired to V
with λ(c, v) = cv.

For paired modules we can combine λ and the wedge product on
∧

g∗ to a map
µ : C∗(g;V1)⊗ C∗(g;V2) → C∗(g;V3) by defining

µ(ω1 ⊗ v1, ω2 ⊗ v2) = ω1 ∧ ω2 ⊗ λ(v1, v2)

and extending linearly. This µ will the role of multiplication, and we will refer to it
as the wedge product for paired modules. It is more or less an anti-derivation:

Lemma 2.20 Let the g-modules V1 and V2 be paired to V3 and denote by di the
Koszul differential on C∗(g;Vi). Then for all ω1 ∈ Cp(g;V1), ω2 ∈ Cq(g;V2)

d3µ(ω1, ω2) = µ(d1ω1, ω2) + (−1)pµ(ω1, d2ω2)

Proof. It is enough to proof the lemma for ω1 = ω ⊗ v and ω2 = η ⊗ w with
ω ∈

∧p
g∗, η ∈

∧q
g∗ and v, w ∈ V . Let us write simply vw for λ(v, w). Using the

notation from lemma 2.18, di = dVi
+ dg and we know from lemma 2.3 that dg is an

anti-derivation. So we only have to show that

dV3(ω ∧ η ⊗ vw) = µ (dV1(ω ⊗ v), η ⊗ w) + (−1)pµ (ω ⊗ v, dV2(η ⊗ w)) (2.15)

Well, for X0, . . . , Xp+q ∈ g we have

µ (dV1(ω ⊗ v), η ⊗ w) (X0, . . . , Xp+q) =∑
σ∈Sp+q+1

ε(σ)

(p+ 1)!q!
dV1(ω ⊗ v)(Xσ0, . . . , Xσp) (η ⊗ w)(Xσ(p+1), . . . , Xσ(p+q)) =∑

σ∈Sp+q+1

ε(σ)

p!q!
ω(Xσ1, . . . , Xσp)Xσ0 · v η(Xσ(p+1), . . . , Xσ(p+q))w

(−1)pµ (ω ⊗ v, dV2(η ⊗ w)) (X0, . . . , Xp+q) =∑
σ∈Sp+q+1

(−1)pε(σ)

p!(q + 1)!
(ω ⊗ v)(Xσ0, . . . , Xσ(p−1)) dV2(η ⊗ w)(Xσp, . . . , Xσ(p+q)) =∑

σ∈Sp+q+1

ε(σ)

p!(q + 1)!
(ω ⊗ v)(Xσ1, . . . , Xσp) dV2(η ⊗ w)(Xσ0, Xσ(p+1), . . . , Xσ(p+q)) =∑

σ∈Sp+q+1

ε(σ)

p!q!
ω(Xσ1, . . . , Xσp)v η(Xσp, . . . , Xσ(p+q))Xσ0 · w
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dV (ω ∧ η ⊗ vw)(X0, . . . , Xp+q) =
p+q∑
i=0

(−1)i(ω ∧ η)(X i)Xi · (vw) =

p+q∑
i=0

(−1)i
∑

σ∈Si
p+q+1

ε(σ)

p!q!
(ω ⊗ η)(Xσ0, . . . , X̂i, . . . Xσ(p+q)) ((Xi · v)w + v(Xi · w)) =

∑
σ∈Sp+q+1

ε(σ)

p!q!
(ω ⊗ η)(Xσ1, . . . Xσ(p+q)) ((Xσ0 · v)w + v(Xσ0 · w))

Comparing the final three expressions establishes equation 2.15. 2

This product is well-defined in relative cohomology:

Lemma 2.21 Let the g-modules V1 and V2 be paired to V3 and let h be a subalgebra
of g.

µ
(
Cp(g, h;V1), C

q(g, h;V2)
)
⊂ Cp+q(g, h;V3)

Proof. Take arbitrary ω1 ∈ Cp(g, h;V1) and ω2 ∈ Cq(g, h;V2). Clearly µ(ω1, ω2) ∈
Hom(

∧p+q
g/h, V3). Using equation 2.13 and lemma 2.20 we have for all Y ∈ h:

LY µ(ω1, ω2) = d3i(Y )µ(ω1, ω2) + i(Y )d3µ(ω1, ω2)

= i(Y )µ(d1ω1, ω2) + (−1)pi(Y )µ(ω1, d2ω2) = 0

since ωi, diωi ∈ C∗(g, h;Vi). We conclude that µ(ω1, ω2) ∈ Homh(
∧p+q

g/h, V3). 2

Let us consider a typical case of the above situation. If A is an algebra and
ρ : g → EndA is a representation such that ρ(X) is a derivation for all X ∈ g, then
A and A are paired to A by the multiplication of A. Now µ is really a multiplication
on C∗(g;A) and lemma 2.20 shows that d is an anti-derivation. Consequently the
product of a cocycle and a coboundary is a coboundary, and H∗(g;A) inherits an
algebra structure from C∗(g;A).

Notice that if we want these multiplications to be associative, it is necessary and
sufficient that A is associative, for the wedge product (on

∧
g∗) is always associa-

tive. In this case C∗(g;A) and H∗(g;A) are graded rings. If on the top of this
A is commutative, then µ is anti-commutative. So now C∗(g;A) and H∗(g;A) are
associative anti-commutative graded algebras. We summarize this situation in the
next definition.

Definition 2.22 A g-module V with representation ρ is called multiplicative (for g)
if it is an associative commutative algebra and ρ(X) is a derivation for all X ∈ g.

Of course there exists also something as Lie algebra homology with coefficients
in a module. We deduce it (for the third and last time) by taking duals. If g and

V happen to be of finite dimension, the space Cp(g, h;V ∗) = (
∧p(g/h)∗ ⊗ V ∗)

h
is
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naturally dual to the h-coinvariants of
∧p(g/h)⊗ V . The dual map of d is

∂(X1 ∧ . . . ∧Xp ⊗ v) =
∑p

i=1(−1)iX1 ∧ . . . ∧ X̂i ∧ . . . ∧Xp ⊗ ρXi v

+
∑

1≤i<j≤p(−1)i+j[Xi, Xj] ∧X1 ∧ . . . ∧ X̂i ∧ . . . ∧ X̂j ∧ . . . ∧Xp
(2.16)

This ∂ is well defined and squares to zero precisely because it is the transpose of d.

Definition 2.23 Let g be a Lie algebra, h a subalgebra and ρ : g → End V a repre-
sentation. The complex (C∗(g, h;V ), ∂) has spaces Cp(g, h;V ) = coinvh

(∧p(g/h) ⊗
V
)

and the linear map ∂ : Cp(g, h;V ) → Cp−1(g, h;V ) is defined by equation 2.16.
The homology H∗(g, h;V ) of this complex is called the homology of g relative to h
with coefficients in V .

Observe that if V = F is the trivial module, all these notions reduce to definition
2.13 of the Lie algebra homology of g relative to h (without coefficients).

Now we state and prove the generalization of proposition 2.16 to (co-)homology
with coefficients:

Proposition 2.24 Let g be a Lie algebra over a field F, h a subalgebra, V and Vi

g-modules and K an extension field of F. Then 1 - 6 and the homology analogues of
4 - 6 hold, and the isomorphisms 3,4 and 6 are natural.

1. H0(g, h;V ) = V g and H0(g, h;V ) = V/g · V

2. Hp(g, h;V ) = Hp(g, h;V ) = 0 for p > dim g/h

3. If V or g/h is finite-dimensional, Hp(g, h;V ∗) ∼= Hp(g, h;V )∗

4. Hp(g⊗F K, h⊗F K;V ⊗F K) ∼= Hp(g, h;V )⊗F K

5. If h is an ideal and V = V h, H∗(g, h;V ) = H∗(g/h;V ) and the action of g on
this space is trivial

6. Hp(g, h;
⊕

i Vi) ∼=
⊕

iH
p(g, h;Vi)

Proof.

1. For v ∈ V = C0(g, h;V ) and X ∈ g we have dv(X) = X ·v, so Z0(g, h;V ) = V g.
Also X⊗v ∈ C1(g, h;V ), ∂(X⊗v) = X ·v and such elements span C1(g, h;V ),
so B0(g, h;V ) = g · V .

2. For p > dim g/h,
∧p(g/h) and

∧p(g/h)∗ are 0, so certainly Hp(g, h;V ) and
Hp(g, h;V ) are 0.

3. Under this assumptions,
∧p(g/h)∗ ⊗ V ∗ is naturally isomorphic to the dual

space of
∧p(g/h) ⊗ V . So by lemma 1.4 Cp(g, h;V ∗) =

(∧p(g/h)∗ ⊗ V ∗)h is

naturally isomorphic to the dual space of Cp(g, h;V ) = coinvh

(∧p(g/h)⊗ V
)
.

Because d is the transpose map of ∂, the statement reduces to a simple property
of transpose maps.
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4. Obvious from the linearity of d and ∂.

5. Since h acts trivially on g/h, the complexes for g, h and V reduce to the com-
plexes for g/h and V , so the first statement holds in both the homology and the
cohomology case. If X ∈ g and ω ∈ Zp(g, h;V ), LXω = d(i(X)ω) by formula
2.13. However

∀Y ∈ h : LY i(X)ω = ρ(Y )(i(X)ω)− (adY )∗(i(X)ω) = 0

because ρ : g → EndV is 0 on h and because h is an ideal. So i(X)ω ∈
Cp−1(g, h;V ) and LXω ∈ Bp(g, h;V ). Therefore g acts trivially on H∗(g, h;V ),
and by duality it also acts trivially on H∗(g, h;V ).

6. For all p there is a natural decomposition Cp(g, h;
⊕

i Vi) ∼=
⊕

iC
p(g, h;Vi) and

d preserves this decomposition since g · Vi ⊂ Vi. The homology case is proved
in the same way. 2

If V is a g-module, we can make g⊕ V into a Lie algebra with commutator

[(X, v), (Y,w)] = ([X,Y ], X · w − Y · v)

We call this Lie algebra the semidirect product of g and V and denote it by g n V .

Proposition 2.25 Let g be a Lie algebra, h a subalgebra and V a g-module. There
are natural isomorphisms

Hn(g n V, h) ∼=
⊕

p+q=n

Hp(g, h;
∧qV )

Hn(g n V, h) ∼=
⊕

p+q=n

Hp(g, h;
∧qV ∗)

Proof. For the complex that computes H∗(g n V, h) we have natural isomorphisms

Cn(g n V, h) = coinvh

∧n(g n V/h) ∼= coinvh

( ⊕
p+q=n

∧p(g/h)⊗
∧qV

)
∼=

⊕
p+q=n

coinvh

(∧p(g/h)⊗
∧qV

)
=
⊕

p+q=n

Cp(g, h;
∧qV )

Using the notation from the proof of lemma 2.18, for decomposable X ∈
∧p

g and
v ∈

∧q V :

∂(X ∧ v) =
∑

1≤i<j≤p

(−1)i+j[Xi, Xj] ∧X ij ∧ v +

p∑
i=1

q∑
j=1

(−1)p+i+jXi · vj ∧X i ∧ vj

= ∂g(X) ∧ v +

p∑
i=1

(−1)iX i ∧Xi · v = ∂g(X) ∧ v + ∂Vq V (X ∧ v)
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This proves the statement about Hn(g n V, h). As for the cohomology case,

Cn(g n V, h) =
(∧n(g n V/h)∗

)h
=
(∧n((g/h)∗ ⊕ V ∗))h

∼=
⊕

p+q=n

(∧p(g/h)∗ ⊗
∧qV ∗)h =

⊕
p+q=n

Cp(g, h;
∧qV ∗)

and a computation similar to that above shows that

∀ω ∈
∧p(g/h)∗ ⊗

∧qV ∗ : dgnV ω = dg,
Vq V ∗ω

Thus we get the desired expression for Hn(g n V, h). 2

2.5 Isomorphism theorems

In this section we will use the Hochschild-Serre spectral sequence to derive various
isomorphism theorems in Lie algebra cohomology. Most of these theorems stem
from the original article by Hochschild and Serre [14], which in turn generalized the
results of Koszul [18] to cohomology with coefficients. Throughout g is a Lie algebra
over a field F of characteristic 0, h is a subalgebra and V is a g-module.

First we introduce the Hochschild-Serre spectral sequence for g, h and V . Define

F pCr(g;V ) = {ω ∈ Cr(g;V ) : ∀Xi ∈ h i(X1) · · · i(Xr+1−p)ω = 0}

Clearly F pC∗(g;V ) is a graded subspace of C∗(g;V ) and

Cr(g;V ) = F 0Cr(g;V ) ⊃ F 1Cr(g;V ) ⊃ · · · ⊃ F rCr(g;V ) ⊃ F r+1Cr(g;V ) = 0

It follows directly from the definition of d that d (F pCr(g;V )) ⊂ F pCr+1(g;V ) so
this is a filtration on C∗(g;V ). By a general construction (see [2], section 14) there
exists a spectral sequence (E∗∗

s , ds)
∞
s=0 that converges to H∗(g;V ).

Let us clarify these abstract statements. We define

Ep,q
0 = F pCp+q(g;V )/F p+1Cp+q(g;V )

and d0 : Ep,q
0 → Ep,q+1

0 the map induced by the Koszul differential d, for g and V .
Obviously d0 ◦ d0 = 0, so (E∗∗

0 , d0) is a differential complex with a double grading.
We take E∗∗

1 to be the cohomology of (E∗∗
0 , d0); it still has a double grading. Now

d induces a map d1 : Ep,q
1 → Ep+1,q

1 . We continue in this way and obtain a whole
sequence of double graded differential complexes (E∗∗

s , ds), where
ds : Ep,q

s → Ep+s,q+1−s
s is still induced by the Koszul differential. It is not unusual

that there exists a N ∈ N such that for all s ≥ N the maps ds are 0 and hence all
the spaces E∗∗

s with s ≥ N coincide. In that case we say that the spectral sequence
degenerates at E∗∗

N and call the limit term E∗∗
∞ . The filtration of C∗(g;V ) gives a

filtration on H∗(g;V ) by taking F pHr(g;V ) the subspace of all cohomology classes
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that contain a cocycle in F pCr(g;V ). Now we can construct the double graded
vector space associated with this filtration :

GF ∗(H∗(g;V )) =
⊕
p,q

F pHp+q(g;V )/F p+1Hp+q(g;V )

The big idea behind spectral sequences is the following. The convergence means that
E∗∗
∞
∼= GF ∗(H∗(g, h;V )). We calculate the first few terms of the spectral sequence

(for example E0 , E1 and E2) and derive properties of E∞ from this. Because E∞
is closely related to H∗(g;V ), many of these properties will carry over to H∗(g;V ).

