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Abstract. Consider a reductive group G over a non-archimedean local field.
The Galois group Gal(C/Q) acts naturally on the category of smooth complex
G-representations. We prove that this action stabilizes the class of standard CG-
modules. This generalizes and relies on an analogous result from [KSV] about
essentially square-integrable representations.

Other important objects in the proof of our main result are intertwining opera-
tors between parabolically induced G-representations, and the associated Harish-
Chandra µ-functions. We determine an explicit formula for the µ-function of any
irreducible representation of any Levi subgroup of G.
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1. Introduction

This paper is a sequel to [KSV]. That project started with the question: which
classes of representations of reductive p-adic groups G are stable under the action
of Gal(C/Q)? By default, the representations that we consider here are smooth and
on complex vector spaces. The motivation for such questions is twofold.

Firstly, it relates to L-functions. One may hope to prove statements of the kind

if L(s, π) = 0 for some s ∈ 1

2
Z, then L(s, γ · π) = 0 for γ ∈ Gal(C/Q).

This could apply to representations π of reductive groups over local fields or of adelic
reductive groups (and of course one needs reductive groups for which L-functions
of irreducible representations are defined). For general linear groups, this has been
studied in [KrCl].

Secondly, in algebro-geometric investigations related to reductive p-adic groups it
is often beneficial to use representations not over C but over Qℓ for a prime number
ℓ ̸= p. Here we are thinking in particular of the Fargues–Scholze program [FaSc],
of the generalized Springer correspondence [Lus1] and of geometric graded Hecke
algebras [AMS]. One may wonder whether certain results about C-representations
obtained via Qℓ-representations depend on ℓ or on the choice of a field isomorphism
C ∼= Qℓ. Any two such field isomorphisms differ by composition with an element
of Gal(C/Q), so one wants to understand which properties of C-representations
preserved by Gal(C/Q).

It is clear that the action of Gal(C/Q) on G-representations preserves irreducibili-
ty, and it is easy to see that it preserve cuspidality. However, this action does in gene-
ral not preserve analytic notions like unitarity, temperedness or square-integrability
modulo center. The main results of [KSV] say that Gal(C/Q) stabilizes

• the class of essentially square-integrable G-representations,
• the class of elliptic (virtual) G-representations.

In this paper we focus on a larger class of representations, that of standard CG-
modules. Let Q = MUQ be a parabolic subgroup of G and let τ be an irreducible
tempered M -representation. Let ν ∈ Hom(M,R>0) be strictly positive with respect
to Q (for the precise condition see Section 4). By definition, a standard CG-module
is a G-representation of the form IGQ (τ⊗ν), with (Q, τ, ν) as above. The importance

of standard modules stems from the Langlands classification (which for p-adic groups
is not due to Langlands):

Theorem A. [Ren, §VII.4]

(a) Every standard CG-module IGQ (τ ⊗ ν) has a unique irreducible quotient, which

we call L(Q, τ ⊗ ν).
(b) Every irreducible G-representation π arises as the quotient of a standard CG-

module πst.
(c) If IGQ′(τ ′ ⊗ ν ′) is a standard module and L(Q, τ ⊗ ν) ∼= L(Q′, τ ′ ⊗ ν ′), then there

exists a g ∈ G such that gQg−1 = Q′, gMg−1 = M ′ and g(τ ⊗ ν) ∼= τ ′ ⊗ ν ′.
(d) The maps IGQ (τ ⊗ ν) 7→ L(Q, τ ⊗ ν) and π 7→ πst set up a bijection between

Irr(CG) and the set of standard CG-modules (up to isomorphism).
(e) The set of standard CG-modules (up to isomorphism) forms a Z-basis of the

Grothendieck group of the category of finite length G-representations.
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It is expected that in categorical versions of the local Langlands correspondence,
standard modules behave better than irreducible G-representations. The reason
should be that non-elliptic standard modules always come in families (because ν
can vary continuously), which does not hold for irreducible representations.

1.1. Main results.

Theorem B. The action of Gal(C/Q) on the category of smooth complex G-repre-
sentations stabilizes the class of standard CG-modules.

Theorem B enables us to define standard QℓG-modules in an unambiguous way.
Namely, we call a G-representation πℓ on a Qℓ-vector space standard if the complex
G-representation obtained from πℓ via any field isomorphism C ∼= Qℓ is a standard
CG-module.

Essential ingredients for Theorem B are Harish-Chandra’s intertwining operators

JP ′|P (π) : I
G
P (π) → IGP ′(π) for finite length L-representations π.

In fact we need more properties than can be found in the literature, so we further
develop the theory of intertwining operators. Let π ∈ Irr(L) be an irreducible
L-representation. The invertibility of JP ′|P (π) is governed by Harish-Chandra’s
µ-function µG,L(π) [Wal]. More precisely, µG,L(π ⊗ χ) is a rational function of an
unramified character χ ∈ Xnr(L), and JP ′|P (π) is invertible if µG,L(π) ∈ C×. Usually
JP ′|P (π) is not invertible if µG,L(π) ∈ {0,∞}.

Theorem C. (see Proposition 3.3 and Theorem 3.6)
Let M ⊂ L be a Levi subgroup and let σ ∈ Irr(M) be such that π ∈ Irr(L) is a
subquotient of ILMU (σ), for some parabolic subgroup MU of L.

(a) There exists an explicit c ∈ R>0 such that

µG,L(π ⊗ χ) = c µG,M (σ ⊗ χ)µL,M (σ ⊗ χ)−1 χ ∈ Xnr(L).

(b) Suppose in addition that σ is cuspidal. Then

µG,L(π ⊗ χ) = c
∏

Mα

µMα,M (σ ⊗ χ) χ ∈ Xnr(L),

where the product runs over the Levi subgroups Mα ⊂ G which contain M
as minimal Levi subgroup but are not contained in L. Moreover each term
µMα,M (σ ⊗ χ) admits an explicit formula as a rational function of χ.

1.2. Structure of the main proof.
The initial step towards Theorem B is an alternative construction of standard

modules, from [Sol1]. Let P = LUP be a parabolic subgroup of G and let δ be an
irreducible essentially square-integrable L-representation. We say that δ is positive
with respect to P if the absolute value of the central character of δ is so. In that
case IGP (δ) is a direct sum of standard CG-modules IGP (δ)κ. (See Paragraph 3.4
for meaning of κ.) Moreover every standard CG-module arises in this way, from
essentially unique (P,L, δ).

Without the positivity condition on δ, IGP (δ) is a direct sum of so-called quasi-
standard CG-modules IGP (δ)κ (Definition 4.2). Any quasi-standard CG-module
IGP (δ)κ can be made into a standard CG-module by adjusting P , but in general
that changes the isomorphism class of the module. Since Gal(C/Q) preserves es-
sential square-integrability [KSV], Gal(C/Q) stabilizes the class of quasi-standard
CG-modules (Lemma 5.4).
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From this point on we present two proofs of Theorem B, both of interest in their
own way. The first method relies on an invariant N of G-representations π, which
measures a distance from π to the set of parabolic inductions of unitary cuspidal
representations of Levi subgroups of G (see Paragraph 4.2). It is known from [Sol1]
that L(Q, τ⊗ν) is the unique irreducible subquotient of IGQ (τ⊗ν) which has the same

N -value as IGQ (τ⊗ν). This enables us to characterize standard CG-modules as those
quasi-standard CG-modules which have an irreducible quotient with the appropriate
N -value (Theorem 4.9). In contrast to the original definition, this characterization
of standard modules uses neither temperedness not positivity of characters.

We show that this configuration is preserved when we let any γ ∈ Gal(C/Q) act on
a standard CG-module. That leads to our first proof of Theorem B, in Proposition
5.5. However, this proof is conditional: we assume that γ preserves the N -values
of all essentially square-integrable representations of Levi subgroups of G. That
property is not yet known, but it follows from the rationality of q-parameters for
related Hecke algebras. Such rationality has been conjectured by Lusztig [Lus2],
and has been checked in the large majority of all cases [Sol3, Oha].

Our second proof of Theorem B uses that the parabolic subgroup P in a quasi-
standard CG-module IGP (δ)κ is often not unique. Namely, for any other parabolic
subgroup P ′ with the same Levi factor L, there exists an intertwining operator

(1) JP ′|P (δ) : I
G
P (δ) → IGP ′(δ).

Under mild conditions (1) is an isomorphism, which entails that IGP (δ)κ is isomorphic
to a quasi-standard direct summand of IGP ′(δ).

With Theorem C one can reduce questions about intertwining operators and µ-
functions to the cases of cuspidal representations, which can be analysed more easily.
For instance, consider the corank one intertwining operator JMU−α|MUα

(σ⊗χ), where
MU−α and MUα are the parabolic subgroups of Mα with Levi factor M . It was
already known that, if µMα,M (σ) = 0, then JMU−α|MUα

(σ⊗χ) can be normalized to
an operator

J ′
MU−α|MUα

(σ ⊗ χ) : IGP (σ ⊗ χ) → IGP ′(σ ⊗ χ),

which is invertible for χ in a neighborhood of 1 in Xnr(M). In particular IMα
MU−α

(σ)

is isomorphic to IMα
MUα

(σ) whenever µMα,M (σ) ̸= ∞. More generally, we prove in
Theorem 3.9 that (with the notations from Theorem C)

(2) IGP (π) ∼= IGP ′(π) unless µMα,M (σ) = ∞ for some Mα with P ⊃ MUα ̸⊂ P ′.

This is used in our second proof of Theorem B.
For a given γ ∈ Gal(C/Q) and (P,L, δ) as above, we construct a particular

P ′ = LUP ′ such that γ · δ is positive with respect to P ′. An explicit analysis of
the corank one situation (Proposition 4.5) reveals an asymmetry between IMα

MUα
(σ)

and IMα
MU−α

(σ) when µMα,M (σ) = ∞, the roles of the unique quotient and the unique

subrepresentation differ. Using that with as σ a representative of the cuspidal sup-
port of δ, we can arrange that all the Mα with µMα,M (σ) = ∞ satisfy MUα ⊂ P ∩P ′

orMU−α ⊂ P∩P ′. With (2), it follows that a normalized version J ′
P ′|P (δ) of JP ′|P (δ)

gives isomorphisms

(3) IGP (δ) ∼= IGP ′(δ) and γ · IGP (δ) ∼= γ · IGP ′(δ).

