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ABSTRACT. Consider a standard representation 7 of a quasi-split reductive p-
adic group G. The generalized injectivity conjecture, posed by Casselman and
Shahidi, asserts that any generic irreducible subquotient 7 of 74 is necessarily a
subrepresentation of ms;. We will prove this conjecture, improving on the verifi-
cation for many groups by Dijols.

In the process, we first replace it by a more general “standard submodule
conjecture”, where G does not have to be quasi-split and the genericity of 7 is
replaced by the condition that the Langlands parameter of 7 is open. (This means
that the nilpotent element from the L-parameter belongs to an appropriate open
orbit.)

We study this standard submodule conjecture via reduction to Hecke algebras.
It does not suffice to pass from G to an affine Hecke algebra, we further reduce
to graded Hecke algebras and from there to algebras defined in terms of certain
equivariant perverse sheaves. To achieve all these reduction steps one needs mild
conditions on the parameters of the involved Hecke algebras, which have been
verified for the large majority of reductive p-adic groups and are expected to hold
in general.

It is in the geometric setting of graded Hecke algebras from cuspidal local
systems on nilpotent orbits that we can finally put the “open” condition on L-
parameters to good use. The closure relations between the involved nilpotent
orbits provide useful insights in the internal structure of standard modules, which
highlight the representations associated with open L-parameters. In the same vein
we show that, in the parametrization of irreducible modules of geometric graded
Hecke algebras, generic modules always have “open L-parameters”.

This leads to a proof of our standard submodule conjecture for graded Hecke
algebras of geometric type, which is then transferred to reductive p-adic groups.
As a bonus, we obtain that the generalized injectivity conjecture also holds with
“tempered” or “essentially square-integrable” instead of generic.
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2 ON SUBMODULES OF STANDARD MODULES

INTRODUCTION

Let G be a connected reductive group defined over a non-archimedean local field
F. We will simply call G(F') a reductive p-adic group. All our G(F)-representations
will by default be smooth and on complex vector spaces.

Recall that any standard G(F')-representation arises in the following way. Start
with a parabolic subgroup P(F) = M(F)Up(F') of G(F') and an irreducible tempered
representation 7 of the Levi factor M(F). Let x € Hom(M(F'),R() be in positive

position with respect to P(F'). Let Igg; be the normalized parabolic induction

functor. Then
F
w(P(F),7,x) = Ip) (T @ X)

is a standard G(F)-representation. Such representations are interesting for several
reasons:

e By the Langlands classification |[Ren, §VII.4.2], every standard representa-
tion has a unique irreducible quotient. This yields a bijection from the set
of standard G(F')-representations (up to isomorphism) to Irr(G(F')), the set
of irreducible G(F')-representations up to isomorphism.

e Standard representations interpolate between Irr(G(F')) and the set of irre-
ducible tempered representations of Levi subgroups of G(F).

e Standard representations are often easier to handle than irreducible represen-
tations. For instance, one can vary x in w(P(F), 7, x) and then one obtains
a holomorphic family of G(F')-representations (even an algebraic family if we
forget about the positivity of x), which can all be defined on the same vector
space.

e There also exist standard representations (or modules) in related settings
like real reductive groups, semisimple or affine Lie algebras and affine Hecke
algebras. Especially for semisimple Lie algebras, the Jordan—Holder content
of a standard module has interesting geometric interpretations. This goes
via the Kazhdan-Lusztig conjecture, we refer to [KaLul] and [Achl §7.3.10]
for more background.

Conjectures about standard modules and generic representations
A natural follow-up to the Langlands classification is the question: when is a stan-
dard G(F')-representation irreducible? Although they are almost always irreducible,
the cases where they are not are usually more interesting. For w(P(F), T, x) with
G(F) quasi-split and 7 generic, this was the subject of the standard module con-
jecture, posed by Casselman—Shahidi [CaSh| and proven in [HeMul [HeOp]. It says
that (P (F), T, x) is irreducible if and only if it is generic.