We also remark that if V is multiplicative for g, all these things are multiplicative.
For then F pC∗(g;V ) is an ideal in C∗(g;V ), all ds are anti-derivations and the wedge
product makes each term E∗∗

s into an associative, anti-commutative algebra.
Hochschild and Serre computed the first terms of their spectral sequence in sec-

tions 2 and 3 of [14]:

Lemma 2.26 The first terms of the Hochschild-Serre spectral sequence for g, h and
V are

Ep,q
0

∼= Cq
(
h; HomF

(∧p(g/h), V
))

Ep,q
1

∼= Hq
(
h; HomF

(∧p(g/h), V
))

Ep,0
2

∼= Hp(g, h;V )

The isomorphisms are obtained by the restriction of linear functions on
∧p+q

g to∧q
h⊗
∧p

c where c is a vector space complement to h in g. Moreover if h is an ideal
then

Ep,q
1

∼= Cp
(
g/h;Hq(h;V )

)
Ep,q

2
∼= Hp

(
g/h;Hq(h;V )

)
Let us recall two definitions from Koszul [18].

Definition 2.27 A subalgebra h of g is reductive in g if the adjoint representation
of h on g is completely reducible.

The subalgebra h is homologous to 0 (in g) if the natural map H∗(g) → H∗(h) is
not surjective, or equivalently, if the natural map H∗(h) → H∗(g) is not injective.

For example if g is a finite-dimensional semisimple Lie algebra and h is a CSA,
then we see from the root space decomposition that h is reductive in g. It follows
from theorem 1.10 that a Lie algebra is reductive if and only if it is reductive in
itself, which explains this terminology. In general if h is reductive in g and t is a
subalgebra of g containing h, then clearly t is also a completely reducible h-module,
so h is also reductive in t.

We are much more interested in subalgebras that are not homologous to 0, than
in those that are homologous to 0. We already met an example; if g = h n a
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with a an ideal, then h is not homologous to 0 in g. For suppose we have a cycle
x ∈ Zp(h)∩Bp(g). Let {Hi}i and {Aj}j be bases of h and a, and take an y ∈ Cp+1(g)
with dy = x. Write y in terms of the associated basis of

∧
g, let y1 be the sum of

all terms with only Hi’s and let y2 be the sum of all terms with an Aj. Because a is
an ideal, dy2 is a sum of terms that involve an Aj. So necessarily dy2 = x− dy1 = 0
and x = dy1 ∈ Bp(h). Thus the natural map H∗(h) → H∗(g) is indeed injective.

The following factorization theorem is the obvious generalization of theorem 13
of [14] to reductive subalgebras; the proofs are almost the same.

Theorem 2.28 Suppose that g and V are finite-dimensional, g = h n a where a
is an ideal, h is reductive in g and V is completely reducible as h-module. Then
naturally, as graded vector spaces

H∗(a;V )g = H∗(a;V )h ∼= H∗(g, h;V ) (2.17)

H∗(h)⊗H∗(a;V )h ∼= H∗(g;V ) (2.18)

where the second isomorphism is given by inclusion followed by the wedge product
for the paired modules F and V .

Proof. Since H∗(a;V ) is a trivial a-module, H∗(a;V )g = H∗(a;V )h. We know
that H∗(g, h;V ) is a trivial h-module and that it is computed by the complex(
(
∧

(g/h)∗ ⊗ V )h, d
)
, which is naturally isomorphic to the complex

(
(
∧

a∗ ⊗ V )h, d
)
.

This gives rise to a (natural) map φ : H∗(g, h;V ) → H∗(a;V )h.
The assumptions together with theorem 1.2 imply that Cp(a;V ) =

∧p
a∗ ⊗ V is

a completely reducible h-module. By formula 2.14 the action of h commutes with
d, so there is a decomposition of h-modules Cp(a;V ) = d (Cp−1(a;V )) ⊕ U . Every
cohomology class in Hp(a;V ) has exactly one representative cocycle in U . Now we
decompose U as Uh ⊕ U ′, so that every element of Hp(a;V )h has a representative
in Uh ⊂ Cp(a;V )h. This means that φ is surjective. We also have a h-module
decomposition Cp−1(a;V ) = Zp−1(a;V ) ⊕W and this implies Bp(a;V ) = dW . If
f ∈ W and df ∈ Bp(a;V )h then formula 2.14 tells us that ∀Y ∈ h : LY f ∈ Zp−1.
But also LY f ∈ W so LY f = 0 and f ∈ W h. It follows that φ is also injective and
equation 2.17 is proved.

Now consider the Hochschild-Serre spectral sequence for g, a and V . By lemma
2.26 the second term is Ep,q

2
∼= Hp(h;Hq(a;V )). By theorem 10 of [14] the right

hand side is isomorphic to Hp(h)⊗Hq(a;V )h. Looking again at lemma 2.26 we see
that the isomorphism to E2 is given by the inclusions (induced by the decomposition
g = h n a) of both factors into H∗(g) and H∗(g;V ), followed by the wedge product
for the paired modules F and V . Now we show that this sequence already converges
at E∗,∗

2 . Let ω ⊗ η ∈ Zp(h) ⊗ Zq(g, h;V ) be a representative of an element of Ep,q
2 .

Using the wedge product for paired modules, ω⊗ η can be considered as an element
of C∗(g;V ). By lemma 2.20 and since h is complementary to an ideal

d(ω ⊗ η) = dgω ⊗ η + (−1)pω ⊗ dη = daω ⊗ η = 0
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Such elements span Z∗(h) ⊗ Z∗(g, h;V ), so every element of E∗,∗
2 can be repre-

sented by a cocycle in C∗(g;V ). Consequently d2 = 0 and E3 = E2. But for E3

the same is valid, so also d3 = 0 and E4 = E3 = E2. With induction we con-
clude that E2 = E∞ ∼= GF ∗(H∗(g;V )). Now the image of the multiplication map
Hp(h) ⊗ Hq(a;V )h → E2 actually lies in H∗(g;V ), so it must be an isomorphism
onto H∗(g;V ). 2

The major part of sections 6 and 7 of [14] is summarized in the next two results.
For the trivial module V = F they can also be found in [18].

Proposition 2.29 Let dp : Cp(g, h;V ) → Cp+1(g, h;V ) be the Koszul differential.
Suppose that g and V are finite-dimensional, h is reductive in g and that V is
completely reducible for h. Then

Ep,q
1

∼= Hq(h)⊗ Cp(g, h;V )

dp,q
1 = (−1)q ⊗ dp

Ep,q
2

∼= Hq(h)⊗Hp(g, h;V )

where the isomorphisms are induced by the wedge product for the paired modules F
and V .

Theorem 2.30 Assume the same as in proposition 2.29, and that h is not homol-
ogous to 0. There exists an homomorphism of graded algebras φ : H∗(h) → H∗(g)
such that rφ = id, where r is induced by the restriction map from C∗(g) to C∗(h).
For such φ

µ ◦ (φ⊗ 1) : H∗(h)⊗H∗(g, h;V ) → H∗(g;V )

is an isomorphism of graded vector spaces.

It is natural to compare this theorem with theorem 2.28. 2.30 is more general since
h does not have to be complementary to an ideal. On the other hand the isomorphism
from 2.28 is natural, and it can be used without relative cohomology. Finally 2.28
can be generalized to some infinite-dimensional Lie algebras and modules (as we will
see in chapter 4), while 2.30 cannot.

Proposition 2.29 leads to a generalization a well known theorem:

Theorem 2.31 Assume the same as in proposition 2.29, and that V is completely
reducible as a g-module.

H∗(g, h;V ) ∼= H∗(g, h)⊗ V g

Proof. By proposition 2.24.6 it is sufficient to prove that if V is irreducible and
nontrivial as a g-module, then H∗(g, h;V ) = 0. For h = 0 this is theorem 10
of [14]. So the spectral sequence for g, h and V converges to 0. By proposition
2.29 Ep,q

2 = Hq(h) ⊗ Hp(g, h;V ). Now we prove by induction to p that the row
Ep,∗

2 = H∗(h)⊗Hp(g, h;V ) is 0.
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For p = 0 this is proposition 2.24.1.
Since ds(E

p,0
s ) ⊂ Ep+s,1−s

s = 0 for s ≥ 2, Ep,0
∞ = 0 is a quotient of Ep,0

2 =
Hp(g, h;V ). In fact it is a quotient of Ep,q

2 by the images of elements of lower
rows. However by the induction hypothesis all these rows are 0, so we must have
Ep,0

2 = Hp(g, h;V ) = 0 and Ep,∗
2 = H∗(h)⊗Hp(g, h;V ) = 0 2

If t is a subalgebra of h, there exists a spectral sequence (also named after
Hochschild and Serre) that converges to H∗(g, t;V ). It constructed by starting
with the subcomplex (C∗(g, t), d) of (C∗(g), d) and taking the same steps as we did
without t. The proof of lemma 2.26 in [14] goes through in the same way and yields

Lemma 2.32 The first terms of the Hochschild-Serre spectral sequence for g, h, t
and V are

Ep,q
0

∼= Cq
(
h, t; HomF

(∧p(g/h), V
))

Ep,q
1

∼= Hq
(
h, t; HomF

(∧p(g/h), V
))

Ep,0
2

∼= Hp(g, h;V )

The analogue of proposition 2.29 is

Proposition 2.33 Suppose that g and V are finite-dimensional, h and t are re-
ductive in g and that V is completely reducible for h and t. If dp : Cp(g, h;V ) →
Cp+1(g, h;V ) is the Koszul differential then

Ep,q
1

∼= Hq(h, t)⊗ Cp(g, h;V )

dp,q
1 = (−1)q ⊗ dp

Ep,q
2

∼= Hq(h, t)⊗Hp(g, h;V )

Proof. From lemma 2.32 and theorem 2.31 we get

Ep,q
1

∼= Hq
(
h, t; HomF

(∧p(g/h), V
)) ∼= Hq(h, t)⊗ Homh

(∧p(g/h), V
)

= Hq(h, t)⊗ Cp(g, h;V )

The differential dp,q
1 is induced by the same d : Cp+q(g;V ) → Cp+q+1(g;V ) as was

dp,q
1 in lemma 2.32. Therefore it must also equal (−1)q ⊗ dp. The statement for E2

is now obvious. 2

I do not know whether theorem 2.30 can be generalized to the situation t ⊂ h ⊂ g;
the proofs are badly suited for that.
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Chapter 3

The cohomology of compact Lie
groups

In this chapter we will compute the cohomology rings of compact Lie groups in
terms of their exponents. As a consequence we also obtain the cohomology rings of
all real and complex reductive Lie algebras.

In earlier times this result was not so much formulated with De Rham cohomology,
but in terms of the Poincaré polynomial and the Betti numbers of a Lie group. In
this form it was first proved by a case by case consideration of all simple Lie groups,
where of course the exceptional ones were most problematic. The first general proof
is probably due to Chevalley [5], but he refers to discoveries by A. Weil which I
could not retrace. Other proofs come from Borel [1], Leray [19] and Reeder [23].

Studying these proofs it struck to me that they used difficult results from alge-
braic topology and often ignored Lie algebras. Therefore I set out to calculate the
cohomology of a finite-dimensional complex reductive Lie algebra in a completely
algebraic way, translating the above proofs to the language of Lie algebras. This
turned out to be difficult, so I used compact Lie groups a few times.

Throughout this chapter G is a connected compact Lie group with Lie algebra
g, T is a maximal torus of G and t = h ⊕ Z(g) the corresponding CSA. The root
system and the Weyl group are denoted by R and W , and we fix a basis ∆ with
positive system R+. Note that t is reductive in g because T is compact.

We will first compute the cohomology of G/T , then H∗
DR(G) ∼= H∗(g) and finally

the cohomology of reductive Lie algebras over subfields of C.

3.1 G/T

The homogeneous space G/T is the quotient of compact Lie group by a closed
connected subgroup, so it is compact and orientable. By theorem 2.14 H∗

DR(G/T ) ∼=
H∗(g, t). First of all we want to find the dimension of this algebra. This can be
done using the Bruhat decomposition G/T =

⊔
w∈W Xw, where each Schubert cell
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Xw has dimension 2l(w). Then cellular homology theory implies that the Poincaré
polynomial of G/T is

∑
w∈W t2l(w) and the required dimension is |W |. However we

use another approach, inspired by lemme 26.1 of Borel[1].

Lemma 3.1 Hp(g, t) = 0 for odd p.

Proof. We use induction to both dim g and rank g = dim t. For every rank, we have
the basic situation rank g = dim g. Then g = t is abelian and H∗(g, t) is computed
by the complex ((

∧
(g/g)∗)g , d). Clearly H∗(g, t) = H0(g, t) = R in this case.

Now we assume that the lemma is true for all pairs (g′, t′) with dim g′ < dim g and
dim t′ ≤ dim t. Since the computing differential complexes are the same, H∗(g, t) ∼=
H∗([g, g], h). If Z(g) 6= 0 thenHp([g, g], h) = 0 for odd p by the induction hypothesis.
Therefore we assume that Z(g) = 0 so that g is semisimple. By the compactness
of G and by theorem 2.13.2 of [24], the kernel of t → Aut g : X → exp(adX) =
Ad(expX) is discrete. So we can choose X0 ∈ t such that σ := exp(adX0) 6= idg

but σ2 = exp(ad 2X0) = idg. Let A be (the identity component of) the centralizer
of expX0 in G. Since expX0 /∈ Z(G), A is a proper Lie subgroup of G. Moreover A
is closed, hence compact, and so its Lie algebra a = {X ∈ g : σX = X} is a proper
reductive subalgebra of g. Note that t ⊂ a.