From there, we show in Theorem 5.8 that γ · IGP (δ)κ is a standard CG-module.
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2. Notations

F : non-archimedean local field
G: F -rational points of a connected reductive group G defined over F
Gder: F -rational points of derived subgroup of G
Z(G): center of G
AG: maximal F -split torus in Z(G)
Rep(G): category of smooth complex G-representations
Irr(G): set of irreducible objects in Rep(G), up to isomorphism
G1: subgroup of G generated by all compact subgroups of G
Xnr(G) = Hom(G/G1,C×): group of unramified characters of G
L,M : Levi subgroups of G
P = LUP : parabolic subgroup of G with Levi factor L and unipotent radical UP

P = LUP : parabolic subgroup opposite to P = LUP

IGP : normalized parabolic induction functor Rep(L) → Rep(G)

3. Intertwining operators and Harish-Chandra’s µ-functions

We recall the definition of Harish-Chandra’s intertwining operators. Consider two
parabolic subgroups P = LUP and P ′ = LUP ′ with a common Levi factor L. Let
(π, Vπ) be a L-representation. All the representations IGP (π⊗χ) with χ ∈ Xnr(L) can

be realized on the same vector space, namely indK0
P∩K0

Vπ for a good maximal compact

subgroup K0 of G. This makes it possible to speak of objects on IGP (π ⊗ χ) that
vary regularly or rationally as functions of χ ∈ Xnr(L). Consider the intertwining
operators

(3.1)
JP ′|P (π ⊗ χ) : IGP (π ⊗ χ) → IGP ′(π ⊗ χ)

f 7→
[
g 7→

∫
UP∩UP ′\UP ′

f(ug) du
] .

For π of finite length, this is well-defined as a family of G-homomorphisms de-
pending rationally on χ ∈ Xnr(L) [Wal, Théorème IV.1.1]. There is an alternative
construction of (3.1), in [Wal, proof of Théorème IV.1.1]. That construction works
for representations with coefficients in any algebraically closed field of characteristic
not p, which has been exploited recently in [MoTr] to define intertwining operators
in more general settings.

Let P̄ = LUP̄ be the parabolic subgroup opposite to P = LUP . We assume that
π is irreducible and we consider the composition

(3.2) JP |P̄ (π ⊗ χ)JP̄ |P (π ⊗ χ) : IGP (π ⊗ χ) → IGP (π ⊗ χ) χ ∈ Xnr(L).

This depends rationally on χ, and for generic χ the representation IGP (π ⊗ χ) is
irreducible [Sau, Théorème 3.2]. Therefore (3.2) is a scalar operator [Wal, §IV.3],
say

(3.3) jG,L(π ⊗ χ) id with jG,L : Xnr(L)π → C ∪ {∞}.

For purposes of harmonic analysis, the reciprocal of jG,L is often more convenient
than jG,L itself. It usually rescaled by numbers γ(G|L), c(G|L) ∈ Q>0 defined in
[Wal, p. 241]. By definition [Wal, §V.2] Harish-Chandra’s µ-function is

(3.4) µG,L(π ⊗ χ) = c(G|L)2γ(G|L)2jG,L(π ⊗ χ)−1.
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This µ-function is especially important for essentially square-integrable representa-
tions π, because then µG,L(π⊗χ) describes how the Plancherel density on {IGP (π⊗χ) :
χ ∈ Xnr(L)} varies as a function of χ [Wal].

Let AL be the maximal split torus in Z(L). The set of nonzero weights by which
AL acts on the Lie algebra of G is not necessarily a root system, but it is always
a generalized root system in the sense of [DiFi]. In particular notions like basis,
positive roots and reduced roots still make sense. Let Φ(G,AL) be the set of reduced
roots of (G,AL) and let Φ(G,AL)

+ = Φ(UP , AL) be the subset of roots appearing in
the Lie algebra of P . For α ∈ Φ(G,AL)

+, let Uα (resp. U−α) be the root subgroup
of G for all positive (resp. negative) multiples of α. Let Lα be the Levi subgroup of
G generated by L ∪ Uα ∪ U−α. Then L is a maximal proper Levi subgroup of Lα.
Now [Wal, IV.3.(5) and Lemma V.2.1] say that

(3.5)
jG,L(π) =

∏
α∈Φ(G,AL)+

jLα,L(π),

µG,L(π) =
∏

α∈Φ(G,AL)+
µLα,L(π).

With these µ-functions one can check easily whether certain intertwining operators
are invertible.

Lemma 3.1. Suppose that µLα,L(π) /∈ {0,∞} (or equivalently jLα,L(π) /∈ {0,∞})
for all α ∈ Φ(UP , AL) ∩ Φ(UP ′ , AL). Then JP ′|P (π) : I

G
P (π) → IGP ′(π) is invertible.

Proof. As noticed on [Wal, p. 279], there exists a sequence of parabolic subgroups
P = P0, P1, · · · , Pd = P ′, all with Levi factor L, such that Φ(Pi, AL) and Φ(Pi−1, AL)
differ by only one root and d = |Φ(UP , AL) ∩ Φ(UP ′ , AL)|. In this situation [Wal,
IV.1.(12)] says that

(3.6) JP ′|P (π) = JPd|Pd−1
(π) ◦ · · · ◦ JP1|P0

(π).

It suffices to show that each JPi|Pi−1
(π) is invertible

Therefore we may assume that Φ(UP ′ , AL) ∩ Φ(UP ′ , AL) consists of a single root
α. By [Wal, IV.1.(14)] we may identify

(3.7) JP ′,P (π) = IGLαP

(
JLU−α|LUα

(π)
)
: IGLαP (I

L
LUα

(π)) → IGLαP (I
L
LU−α

(π)).

By assumption

JLUα|LU−α
(π)JLU−α|LUα

(π) = jLα,L(π) id ∈ C× id.

Hence JLU−α|LUα
(π) is invertible and (3.7) is invertible as well. □

3.1. Silberger’s formulas for the µ-functions.
In [Sil3, Sil4] the functions µG,L(π) were determined, for essentially square-inte-

grable representations. We will provide a different argument to arrive at the same
formula in larger generality.

Let M be a Levi subgroup of L and Q = MUQ be a parabolic subgroup of G with
Levi factor M , such that Q ⊂ P . Then Q∩L is a parabolic subgroup of L with Levi
factor M , P = QL and P = LQ. We note that, since P = L⋉ UP :

(3.8) UQ = UQ∩L ⋉ UP and UQ = UQ∩L ⋉ UP .

Lemma 3.2. Suppose that σ ∈ Irr(M) and that π is a subquotient of ILQ∩L(σ). Then

µG,L

(
ILQ∩L(σ)⊗ χ

)
is defined for χ ∈ Xnr(L), and equals µG,L(π ⊗ χ).
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Proof. There is a natural isomorphism ILQ∩L(σ) ⊗ χ ∼= ILQ∩L(σ ⊗ χ|M ). For χ′ ∈
Xnr(M) in generic position, ILQ(χ

′) is irreducible [Sau, Théorème 3.2]. In the same

way as in (3.2) and (3.3) we see that

(3.9) JP |P̄
(
ILQ∩L(σ⊗χ′)

)
JP̄ |P

(
ILQ∩L(σ⊗χ′)

)
= jG,L

(
ILQ∩L(σ⊗χ′)

)
id χ′ ∈ Xnr(M).

This shows that jG,L

(
ILQ∩L(σ ⊗ χ′)

)
and µG,L(I

L
Q∩L

(
σ ⊗ χ′)

)
are well-defined. We

note that the formulas for JP̄ |P
(
ILQ∩L(σ ⊗ χ)

)
and JP̄ |P (π ⊗ χ) are essentially the

same, only applied to different representations.
Write π = π1/π2 where π1, π2 are subrepresentations of ILQ∩L(σ). One can obtain

JP̄ |P (π) : IGP (π) → IG
P
(π) from JP̄ |P

(
ILQ∩L(σ ⊗ χ)

)
by first restriction to JP |P (π1)

and then taking the induced homomorphism on IGP (π) ∼= IGP (π1)/I
G
P (π2). Since (3.9)

with χ′ = χ ∈ Xnr(L) is a scalar operator, it follows that JP |P̄ (π⊗ χ)JP̄ |P (π⊗ χ) is
also a scalar operator, with the same scalar. In other words,

(3.10) jG,L

(
ILQ∩L(σ)⊗ χ

)
= jG,L(π ⊗ χ).

This argument applies initially for every χ ∈ Xnr(L) such that jG,L(π ⊗ χ) ̸= ∞,
and then it extends to all χ ∈ Xnr(L) because both j-functions are rational in χ.
From (3.10) and (3.4) we see that µG,L

(
ILQ∩L(σ)⊗ χ

)
= µG,L(π ⊗ χ). □

The following result generalizes [Sil4, Theorem 1].

Proposition 3.3. In the setting of Lemma 3.2 we have, for χ ∈ Xnr(L):

(a) jG,L(π ⊗ χ) = jG,M (σ ⊗ χ)jL,M (σ ⊗ χ)−1,

(b) µG,L(π ⊗ χ) =
µG,M (σ ⊗ χ)

µL,M (σ ⊗ χ)

c(G|L)2c(L|M)2

c(G|M)2
.

Proof. (a) In view of (3.10), we may replace π ⊗ χ by ILQ∩L(σ)⊗ χ ∼= ILQ∩L(σ ⊗ χ).

Then all the involved expressions are defined for any χ ∈ Xnr(M).
Consider the operator

(3.11)

IG
P
(JQ∩L|Q∩L(σ ⊗ χ)) ◦ JP |P

(
ILQ∩L(σ ⊗ χ)

)
: IGP

(
ILQ∩L(σ ⊗ χ)

)
→ IG

P

(
IL
Q∩L(σ ⊗ χ)

)
.

For u ∈ G and a function f on G we write (λuf)(g) = f(u−1g). Then the effect of
(3.11) is

f 7→
∫
UP

(λu1f) du1 7→
∫
UQ∩L

∫
UP

λu2(λu1f) du1du2.