Let us show that Hp(g, a) = 0 for odd p. Since a is reductive in g we can find a a-
module decomposition g = a⊕ c. (For example we could take for c the orthoplement
of a with respect to the Killing form of g.) Then the complex ((

∧
c∗)a, d) computes

H∗(g, a). Now σ2 = idg, σc ⊂ c and σY 6= Y for Y ∈ c, so σ
∣∣
c
= −idc. Furthermore

σ is in the adjoint group of a, so every element of (
∧

c∗)a is invariant under σ. We
conclude that (

∧
c∗)a and H∗(g, a) are 0 in odd degrees.

Now we can apply proposition 2.33 with the trivial module V = R. It says that
there is a spectral sequence converging to H∗(g, t) with Ep,q

2
∼= Hq(a, t) ⊗Hp(g, a).

But by the induction hypothesis Hq(a, t) = 0 for odd q, and we just saw that
Hp(g, a) = 0 for odd p. The limit term Ep,q

∞ is a subquotient of Ep,q
2 , so it can only

be nonzero if p and q are even. Since the degree of Ep,q
∞ is p + q and the sequence

converges to H∗(g, t), the lemma is proved. 2

Proposition 3.2 Let χ denote the Euler characteristic.

dimH∗
DR(G/T ) = χ(G/T ) = |W |

Proof. By theorem 2.14 and lemma 3.1 the Euler characteristic of G/T is

χ(G/T ) =
∑
p≥0

(−1)p dimHp
DR(G/T ) =

∑
q≥0

dimH2q
DR(G/T ) = dimH∗

DR(G/T )

Recall the Poincaré-Hopf index theorem [2]. It says that if V is a smooth vector
field on G/T with only finitely many zeros, then χ(G/T ) is the sum of all the indices
of these zeros. A torus is a topologically cyclic group and exp : t → T is surjective,
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so we can find Y ∈ t such that the powers of exp Y constitute a dense subgroup
of T . There is a natural identification of the tangent space of G/T at the point gT
with g/Ad(g)t. We define our vector field in a particularly simple way, by putting
V (gT ) = Y ∈ g/Ad(g)t for all g ∈ G. The zeros of V are easily identified:

V (gT ) = 0 ⇐⇒ Y ∈ Ad(g)t ⇐⇒ expY ∈ gTg−1

⇐⇒ ∀n ∈ Z : g−1(expY )ng ∈ T
⇐⇒ g ∈ NG(T ) ⇐⇒ gT ∈ NG(T )/T

First show that the index of the zero T is 1, and then that all the indices are
equal. Let m be the orthoplement of t with respect to the Killing form of g; it is
the direct sum of all root spaces gα with α 6= 0. It follows from theorem 2.10.1
of [24] that there are neighborhoods U1 of 0 in m and U2 of T in G/T such that
exp : U1 → U2 : X → (expX)T is a diffeomorphism. We trivialize the tangent
bundle of U2 by the isomorphisms

Ad(expX) = exp(adX) : TT (G/T ) = g/t → g/Ad(expX)t = TexpX(G/T )

Now we have for X ∈ U1:

V (expX) = exp(ad −X)Y =
∞∑
i=0

(ad −X)iY

i!

= Y − [X,Y ] + h.o.t. = [Y,X] + h.o.t. ∈ g/t ∼= m

So locally V looks like the vector field V ′(X) = [Y,X] on m. By proposition 1.11
ad Y ∈ End g is semisimple and has pure imaginary eigenvalues. The kernel of
adY is the Lie algebra of the centralizer of expY in G. So by the above this kernel
is simply t and adY is a nonsingular real linear transformation of m. Thus the
eigenvalues of adY come in complex conjugate pairs and det ad Y )

∣∣
m
> 0. Therefore

the indices of V ′ at 0 ∈ m and of V at T ∈ G/T are 1.
If wT ∈ NG(T )/T is another zero of V , the map gT → gwT is an orientation

preserving diffeomorphism from U2 onto some neighborhood of wT in G/T . More-
over Ad(w)(t) = t so TgwT (G/T ) and TgT (G/T ) are both naturally isomorphic to
g/Ad(g)t. Thus the index of V at wT equals the index of V at T , which we saw is
1.

Now the Poincaré-Hopf index theorem tells us that χ(G/T ) is the number of
zeros of V , and by theorem 1.27 there are exactly |W | zeros. 2

The Weyl group W ∼= NG(T )/T acts on G/T by w · gT = gw−1T . So if ω ∈
Ωp(G/T ) and X1, . . . , Xp are vector fields on G/T :

w∗ω(X1, . . . , Xp) = ω(dr−1
w X1, . . . , dr

−1
w Xp)(gw

−1T )

If ω and all the Xi are G-invariant, this expression is the same in every point of
G/T and in fact equals

ω(dlwdr
−1
w X1, . . . , dlwdr

−1
w Xp) = ω(Ad(w−1)X1, . . . ,Ad(w−1)Xp)

57



so in this case w∗ω = Ad(w−1)∗ω. In section 2.3 we proved that we can compute the

De Rham cohomology of G/T with the complex C∗(g, t) = (
∧

(g, t)∗)t = (
∧

(g/t)∗)T

of G-invariant forms. So the Weyl group acts on H∗
DR(G/T ) and on C∗(g/t) by

ω → Ad(w−1)∗ω, even though it does not act on g/t or on
∧

(g/t)∗.
Let us consider the map

ψ : g∗ →
∧2

g∗ : ξ → dξ

Since
∧2

g∗ is in the center of
∧

g∗ we can extend ψ to an algebra homomorphism
ψ : Sg∗ →

∧
g∗. For all ξ ∈ g∗, X, Y ∈ g, g ∈ G:

Ad(g)∗(ψξ)(X, Y ) = ψξ(Ad(g)X,Ad(g)Y ) = ξ
(
[Ad(g−1)Y,Ad(g)X]

)
= ξ (Ad(g)[Y,X]) = ψ(Ad(g)∗ξ)(X, Y )

so ψ is a homomorphism of G-modules.
If H ∈ t and X ∈ g, [H,X] has no component in t (relative to the orthogonal

decomposition g = t⊕m), so for all ξ ∈ t∗ and Y ∈ g:

ψξ(H,X) = ξ([X,H]) = 0

ψξ(adH · (X ∧ Y )) = ψξ ([H,X] ∧ Y +X ∧ [H, Y ])

= ξ([Y, [H,X]] + [[H, Y ], X])

= ξ([[X,Y ], H]) = 0

Therefore ψ(t∗) ⊂ Z2(g, t) and ψ(St∗) ⊂ Z∗(g, t). Since T acts trivially on St∗ and
on Z∗(g, t) ⊂ C∗(g, T ), ψ : St∗ → Z∗(g, t) is a homomorphism of W -modules.

As in section 1.5, let J be the ideal of St∗ generated by (S+t∗)W . According to
Chevalley [5], the proof of the next lemma stems from A. Weil.

Lemma 3.3 J ⊂ kerψ

Proof. Since ψ is an algebra homomorphism and ψ(Z(g)∗) = 0, it suffices to show
that ψ

(
(S+h∗)W

)
= 0 for semisimple g. Let {ξi : 1 ≤ i ≤ l− r} be a basis of h∗ and

{ξi : l + 1− r ≤ i ≤ n} a basis of m. Take an arbitrary f ∈ (Sph∗)W , where p > 0.
By theorem 1.29 it can be extended in a unique way to a G-invariant polynomial
f̄ ∈ (Spg∗)G. Express f̄ in terms of these ξi, let ∂if̄ be the partial derivative of f̄
with respect to ξi and put

η :=
1

p

n∑
i=1

ψ(∂if̄)ξi ∈
∧2p−1

g∗

With a routine calculation one verifies that η is G-invariant. Because ψ(∂if̄) is
closed we have

dη =
1

p

n∑
i=1

ψ(∂if̄)dξi =
1

p
ψ

(
n∑

i=1

∂if̄ ξi

)
= ψ(f̄)
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However by theorem 2.9 every G-invariant form is closed, so ψ(f̄) = dη = 0.

Let us carry over the Killing to g∗ and extend this multilinearly to a nondegener-
ate bilinear form on Sg∗ (see also chapter 1). Since the restriction to g∗ is negative
definite, the restriction to Spg∗ is definite. Clearly Sh∗ is orthogonal to the ideal of
all polynomials that are 0 on h, which is generated by m∗. Therefore

〈ψ(f), ψ(f)〉 =
〈
ψ(f), ψ(f − f̄)

〉
= 0

and we conclude that ψ(f) = 0. 2

With these preliminaries we are able to obtain a very satisfactory description of
the cohomology of G/T . This is due to Borel [1], but we use the proof of Reeder
[23].

Theorem 3.4 The map ψ induces an algebra isomorphism

H ∼= St∗/J → H∗(g, t) ∼= H∗
DR(G/T )

This isomorphism doubles the degrees and intertwines the actions of the Weyl group.

Proof. Let ψ̄ : St∗/J → H∗(g, t) be the induced algebra homomorphism. We already
observed that ψ : St∗ → Z∗(g, t) is a homomorphism of W -modules, so this certainly
holds for ψ̄. By theorem 1.31 (St∗)/J ∼= H as vector spaces and by corollary 1.32
and proposition 3.2

dim(St∗)/J = dimH = |W | = dimH∗(g, t)

Thus the theorem is proved once we show that the kernel of ψ̄ is precisely J , or
equivalently that the restriction of ψ̄ to H is injective. Our map ψ̄ doubles the
degrees, so it sufficient to prove that ker ψ̄ ∩Hp = 0 or ker ψ̄ ∩Spt∗ ⊂ J for every p.
We do this by induction, starting in the top degree ν := |R+|.

In section 1.5 we showed that Hν = Rπ, where π =
∏

α>0 iα. Since G/T is
connected, compact and orientable and has dimension |R| = 2ν, dimH2ν

DR(G/T ) =
1. By proposition 2.16.5 also dimH2ν(g, t) = 1.

Now we use the basis of theorem 1.17. Let α1, . . . , αν be an ordering of the positive
roots, Hj = iHαj

∈ h, Xj = Yαj
and Xi+ν = Y−αi

. It is clear that X1∧ · · ·∧X2ν is a
nonzero element of H2ν(g, t). Again by proposition 2.16.5, if ψπ(X1∧· · ·∧X2ν) 6= 0,
then ψ̄π 6= 0. Observe that [Xj, Xi+ν ] /∈ m for j 6= i and [Xj, Xj+ν ] = 2Hi. Using
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this and the conventions from section 1.5 we compute

ψπ(X1, X1+ν , . . . , Xν , X2ν) =
∑

τ∈S2ν

ε(τ)idα1(Xτ1, Xτ(1+ν)) · · · idαν(Xτν , Xτ(2ν))

=
∑

τ∈S2ν

ε(τ)iα1([Xτ(1+ν), Xτ1]) · · · iαν([Xτ(2ν), Xτν ])

= 2ν
∑
τ∈Sν

iα1(−2Hτ1) · · · iαν(−2Hτν)

= 4ν
∑
τ∈Sν

α1(Hτ1) · · ·αν(Hτν)

= 4ν∂H1 · · · ∂Hνπ = 4ν 〈H1 · · ·Hν , Dπ〉

By definition Diαj
is a nonzero scalar multiple of Hj, so Dπ is a nonzero scalar

multiple of H1 · · ·Hν . Since this bilinear form is positive definite on S(ih), the
above expression is not zero. Therefore ker ψ̄ ∩Hν = 0.

Now let k < ν. Since ψ̄ is a homomorphism of W -modules, V := ker ψ̄ ∩ Hk is
a W -submodule of Hk. Assume that V 6= 0. Because the degree of elements of V
is too low, they do not transform by the sign character of W . So we can find an
α ∈ R such that σα does not act as −1 on V . Because σ2

α = 1 we can decompose
V = V+ ⊕ V− in the σα-eigenspaces for 1 and −1, where V+ 6= 0. Pick f ∈ V+ \ 0.
Clearly iαf ∈ ker ψ̄ ∩ Sk+1t∗, so by the induction hypothesis iαf ∈ Jk+1. We also
decompose H = H+ ⊕ H− in σα-eigenspaces. Reasoning as in equation 1.16, we
see that the elements of H− are divisible (in St∗) by iα. Let iαp1, . . . , iαpm be a
basis of H−. We took f σα-invariant, so σα(iαf) = −iαf . It follows from theorem
1.31 that the multiplication map H ⊗ (S+t∗)W → J is an isomorphism, so we can
write iαf =

∑m
j=1 iαpjfj with fj ∈ (S+t∗)W . Consequently f =

∑m
j=1 pjfj ∈ J ; but

this contradicts the choice of f ∈ Hk \ 0. Therefore our assumption that V 6= 0 is
incorrect and V = ker ψ̄ ∩Hk = 0. 2

3.2 G and g

Now we come to the computation of the cohomology of a compact Lie group G.
Just as for G/T , we must first compute the dimension of this cohomology algebra.

Lemma 3.5 dimH∗
DR(G) = 2l where l = dimT is the rank of G.

Proof. By theorem 2.9 H∗
DR(G) is isomorphic to the ring of invariant forms (

∧
g∗)G

and by lemma 1.8

dim(
∧

g∗)G = dim(
∧

g)G =

∫
G

det(1 + Ad(g))dg (3.1)
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To perform this integration we use Weyl’s integration formula (see corollary 4.13.8
of [24]). It says that for a class function f on G∫

G

f(g)dg =
1

|W |

∫
T

f(t) det(1− Ad t)
∣∣
m
dt (3.2)

where dt is the Haar measure with total mass 1 on T . Moreover we observe that,
identifying T with Rl/Zl∫

T

f(t2)dt =

∫
Rl/Zl

f(t2)dt = 2l

∫
[0,1/2] l

f(t2)dt =

∫
[0,1] l

f(t)dt =

∫
T

f(t)dt

for any continuous function f on T . Hence∫
G

det(1 + Ad(g))
∣∣
g
dg =

1

|W |

∫
T

det(1 + Ad(g))
∣∣
g
det(1− Ad(g))

∣∣
m
dt

=
2l

|W |

∫
T

det(1− Ad(t2))
∣∣
m
dt

=
2l

|W |

∫
T

det(1− Ad(t))
∣∣
m
dt

=

∫
G

2ldg = 2l

Combining this with equation 3.1 proves the lemma. 2

Now we are fully prepared to prove the main theorem of this chapter. It should
be viewed in connection with proposition 1.35. Leray [19] proved this by considering
the spectral sequence for the fibration G→ G/T , and Reeder [23] observed that this
spectral sequence already degenerates at the second term. Our proof does the same
for Lie algebras.

Theorem 3.6 Let H(2) be the space of harmonic polynomials with doubled degrees.
As graded algebras

H∗
DR(G) ∼= H∗(g) ∼=

(
H(2) ⊗

∧
t∗
)W

They are all free exterior algebras with l generators in degrees 2mi + 1.
If Fi (i = 1, . . . , l) are primitive invariant polynomials of (g, t) then, using the
notation from section 3.2,{

l∑
i=1

ψ̄(∂iFj) ∧ ξi : 1 ≤ j ≤ l

}

is a set of generators of H∗(g).
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Proof. We consider the Hochschild-Serre spectral sequence for g and t, which we
introduced in section 2.5. Since t is reductive in g, proposition 2.29 applies and
Ep,q

2
∼= Hq(t) ⊗ Hp(g, t). However, t is homologous to zero in g, so the spectral

sequence doesn’t converge at E2. The Weyl group acts on C∗(t) and on C∗(g, t),
and these actions commute with the respective Koszul differentials, for they are of
the form Ad(g) for certain g ∈ G. So W acts on every term Ep,q

s with s ≥ 2. (In
fact it also acts on Ep,q

1 but that is irrelevant here.) Because W is finite, we can
write Ep,q

s = (Ep,q
s )W ⊕Dp,q

s , where Dp,q
s is a W -stable subspace of Ep,q

s . By theorem
2.9 the actions of g and G on H∗(g) are trivial, so in particular H∗(g) is a trivial
W -module. But our sequence converges to H∗(g), so E∗,∗

∞ = (E∗,∗
∞ )W . Therefore the

spectral subsequence with terms (Ep,q
s )W also converges to H∗(g). By theorem 3.4

and because H∗(t) =
∧

t∗ the second term of this subsequence is

(E∗,∗
2 )W ∼= (H∗(t)⊗H∗(g, t))W ∼=

(
H(2) ⊗

∧
t∗
)W

Moreover by lemma 3.5 and proposition 1.35

dim(E∗,∗
∞ )W = dimE∗,∗

∞ = dimH∗(g) = 2l

= dim (H⊗
∧

t∗)W = dim(E∗,∗
2 )W

Therefore the subsequence of W -invariants already converges at the second term
and (

H(2) ⊗
∧

t∗
)W ∼= GF ∗(H∗(g)) =

⊕
p,q

F pHq+p(g)/F p+1Hq+p(g)

Again by proposition 1.35, the left hand side is a free exterior algebra with l homo-
geneous generators dFi in degrees (2mi, 1). So we can find elements ωi ∈ H∗(g) that
map to dFi under the above isomorphism. Looking carefully, we see that map from
left to right is ψ̄ ⊗ 1 composed with the multiplication (induced by the orthogonal
decomposition g = t⊕m) H∗(g, t)⊗H∗(t) → H∗(g) and this is multiplicative. So the
2l elements wI , I ⊂ {1, . . . , l} correspond to the elements dFI . These last elements

are linearly independent in (H⊗
∧

t∗)W , so the ωI are also linearly independent in
GF ∗(H∗(g)) and certainly in H∗(g). But the dimension of the latter is still 2l so
the set {ωI : I ⊂ {1, . . . , l}} is a basis of H∗(g), andH∗(g) is a free exterior algebra
with generators ωi (i = 1, . . . , l).

Retracing the above isomorphism shows that dFi goes to
∑l

i=1 ψ̄(∂iFj) ∧ ξi ∈
H2mi+1(g), so we can take this element as ωi. 2

Knowing this it is an easy matter to determine the cohomology of a larger class
of reductive Lie algebras.

Corollary 3.7 Let F be a subfield of C, g a reductive Lie algebra over F and
m1, . . . ,ml the exponents of gC = g ⊗F C. Then H∗(g) is a free exterior algebra
(over F) with l generators in degrees 2mi + 1.
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Proof. First consider the case F = C. By theorem 1.17 g has a compact real form
gc, and theorem 3.6 says that H∗(gc) is a real free exterior algebra with generators
in degrees 2mi + 1, (i = 1, . . . , l). But by proposition 2.16.4, H∗(g) ∼= H∗(gc)⊗R C,
so H∗(g) is a free complex exterior algebra with generators of the same degrees.

Now let F be a subfield of C. Then gC is a complex reductive Lie algebra, of
which we just computed the cohomology. Again by proposition 2.16.4, Hp(gC) ∼=
Hp(g) ⊗F C, so with induction to p we see that H∗(g) has generators in the same
degrees as H∗(gC). 2
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Chapter 4

Some specific Lie algebras and
their cohomology

Having computed the cohomologies of all complex reductive Lie algebras, we turn
our attention to a wider class of Lie algebras. Let g be a finite-dimensional complex
reductive Lie algebra, z a normal complex variable and s an odd variable (which
means that s2 = 0). Define the following Lie algebras:

g[z] := g⊗C C[z]

g[z, s] := g⊗C C[z, s] = g[z] n sg[z]

g[z]/(zk) := g⊗C C[z]/(zk) = g[z]/zkg[z]

If we consider only the degree of s, g[z, s] is a Z/2Z-graded Lie algebra. Since
[sg[z], sg[z]] = s2[g[z], g[z]] = 0, we can say that besides [X, Y ] = −[Y,X] also

[X, Y ] = (−1)1+deg X deg Y[Y,X].

This means that g[z, s] is a so-called super-algebra. (See Fuks [10] for a short
introduction to super-algebras.) If we look at proposition 2.25, it is tempting to say
that H∗(g[z, s]) = H∗

(
g[z];

∧
(sg[z])

)
. However this ignores the fact that sg[z] is an

odd vector space (all elements have degree 1 in s).

For a vector space V , one possible definition of
∧
V is the quotient of TV by the

ideal generated by all elements of the form

x⊗ y − (−1)deg X deg Yy ⊗ x.

But if V is an odd vector space the grading of TV must be adjusted: now the
elements of T 1V have degree 2. Consequently all homogeneous elements of TV have
even degree. So if we use the above definition of

∧
V , it is TV divided out by the

ideal generated by all elements of the form x⊗ y − y ⊗ x. But this is just the usual
definition of SV .
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Using this kind of logic, it is not strange anymore to define

H∗(g[z, s]) := H∗
(
g[z];S(sg[z])

)
H∗(g[z, s]) := H∗(g[z];S(sg[z])∗

)
The gradings are

Hn(g[z, s]) =
⊕

q+2p=n

Hq

(
g[z];Sp(sg[z])

)
Hn(g[z, s]) =

∏
q+2p=n

Hq
(
g[z];Sp(sg[z])∗

)
I am not sure whether this last expression describes a grading, but at least it comes
close. Observe that S(sg[z])∗ is multiplicative for g[z], so that H∗(g[z, s]) is a ring.

In this chapter we will compute the cohomologies of the algebras g[z], g[z]/(zk)
and g[z, s], giving the degrees of a free set of generators. Although they are listed
here in increasing order of complexity, we will do this in the reverse order.

One might wonder why we consider these algebras. The answer is provided by
some conjectures of Macdonald’s. This is explained in detail in the next chapter.

4.1 g[z, s]

The computation of the cohomology of g[z, s] was an interesting unsolved problem
ever since Feigin [7] related it toH∗(g[z]/(zk)). Feigin also claimed that he calculated
H∗(g[z, s]), but the crucial part of his argument turns out to be nonsense. (In the
lemma on page 93 of [8], Feigin considers the elements of

∧n(g[z, s]) as functions
C2n →

∧n
g. Then he implicitly assumes that the Koszul differential corresponds to

the restriction of these functions to a certain subset of C2n, but this is not correct.)
Therefore we follow the track of Fishel, Grojnowski and Teleman [9]. Their

method is probably correct but highly complicated, both in the technical and in the
conceptual sense.

One of the first problems we are confronted with is that g[z] is the infinite direct
sum of its z-weight spaces, so that g[z]∗ is an infinite direct product. To overcome
this inconvenience, we are not going to compute exactly H∗(g[z, s]), but something
called the restricted cohomology of g[z, s]. It is not difficult to see that the Koszul
differential d preserves the z-grading of

∧
g[z]∗ ⊗ S(sg[z])∗. Therefore d is also well

defined on the complex with spaces

Cn
res(g[z, s]) :=

⊕
q+2p=n

⊕
n1≥0,n2≥0

(∧q
g[z]
)∗

n1
⊗
(
Spsg[z]

)∗
n2

where the ni refer to the z-grading of the symmetric and exterior algebras of g[z].
This can also be described as taking the restricted dual of

∧q(g[z])⊗Sp(sg[z]) with
respect the z-weight spaces. The resulting cohomology H∗

res(g[z, s]) is the direct sum
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of the z-weight spaces of H∗(g[z, s]). Because d is still the transpose map of ∂ for
C∗(g[z, s]), Hn

res(g[z, s]) is the restricted dual of Hn(g[z, s]), again with respect to
the z-weight spaces.

Unless g is abelian, the ideal zg[z] n sg[z] has no complementary ideal, so g[z, s]
is not reductive. However g is reductive in itself and the adjoint action of g on g[z, s]
preserves the z- and s-weights, so g[z, s] is a completely reducible g-module and g
is reductive in g[z, s]. Seeing also that

g[z, s] = g n (zg[z] n sg[z])

we are severely tempted to generalize theorem 2.28. This turns out to be possible
because we have a g-invariant grading on g[z, s].

Lemma 4.1

H∗
res(g[z, s]) ∼= H∗(g)⊗H∗

res(g[z, s], g) ∼= H∗(g)⊗H∗
res(zg[z] n sg[z])g

Proof. In the proof of theorem 2.28 we used not really that g and V were finite-
dimensional, but only that

∧
a∗⊗V was a direct sum of finite-dimensional irreducible

h-modules. (On the other hand the decomposition g = h n a, with a an ideal and h
finite-dimensional and reductive in g, was essential.)

In the present situation we have a finite-dimensional reductive subalgebra g, com-
plementary to the ideal zg[z] in g[z]. Using theorem 1.2 several times one sees that
g[z],

∧
g[z] and Sg[z] are direct sums of finite-dimensional irreducible g-modules.

Since the z-weight spaces are finite-dimensional and preserved by g, this also holds
for the restricted dual spaces g[z]∗res,

∧
(g[z]∗res), S(g[z]∗res) and∧

(g[z]∗res)⊗ S(sg[z]∗res). Now theorem 2.28 becomes a statement on the cohomology
of the complex C∗

res(g[z, s]) and what it says is precisely lemma 4.1. 2

To make things easier we assume that g is semisimple, and let G be the adjoint
group of g. If all computations are done we will plug in the center of a reductive g
without difficulties.

By theorem 1.16 there exists a basis of g whose real span gR is a real semisimple
Lie algebra. In particular the Killing form of gR is an inner product and we can
find an orthonormal basis {ξa : a ∈ A} of gR, where A = {1, . . . , dim g}. Then
{zmξa : a ∈ A,m ≥ 0} is a basis of g[z]. Let {ψa(−m) : a ∈ A,m ≥ 0} and
{σa(−m) : a ∈ A,m ≥ 0} be the dual bases of

∧1(g[z]∗res) and S1(g[z]∗res). Define a
symmetric bilinear form on

∧1(zg[z]∗res) by〈
ψa(m), ψb(n)

〉
=

{
−1/n if a = b,m = n < 0

0 otherwise

Extend this to a nondegenerate bilinear form on
∧

(zg[z]∗res) by

〈ψ1 ∧ · · · ∧ ψn, ψ
′
1 ∧ · · · ∧ ψ′m〉 =

{ ∑
τ∈Sn

ε(τ) 〈ψ1, ψ
′
τ1〉 · · · 〈ψn, ψ

′
τn〉 if m = n

0 if m 6= n
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With respect to this bilinear form

{ψai(m1) ∧ · · · ∧ ψan(mn) : n ≥ 0 < m1 ≤ . . . ≤ mn, (mi = mj, i < j) ⇒ ai < aj}

is an orthonormal basis of
∧

(zg[z]∗res).
Likewise we define a symmetric bilinear form on S1(g[z]∗res) by declaring the basis

{σa(−m) : a ∈ A,m ≥ 0} to be orthonormal. We extend this to a nondegenerate
bilinear form on S(g[z]∗res) by

〈σ1 · · ·σn, σ
′
1 · · ·σ′m〉 =

{ ∑
τ∈Sn

〈σ1, σ
′
τ1〉 · · · 〈σn, σ

′
τn〉 if m = n

0 if m 6= n

Then we have an orthogonal basis

{σai(m1) · · ·σan(mn) : n ≥ 0 ≤ m1 ≤ . . . ≤ mn, (mi = mj, i ≤ j) ⇒ ai ≤ aj}

Moreover we get a nondegenerate symmetric bilinear form on
∧

(g[z]∗res)⊗S(sg[z]∗res)
if we ignore s temporarily and put

〈ω ⊗ p, η ⊗ q〉 = 〈ω, η〉 〈p, q〉

The product of the bases of
∧

(zg[z]∗res) and S(sg[z]∗res) is an orthogonal basis of

A :=
∧

(zg[z]∗res)⊗ S(sg[z]∗res) (4.1)

The point of this discussion is that now we also have a nondegenerate bilinear form
on the complex

C∗ := C∗
res(g[z, s], g) =

(∧
(zg[z]∗res)⊗ S(sg[z]∗res)

)g
= Ag

so we can construct the adjoint map d∗ and d. (Recall that this is defined by
〈d∗x, y〉 = 〈x, dy〉 ∀x, y ∈ C∗.) Since dd = 0 also d∗d∗ = 0.