By (3.8), that is the same as f 7→
∫
UQ

(λu3f)du3. The transitivity of parabolic

induction [Ren, Lemme VI.1.4] says that there are natural isomorphisms

(3.12) IGP
(
ILQ∩L(σ ⊗ χ)

) ∼= IGQ (σ ⊗ χ) and IG
P

(
IL
Q∩L(σ ⊗ χ)

) ∼= IG
Q
(σ ⊗ χ).

Therefore (3.11) can be identified with

JQ|Q(σ ⊗ χ) : IGQ (σ ⊗ χ) → IG
Q
(σ ⊗ χ).

In the same way one can check that

(3.13) JP |P
(
ILQ∩L(σ⊗χ)

)
◦IG

P
(JQ|Q(σ⊗χ)) = JQ|Q(σ⊗χ) : IG

Q
(σ⊗χ) → IGQ (σ⊗χ).
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Combining (3.13) and the two expressions for (3.11), we compute

jG,M (σ ⊗ χ)id = JQ|Q(σ ⊗ χ)JQ|Q(σ ⊗ χ) =

JP |P (I
L
Q∩L(σ⊗χ))IG

P
(JQ∩L|Q∩L(σ ⊗ χ))IG

P
(JQ∩L|Q∩L(σ ⊗ χ))JP |P

(
ILQ∩L(σ ⊗ χ)

)
= JP |P

(
ILQ∩L(σ ⊗ χ)

)
IG
P

(
jL,M (σ ⊗ χ)id

)
JP |P

(
ILQ∩L(σ ⊗ χ)

)
= jL,M (σ ⊗ χ)JP |P

(
ILQ∩L(σ ⊗ χ)

)
JP |P

(
ILQ∩L(σ ⊗ χ)

)
= jL,M (σ ⊗ χ)jG,L

(
ILQ∩L(σ ⊗ χ)

)
id.

(b) Recall that µG,L = c(G|L)2γ(G|L)2j−1
G,L. It follows from [Wal, p. 241] that

γ(G|L) = γ(G|M)γ(M |L), but c(G|L) need not satisfy such a relation. Thus Lemma
3.2 and part (a) entail

µG,L(π ⊗ χ)

c(G|L)2
=

µG,L(I
L
Q∩L(σ ⊗ χ))

c(G|L)2
=

µG,M (σ ⊗ χ)

µL,M (σ ⊗ χ)

c(L|M)2

c(G|M)2
. □

Propositon 3.3 enables us to reduce the computation of µ-functions to the case of
cuspidal representations, which is already well-understood.

Let σ ∈ Irr(M) be cuspidal. For α ∈ Φ(G,AM )+, let h∨α ∈ M/M1 be as in [Sol2,
Appendix] and [FlSo]. This element h∨α depends onXnr(M)σ and plays a role similar
to a coroot α∨. If NMα(M) ̸= M , we pick an element sα ∈ NMα(M) \M .

Theorem 3.4. [Sil3, Theorem 1.6] and [FlSo, Theorem 1.2]

(a) If jMα,M does not have a pole on Xnr(M)σ, then it equals a constant function
cα ∈ R>0 on Xnr(M)σ. This happens whenever NMα(M) = M or NMα(M) ̸=
M and sα does not stabilize Xnr(M)σ.

(b) Suppose that jMα,M has a pole on Xnr(M)σ. By moving σ inside Xnr(M)σ, we
can arrange that σ is unitary, jG,M (σ) = ∞ and sα fixes σ. Then there exist
cα ∈ R>0, qα ∈ R>1, qα∗ ∈ R≥1 such that

jMα,M (σ ⊗ χ) = cα
(1− qαχ(h

∨
α))(1− qαχ(h

∨
α)

−1)

(1− χ(h∨α))(1− χ(h∨α)
−1)

(1 + qα∗χ(h
∨
α))(1 + qα∗χ(h

∨
α)

−1)

(1 + χ(h∨α))(1 + χ(h∨α)
−1)

for all χ ∈ Xnr(M).

In Theorem 3.4.b, qα∗ = 1 if 2α is not a root of (G,AM ). Theorem 3.4.a can be
described by the same formula as part b, namely with qα = qα∗ = 1.

Consider a cuspidal Bernstein component Xnr(M)σ′ in Irr(M). Let
Φ(G,AM , Xnr(M)σ′) be the set of those α ∈ Φ(G,AM ) for which µMα,M has a
zero (or equivalently is not constant) on Xnr(M)σ′. By [Hei, Proposition 1.3],
Φ(G,AM , Xnr(M)σ′) is a reduced root system whose Weyl group embeds canonically
in NG(M)/M . The following result helps us to apply Theorem 3.4 simultaneously
to several roots from Φ(G,AM , Xnr(M)σ′).

Lemma 3.5. There exists a unitary σ ∈ Xnr(M)σ′ such that µMα,M (σ) = 0 and
sα · σ ∼= σ for all α ∈ Φ(G,AM , Xnr(M)σ′).

Proof. A parabolic subgroup P ′ = MUP ′ ⊂ G determines which roots in
Φ(G,AM , Xnr(M)σ′) are positive and which are simple. The simple roots are linearly
independent so, as already observed in [Hei], one can find a unitary σ ∈ Xnr(M)σ′

such that µMα,M (σ) = 0 for all simple α ∈ Φ(G,AM , Xnr(M)σ′). By [Sil2, §5.4.2],
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sασ ∼= σ for all such α. HenceW
(
Φ(G,AM , Xnr(M)σ′)

)
fixes σ (up to isomorphism).

Given any β ∈ Φ(G,AM , Xnr(M)σ′), there exists a

w ∈ W
(
Φ(G,AM , Xnr(M)σ′)

)
⊂ NG(M)/M

such that β = w(α) for a simple root α. Via an isomorphism w−1σ ∼= σ, we can
identify

JMU−β |MUβ
(σ ⊗ χ) = w ◦ JMU−α|MUα

(w−1(σ ⊗ χ)) ◦ w−1

= w ◦ JMU−α|MUα
(σ ⊗ w−1χ) ◦ w−1.

The same holds for −β, which entails that

(3.14) jMβ ,M (σ ⊗ χ) = jMα,M (σ ⊗ w−1χ) for all χ ∈ Xnr(M).

By (3.4) and (3.14) we have µMβ ,M (σ) = µMα,M (σ) = 0. □

We are ready to state an explicit formula for Harish-Chandra’s function µG,L, for
any irreducible L-representation.

Theorem 3.6. Let π ∈ Irr(L). Suppose that (M,σ ⊗ χπ) represents the cuspidal
support of π, where σ is as in Lemma 3.5 and χπ ∈ Xnr(M). Then there exists
c ∈ R>0, depending only on Xnr(M)σ and G, such that

µG,L(π ⊗ χ) = c
∏

α∈Φ(G,AM )+\Φ(L,AM )+

(1− (χπχ)(h
∨
α))(1− (χπχ)(h

∨
α)

−1)

(1− qα(χπχ)(h∨α))(1− qα(χπχ)(h∨α)
−1)

· (1 + (χπχ)(h
∨
α))(1 + (χπχ)(h

∨
α)

−1)

(1 + qα∗(χπχ)(h∨α))(1 + qα∗(χπχ)(h∨α)
−1)

as rational functions of χ ∈ Xnr(L).

Proof. By Proposition 3.3 and (3.5) we have

µG,L(π ⊗ χ) =
c(G|L)2c(L|M)2

c(G|M)2

∏
α∈Φ(G,AM )+ µMα,M (σ ⊗ χπχ)∏
α∈Φ(l,AM )+ µMα,M (σ ⊗ χπχ)

.

Combine that with Theorem 3.4 and (3.4). Lemma 3.5 guarantees that σ is in the
position required in Theorem 3.4.b, for any α ∈ Φ(G,AM , Xnr(M)σ′). □

Remark 3.7. Consider a finite central cover G̃ of the topological group G. The
results in this paragraph hold just as well for G̃. The reason is that every unipotent
subgroup of G admits a canonical lifting to G̃ [MWa, §A.1], so that one can reason

in G̃ with unipotent subgroups exactly like in G. Therefore our proofs apply also to
G̃. Theorem 3.4 was already proven in that generality in [FlSo].

3.2. Normalized intertwining operators.
Consider a cuspidal σ ∈ Irr(M) and α ∈ Φ(G,AM ) such that µMα,M (σ) = 0. We

define a normalized version of JMU−α|MUα
(σ ⊗ χ) by

J ′
MU−α|MUα

(σ ⊗ χ) = (χ(h∨α)− 1)JMU−α|MUα
(σ ⊗ χ) χ ∈ Xnr(M).

According to [Hei, Lemme 1.8],

(3.15) J ′
MU−α|MUα

(σ ⊗ χ) is invertible for χ in a neighborhood of 1 in Xnr(M).
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More generally, let Q and Q′ be parabolic subgroups of G with Levi factor M . We
define the normalization of JQ′|Q(σ ⊗ χ) as

J ′
Q′|Q(σ ⊗ χ) = JQ′|Q(σ ⊗ χ)

∏
α∈Φ(UQ,AM )∩Φ(U

Q′ ,AM ):µMα,M (σ)=0

(χ(h∨α)− 1).

By reduction to (3.15) one shows:

Proposition 3.8. Suppose that µMα,M (σ) ̸= ∞ for all α ∈ Φ(UQ, AM )∩Φ(UQ′ , AM ).

Then there exists a neighborhood V1 of 1 in Xnr(M), such that

J ′
Q′|Q(σ ⊗ χ) : IGQ (σ ⊗ χ) → IGQ′(σ ⊗ χ)

is an isomorphism of G-representations for all χ ∈ V1.

There are also normalized intertwining operators for non-cuspidal representations.

Let π ∈ Irr(L) be a subquotient of IQQ∩L(σ) and write P = QL. For another parabolic

subgroup P ′ ⊂ G with Levi factor L we define

(3.16) J ′
P ′|P (π ⊗ χ) = J ′

P ′|P (π ⊗ χ)
∏

α∈Φ(UP ,AM )∩Φ(U
P ′ ,AM ):µMα,M (σ)=0

(χ(h∨α)− 1).

Theorem 3.9. Suppose that µMα,M (σ) ̸= ∞ for all α ∈ Φ(UP , AM ) ∩ Φ(UP ′ , AM ).
Then there exists a neighborhood V ′

1 of 1 in Xnr(L), such that

J ′
P ′|P (π ⊗ χ) : IGP (π ⊗ χ) → IGP ′(π ⊗ χ)

is an isomorphism of G-representations, for all χ ∈ V ′
1.

Proof. The set of roots Φ(UP ′ , AM )∪Φ(UQ∩L, AM ) is a positive system in Φ(G,AM ).
That gives a parabolic subgroup Q′ of G with Levi factor M , such that P ′ = Q′L
and Q′ ∩ L = Q ∩ L. Now

Φ(UP , AM ) ∩ Φ(UP ′ , AM ) = Φ(UQ, AM ) ∩ Φ(UQ′ , AM ),

which means that the normalization factors
∏

α(χ(h
∨
α)−1) are the same for JQ′|Q(σ⊗

χ) and JP ′|P
(
ILQ∩L(σ ⊗ χ)

)
. With an argument like in (3.11)–(3.13) we obtain

J ′
Q′|Q(σ ⊗ χ) = J ′

QL′|QL

(
ILQ∩L(σ ⊗ χ)

)
: IGQ (σ ⊗ χ) → IGQ′(σ ⊗ χ).

By Proposition 3.8, J ′
Q′|Q(σ ⊗ χ) is an isomorphism for χ ∈ V1 ⊂ Xnr(M). Hence

J ′
P ′|P

(
ILQ∩L(σ)⊗ χ

)
= J ′

Q′L|QL

(
ILQ∩L(σ ⊗ χ)

)
is an isomorphism for χ ∈ V ′

1 := {χ ∈ Xnr(L) : χ|M ∈ V1}. Pick subrepresentations
π1, π2 of ILQ∩L(σ) such that π = π1/π2. By the above

J ′
P ′|P (πi ⊗ χ) : IGP (πi ⊗ χ) → IGP ′(πi ⊗ χ) i = 1, 2, χ ∈ V ′

1

are isomorphisms. The map for i = 1 extends the map for i = 2, and passing to the
quotient π = π1/π2 we find that

J ′
P ′|P (π ⊗ χ) : IGP (π ⊗ χ) → IGP ′(π ⊗ χ) χ ∈ V ′

1

is also an isomorphism. □
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3.3. Residual points of the µ-functions.
From (3.4) and (3.5) we see that µG,M can only have a pole at σ ⊗ χ if at least

one of the functions jMα,M has a zero at σ ⊗ χ. Then

JMUα|MU−α
(σ ⊗ χ)JMU−α|MUα

(σ ⊗ χ) = 0

and both factors are nonzero, so both JMUα|MU−α
(σ ⊗ χ) and JMU−α|MUα

(σ ⊗ χ)
are not injective. We write

rM = dimF Z(M)− dimF Z(G) = dimF AM − dimF AG.

Definition 3.10. A representation σ ⊗ χ at which µG,M has a pole of order rM is
called a residual point of µG,M .

The function µG,M has no poles of order > rM [Hei1, Corollaire 8.6].

Theorem 3.11. [Hei1, Théorème 8.6 and Corollaire 8.7]
The representation IGQ (σ⊗χ) has an essentially square-integrable subquotient if and
only if µG,M has a pole of order rM at σ⊗χ. Such a subquotient is square-integrable
modulo centre if and only if |cc(σ ⊗ χ)|Z(G) = 1.

Theorem 3.11 says that the cuspidal supports of essentially square-integrable rep-
resentations are precisely the residual points of the Harish-Chandra µ-functions. We
note that Xnr(M)σ does not always contain residual points. A necessary condition
is that Φ(G,M,Xnr(M)σ) has rank rM [Opd, Proposition A.3.(1)].

Lemma 3.12. (a) There are only finitely many Xnr(G)-orbits of residual points for
µG,M in Xnr(M)σ.

(b) Suppose that Z(G) is compact and that σ is as in Lemma 3.5. Then every
residual point σ ⊗ χ satisfies a collection of equations

χ(h∨α) = q, where q ∈ {±qα,±q−1
α ,±qα∗,±q−1

α∗ ,±1}
in the notation of Theorem 3.4 for Mα ⊃ M , and α runs through a subset of
Φ(G,M,Xnr(M)σ)+ whose Q-span has dimension rM .

Conversely, this collection of equations determines χ up to a finite subgroup
of Xnr(M).

(c) In the setting of part (b), |cc(σ ⊗ χ)| is determined by a collection of equations∣∣cc(σ′ ⊗ χ)(h∨Nα
α )

∣∣ = χ
(
h∨Nα
α

)
∈ {qNα

α , q−Nα
α , qNα

α∗ , q
−Nα
α∗ , 1},

with the same α as in (b) and some Nα ∈ 2Z>0.

Proof. (a) This is a special case of [Opd, Corollary A.2].
(b) As we saw above, Φ(G,M,Xnr(M)σ) must have rank rM = dimCXnr(M)σ. By
part (a) and the compactness of Z(G), µG,M has only finitely many residual points
in Xnr(M)σ. By (3.4) and [Opd, Theorem A.7], there exist rM linearly independent
roots α ∈ Φ(G,M,Xnr(M)σ)+ such that

µMα,M (σ) = 0 and jMα,M (σ ⊗ χ) = ∞.

By Theorem 3.4 and (3.4), these equations imply that χ(h∨α) or χ(h∨α)
−1 lies in

{±qα,±qα∗}. There may be further α ∈ Φ(G,M,Xnr(M)σ)+ with χ(h∨α) or χ(h
∨
α)

−1

in {±qα,±qα∗,±1}, in the notations from Theorem 3.4 for jMα,M . We include those
as equations for σ ⊗ χ.

The elements h∨α for the α as above span a finite index sublattice of M/M1.
Therefore the values χ(h∨α) determine χ up to a finite subgroup of Xnr(M).
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(c) Recall from Lemma 3.5 that σ is unitary. Since Z(M)M1 has finite index in M ,
we can find Nα ∈ 2Z>0 such that h∨Nα

α ∈ Z(M)M1/M1. For any representative
h ∈ Z(M) of h∨Nα

α , part (b) shows that

(3.17) |cc(σ′ ⊗ χ)(h)| = |χ(h)| =
∣∣χ(h∨Nα

α

)∣∣ = χ
(
h∨Nα
α

)
∈ {q±Nα , q′±Nα , 1}.

We may define this number to be
∣∣cc(σ′ ⊗ χ)(h∨Nα

α )
∣∣. The numbers (3.17), for all α

as in part (b), determine |cc(σ′⊗χ)| ∈ Hom(Z(M),R>0) on a finite index sublattice
of Z(M)/Z(M)1. Since all n-th roots are unique in R>0, that determines |cc(σ′⊗χ)|
completely. □

3.4. Analytic R-groups.
Let P = LUP be a parabolic subgroup of G. The group NG(L) acts naturally on

Irr(L), by (n · π)(l) = π(n−1ln). This descends to an action of

WL := NG(L)/L

on Irr(L), which sends Xnr(L) to Xnr(L). Let WL,π be the stabilizer of π ∈ Irr(L)
in WL.

Let δ ∈ Irr(L) be essentially square-integrable. Consider the set of reduced roots
α of (G,AL) such that Harish-Chandra’s function µLα,L has a zero at δ. These
roots form a finite integral root system [Sil1], say Φ(G,AL, δ). The group WL,δ acts
on Φ(G,AL, δ) and contains the Weyl group W (Φ(G,AL, δ)) as a normal subgroup.
Let Φ(G,AL, δ)

+ be the positive system of roots appearing in the Lie algebra of
P . The analytic R-group Rδ is defined as the stabilizer of Φ(G,AL, δ)

+ in WL,δ.
Since W (Φ(G,AL, δ)) acts simply transitively on the collection of positive systems
in Φ(G,AL, δ), we have a decomposition

(3.18) WL,δ = W (Φ(G,AL, δ))⋊Rδ.

This is a generalization of the R-groups from [Art] because we allow non-tempered
representations δ, but apart from that it is the same definition.

Every w ∈ WL,δ gives rise to an intertwining operator Jδ(w) ∈ AutG(I
G
P (δ))

[ABPS, Lemma 1.3], unique up to scalars. It arises from the normalized intertwining
operators (3.16) by a further normalization (to make it unitary if δ is tempered) and
translation along w. By results of Knapp–Stein [Sil1], and by [ABPS, Lemma 1.5]
in the non-tempered cases, Jδ(w) is a scalar multiple of the identity if and only if
w ∈ W (Φ(G,AL, δ)). Therefore it suffices to consider the intertwining operators
Jδ(r) with r ∈ Rδ. These operators span a twisted group algebra C[Rδ, ♮δ], for some
2-cocycle Rδ × Rδ → C×. In other words, Jδ yields a projective representation of
Rδ on IGP (δ). By [ABPS, Theorem 1.6] there is a decomposition of C[Rδ, ♮δ]× CG-
modules

(3.19)
IGP (δ) =

⊕
κ∈IrrC[Rδ,♮δ]

κ⊗ IGP (δ)κ,

IGP (δ)κ = HomC[Rδ,♮δ](κ, I
G
P (δ)).

If δ is square-integrable modulo centre (so in particular tempered), then C[Rδ, ♮δ]
equals EndG(I

G
P (δ)) and all the representations IGP (δ)κ are irreducible [Sil1].

4. Quasi-standard modules

Le L ⊂ G be a Levi subgroup and let S ⊂ L be a maximal F -split torus. Then
S is the maximal split central torus in the Levi subgroup ZG(S), and Φ(G,S) is
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the set of reduced roots of (G,S). This is a reduced integral root system in X∗(S),
and there is a coroot system Φ(G,S)∨ in X∗(S). We recall from [Ren, §V.3.13] that
there are canonical decompositions

(4.1)
X∗(S)⊗Z R = X∗(S ∩ Lder)⊗Z R ⊕ X∗(AL)⊗Z R,
X∗(S)⊗Z R = X∗(S ∩ Lder)⊗Z R ⊕ X∗(AL)⊗Z R.