Let us introduce the Laplacian operator 2 = dd∗+d∗d = (d+d∗)2. The cochains
in the kernel of the Laplacian are called harmonic. We denote the set of these by
H, but it is to be distinguished form the harmonic polynomials in chapters 1 and
3. It turns out that also this H is crucial in cohomology, as it is ring-isomorphic
to H∗

res(g[z, s], g). Clearly d preserves the z-degree, decreases the exterior degree by
one and increases the symmetric by one. Because elements of different degrees are
orthogonal with respect to our bilinear form, d∗ has precisely the opposite effect on
the degrees. Therefore 2 preserves these three gradings, and they also apply to H.

Lemma 4.2 Every harmonic cochain is a cocycle and every cohomology class has
a harmonic representative. As triple graded vector spaces H ∼= H∗

res(g[z, s], g).

Proof. By some standard properties of transpose mappings:

C∗ = ker d⊕ im d∗ = im d⊕ ker d∗ = im d⊕ (ker d ∩ ker d∗)⊕ im d∗
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Clearly ker d ∩ ker d∗ ⊂ ker 2. On the other hand d∗ is injective on im d and d is
injective on im d∗, so

im d ∩ ker 2 = im d ∩ ker dd∗ = 0

im d∗ ∩ ker 2 = im d∗ ∩ ker d∗d = 0

Consequently H = ker 2 = ker d ∩ ker d∗ and

C∗ = im d⊕H⊕ im d∗ = ker d⊕ im d∗

The lemma follows directly from this. 2

This is nice, but we want to get a set of generators for H∗
res(g[z, s], g), not just

a basis. Therefore we must first prove that H is closed under multiplication. We
do this by showing that H is the joint kernel of a set of derivations of C∗. The
involved calculations are very long, and it is difficult to understand beforehand why
they might give the right results. This is one reason why the task of this section is
so complicated.

Before we state this result, we must of course first define the derivations we
referred to. There is a unique linear bijection φ : A →

∧
(zg[z]) ⊗ S(sg[z]) sat-

isfying 〈f, x〉 = f(φx). Because our bilinear form is the multilinear extension of
a bilinear form on g[z]∗res, φ is an algebra-isomorphism. Now consider the ad-
joint representation of g[z, z−1, s] = g ⊗ C[z, z−1, s] on itself. This doesn’t map
g[z, s] to itself, but we can still make g[z, z−1, s] act on zg[z] n sg[z]. Namely for
X ∈ g[z, z−1, s], Y ∈ zg[z]nsg[z] write [X, Y ] ∈ g[z, z−1, s] as a polynomial in z, z−1

and s, and truncate all terms with zm(m ≤ 0) or szm(m < 0). We denote this action

of g[z, z−1, s] on g[z, s] by ãd. (It is only a representation of g[z, s] ⊂ g[z, z−1, s].)
Let ρ be the induced action of g[z, z−1, s] on g[z]∗res and continue it to a derivation

of A. Its transpose equals ρ(X)∗ = −φ−1 ◦ ãd(X) ◦ φ, where ãd(X) is extended to
a derivation of

∧
(zg[z])⊗ S(sg[z]). Consequently ρ(X)∗ is also a derivation.

We give the explicit formulas of the actions of the basis elements, at the same
time introducing some new notation. The elements ψa(m) satisfy

ψa(m)(ziξ) = δ−m,iκ(ξ, ξa) ∀ξ ∈ g

where κ is the Killing form of g. Therefore

ρ(znξa)ψ
b(m)(ziξ) = ψb(m)[ziξ, znξa] = ψb(m)(zn+i[ξ, ξa])

= δ−m,n+iκ(ξb, [ξ, ξa]) = δm+n,−iκ(ξ, [ξa, ξb])

If m + n ≥ 0 the above expression is zero on zg[z], as there i > 0. For this reason
we write

ρ(znξa)ψ
b(m) =

{
ψ[a,b](n+m) if m+ n < 0

0 if m+ n ≥ 0
(4.2)
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For any vector space V and f ∈ V ∗ let s̃f denote the corresponding element of
(sV )∗. We can make exactly the same computation as above with all ψ’s replaced
by σ’s. The only difference is that we must consider s̃σa(m) as a function on sg[z]
and not on szg[z]. So we have

ρ(znξa)s̃σ
b(m) =

{
s̃σ[a,b](n+m) if m+ n ≤ 0

0 if m+ n > 0
(4.3)

With this information we compute ρ(znξa)
∗:〈

ρ(znξa)
∗s̃σb(m), s̃σc(i)

〉
=

〈
s̃σb(m), s̃σ[a,c](n+ i)

〉
= δm,n+iκ(ξb, [ξa, ξc])

= δm−n,iκ([ξb, ξa], ξc) =
〈
s̃σ[b,a](m− n), s̃σc(i)

〉
ρ(znξa)

∗s̃σb(m) =

{
s̃σ[b,a](m− n) = −ρ(z−nξa)s̃σ

b(m) if n ≥ m
0 if n < m

(4.4)

The analogue for the ψ’s is only slightly more complicated:〈
ρ(znξa)

∗ψb(m), ψc(i)
〉

=
〈
ψb(m), ψ[a,c](n+ i)

〉
=
δm,n+i

−m
κ(ξb, [ξa, ξc])

=
δm−n,i

−m
κ([ξb, ξa], ξc) =

n−m

−m
〈
ψ[b,a](m− n), ψc(i)

〉
ρ(znξa)

∗ψb(m) =

{
n−m
−m

ψ[b,a](m− n) = n−m
m
ρ(z−nξa)ψ

b(m) if n > m
0 if n ≤ m

(4.5)

Next we compute the actions of sznξa:

ρ(sznξa)s̃σ
b(m)(ziξ) = s̃σb(m)([ziξ, sznξa]) = δ−m,n+iκ(ξb, [ξ, ξa])

= δ−i,m+nκ(ξ, [ξa, ξb]) = ψ[a,b](m+ n)(ziξ)

ρ(sznξa)s̃σ
b(m) =

{
ψ[a,b](m+ n) if m+ n < 0

0 if m+ n ≥ 0
(4.6)

〈
ρ(sznξa)

∗ψb(m), s̃σc(i)
〉

=
〈
ψb(m), ψ[a,c](n+ i)

〉
=
δm,n+i

−m
κ(ξb, [ξa, ξc])

=
δm−n,i

−m
κ([ξb, ξa], ξc) =

−1

m

〈
s̃σ[b,a](m− n), s̃σc(i)

〉
ρ(sznξa)

∗ψb(m) =

{ −1
m
s̃σ[b,a](m− n) if n ≥ m

0 if n < m
(4.7)

Moreover it is obvious that

ρ(sznξa)ψ
b(m) = ρ(sznξa)

∗s̃σb(m) = 0 (4.8)
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Proposition 4.3

2 =
∑

m<0,a∈A

1

m
ρ(zmξa)ρ(z

mξa)
∗ − ρ(szmξa)ρ(sz

mξa)
∗

on C∗. The kernel H of 2 is the joint kernel of the derivations ρ(zmξa)
∗ and

ρ(szmξa)
∗ as m < 0 and a ∈ A. In particular H is a subalgebra of C∗.

Proof. The equality for 2 is very tough. Fortunately Fishel, Grojnowsky and
Teleman [9] give two proofs, which as far as I can see are both correct.

It is clear from this equality that⋂
m<0,a∈A

ker ρ(zmξa)
∗ ∩ ker ρ(szmξa)

∗ ⊂ ker 2 = H (4.9)

To see that the reverse inclusion also holds we confine ourselves to the real span AR
of the given basis of A. Since [ξa, ξb] ∈ gR, AR is closed under all the maps in this
theorem. Moreover our bilinear form becomes an inner product on AR. Suppose
that X ∈ Ag

R and 2X = 0. Then

0 = 〈2X,X〉 =
∑

m<0,a∈A

〈
1

m
ρ(zmξa)ρ(z

mξa)
∗X − ρ(szmξa)ρ(sz

mξa)
∗X,X

〉
=

∑
m<0,a∈A

1

m
||ρ(zmξa)

∗X||2 − ||ρ(szmξa)
∗X||2

But all these norms are in [0,∞) and m < 0, so the only possibility is that they are
all 0. Hence ρ(zmξa)

∗X = ρ(szmξa)
∗X = 0 ∀m < 0, a ∈ A and equation 4.9 is an

equality on AR. But A = AR + iAR and all the maps are complex linear so

C∗ = Ag = Ag
R + iAg

R.

and 4.9 is an equality on C∗. 2

Now that this is settled, we only need to observe that the product on H is just
the product on A, in order to conclude that H is isomorphic to H∗

res(g[z, s], g) as a
graded algebra. To find generators of H we first bring it in a more pleasant form.

Consider the linear bijection d
dz

: zC[z] → C[z]. We combine it with multiplication
and division by s and the flip between the symmetric and exterior parts of A to an
algebra isomorphism∧

(zg[z])⊗ S(sg[z]) → S(g[z])⊗
∧

(sg[z]).

Put

Ω := S(g[z]∗res)⊗
∧

(sg[z]∗res) (4.10)
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and let α : Ω → A be the transpose of the above isomorphism. The continuation of
the co-adjoint action of g[z, s] on g[z, s]∗res makes Ω into a g[z, s]-module. The action
of sX ∈ sg[z] is given explicitly by

(ad −sX)∗
(
P ⊗ s̃ψa1(n1) ∧ · · · ∧ s̃ψaq(nq)

)
=∑q

i=1(−1)iP (adX)∗σai(ni)⊗ ψa1(n1) ∧ · · · ∧ ψ̂ai(ni) ∧ · · · ∧ s̃ψaq(nq)

where P ∈ S(g[z]∗res). While g[z] acts by derivations on Ω, we have for ω, η ∈ Ω of
exterior degrees p and q:

sX · (ω ∧ η) = (sX · ω) ∧ η + (−1)pqω ∧ (sX · η)

This means in particular that Ωg[z,s] is closed under multiplication. The motivation
for this construction comes from section 2.8 of [9]:

Lemma 4.4 H = α Ωg[z,s]

Proof. Observe that {s̃ψa(m) : a ∈ A,m ≤ 0} is a basis of
∧1(sg[z])∗res and that

α
(
s̃ψa(m)

)
=
(

d
dz

)∗ (
ψa(m)

)
= (1−m)ψa(m− 1) (4.11)

Using equations 4.4, 4.5, 4.7 and 4.11 we obtain

ρ(znξa)
∗α
(
s̃ψb(m)

)
= (1−m)ρ(znξa)

∗ψb(m− 1)

= (n+ 1−m)ψ[b,a](m− n− 1)

= α
(
s̃ψ[b,a](m− n)

)
ρ(znξa)

∗α
(
σb(m)

)
= ρ(znξa)

∗(s̃σb(m)
)

= s̃σ[b,a](m− n)

= α
(
σ[b,a](m− n)

)
ρ(sznξa)

∗α
(
s̃ψb(m)

)
= (1−m)ρ(sznξa)

∗ψb(m− 1)

= s̃σ[b,a](m− n− 1)

= α
(
σ[b,a](m− n− 1)

)
If we compare this with equations 4.2, 4.3 and 4.6 we see that ρ(znξa)

∗ and ρ(sznξa)
∗

correspond to the endomorphisms ad(−z−nξa)
∗ and ad(−sz−n−1ξa)

∗ of Ω. By propo-
sition 4.3 this means that α−1H is the joint kernel in Ω of the derivations ad(zmξa)

∗

and ad(szmξa)
∗ for a ∈ A,m ≥ 0. But these derivations generate the action of g[z, s]

on Ω, so α−1H = Ωg[z,s]. 2

With this result we reduced the computation of H∗
res(g[z, s], g) to that of Ωg[z,s].

Although this more concrete problem is not yet completely solved, there is enough
evidence to make a well-founded conjecture.

We identify sg[z] with the tangent space of g[z], so that the elements of Ω are al-
gebraic differential forms on g[z]. To support this we let d be the exterior differential
of g[z]; it sends σa(m) to s̃ψa(m).
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Every F ∈ Sng∗ determines a C[z]-linear map

F̃ =
∞∑

m=0

F (−m)zm : Sn(g[z]) → C[z]

where F (−m) ∈ Ω. Similarly dF ∈ Sn−1g∗ ⊗
∧1(sg)∗ determines a C[z]-linear map

d̃F =
∞∑

m=0

F (−m)zm : Sn−1(g[z])⊗
∧1(sg[z]) → C[z]

with dF (−m) ∈ Ω. Observe that F (−m)(X) = dF (−m)(X) = 0 if X is homoge-
neous of z-degree unequal to m, and that d(F (−m)) = (dF )(−m).

Lemma 4.5 Take F ∈ (Sg∗)g and m ∈ N. Then the m-th coefficients F (−m) and
dF (−m) are in Ωg[z,s].