Every α ∈ Φ(G,AL) ⊂ X∗(AL) can be extended to an element αS ∈ Φ(G,S), usually
in several ways. We define α∨ as the projection of α∨

S to X∗(AL) ⊗Z R via (4.1).
This does not depend on the choice of αS because X∗(S ∩ Lder) is orthogonal to
X∗(AL). It does not depend on S either, because all maximal F -split tori of L are
conjugate.

Let P = LUP be a parabolic subgroup of G with Levi factor L and let ν ∈
Hom(L,R>0), so log ν ∈ Hom(L,R) ∼= X∗(AL) ⊗Z R. We say that ν is strictly
positive with respect to P if ⟨α∨, log ν⟩ > 0 for all α ∈ Φ(P,AL) = Φ(UP , AL). This
condition is equivalent to:

(4.2) ⟨α∨
S , log ν⟩ > 0 ∀αS ∈ Φ(G,S) with αS |AL

∈ Φ(UP , AL).

Let δ ∈ Irr(L) be essentially square-integrable and let cc(δ) : Z(L) → C× be its
central character. We note that |cc(δ)| is determined by its restriction to AL, because
LderAL is cocompact in L.

Definition 4.1. We call (P,L, δ) an induction datum for G. We say that (P,L, δ)

is positive if ⟨α∨, log |cc(δ)|⟩ ≥ 0 for all roots α of (P,AL). If δ̃ ∼= δ then (P,L, δ̃) is
considered as equivalent to (P,L, δ).

Recall the R-group Rδ, the twisted group algebra C[Rδ, ♮δ] and the decomposition
of IGP (δ) from (3.19).

Definition 4.2. Let (P,L, δ) be an induction datum and let κ ∈ IrrC[Rδ, ♮δ]. A
CG-module is called quasi-standard if it has the form IGP (δ)κ as in (3.19).

This terminology is motivated by the following result.

Theorem 4.3. [Sol1, §2.4] and [ABPS, §1]
Let (P,L, δ) be an induction datum and let κ ∈ IrrC[Rδ, ♮δ].

(a) If (P,L, δ) is positive, then C[Rδ, ♮δ] = EndG(I
G
P (δ)) and IGP (δ)κ is a standard

CG-module.
(b) Every standard CG-module arises as in part (a), from (P,L, δ, κ) which are

unique up to G-conjugation.
(c) Let π ∈ Irr(G). There exists a positive induction datum, unique up to G-

conjugation, such that π is a quotient of IGP (δ).

Let Lδ ⊃ L be the largest Levi subgroup ofG such that |cc(δ)| = 1 on Z(L)∩Lδ,der.

By [ABPS, Theorem 1.6], ILδ
Lδ∩P (δ) is completely reducible and decomposes as

(4.3) ILδ
Lδ∩P (δ) =

⊕
κ∈IrrC[Rδ,♮δ]

κ⊗ ILδ
Lδ∩P (δ)κ.

Moreover, each ILδ
Lδ∩P (δ)κ can be written as τ⊗ν where τ is an irreducible tempered

Lδ-representation and ν ∈ Hom(Lδ,R>0). By the definition of Lδ, ν does not extend
to a character of any Levi subgroup of G strictly containing Lδ. We note that, by
the transitivity of parabolic induction

(4.4) IGP (δ)κ ∼= IGLδP

(
ILδ
Lδ∩P (δ)κ

) ∼= IGLδP
(τ ⊗ ν).
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Therefore one can characterize quasi-standard CG-modules as representations of
the form IGQ (τ ⊗ ν), where Q = MUQ is a parabolic subgroup of G, τ ∈ Irr(M)

is tempered and ν ∈ Hom(M,R>0) does not extend to a character of any strictly
larger Levi subgroup of G. The difference with standard CG-modules is that ν need
not be positive with respect to Q.

Let Qν be the parabolic subgroup of G with Levi factor M and unipotent radical
generated by root subgroups α with ⟨α∨, log ν⟩ > 0. Then IGQν

(τ ⊗ ν) is standard.

In the same way every induction datum (P,L, δ) can be made positive by changing
only P .

We say that two induction data (P,L, δ) and (P ′, L′, ω) are G-associate if there
exists a g ∈ G such that gLg−1 = L′ and g · δ ∼= ω. It is known from [Sol1,
Lemma 2.13] that every induction datum is G-associate to a positive induction
datum, unique up to equivalence.

For two associate induction data as above we have

(4.5) IGP (δ) ∼= IGgPg−1(g · δ) ∼= IGgPg−1(ω).

By (4.5) and [ABPS, Lemma 1.1]

(4.6) IGP (δ) and IGP ′(ω) have the same Jordan–Hölder content.

We proceed to make this statement more precise. The group gLδg
−1 = L′

ω has
the same properties as Lδ, only for (P ′, L′, ω). By [ABPS, Lemma 1.1] the L′

ω-

representations g · ILδ
Lδ∩P (δ)

∼= I
L′
ω

L′
ω∩gPg−1(ω) and I

L′
ω

L′
ω∩P ′(ω) have the same Jordan–

Hölder content. Since they are both completely reducible, we conclude that

(4.7) g · ILδ
Lδ∩P (δ)

∼= I
L′
ω

L′
ω∩P ′(ω).

Conjugation by g induces a group isomorphism Rδ
∼= Rω and a bijection

IrrC[Rδ, ♮δ] → IrrC[Rω, ♮ω] : κ 7→ κ′.

Together with (4.3) and (4.7) that implies

(4.8) g(κ⊗ ILδ
Lδ∩P (δ)κ)

∼= κ′ ⊗ I
L′
ω

L′
ω∩P ′(ω)κ′ .

Lemma 4.4. In the setting of (4.8), the representations IGP (δ)κ and IGP ′(ω)κ′ have
the same Jordan–Hölder content. Moreover, there exists a nonzero G-intertwining
operator IGP (δ)κ → IGP ′(ω)κ′.

Proof. We abbreviate τ ′ = ILδ
Lδ∩P (δ)κ, so that IGP (δ)κ ∼= IGLδP

(τ ′). By (4.8) there are
isomorphisms

(4.9) IGP ′(ω)κ′ ∼= IGL′
ωP

(
I
L′
ω

L′
ω∩P ′(ω)κ′

) ∼= IGL′
ωP

′(g · τ ′) ∼= IGLδg−1P ′g(τ
′).

By [ABPS, Lemma 1.1] IGLδP
(τ ′) and IGLδg−1P ′g(τ

′) have the same Jordan–Hölder

content. We recall Harish-Chandra’s intertwining operators

(4.10) JLδg−1P ′g|LδP (τ
′ ⊗ χ) : IGLδP

(τ ′ ⊗ χ) → IGLδg−1Pg(τ
′ ⊗ χ) χ ∈ Xnr(Lδ).

from (3.1). As we saw in (3.6)–(3.7), JLδg−1P ′g|LδP (τ
′ ⊗ χ) is a composition of

intertwining operators from a corank one setting. Let JP2|P1
(τ ′ ⊗ χ) be a such a

simpler intertwining operator and let L12 be the derived group of the group generated
by P1∪P2. By Theorem 3.4 or [Wal, p. 283], JP2|P1

(τ ′⊗χ) can only have a pole at χ =
1 if the nontrivial element sα of the associated Weyl group (a subgroup ofNG(Lδ)/Lδ
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of order at most two) stabilizes τ ′. That would imply that |cc(τ ′)| = |cc(δ)|Z(Lδ) is
trivial on Z(L12) ⊋ Z(Lδ,der). But that would contradict the construction of Lδ, so
JP2|P1

(τ ′ ⊗ χ) is regular at χ = 1.
Hence JLδg−1P ′g|LδP (τ

′ ⊗ χ) is regular at χ = 1 and (4.10) is well-defined. Then
[Wal, p. 283] shows that (4.10) is nonzero. Finally, we compose (4.10) with the
isomorphism (4.9) (from right to left). □

4.1. A rank one case.
We work out quasi-standard modules in a relevant simple case, which is known

but for which we could not find a good reference.

Proposition 4.5. Let σ ∈ Irr(M) be unitary supercuspidal. Let ν ∈ Hom(M,R>0)
and α ∈ Φ(G,AM )+.

(a) If µMα,M (σ ⊗ ν) ̸= ∞, then IMα
MUα

(σ ⊗ ν) is completely reducible and has no
essentially square-integrable subquotients. It has length two if and only if sα(σ⊗
ν) ∼= σ ⊗ ν and µMα,M (σ ⊗ ν) ̸= 0. Otherwise IMα

MUα
(σ ⊗ ν) is irreducible.

(b) If µMα,M (σ⊗ν) = ∞, then IMα
MUα

(σ⊗ν) has length two and is indecomposable. If

⟨α∨, log ν⟩ > 0, then the irreducible quotient of IMα
MUα

(σ⊗ν) is not tempered and

the irreducible subrepresentation of IMα
MUα

(σ⊗ ν) is essentially square-integrable.

If ⟨α∨, log ν⟩ < 0, then these properties of the quotient and the subrepresentation
are exchanged.

Proof. It is known from [Ren, Théorème VI.5.4] that IMα
MUα

(σ ⊗ ν) has length at

most two. We recall from Theorem 3.11 that IMα
MUα

(σ⊗ ν) has an essentially square-
integrable subquotient if and only if µMα,M (σ ⊗ ν) = ∞.

Case I: ⟨α∨, log ν⟩ = 0. Then Mσ⊗ν = Mα and, as we saw in (4.3), IMα
MUα

(σ ⊗ ν)
is completely reducible. Theorem 3.4 shows that µMα,M (σ⊗ν) ̸= ∞. Moreover (4.3)

shows that IMα
MUα

(σ⊗ν) is irreducible whenever Rσ⊗ν is trivial. If Rσ⊗ν is nontrivial,
then its only nontrivial element is sα, and µMα,M (σ ⊗ ν) ̸= 0 by the definition of
Rσ⊗ν .

Case II: ⟨α∨, log ν⟩ > 0. If NMα(M)/M has a nontrivial element, then that does

not fix ν, so in any caseWMα,σ⊗ν = {e}. By Theorem 4.3.a, IMα
MUα

(σ⊗ν) is a standard
module, so by the Langlands classification it has a unique irreducible quotient. As
it has length at most two, it also has a unique irreducible subrepresentation.

Suppose that µMα,M (σ ⊗ ν) = ∞. Then

(4.11) JMUα|MU−α
(σ ⊗ ν) ◦ JMU−α|MUα

(σ ⊗ ν) = jMα,M (σ ⊗ ν) id = 0.

Both J-operators in (4.11) are nonzero, so both are not injective. It follows that

IMα
MUα

(σ ⊗ ν) is reducible. By the uniqueness in the Langlands classification, its
irreducible quotient L(MUα, σ⊗ ν) is not tempered. More precisely, L(MUα, σ⊗ ν)
is not a tensor product of a tempered representation and a character of Mα, because
in that case its standard module would be L(MUα, σ⊗ν) itself. This also entails that

the essentially square-integrable subquotient of IMα
MUα

(σ⊗ ν) must be its irreducible
subrepresentation.

Suppose next that µMα,M (σ ⊗ ν) ̸= ∞, or equivalently jMα,M (σ ⊗ ν) ̸= 0. From
Theorem 3.4 we see that jMα,M (σ ⊗ ν) ̸= ∞, so both JMUα|MU−α

(σ ⊗ ν) and
JMU−α|MUα

(σ ⊗ ν) are invertible. By construction L(MUα, σ ⊗ ν) is the image
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of JMU−α|MUα
(σ ⊗ ν), see [Ren, Lemme VII.4.1]. Hence

L(MUα, σ ⊗ ν) = IMU−α(σ ⊗ ν) ∼= IMUα(σ ⊗ ν).

Case III: ⟨α∨, log ν⟩ < 0. By [Ren, (IV.2.1.2)], the smooth contragredient repre-

sentation IMα
MUα

(σ ⊗ ν)∨ is isomorphic to

IMα
MUα

((σ ⊗ ν)∨) ∼= IMα
MUα

(σ∨ ⊗ ν−1).

The representation σ∨ is again unitary supercuspidal, so this brings us back to case
II. According to [Wal, Lemme V.2.1], which is proven in [FlSo, Theorem 3.5],

µMα,M (σ∨ ⊗ ν−1) = µMα,M (σ ⊗ ν).

When µMα,M (σ⊗ ν) ̸= ∞, we know from case II that IMα
MUα

(σ∨ ⊗ ν−1) is irreducible

but not essentially square-integrable. Then its contragredient IMα
MUα

(σ⊗ ν)∨ has the
same two properties.

When µMα,M (σ⊗ ν) = ∞, we know from case II that IMα
MUα

(σ∨ ⊗ ν−1) has an es-
sentially square-integrable subrepresentation (say δ) and a non-tempered irreducible

quotient L(MUα, σ
∨⊗ν−1). Then its contragredient IMα

MUα
(σ⊗ν)∨ has the essentially

square-integrable representation δ∨ as quotient and the non-tempered representation
L(MUα, σ

∨ ⊗ ν−1)∨ as subrepresentation. □

4.2. An alternative characterization of standard modules.
We characterize standard modules as quasi-standard modules with some extra

properties. In this way one can avoid the use of temperedness or positivity of
characters in the description of standard modules.

We need some information about the irreducible constituents of a standard module
which are not quotients. All these are larger than the irreducible quotient, a claim
that we will quantify with an invariant from [Sol1].

We fix a maximal F -split torus S in G and a W (G,S)-invariant inner product
on X∗(S) ⊗Z R. We may assume that all Levi subgroups in our constructions are
standard, in the sense that they contain ZG(S). Alternatively we can pass to another
maximal split torus S′, and then the inner product transfers canonically toX∗(S′)⊗Z
R by its W (G,S)-invariance.

As before, let δ ∈ Irr(L) be essentially square-integrable. Let (L̃, σ) be a repre-

sentative of the cuspidal support Sc(δ) and consider cc(σ) : Z(L̃) → C×. As Z(L̃)L̃1

is cocompact in L̃,

log |cc(σ)| : Z(L̃) → R
extends uniquely to a group homomorphism from L̃ to R. Then log |cc(σ)| : L̃ → R
determines an element of

Hom(S,R) ∼= X∗(S)⊗Z R.

As L̃1S is cocompact in L̃, that element still determines log |cc(σ)|. In these terms,

the restriction of log |cc(σ)| to L̃ ∩ Lder can be described by restriction from S to
S ∩Lder, so by an element of X∗(S ∩Lder)⊗ZR. The canonical decomposition (4.1)
provides X∗(S ∩ Lder)⊗Z R with a W (L, S)-invariant inner product.

Let IGP (δ)κ be a quasi-standard summand of IGP (δ). We define

(4.12) N (IGP (δ)κ) = N (IGP (δ)) = N (δ) = ∥ log |cc(σ)|L̃∩Lder
∥,
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where the norm comes from the inner product on X∗(S ∩Lder)⊗ZR. The W (L, S)-
invariance of this inner product implies that (4.12) does not depend on the choice of
a representative of the cuspidal support of δ. The invariant N measures the distance
from δ|Lder

to the parabolic induction of a unitary cuspidal L̃-representation.
Clearly |cc(σ)|L̃∩Lder

depends only on δ|Lder
. Therefore N (IGP (δ)κ) depends only

on δ|Lder
, which is a direct sum of finitely many square-integrable representations

δ1 [Tad, Lemma 2.1 and Proposition 2.7]. Then Sc(δ1) can be represented by a
subrepresentation of σ|L̃∩Lder

. Therefore N (IGP (δ)κ) can be computed as

(4.13) N (IGP (δ)κ) = N (IGP (δ)) = ∥ log |cc(Sc(δ1))| ∥ = N (δ1).

We note that (P,L, δ) 7→ N (IGP (δ)) is constant on G-conjugacy classes of induc-
tion data, by the W (G,S)-invariance of the inner product on X∗(S) ⊗Z R. It is
even constant on G-association classes of induction data, because P is inessential in
(4.12). This enables us to define, for any standard CG-module πst with irreducible
quotient π:

N (π) := N (πst).

Lemma 4.6. [Sol1, Lemma 2.12]
Let IGQ (τ ⊗ ν) be a standard CG-module with an irreducible constituent π different

from L(Q, τ ⊗ ν). Then N (π) > N (IGQ (τ ⊗ ν)).

Easier, earlier versions of Lemma 4.6 have been used to prove that the standard
CG-modules form a Z-basis of the Grothendieck group finite lengthG-representations.
We can also use Lemma 4.6 to improve on Theorem 4.3.c.

Lemma 4.7. Suppose that a standard module πst with quotient π is a direct sum-
mand of IGP (δ), for a positive induction datum (P,L, δ). Then πst is, up to isomor-
phism, the only indecomposable summand of IGP (δ) in which π appears.

Proof. By Theorem 4.3.a every indecomposable direct summand of IGP (δ) is a stan-
dard module, say IGQ (τ ⊗ ν). Let π be a subquotient of IGQ (τ ⊗ ν). By definition we
have equalities

N (π) = N (πst) = N (IGP (δ)) = N (L(Q, τ ⊗ ν)).

Lemma 4.6 shows that π must be the irreducible quotient of IGQ (τ ⊗ ν). Then

IGQ (τ ⊗ ν) is a standard module with quotient π, so by Theorem A.c IGQ (τ ⊗ ν) is
isomorphic to πst. □

Next we generalize Lemma 4.7 to not necessarily positive induction data.

Theorem 4.8. Let π ∈ Irr(CG). There exists an induction datum (P,L, δ) and
κ ∈ IrrC[Rδ, ♮δ], unique up to G-association, such that:

• π is a constituent of IGP (δ)κ,
• N (IGP (δ)) is maximal for the previous property.

Moreover, in this case N (π) = N (IGP (δ)).

Proof. Without κ, this is a reformulation of [Sol1, Theorem 2.15]. The additional
claims about κ follow from Lemma 4.7 and (4.8). □

We are ready to characterize standard modules without temperedness or positiv-
ity. We abbreviate the previous τ ⊗ ν to τ ′.
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Theorem 4.9. Let IGQ (τ ′) be a quasi-standard CG-module which has a unique ir-

reducible quotient π and satisfies N (IGQ (τ ′)) = N (π). Then IGQ (τ ′) is a standard
CG-module.

Proof. By Theorem 4.3, there exists a positive induction datum (P,L, δ) and κ ∈
IrrC[Rδ, ♮δ] such that πst ∼= IGP (δ)κ. By the definition of quasi-standard, there
exists an induction datum (P ′, L′, ω) and κ′ ∈ IrrC[Rω, ♮ω] such that IGQ (τ ′) ∼=
IGP ′(ω)κ′ . The condition N (IGQ (τ ′)) = N (π) and Theorem 4.8 imply that IGQ (τ ′)
has maximal N -value among the quasi-standard modules with π as constituent. As
N (π) = N (πst), the same holds for IGP (δ)κ. By the uniqueness in Theorem 4.8,
(P,L, δ, κ) and (P ′, L′, ω, κ′) are G-associate. By Lemma 4.4, there exists a nonzero
G-intertwining operator

J : IGP (δ)κ → IGP ′(ω)κ′ .

Let q : IGP (δ)κ ∼= πst → π and q′ : IGP ′(ω)κ′ ∼= IGQ (τ ′) → π be the quotient maps. The

kernel of J is not the whole of IGP (δ)κ ∼= πst, so it is contained in ker q (because π is
the unique irreducible quotient of πst). Thus J induces an injection

π ∼= IGP (δ)κ/ ker q
J̄−→ IGQ (ω)κ′/J(ker q).

By Lemmas 4.6 and 4.4, π appears with multiplicity one in IGP (δ)κ and in IGQ (ω)κ′ .

Since J̄ is injective, J(ker q) does not contain π ∼= J̄(π) as subquotient. Hence
J(ker q) ⊂ ker q′ and q′ ◦ J̄ is nonzero. It follows that the image of J is a subrepre-
sentation of IGQ (ω)κ′ not contained in ker q′. As π is the unique irreducible quotient

of IGQ (ω)κ′ , J is surjective. Further IGP (δ)κ and IGQ (ω)κ′ have the same Jordan–Hölder

content (Lemma 4.4), so J is an isomorphism. □

5. The action of the Galois group on representations

Let Gal(C/Q) be the automorphism group of the field extension C/Q. Strictly
speaking this is not a Galois extension because it is not algebraic, but for brevity
we still speak of the Galois group of this extension.