Proof. Take n ∈ N, Y ∈ g and X =
∑

iXi ∈ S(g[z])⊗
∧

(sg[z]), the z-weight of Xi

being i. We have

(ad sznY )∗F (−m)(X) = F (−m)(ad(sznY )X) = 0

(ad znY )∗F (−m)(X) = F (−m)(ad(znY )X)

= F (n−m)(ad(Y )X)

= F (n−m)(ad(Y )X ′
m−n) = 0

where X ′
m−n is obtained from Xm−n by replacing every z by 1. In exactly the same

it follows that dF (−m) is g[z]-invariant. Note that

(ad sznY )∗d
(
σa1(n1) · · ·σap(np)

)
=

(ad sznY )∗
∑p

i=1 σ
a1(n1) · · · σ̂ai(ni) · · ·σap(np)⊗ s̃ψai(ni) =∑p

i=1 σ
a1(n1) · · · ad(znY )σai(ni) · · ·σap(np) =

ad(znY )∗
(
σa1(n1) · · ·σap(np)

)
Therefore ad(sznY )∗dF (−m) = ad(znY )∗F (−m) = 0. 2

As a direct consequence of this lemma, the subalgebra of Ω generated by all the
coefficients F (−m) and dF (−m) for F ∈ (Sg∗)g is g[z, s]-invariant. Let F1, . . . , Fl be
primitive invariant polynomials. Clearly the above subalgebra is already generated
by the coefficients of these polynomials. Our next result states that they are also free
generators, in the sense that all relations among them are consequences of defining
relations for symmetric and exterior algebras.

Lemma 4.6 The polynomials Fi(−m) are algebraically independent and the
differential 1-forms dFi(−m) are linearly independent over (the quotient field of)
S(g[z])∗res.
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Proof. We show by induction that this holds for all the above elements with m ≤ N .
This proof will mimic that of proposition 3.10 of [13].

First we show that

ω(N) := dF1(0) ∧ · · · ∧ dFl(0) ∧ dF1(1) ∧ · · · ∧ dFl(−N) 6= 0 (4.12)

For this purpose we let ρ be the restriction of differential forms on g[z] to t[z]. Let
x1, . . . , xl be a basis of

∧1(st)∗. For N = 0 we saw in the proof of 1.34 that

ρω(0) = cπx1 ∧ · · · ∧ xl 6= 0

where c ∈ C× and π =
∏

α>0 α. By induction we may assume that

ρω(N − 1) = cNπNx1(0) ∧ · · · ∧ xl(0) ∧ x1(1) ∧ · · · ∧ xl(1−N)

To calculate ρω(N) we only need to consider those terms of dFi(−N) for which th
exterior part is in

∧1(szN t)∗. But the sum of these terms is obtained from dFi by
replacing all xj’s by xj(−N)’s. In the same way as in 1.34 we see that

ρω(N) = ω(N − 1) ∧ cπx1(−N) ∧ · · · ∧ xl(−N) = (cπ)N+1x1(0) ∧ · · · ∧ xl(−N) 6= 0

Now it follows from lemma 3.7 of [13] that the polynomials Fi(−m) for m ≤ N are
algebraically independent.

Let K be quotient field of S(g[z])∗res. Suppose that we have a relation

l∑
i=1

N∑
m=0

fi,mdFi(−m) = 0

with fi,m ∈ K. Take arbitrary j, n with 1 ≤ j ≤ l and 0 ≤ n ≤ N , and let η be
the wedge product of all dFi(−m) with 1 ≤ i ≤ l, 0 ≤ m ≤ N and (i,m) 6= (j, n).
Then, up to sign

0 =

(
l∑

i=1

N∑
m=0

fi,mdFi(−m)

)
∧ η = fj,mω(N).

Hence fj,n = 0. But this holds for all j, n, so the differential forms in question are
linearly independent over K. 2

This should already give a complete description of Ωg[z,s]:

Conjecture 4.7 The set {Fi(m), dFi(m) : 1 ≤ i ≤ l,m ≤ 0} freely generates Ωg[z,s].

We just proved one inclusion and the ”free” part of this conjecture. The cor-
responding statement without z might be of limited value for this conjecture, but
it is interesting because it can be regarded as an extended version of Chevalley’s
restriction theorem (1.29).
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Proposition 4.8 The set {Fi, dFi : 1 ≤ i ≤ l} freely generates
(
(Sg)∗⊗(

∧
sg)∗

)g[s]
.

The restriction map

ρ : (Sg)∗ ⊗ (
∧
sg)∗ → (St)∗ ⊗ (

∧
sg)∗

induces an isomorphism(
(Sg)∗ ⊗ (

∧
sg)∗

)g[s] → (
(St)∗ ⊗ (

∧
st)∗
)W

Proof. Abbreviate
(
(Sg)∗ ⊗ (

∧
sg)∗

)g[s]
to M . It is clear that the Fi are g[s]-

invariant. Because the exterior differential d commutes with the action of G and
because ∀X ∈ g

(ad sX)∗dFi = (adX)∗Fi = 0,

also all the dFi are g[s]-invariant. Moreover g[s] acts by derivations, so the entire
subalgebra generated by the Fi and the dFi is g[s]-invariant. Hence by theorem 1.34(

(St)∗ ⊗ (
∧
st)∗
)W ⊂ ρ(M). (4.13)

By the same theorem the left hand side is freely generated by the set
{ρ(Fi), ρ(dFi) : 1 ≤ i ≤ l}. The elements of M are G-invariant polynomial maps
g → (

∧
sg)∗. Since all CSA’s of g are conjugate under G and their union is Zariski

open, ρ
∣∣
M

is injective. Now the only thing left is to show that the inclusion 4.13 is
an equality.

As usual let m be the orthoplement of t with respect to the Killing form of g. We
introduce a new grading on (St)∗⊗(

∧
st)∗ by giving the elements of (

∧1 sm)∗ degree
1. It is easily seen that (ad sX)∗ decreases this m-degree by 1, so to find ρ(M) we
only have to consider elements that are homogeneous with respect to the symmetric,
exterior and m-gradings. So take a nonzero ω ∈ (Spt)∗ ⊗ (

∧q sg)∗, homogeneous of
m-degree m > 0. As a differential form, ω is nonzero on a Zariski open subset of t,
so we can find a regular H ∈ t and Y1 ∈ m, Y2, . . . , Yq ∈ g such that

ω(H · · ·H︸ ︷︷ ︸
p times

⊗sY1 ∧ sY2 ∧ · · · ∧ sYq) 6= 0

But then it is also possible to find a X ∈ g with [X,H] = Y1, so that

(ad sX)∗ω(H · · ·H︸ ︷︷ ︸
p+1 times

⊗sY2∧· · ·∧sYq) = (p+1)ω(H · · ·H︸ ︷︷ ︸
p times

⊗[sX,H]∧sY2∧· · ·∧sYq) 6= 0

So this ω is not sg-invariant and ω /∈ ρ(M). Therefore all elements of ρ(M) have
m-degree 0, i.e.

ρ(M) ⊂ (St)∗ ⊗ (
∧
st)∗.

Since the elements of M are G-invariant, the elements of ρ(M) are invariant for
NG(T ) and in particular for W . We conclude that 4.13 is indeed an equality. 2
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Remark. Broer [3] studied the restriction map

ρ :
(
(Sg)∗ ⊗ V

)G → (
(St)∗ ⊗ V T

)W
for a general G-module V . He proved that under certain conditions this ρ is an
isomorphism. These conditions do not apply to the case V = (

∧
sg)∗, as can be

seen by comparing proposition 4.8 with theorem 3.6. We needed the invariance with
respect to sg to make the restriction into an isomorphism.

Conjecture 4.7 is best understood in the following way. Put P = Cl and define a
G-invariant algebraic morphism

q : g → P : X → (F1(X), . . . , Fl(X))

Identify P [s] := P ⊕ sP with the tangent bundle of P . The differential of q gives
another G-invariant algebraic morphism

q′ : g[s] → P [s] : X + sY →
(
q(X), s dqX(Y )

)
These morphisms have been studied a lot and many remarkable properties are
known. For example Kostant [17] proved that q is surjective and that dqX is surjec-
tive if and only if X ∈ g is regular.

Let p1, . . . , pl be the standard coordinate functions on P . By construction q∗pi =
Fi and q∗dpi = dFi. We include z in this picture as follows. Elements of g[z, s] are
polynomial maps C → g[s], so composing them with q′ gives polynomial maps C →
P [s]. In other words, q′ induces a map Q : g[z, s] → P [z, s] satisfying (QX)(λ) =
q′(X(λ)) for X ∈ g[z, s] and λ ∈ C.

Define pi(−m) ∈ P [z]∗ by pi(−m)(znv) = δn,mpi(v). Clearly {pi(m) : 1 ≤ i ≤
l,m ≤ 0} is a basis of P [z]∗res and {s̃ dpi(m) : 1 ≤ i ≤ l,m ≤ 0} is a basis of∧1(sP [z]∗res). Hence the union of these sets freely generates S(P [z]∗res)⊗

∧
(sP [z]∗res).

By construction Q∗(pi(m)) = Fi(m) and Q∗(dpi(m)) = dFi(m). With these notions
we can reformulate conjecture 4.7 as follows:

Conjecture 4.9 The pullback Q∗ of Q gives an isomorphism

S(P [z])∗res ⊗
∧

(sP [z])∗res → Ωg[z,s]

It follows already from lemmas 4.5 and 4.6 that Q∗ is injective on this domain
and that its image is contained in Ωg[z,s], so what is left is to prove that every g[z, s]-
invariant differential form on g[z] is the pull-back of a differential form on P [z]. In
[9] an interesting attempt is made to prove this, but it is hard to judge whether it
is correct, since some definitions and references are missing.

Now apply these conjectures to cohomology algebras we started with. Because
the isomorphism α involves s we must be a little careful. Let s̃∧ and s̃S be the
continuations of s̃ : g[z]∗res → (sg[z])∗res to the respective exterior and symmetric
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algebras. Then the elements dFi(m) of conjecture 4.7 are more accurately described
as s̃∧dFi(m). Combining conjecture 4.7 with lemmas 4.2, 4.4 and proposition 4.3
yields the next theorem.

Theorem 4.10 Let g be a finite-dimensional semisimple complex Lie algebra and
assume that conjecture 4.7 holds. Then the set

{s̃SFi(m),
(

d
dz

)∗
∧ s̃SdFi(m) : 1 ≤ i ≤ l,m ≤ 0}

freely generates H and H∗
res(g[z, s], g).

This theorem can easily be generalized to reductive Lie algebras:

Corollary 4.11 Let g be a finite-dimensional reductive complex Lie algebra and
assume that conjecture 4.7 holds. Then the set

{s̃SFi(m),
(

d
dz

)∗
∧ s̃SdFi(m) : 1 ≤ i ≤ l,m ≤ 0}

freely generates H∗
res(g[z, s], g).

Proof. Since Z(g)[z, s] is the center of g[z, s]

H∗
res(g[z, s]) ∼= H∗

res([g, g][z, s])⊗H∗
res(Z(g)[z, s])

= H∗
res([g, g][z, s])⊗

∧
(Z(g)[z]∗res)⊗ S(sZ(g)[z]∗res)

H∗
res(g[z, s], g) ∼= H∗

res([g, g][z, s], [g, g])⊗H∗
res(Z(g)[z, s], Z(g))

= H∗
res([g, g][z, s], [g, g])⊗

∧
(zZ(g)[z]∗res)⊗ S(sZ(g)[z]∗res)

Moreover we know from section 1.4 that a set of primitive invariant polynomials for
g consists of such a set for [g, g], plus a basis of Z(g)∗. Now the statement is really
an immediate corollary of theorem 4.10. 2

With this corollary, theorem 3.6 and lemma 4.1 one can find explicit generators of
H∗

res(g[z, s]). Then we can also determine the unrestricted cohomologyH∗(g[z, s]), as
this is the direct product of the (finite-dimensional) z-weight spaces of H∗

res(g[z, s]).

4.2 g[z]/(zk)

It has been known for a long time that knowledge of the cohomology of g[z]/(zk)
for a semisimple complex Lie algebra g enables one to proof certain conjectures
of Macdonald; see the next chapter. For this reason the supposed description of
H∗(g[z]/(zk)) is also known as the strong Macdonald conjecture. It turned out
that this is really difficult to prove. In fact it is so hard that up to today the
most promising approach is to derive from the restricted cohomology of the infinite-
dimensional (hence more complicated) Lie algebra g[z, s], which we almost computed
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in the previous section. We show how this works for reductive g, since this more
general setting presents no extra problems.

Introduce derivations ∂s of C[z, s], defined by ∂s(z
n) = 0, ∂s(sz

n) = zn+k.
We denote the induced derivations of g[z, s] and S(sg[z]) ⊗

∧
(g[z]) also by ∂s. If

X1, . . . , Xn ∈ g[z] and ω ∈
∧

(g[z]) then

∂2
s (sX1 · · · sXn ⊗ ω) = ∂s

(
n∑

i=1

sX1 · · · ŝXi · · · sXn ⊗ zkXi ∧ ω

)
=∑

i6=j

sX1 · · · ŝXi · · · ŝXj · · · sXn ⊗ zkXj ∧ zkXi ∧ ω =∑
i<j

sX1 · · · ŝXi · · · ŝXj · · · sXn ⊗ (zkXj ∧ zkXi + zkXi ∧ zkXj) ∧ ω = 0

Hence ∂2
s = 0 in all these three cases.

The tool for relating the above cohomologies is the double graded complex with
spaces

Cp,q = Sp(sg[z]∗res)⊗
∧q−p(g[z]∗res)

As maps we have the Koszul differential (for g[z, s]) d : Cp,q → Cp,q+1 and the
transpose ∂∗s : Cp,q → Cp+1,q of ∂s. With this double graded complex we associate
a single graded differential complex (C∗, D) with Cn =

⊕
p+q=nC

p,q and D
∣∣
Cp,q =

(−1)pd + ∂∗s . We write HD for the resulting cohomology. It has a grading and
a double filtration, but in general no double grading. By theorem 14.14 of [2],
the filtration F iC∗∗ =

⊕
p≥i,q C

p,q gives rise to a spectral sequence (Ep,q
r , Dr) with

Ep,q
1 = Hp,q

d , Hp,q
2 = Hp

∂∗s
Hq

d and Ep,q
∞ = GF pHp+q

D .