For γ ∈ Gal(C/Q), let Cγ be C as C-C-bimodule with action

z1 · v · z2 = z1vγ(z2) zi ∈ C, v ∈ Cγ .

For a G-representation (π, Vπ) we define γVπ = Cγ ⊗C Vπ. This means that as an
abelian group γVπ can identified with Vπ, but with the adjusted scalar multiplication

z(1⊗ v) = z ⊗ v = 1⊗ γ−1(z)v z ∈ C, v ∈ Vπ.

Definition 5.1. γ · π is the G-representation on γVπ given by

(γ · π)(g)(z ⊗ v) = z ⊗ π(g)v g ∈ G, z ∈ Cγ , v ∈ Vπ.

If λ lies in the dual space V ∗
π , then z ⊗ v 7→ zγ(λ(v)) lies in (γVπ)

∗. For a matrix
coefficient mv,λ : g 7→ λ(π(g)v) of π, the corresponding matrix coefficient of γ · π is
g 7→ γ

(
λ(π(g)v)

)
. Thus, for any finite dimensional representation π′, γ · π′ can be

obtained from π′ by applying γ to the matrices that define π′.
The action of Gal(C/Q) on G-representations preserves irreducibility and cuspi-

dality [KSV, Theorem 2.3.(1)]. In general it does not preserve unitarity or tem-
peredness, as can already be seen in the case G = GL1(F ).

It is easy to check that the action of Gal(C/Q) on representations of G or L
commutes with unnormalized parabolic induction. However, that is not entirely true
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for normalized parabolic induction. Consider the modular function δP of P = LUP .
It takes values in qZF , where qF denotes the cardinality of the residue field of F . In

particular Gal(C/Q) fixes δP . But δ
1/2
P takes values in (q

1/2
F )Z, and if q

1/2
F /∈ Q,

then some elements of Gal(C/Q) send q
1/2
F to −q

1/2
F . It follows that for every γ ∈

Gal(C/Q) there exists a unique quadratic character ϵP,γ : L = P/UP → {±1} such
that

γ · δ1/2P = δ
1/2
P ⊗ ϵP,γ .

Proposition 5.2. [KSV]

(a) As a character of L, ϵP,γ depends on L and G, but not on the choice of the
parabolic subgroup P with Levi factor L.

(b) The group NG(L) fixes ϵP,γ.

(c) For any L-representation π, there is an isomorphism γ ·IGP (π) ∼= IGP (γ ·π⊗ϵP,γ).
(d) For any finite length L-representation (π, Vπ):

JP ′|P (γ · π ⊗ ϵP,γ)(z ⊗ v) = z ⊗ JP ′|P (π)(v) z ∈ Cγ , v ∈ IGP (Vπ).

(e) For any π ∈ Irr(L), µG,L(γ · π ⊗ ϵP,γ) =
∏

α∈Φ(G,AL)+
µLα,L(γ · π ⊗ ϵLUα,γ).

Proof. (a) and (b) are [KSV, Lemma 5.11] and (c) is [KSV, (5.12)].
(d) This follows directly from part (c) and the definitions of γ · IGP (π) and JP ′|P .
(e) Part (d) and the definition of µG,L in (3.1)–(3.4) show that

(5.1)
µG,L(γ · π ⊗ ϵP,γ) = JP |P̄ (γ · π ⊗ ϵP,γ) ◦ JP̄ |P (γ · π ⊗ ϵP,γ)

= γ
(
JP |P̄ (π) ◦ JP̄ |P (π)

)
= γ(µG,L(π)).

From (3.5) and (5.1) we deduce

µG,L(γ · π ⊗ ϵP,γ) = γ(µG,L(π))

= γ
( ∏

α∈Φ(G,AL)+

µLα,L(π)
)
=

∏
α∈Φ(G,AL)+

µLα,L(γ · π ⊗ ϵLUα,γ). □

5.1. The Galois action on quasi-standard modules.
We would like to understand how Gal(C/Q) acts on quasi-standard CG-modules.

A crucial step is the following result, which for semisimple groups over p-adic fields
is due to Clozel (unpublished).

Theorem 5.3. [KSV, Theorem 4.6]
Let δ be an essentially square-integrable L-representation and let γ ∈ Gal(C/Q).
Then γ · δ is also essentially square-integrable.

We preserve the notations from Theorem 5.3. Recall from (3.18) and (3.19) that
for r ∈ Rδ we have Jδ(r) ∈ EndCG(I

G
P (δ)), and that these operators span a twisted

group algebra C[Rδ, ♮δ]. Theorem 5.3 tells us that γ · δ ⊗ ϵP,γ is essentially square-
integrable. By [KSV, Proposition 5.12] we have Rγδ⊗ϵP,γ

= Rδ, and we may define

Jγδ⊗ϵP,γ
(r) ∈ EndCG

(
IGP (γ · π ⊗ ϵP,γ)

)
= EndCG

(
Cγ ⊗C,γ I

G
P (δ)

)
Jγδ⊗ϵP,γ

(r)(z ⊗ v) = z ⊗ Jδ(r)(v).

By construction Jδ(r)Jδ(r
′) = ♮δ(r, r

′)Jδ(rr
′), which implies that

Jγδ⊗ϵP,γ
(r)Jγδ⊗ϵP,γ

(r′) = γ(♮δ(r, r
′))Jγδ⊗ϵP,γ

(rr′).



20 STANDARD MODULES AND INTERTWINING OPERATORS FOR p-ADIC GROUPS

Hence the operators Jγδ⊗ϵP,γ
(r) span a twisted group algebra

(5.2) C[Rγδ⊗ϵP,γ
, ♮γδ⊗ϵP,γ

] = C[Rδ, γ♮δ].

It is easily seen that there is a canonical bijection

Irr(C[Rδ, ♮δ]) → Irr(C[Rδ, γ♮δ]) : κ 7→ γ · κ.

Lemma 5.4. For any quasi-standard CG-module IGP (δ)κ and any γ ∈ Gal(C/Q),
there is an isomorphism

γ · IGP (δ)κ ∼= IGP
(
γ · δ ⊗ ϵP,γ

)
γ·κ.

In particular the action of Gal(C/Q) on Rep(G) stabilizes the set of quasi-standard
CG-modules.

Proof. One step in the construction of IGP (δ)κ is the representation ILδ
Lδ∩P (δ)κ from

(4.3), to get IGP (δ)κ we parabolically induce that. Recall that both parabolic in-
duction and its normalized version are transitive [Ren, Lemme VI.1.4], and that an
ingredient for the latter is the equality of modular functions δP = δLδP δLδ∩P . This
equality entails that

(5.3) ϵP,γ = ϵLδP,γ ϵLδ∩P,γ .

With Proposition 5.2.c and (5.2) we compute

(5.4) γ ·IGP (δ)κ ∼= IGLδP

(
γ ·ILδ

Lδ∩P (δ)κ⊗ϵP,γ
) ∼= IGLδP

(
ILδ
Lδ∩P (γ ·δ⊗ϵLδ∩P,γ)γ·κ⊗ϵLδP,γ

)
.

Notice that these expressions are well-defined because γ · δ ⊗ ϵLδ∩P,γ is essentially
square-integrable (Theorem 5.3). Tensoring by ϵLδP,γ ∈ Xnr(Lδ) commutes with all

the operations involved in ILδ
Lδ∩P (γ · δ ⊗ ϵLδ∩P,γ)γ·κ. By that and (5.3), the right

hand side of (5.4) is isomorphic to

(5.5) IGLδP

(
ILδ
Lδ∩P (γ · δ ⊗ ϵP,γ)γ·κ

) ∼= IGLδP

(
HomC[Rδ,γ♮δ]

(
γ · κ, ILδ

Lδ∩P (γ · δ ⊗ ϵP,γ)
))
.

By the transitivity of normalized parabolic induction, the right hand side of (5.5)
equals the quasi-standard CG-module IGP

(
γ · δ ⊗ ϵP,γ

)
γ·κ. □

Recall N from (4.12). Although γ · δ ⊗ ϵP,γ is essentially square-integrable and
N (γ · δ ⊗ ϵP,γ) = N (γ · δ), it is not obvious whether N (γ · δ) equals N (δ) for all
γ ∈ Gal(C/Q). Via Theorem 3.11 and Lemma 3.12, that can be reduced to the
question:

(5.6) are the numbers q2α, q
2
α∗ from Theorem 3.4 always rational?

In [Oha, Sol3] it has been shown that qα, qα∗ belong to (q
1/2
F )Z in the large majority

of all cases. Nevertheless there is no general proof for (5.6). This means that
currently it is known that N (γ · δ) = N (δ) for most essentially square-integrable
representations, but at the same time that remains open in general.

Proposition 5.5. Assume that the action of Gal(C/Q) preserves the N -values of all
essentially square-integrable representations of Levi subgroups of G. Then Gal(C/Q)
stabilizes the set of standard CG-modules.



STANDARD MODULES AND INTERTWINING OPERATORS FOR p-ADIC GROUPS 21

Proof. Consider any quasi-standard CG-module IGP (δ)κ. By (4.12) and the assump-
tions:

(5.7) N
(
IGP (δ)κ

)
= N (δ) = N (γ · δ) =

N (γ · δ ⊗ ϵP,γ) = N
(
IGP (γ · δ ⊗ ϵP,γ)

)
= N

(
γ · IGP (δ)κ

)
.

Next we consider any standard CG-module πst, with irreducible quotient π. We
know from Lemma 5.4 that γ · πst is a quasi-standard CG-module. By (5.7) and
Theorem 4.8 we have

(5.8) N (γ · π) ≥ N (γ · πst) = N (πst) = N (π).

We may als apply this to γ−1 acting on γ · π, then we find

(5.9) N (π) = N (γ−1 · γ · π) ≥ N (γ · π) ≥ N (π).