Lemma 4.12 Hn
D
∼= Hn(g[z]/(zk))

Proof. According to [9], this lemma stems from [8], but I was unable to find it over
there. First we consider the dual complex, which has spaces

Cp,q = Sp(sg[z])⊗
∧q−p(g[z])

and maps ∂s : Cp,q → Cp−1,q and ∂ : Cp,q → Cp,q−1. For a decomposable element

x = sX1 · · · sXp ⊗ zkY1 ∧ · · · ∧ zkYm ∧ Z1 ∧ · · · ∧ Zn

(where the z-degree of Zi is smaller than k) we put

F̃ x =
m∑

i=1

(−1)i+1sX1 · · · sXpsYi ⊗ zkY1 ∧ · · · ∧ ẑkYi ∧ · · · ∧ zkYm ∧ Z1 ∧ · · · ∧ Zn
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Writing Xj for X1 · · · X̂j · · ·Xp we have

∂sF̃ x = mx+
m∑

i=1

p∑
j=1

(−1)i+1sXjsYi ⊗ zkXj ∧ zkY i ∧ Z

F̃∂sx = px+
m∑

i=1

p∑
j=1

(−1)isXjsYi ⊗ zkXj ∧ zkY i ∧ Z

(∂sF̃ + F̃ ∂s)x = (m+ p)x

In view of this we define a linear map F : C∗∗ → C∗∗ by

Fx =

{
1

m+p
F̃ x if m+ p > 0

0 if m = p = 0

Clearly (∂sF + F∂s)x = x if x ∈ Cp,q with p > 0. On our original complex we
have the transpose map F ∗ and it satisfies (F ∗∂∗s + ∂∗sF

∗)y = y if y ∈ Cp,q with
p > 0. Suppose that y =

∑m
i=0 yi ∈

⊕m
i=0C

i,n−i ⊂ Cn and Dy = 0. If m > 0

then ∂∗sym = 0, so ym = ∂∗sF
∗ym and y − DF ∗ym ∈

⊕m−1
i=0 Ci,n−i. Repeating this

a number of times we eventually get an y′ ∈ C0,n that is cohomologous to y. Ob-
viously dy′ = ∂∗sy

′ = 0. Since ker ∂∗s ∩ C0,n =
(
C0,n/∂s(C1,n)

)∗
res

we must have

y′ ∈ Sn(
⊕k−1

i=0 z
ig)∗. Moreover d

∣∣
C0,∗ is the Koszul differential for g[z] and it pre-

serves the z-grading. Therefore y′ can be considered as a cocycle of g[z]/(zk), and
y′ is a coboundary in C∗∗ if and only if it is a coboundary in C∗(g[z]/(zk)). Thus
we get a natural injection Hn

D → Hn(g[z]/(zk)). On the other hand it is clear that
every element of Z∗(g[z]/(zk)) is a cocycle in C∗∗, so this map is a bijection. 2

Let us assign z-weight k to s. Then ∂∗s preserves this z-grading, and so does
the whole spectral sequence (Ep,q

r , Dr). The explicit description of Ep,q
1 = Hp,q

d =
H∗

res(g[z, s]) we obtained in theorem 3.6 and corollary 4.11 allows us to compute
Ep,q

2 . For simplicity let ωi(m) denote
(

d
dz

)∗
∧ s̃SdFi(m).

Lemma 4.13 If conjecture 4.7 holds, the generators of H∗(g) and the elements
ωi(−m) with 1 ≤ i ≤ l, 0 ≤ m < k − 1 freely generate E∗∗

2 .

Proof. I took the following explicit calculation from [9]. Since ∂∗s is a derivation, it
is sufficient to see what it does on the generators of H∗

res(g[z, s]). Clearly it acts as
zero on (the generators of) H∗(g) and on the elements s̃SFi(−m). Furthermore
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∂∗sωi(sX1, . . . , sXdi
) =

di∑
j=1

(
d
dz

)∗
∧ s̃SdFi(z

kXj ⊗ sX1 · · · ŝXj · · · sXdi
)

=

di∑
j=1

dFi

(
d(zkXj)

dz
⊗X1 · · · X̂j · · ·Xdi

)

=

di∑
j=1

Fi

(
X1 · · ·

(
kzk−1Xj + zk dXj

dz

)
· · ·Xdi

)
= dikz

k−1Fi(X1 · · ·Xdi
) + zk dFi

dz
(X1 · · ·Xdi

)

= s̃S

(
dikz

k−1Fi + zk dFi

dz

)
(sX1 · · · sXdi

)

In particular, if CT denotes the constant term with respect to z:

∂∗sωi(−m) = CT s̃S

(
dikz

k−1−mFi + zk−mdFi

dz

)
= s̃S

(
dikFi(k − 1−m) + (m+ 1− k)Fi(k − 1−m)

)
= (mik +m+ 1)s̃SFi(k − 1−m)

This is 0 if m < k − 1, so all s̃SFi(−m),m ≥ 0 are in the image of ∂∗s and E∗∗
2 is

generated by the generators of H∗(g) and the elements ωi(−m) with 1 ≤ i ≤ l, 0 ≤
m < k − 1. These generators are free because the image and the kernel of ∂∗s are
both generated by some of the free generators of H∗

res(g[z, s]). 2

Now we come to the main theorem of this section. It was first conjectured by
Hanlon [12]. Our proof is a more explicit version of that in [9].

Theorem 4.14 Let g be a finite-dimensional complex reductive Lie algebra and
assume that conjecture 4.7 holds. Then H∗(g[z]/(zk)) is a free exterior algebra
with kl generators. For each exponent mi, there are k generators of cohomol-
ogy degree 2mi + 1, and the z-weights of these generators are the negatives of
0,mik + 1,mik + 2, . . . ,mik + k − 1.

Proof. First we show that the spectral sequence of this section degenerates at E2.
It suffices to show that all dr (r ≥ 2) act as 0 on the generators of E2. Since

ωi(−m) ∈ Emi,di
2 ,

drωi(−m) ∈ Emi+r,mi+2−r
2 = Cmi+r,mi+2−r = 0

By theorem 2.28
H∗(g[z]/(zk)) ∼= H∗(g)⊗H∗(zg[z]/(zk))
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Observe that the elements
(

d
dz

)∗
∧ s̃SdFi(−m) are 0 when considered as functions on

g. But by lemma 4.12 the spectral sequence converges to H∗(g[z]/(zk)), so the
subalgebra H∗(g) of E2 must survive to E∞. Therefore indeed drω = 0 for every
generator ω of E2 and E2 = E∞.

We declared the z-weight of s to be k, and dFi ∈ Smi(g[z]∗) ⊗
∧1(g[z]∗), so the

z-degree of ωi(−m) is −1−m−dik. Moreover the homology degree of s was 1, so the
cohomology degree of ωi(−m) is 2mi +1. Consequently E∞ is the algebra described
in the theorem. We only need to see that it is isomorphic to H∗(g[z]/(zk)) ∼= H∗

D as
graded algebra. But E∗∗

∞
∼= GF ∗H∗

D for a filtration on H∗
D that is compatible with

z-grading, and we have a set of homogeneous free generators of E∗∗
∞ . So just as in

the proof of theorem 3.6, these elements also freely generate H∗
D, and they have the

same degrees when considered as elements of H∗
D or of E∗∗

∞ . 2

As noticed by Feigin [7], a limit case of this theorem gives a simple description
of H∗(g[z]).

Corollary 4.15 Let g be a finite-dimensional complex semisimple Lie algebra and
assume that conjecture 4.7 holds. The inclusion of g in g[z] induces an isomorphism
between the respective cohomology algebras.

Proof. Since the Koszul differential of g[z] preserves the z-degrees, g ↪→ g[z] in-
duces an injection in cohomology. Let ω =

∑
i≥0 ωi be any cocycle in

∧n(g[z])∗,

the z-weight of ωi being −i. Then ωi is also a cocycle in g[z]/(zk) for every k ≥ i.
However by theorem 4.14 the highest possible nonzero z-weight of a cohomology
class of g[z]/(zk) is −k − 1 < i, so ωi must be a coboundary for i > 0. Hence ω is
cohomologous to ω0 ∈

∧n
g∗, and it is a coboundary in g[z] if and only if it is in g.

We conclude the map H∗(g) → H∗(g[z]) is also surjective. 2

Note that if g is reductive, it follows directly from this corollary that

H∗(g[z]) ∼= H∗([g, g])⊗
∧

(Z(g)[z]∗)

Theorem 4.14 also allows us to compute cohomology of g[z]/(f) := g ⊗C C[z]/(f)
for any f ∈ C[z], or equivalently of g⊗C C[z]/I for any ideal I ⊂ C[z]:

Corollary 4.16 Let g be a finite-dimensional complex reductive Lie algebra, assume
that conjecture 4.7 holds, and let f ∈ C[z] a polynomial of degree n > 0. Then
H∗(g[z]/(f)) ∼= H∗(g)⊗n.

Proof. Write f = λ0(z − λ1)
n1 · · · (z − λt)

nt , so that

C[z]/(f) ∼=
t⊕

i=1

C[z]/ ((z − λi)
ni) ∼=

t⊕
i=1

C[z]/(zni)
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If we ignore the z-weights, theorems 3.6 and 4.14 say that H∗(g[z]/(zk)) ∼= H∗(g)⊗k.
Now a repeated application of proposition 2.8 gives

H∗(g[z]/(f)) ∼= H∗

(
t⊕

i=1

g[z]/(zni)

)
∼= H∗(g)ni ⊗ · · · ⊗H∗(g)⊗nt = H∗(g)⊗n

as required. 2

Remark. If all the zeros of f were different, this result would be trivial. In general
the generators of H∗(g[z]/(f)) are not homogeneous in z, since the ring isomorphism
C[z]/((z − λ)k) → C[z]/(zk) does not preserve the z-grading.
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Chapter 5

Macdonald’s conjectures

Finally we come to the famous root system conjectures by Macdonald. They were
first stated in 1982 in a remarkable article [21] that contains more questions than
answers. Most of these conjectures were already settled some time ago, but the state
of the ones we consider here is still unclear. Hanlon [12] related them to theorem
4.14, but the recent (2001) proof by Fishel, Grojnowsky and Teleman [9] of this
theorem is not entirely convincing, as we saw in the previous chapter.

First we state these conjectures, and discuss some specializations. After that
we give a short introduction to Kac-Moody algebras and discuss the conjectures in
relation to affine root systems.

5.1 The original setting

Before we prove Macdonald’s conjecture in its most beautiful form, we consider an
equivalent statement, which figures as conjecture 3.1’ in [21]. The method of the
proof is due to Hanlon [12].

Proposition 5.1 Let G be a connected compact Lie group with normalized Haar
measure dg and Lie algebra g, l the rank of g and m1, . . . ,ml its exponents. Take
k ∈ Z>0 ∪ {∞} and let q be a complex variable, with the restriction that |q| < 1/2 if
k = ∞. If conjecture 4.7 holds then∫

G

k−1∏
j=1

det
(
1− qjAd(g)

)
dg =

l∏
i=1

k−1∏
j=1

(
1− qkmi+j

)
Proof. Denote the above integral by P . Using the proof of lemma 1.8 we see that

det
(
1− qjAd(g)

)
=

dim g∑
r=0

(−qj)rtrAd(g)
∣∣Vr g

k−1∏
j=1

det
(
1− qjAd(g)

)
=

∑
r

k−1∏
j=1

(−qj)rjtrAd(g)
∣∣Vr1 g⊗···⊗

Vrk−1 g
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where the sum is over all r = (r1, . . . , rk−1) with 0 ≤ dim g. Now we identify∧r1 g⊗ · · · ⊗
∧rk−1 g with

∧r1 zg⊗ · · · ⊗
∧rk−1 zk−1g ⊂

∧
g[z]/(zk) and denote it by∧r

g[z]/(zk). Then lemma 1.7 says

P =
∑

r

(−1)r1+···+rk−1qr1+2r2+···+(k−1)rk−1 dim
(∧r

g[z]/(zk)
)G

(5.1)

(Consider this as a formal power series in q if k = ∞.) Next we go from G-invariants
to g-invariants, complexify g[z]/(zk) and take the dual space. This does not change
the dimensions in equation 5.1, so it becomes

P =
∑

r

(−1)r1+···+rk−1qr1+2r2+···+(k−1)rk−1 dim
((∧r

g[z]/(zk)
)∗)gC

(5.2)

But this is the Euler characteristic of the double graded complex C∗
res(gC[z]/(zk), gC),

where q corresponds to a z-weight of−1. By the Euler-Poincaré lemma (see e.g. page
262 of [10]) this equals the Euler characteristic of the complex H∗

res(gC[z]/(zk), gC).
If k <∞ then by theorem 4.14 H∗

res(gC[z]/(zk), gC) is a free exterior algebra with
(k − 1)l generators. For each exponent mi there are k − 1 generators of degree
2mi + 1, and they have z-weights mik − 1,mik − 2, . . . ,mik + 1− k. Therefore

P =
l∏

i=1

k−1∏
j=1

(1 + (−1)2mi+1qmik+j) =
l∏

i=1

k−1∏
j=1

(1− qmik+j) (5.3)

On the other hand if k = ∞, by corollary 4.15

H∗
res(gC[z], gC) ∼= H∗

res([g, g]C[z], [g, g]C)⊗H∗
res(Z(gC)[z], Z(gC))

∼= C⊗H∗
res(zZ(gC)[z]) ∼=

∧
(zZ(gC)[z])∗res

so P =
∏∞

j=1(1− qj)dim Z(g). But if mi > 0 then because |q| < 1/2∣∣∣∣∣
k−1∏
j=1

(1− qmik+j)− 1

∣∣∣∣∣ < (2k−1 − 1)|q|mik+1 < |2q|k → 0 if k →∞

Therefore

lim
k→∞

k−1∏
j=1

(1− qmik+j) = 1 if mi > 0

lim
k→∞

l∏
i=1

k−1∏
j=1

(1− qmik+j) =
∏

i: mi=0

∞∏
j=1

(1− qj)

By definition 0 appears dimZ(g) times as an exponent, so this last expression is
indeed P. 2

83



The conventions and notations from chapter 1 are not enough to state the con-
jecture in full generality; we must make a little trip to the land of q-analogues. Of
course everybody knows to binomial coefficient(

n

r

)
=

n!

r!(n− r)!
=
n(n− 1) · · · (n+ 1− r)

1 · 2 · · · r

We define [
n
r

]
q

=
(1− qn)(1− qn−1) · · · (1− qn+1−r)

(1− q)(1− q2) · · · (1− qr)

Dividing both the numerator and the denominator by (1− q)r shows that

lim
q→1

[
n
r

]
q

= lim
q→1

∏n
i=n+1−r(1 + q + · · ·+ qi−1)∏r

i=1(1 + q + · · ·+ qi−1)
=

(
n

r

)

For this reason one also refers to

[
n
r

]
q

as the q-binomial coefficient (of n and r).

Most of the well-known identities for binomial coefficients have q-analogues. Now
we can state the conjecture of Macdonald’s the we’re after. Our proof follows the
original paper [21], in which Macdonald relates his conjecture to proposition 5.1.

Theorem 5.2 Assume that conjecture 4.7 holds. Let R be a root system with posi-
tive system R+ and define for k ∈ Z>0 ∪ {∞}:

P (R, k) =
∏

α∈R+

k∏
i=1

(1− qie(α))(1− qi−1e(−α))

Then for k > 0 the constant term, independent of the e(α) with α 6= 0, of P (R, k) is
l∏

i=1

[
kdi

k

]
q

. For k = ∞ this constant term is
∞∏
i=1

(1− qj)−l, provided that |q| < 1/2.

Proof. Denote the constant term in question by ck. If we substitute t = qk in
theorem 1.23 we get

l∏
i=1

1− qkdi

1− qk
=
∑
w∈W

∏
α∈R+

1− qke(−wα)

1− e(−wα)

Multiply this by
∏

α∈R

∏k
i=1(1− qj−1e(α)):
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l∏
i=1

1− qkdi

1− qk

∏
α∈R

k∏
i=1

(1− qj−1e(α)) =

∑
w∈W

∏
α∈R+

1− qke(−wα)

1− e(−wα)

∏
α∈R

k∏
i=1

(1− qj−1e(α)) =

∑
w∈W

∏
α∈R+

1− qke(−wα)

1− e(−wα)

∏
α∈R

k∏
i=1

(1− qj−1e(−wα)) =

∑
w∈W

∏
α∈R+

k∏
j=1

(1− qje(−wα))(1− qj−1e(wα))

(5.4)

Clearly each term in the last sum has the same constant term ck. Let gC be a
semisimple complex Lie algebra with root system R, g a compact real form of gC, t
a CSA of g, G a connected compact Lie group with Lie algebra g, T the maximal
torus corresponding to t and dg and dt the normalized Haar measures of G and T .
Since the adjoint representation of T on gα is (expH) · Xα = eα(H)Xα, e(α) can
regarded as a character of T . Now we can get the constant term of the polynomials
5.4 by integrating over T :

l∏
i=1

1− qkdi

1− qk

∫
T

∏
α∈R

k∏
i=1

(1− qj−1e(α)(t))dt =

l∏
i=1

1− qkdi

1− qk

∫
T

k∏
j=1

det
(
1− qj−1Ad(t)

)
g/t
dt =

l∏
i=1

1− qkdi

1− qk

∫
T

det (1− Ad(t))g/t

k−1∏
j=1

det (1− qj−1Ad(t))g

(1− qj)l
dt

(5.5)

By Weyl’s integration formula (equation 3.2) and proposition 5.1 this equals

|W |
l∏

i=1

1− qkdi

1− qk

∫
G

k−1∏
j=1

det (1− qj−1Ad(g))g

(1− qj)l
dg =

|W |
l∏

i=1

1− qkdi

1− qk

k−1∏
j=1

1− qkmi+j

(1− qj)l
=

|W |
l∏

i=1

(1− qj)−l

k−1∏
j=0

(1− qkdi−j) = |W |
l∏

i=1

[
kdi

k

]
q

(5.6)

We conclude that |W |ck = |W |
l∏

i=1

[
kdi

k

]
q

. This proof also works for k = ∞ and

|q| < 1/2. For then the integration is performed by considering the function as
a formal power series in q, and by a computation similar to that in the proof of
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proposition 5.1 one shows that limk→∞
l∏

i=1

[
kdi

k

]
q

=
∞∏

j=1

(1− qj)−l. 2

Notice that it would be sufficient to prove this theorem for simple g, or equiv-
alently for irreducible R. For if R = R1 ∪ R2 with R1 ⊥ R2, then P (R, k) =
P (R1, k)P (R2, k) and the same for their constant terms (since α ∈ R1, β ∈ R2 =⇒
α+ β 6= 0).

An important specialization arises when we take the limit q → 1.

Corollary 5.3 Assume that conjecture 4.7 holds. Let R be a root system and k ∈
Z>0. Then the constant term of

∏
α∈R(1− e(α))k is

∏l
i=1

(
kdi

k

)
.

Contrarily the theorem 5.2, it makes no sense to take the limit k →∞.

Example. Let us see what the above polynomials and constant terms look like in
our example g = su(n) from chapter 1. Recall that

R = {λi − λj : 1 ≤ i, j ≤ n, i 6= j} ,

that λi−λj is positive if and only if i > j and that the exponents are 1, 2, . . . , n−1.
Writing xi for e(λi), e(λi − λj) becomes xix

−1
j . Then theorem 5.2 states that

CT

( ∏
1≤j<i≤n

k∏
m=1

(1− qmxix
−1
j )(1− qm−1xjx

−1
i )

)
=

n∏
m=2

[
km
k

]
q

If we take the limit q → 1, we see that

CT

(∏
i6=j

(1− xix
−1
j )k

)
=

n∏
m=2

(
km

k

)
=

n∏
m=1

(km)!

k!((m− 1)k)!
=

(nk)!

(k!)n
. (5.7)

This last polynomial is much simpler than the ones we encountered so far, so it
is not surprising that already in 1962 Dyson conjectured equation 5.7. This was
proved not long afterwards, without the use of root systems.

5.2 Affine Lie algebras

We give a rather intuitive description of Kac-Moody algebras and affine root systems.
For a complete treatment with proofs see Kac [16]. All Lie algebras in this section
will be complex.

If g is a finite-dimensional semisimple Lie algebra with root system R and basis

∆ = {αi : 1 ≤ i ≤ l}, A = (aij)
n
i,j=1 =

(
2 〈αi, αj〉
〈αi, αi〉

)n

i,j=1

is its Cartan matrix. It is

determined by g up to a renumbering of the indices and satisfies:

1. aii = 2∀i
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2. aij ∈ Z≤0 if i 6= j

3. aij = 0 ⇐⇒ aji = 0

It was shown by Serre that g is isomorphic to the Lie algebra g(A) with generators
ei, fi, hi (i = 1, . . . , l) and relations

[hi, hj] = 0 [hi, ej] = aijej (ad ei)
1−aijej = 0

[ei, fi] = δi,jhi [hi, fj] = −aijfj (ad fi)
1−aijfj = 0

(5.8)

Now a matrix A that satisfies conditions 1, 2 and 3 is called a (generalized) Cartan
matrix, and decomposition of A is a partition of {1, . . . , l} into two nonempty subsets
I and J such that aij = 0 if i ∈ I, j ∈ J . With A one associates a Lie algebra
g(A) in the same way as above, and this is by definition the Kac-Moody algebra
associated to A. For indecomposable A there are three types:

finite A is positive definite.

affine A is positive semidefinite of corank 1.

indefinite there exists a vector v with positive coordinates such that Av
has negative coordinates.

In the finite case g(A) is a finite-dimensional simple Lie algebra, in the other two
cases g(A) has infinite dimension. The Cartan matrices of finite and affine type
are completely classified, but little is known about those of indefinite type. A large
part of the theory of finite-dimensional semisimple Lie algebras (see section 1.3) can
be generalized to Kac-Moody algebras, but of course there are many complications.
Thus the subspace h of g(A) spanned by the elements hi is a CSA and there is a set
of roots R ⊂ h∗. (This is not a root system in the sense of section 1.3.) The roots
αi corresponding to the elements ei are by definition simple and they form a basis
∆ of R. The Weyl group W is the subgroup of End h∗ generated by the reflections
induced by the αi. In the finite case R and W are finite and every root is the image
of a simple root under an element of the Weyl group, but this is not true in the
affine and indefinite cases. Therefore one defines the set of real roots Rre := W ·∆,
and the set imaginary roots Rim := R \Rre. If α is a real root then dim gα = 1 and
−α is the only other multiple of α in R. (So Rre has most of the properties of a
finite root system.)

It turns out that if g is finite-dimensional semisimple Lie algebra, its loop algebra
g[z, z−1] = g⊗ C[z, z−1] is almost a direct sum of affine Lie algebras. To make this
precise we assume that g is simple. Define a bilinear form on g[z, z−1] by

〈X ⊗ P, Y ⊗Q〉 = κ(X, Y ) res

(
dP

dz

Q

2πi

)
where κ is the Killing form of g and res f is the residue at 0 of a holomorphic
function f . Let g[z, z−1] ⊕ Cc be the central extension of g[z, z−1] by c, with Lie
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bracket

[x+ λc, y + µc] = [x, y] + 〈x, y〉 c

Now we write d for the derivation z d
dz

of C[z, z−1] and define the Lie algebra

ĝ = g[z, z−1]⊕ Cc⊕ Cd

[X ⊗ zn + λc+ µd, Y ⊗ zm + λ′c+ µ′d] =
[X, Y ]⊗ zn+m + 〈X ⊗ zn, Y ⊗ zm〉 c+ µY ⊗mzm − µ′X ⊗ nzn

This ĝ is the affine Lie algebra corresponding to a matrix that contains the Cartan
matrix of g as a principal minor. With the usual notations for objects associated to
g, ĥ := h⊕ Cc⊕ Cd is a CSA of ĝ. Let δ ∈ ĥ∗ be the linear function that is 0 on h
and at c, and 1 at d. The affine root system and root spaces of ĝ are

R̂ = {nδ + α : α ∈ R, n ∈ Z} ∪ {nδ : n ∈ Z \ 0}

ĝ0 = ĥ, ĝnδ = h⊗ zn, ĝnδ+α = gα ⊗ zn

Moreover if θ ∈ R+ is the unique root of maximal height, α0 = δ−θ is a simple root
and ∆̂ = {α0, α1, . . . , αl} is a basis of R̂, so that

R̂+ = R+ ∪ {nδ + α : α ∈ R+ ∪ 0, n ∈ Z>0}

The Weyl group Ŵ is generated by W and the reflection

σ0 : v → v + (〈v, θ∨〉 − λ(2c|θ|−2))α0

Therefore the roots of the form nδ + α are real, those of the form nδ are imaginary
and Ŵ fixes all imaginary roots.

Remark. The name affine is explained as follows. Regard the root lattice ZR ⊂ h∗

as a group T of translations of h∗. Then Ŵ is isomorphic to W n T , which is a
group of affine transformations of h∗.

Now we are ready to consider theorem 5.2 is this setting. Put q = e(−δ), so that

P (R, k) =
∏

α∈R+

k∏
i=1

(1− e(−iδ + α))(1− e((i− 1)δ − α)) =
∏

α∈R̂+
re:α<kδ

(1− e(−α))

It is natural to add the imaginary roots δ, 2δ, . . . , kδ to this product, and because
dim ĝnδ = l, we do this with multiplicity l. This gives us∏

0<α≤kδ

(1− e(−α))dim ĝα := P (R̂, k)
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According to theorem 5.2 the constant (or rather imaginary) term of P (R̂, k) is

l∏
i=1

[
kdi

k

]
q

k∏
j=1

(1− qj)l =
l∏

i=1

k−1∏
j=0

(1− qkdi−j) =
l∏

i=1

k−1∏
j=0

(1− e((j − kdi)δ))

The case k = ∞ is particularly interesting, as it says that the constant term of∏
α∈R̂+(1 − e(−α)) is simply 1. In other words, there are no terms corresponding

to imaginary roots and coefficient at e(0) is 1. However, this was already known
before Macdonald stated his conjectures. In fact it is a special case of a much deeper
result, which we recall now.

A matrix A is symmetrizable if there exists a symmetric matrix B and an in-
vertible diagonal matrix D such that A = DB. It can be shown that all Cartan
matrices of finite or affine type are symmetrizable. Let g(A) be the Kac-Moody
algebra associated to A and use the notation from the start of this section. Take
ρ ∈ h∗ with ρ(hi) = 1 ∀i. These conditions determine ρ completely if detA 6= 0,
and 2ρ =

∑
α∈R+ α if A is of finite type. It is not difficult to see that for any

w ∈ W, ρ − wρ is the sum s(w) of all α ∈ R+ such that w−1 ∈ R−(= −R+) (cf.
proposition 2.5 of [11]). Finally let ε(w) denote the determinant of w ∈ End h.

Theorem 5.4 Let A be a symmetrizable Cartan matrix. With the above notation,∏
α∈R+

(1− e(−α))dim g(A)α =
∑
w∈W

ε(w)e(wρ− ρ) =
∑
w∈W

ε(w)e(−s(w))

This polynomial has no terms e(α) with α imaginary, and the constant term is 1.

Proof. The equality is 10.4.4 in Kac [16]. Clearly idh is the only element of W
with s(w) = 0, so the constant term is 1. Otherwise s(w) > 0 and w−1s(w) < 0.
But by proposition 5.2.a of [16], W permutes the positive imaginary roots among
themselves, so s(w) and −s(w) cannot be imaginary. 2

Remark. For A of finite type this famous theorem is due to Weyl and for affine
A it was first discovered (in a modified form) by Macdonald. The general case
was established by Kac. Furthermore Garland and Lepowsky [11] reached the same
result with the help of Lie algebra homology and Looijenga [20] gave a nice proof
using theta-functions.
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