We conclude that N (γ · π) equals N (π).
From (5.8) and (5.9) we see that N (γ · πst) = N (γ · π). As π is a quotient of πst,

γ · π is a quotient of γ · πst. Now we are in the right position to apply Theorem 4.9,
which guarantees that γ · πst is a standard CG-module. □

5.2. The Galois action on standard modules.
We proceed to establish an unconditional version of Proposition 5.5. Let (P,L, δ)

be a positive induction datum and let κ ∈ C[Rδ, ♮δ]. Recall from Theorem 4.3 that
IGP (δ)κ is a standard CG-module and that every standard CG-module has this form.
Let M ⊂ L be a Levi subgroup and let σ ∈ Irr(M) be such that (M,σ) represents
the cuspidal support of (δ, Vδ).

We write δ = δu ⊗ νδ where δu ∈ Irr(L) is square-integrable modulo center and
νδ ∈ Hom(L,R>0). We note that νδ is determined by νδ|AL

= |cc(δ)|AL
. Similarly

we write σ = σu⊗νσ with σ ∈ Irr(M) unitary supercuspidal and νσ ∈ Hom(M,R>0).
Then νσ decomposes as (νσν

−1
δ |M ) νδ|M where νδ|M is trivial on M ∩ Lder and

νσν
−1
δ |M is trivial on Z(L). For γ ∈ Gal(C/Q) we have

γ · δ = (γ · δ)u ⊗ νγδ with νγδ|AL
= |cc(γ · δ)|AL

= |γ · cc(δ)|AL
,

and analogously for σ. Moreover

(5.10) νγσν
−1
γδ |M is trivial on Z(L) and νγδ|M is trivial on M ∩ Lder,

However, in general (γ · δ)u ̸∼= γ · δu and (γ · σ)u ̸∼= γ · σu.

Lemma 5.6. Let α ∈ Φ(G,AM ).

(a) If µMα,M (σ) = ∞, then µMα,M (γ · σ ⊗ ϵMUα,γ) = ∞ and

⟨α∨, log(νσ)⟩⟨α∨, log(νγσ)⟩ > 0.

(b) If µMα,M (σ) = 0, then µMα,M (γ · σ ⊗ ϵMUα,γ) = 0 and

⟨α∨, log(νσ)⟩ = ⟨α∨, log(νγσ)⟩ = 0.

Proof. (a) Proposition 5.2.e says that µMα,M (γ ·σ⊗ ϵMUα,γ) = ∞. By Theorem 5.3,

γ · IGQ (σ) ∼= IGQ (γ · σ ⊗ ϵMUα,γ) = IGQ
(
(γ · σ)u ⊗ ϵMUα,γ ⊗ νγσ

)
has the irreducible essentially square-integrable subquotient γ · δ. More precisely,
γ · δ is a quotient (resp. a subrepresentation) if and only if δ is a quotient (resp.
a subrepresentation) of IGQ (σ). Now Proposition 4.5 says that ⟨α∨, (log νσ)⟩ and
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⟨α∨, log(νγσ)⟩ have the same sign (which is nonzero by Theorem 3.4.b).
(b) Theorem 3.4 shows that ⟨α∨, log(νσ)⟩ = 0. From Proposition 5.2.d we see that

µMα,M

(
(γ · σ)u ⊗ ϵMUα,γ ⊗ νγσ

)
= µMα,M (γ · σ ⊗ ϵMUα,γ) = 0.

Then Theorem 3.4 proves also that ⟨α∨, log(νγσ)⟩ = 0. □

Let Q ⊂ G be a parabolic subgroup with Levi factor M , such that P = QL.
Recall that Φ(G,AM , Xnr(M)σ) is the set of α ∈ Φ(G,AM ) for which µMα,M is not
constant on Xnr(M)σ (or equivalently has a zero on Xnr(M)σ). By [Hei, Proposition
1.3], this is a reduced root system in X∗(AM ). The same holds with L instead of G,
the crucial point is that σ is cuspidal.

The Weyl group W
(
Φ(L,AM , Xnr(M)σ)

)
is contained in NL(M)/M and acts

on Irr(M). For any wσ ∈ W
(
Φ(L,AM , Xnr(M)σ)

)
, ILQ∩L(wσ · σ) has the same

irreducible subquotients as ILQ∩L(σ), in particular δ. Furthermore wσ · νδ = νδ
because (wσ · νδ)|Z(L) = νδ|Z(L).

We pick wσ such that wσ · σ lies in the (closed) positive Weyl chamber for
Φ(L,AM , Xnr(M)σ), with respect to the positive roots from Q ∩ L. Next we re-
place σ by wσ · σ, which is allowed because our main interest is not σ but δ. Thus

(5.11) log(νσ) is positive with respect to Φ(L,AM , Xnr(M)σ) ∩ Φ(UQ, AM ),

but maybe not with respect to other elements of Φ(UQ, AM ).
Recall from Proposition 5.2.c that

γ · IGQ (σ) ∼= IGQ (γ · σ ⊗ ϵQ,γ) = IGQ
(
(γ · σ)u ⊗ ϵQ,γ ⊗ νγσ

)
.

By (5.1) we have

Φ
(
G,AM , Xnr(M)(γ · σ ⊗ ϵQ,γ)

)
= Φ(G,AM , Xnr(M)σ).

We pick a set of positive roots Φ(G,AM , Xnr(M)σ)
′+ such that log(νγσ) ∈ X∗(AM )⊗Z

R lies in the corresponding (closed) positive Weyl chamber.

For α ∈ Φ(G,AM , Xnr(M)σ)
′+ we find, using the definition of (α|AL

)∨ from (4.1)

(5.12) ⟨α∨, log(νγσ)⟩ ≥ ⟨(α|AL
)∨, log(νγσ)⟩ = ⟨(α|AL

)∨, log(νγδ)⟩ ≥ 0.

This enables us to extend Φ(G,AM , Xnr(M)σ)
′+ to a set of positive roots Φ(G,AM )

′+

of Φ(G,AM ) such that

(i) if α ∈ Φ(G,AM )
′+ ∩ Φ(L,AM ), then ⟨α∨, log(νγσ)⟩ ≥ 0,

(ii) if α ∈ Φ(G,AM )
′+, α /∈ Φ(L,AM ), then ⟨(α|AL

)∨, log(νγδ)⟩ ≥ 0.

Let Q′ ⊂ G be the parabolic subgroup with Levi factor M and

(5.13) Φ(UQ′ , AM ) = Φ(G,AM )
′+.

Then (ii) says that

(5.14) γ · δ and log(νγδ) are positive with respect to Q′L.

Lemma 5.7. J ′
Q′L|QL(δ) : I

G
QL(δ) → IGQ′L(δ) is an isomorphism.

Proof. We take σ and Φ(G,AM , Xnr(M)σ)
′+ as above. Suppose that α ∈ Φ(UQ, AM )

and µMα,M (σ) = ∞. Then ⟨α∨, log(νσ)⟩ ≥ 0 by (5.11). Lemma 5.6.a says that

⟨α∨, log(νσ)⟩ > 0 and ⟨α∨, log(νγσ)⟩ > 0.
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Now (5.14) guarantees that

α ∈ Φ(G,M,Xnr(M)σ)
′+ ⊂ Φ(G,AM )

′+ = Φ(UQ, AM ),

and in particular α ̸∈ Φ(UQ′ , AM ). As UQL ⊂ UQ and UQ′L ⊂ UQ′ , we find that

µMα,M (σ) ̸= ∞ for all α ∈ Φ(UQL, AM ) ∩ Φ(UQ′ , AM ). Now Theorem 3.9 says that

J ′
Q′L|QL(δ) is an isomorphism. □

In addition to P = QL, we write P ′ = Q′L with Q′ as in (5.13).

Theorem 5.8. Let (P,L, δ) be a positive induction datum and let γ ∈ Gal(C/Q).

(a) γ · IGP (δ) ∼= IGP ′(γ · δ⊗ ϵP,γ) and (P ′, L, γ · δ⊗ ϵP,γ) is a positive induction datum.
(b) For any κ ∈ Irr(C[Rδ, ♮δ]), there exists κ′ ∈ Irr(C[Rδ, ♮γ·δ ⊗ ϵP,γ ]) such that

γ · IGP (δ)κ ∼= IGP ′(γ · δ ⊗ ϵP,γ)κ′ .

(c) The action on Gal(C/Q) on Rep(G) stabilizes the set of standard CG-modules.

Proof. (a) From Proposition 5.2.c we know that

γ · IGP (δ) ∼= IGP (γ · δ ⊗ ϵP,γ).

By Lemma 5.7 J ′
P ′|P (δ) : I

G
P (δ) → IGP ′(δ) is an isomorphism. The operator J ′

P ′|P (δ)

is a normalized version of JP ′|P (δ), and Proposition 5.2.c entails that

J ′
P ′|P (γ · δ ⊗ ϵP,γ)(z ⊗ v) = z ⊗ J ′

P ′|P (δ)v z ∈ Cγ , v ∈ IGP (Vδ).

It follows that

J ′
P ′|P (γ · δ ⊗ ϵP,γ) : I

G
P (γ · δ ⊗ ϵP,γ) → IGP ′(γ · δ ⊗ ϵP,γ)

is an isomorphism. From Theorem 5.3 we see that (P ′, L, γ · δ⊗ ϵP,γ) is an induction
datum, and (5.14) says that it is positive.
(b) Recall from (3.19) and Theorem 4.3.a that every indecomposable direct summand
of IGP (δ) is isomorphic to IGP (δ)κ for some κ ∈ Irr(C[Rδ, ♮δ]). By part (a) that applies
also to γ · IGP (δ), and with (5.2) we can simplify it a little to

(5.15) IGP ′(γ · δ ⊗ ϵP,γ) ∼=
⊕

κ′∈Irr(C[Rδ,♮γ·δ⊗ϵP,γ ])
κ′ ⊗ IGP ′(γ · δ ⊗ ϵP,γ)κ′ .

As IGP (δ)κ is isomorphic to an indecomposable direct summand of IGP (δ), the repre-
sentation γ · IGP (δ)κ is isomorphic to an indecomposable direct summand of

γ · IGP (δ) ∼= IGP ′(γ · δ ⊗ ϵP,γ).

By (5.15), the latter has the form IGP ′(γ · δ ⊗ ϵP,γ)κ′ for some κ′.

(c) Recall from Theorem 4.3.b that every standard CG-module has the form IGP (δ)κ.
By parts (a) and (b) and Theorem 4.3.a, γ · IGP (δ)κ is (isomorphic to) a standard
CG-module. □
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