Next one may wonder: what are the irreducible subrepresentations, or more ge-
nerally the irreducible subquotients of a standard representation? The multiplicities
with which irreducible G(F')-representations appear as constituents of a standard
representation are predicted by the Kazhdan—Lusztig conjecture, formulated for p-
adic groups by Vogan [Vog, Conjecture 8.11]. It is phrased in terms of the geometry
of Langlands parameters, and has been proven in many cases in [Sol8]. However,
that does not yet tell us which of these constituents occur as subrepresentations.
One aspect of that issue is:
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Conjecture A. (Generalized injectivity conjecture [CaShl)
Let G(F') be quasi-split and T generic. Then any generic irreducible subquotient of
the standard representation w(P(F), T, x) is a subrepresentation.

We remark that in this setting it is known that 7 (P(F'), 7, x) has a unique generic
irreducible subquotient. Conjecture |A| has been verified whenever G(F') has no
simple factors of exceptional type (and for many Bernstein blocks for other groups
as well) by Dijols [Dij]. The proof is a tour de force with L-functions, root data and
combinatorics. Unfortunately, it did not give the author of these lines much feeling
for why Conjecture [A] should hold.

Based on comparisons with other known results and conjectures, we believe that
Conjecture [A] can be regarded as a special case of a more common phenomenon.
Before formulating this more general conjecture, we will discuss some of its back-
ground.

Let B be a minimal parabolic F-subgroup of G and let U be the unipotent radical
of B. Fix a character £ : U(F) — C* which is nondegenerate, that is, nontrivial
on every root subgroup U, (F') C U(F') for a simple root o. We recall that a G(F)-
representation 7 is generic, or more precisely (U(F),¢)-generic, if Homgy(m, &) is
nonzero. An equivalent condition is

Homgp (m, Indg((?) (€) #0,

where Ind means smooth induction. Following [BuHe]

we call 7 simply generic if dim Homgp) (7r, Indg((?) (& )) =1.

It has been known for a long time that every irreducible generic representation of
a quasi-split group is simply generic [Rod, [Shal]. In our view, this multiplicity
one property is the essence of genericity for quasi-split groups, for it enables the
normalization of several objects, in particular of intertwining operators between
parabolically induced representations. Therefore it does not come as a surprise that
many properties of generic representations of quasi-split groups also hold for simply
generic representations of arbitrary reductive p-adic groups.

The enhanced L-parameters of generic irreducible representations of quasi-split
groups are known (among others) for classical groups [Art], for unipotent represen-
tations [Ree] and for principal series representations [Sol10]. All these L-parameters
are open, in the following sense.

Let “G = GY x W be the L-group of G(F) and write g¥ = Lie(G"). Consider a
L-parameter for G(F') in Weil-Deligne form, so a pair (¢, N) with

e ¢: Wp — LG is a semisimple smooth homomorphism,
e N € gV is nilpotent and belongs to

gy ={X €g”: Ad(¢(w))X = [|w]|X for all w € W}.

It is known from [KaLu2| that Zgv(¢)° acts on the variety gg with finitely many
orbits, of which one is Zariski-open. In this setup

(1) (¢, N) is called open when Ad(Zgv(¢))N is open in gg.

We encountered this terminology in [CFZ, §0.6], where it is mentioned that bounded
L-parameters are open. In the same vein, discrete L-parameters are open. Mean-
while these claims have been proven in [CDFZ|, although not yet for all discrete
L-parameters. In Proposition [7.2] we show, in an alternative way, that bounded or
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discrete L-parameters are always open. For the (conjectural) local Langlands cor-
respondence, this means that the L-parameters of tempered representations and of
essentially square-integrable representations should be open.

Further, we recall that Shahidi [Shahl Conjecture 9.4] has conjectured that every
tempered L-packet for a quasi-split group has a generic member. Based on the
above, on [GrPr, Conjecture 2.6], on [GrRel Conjecture 7.1.(3)] and on the results
in this paper, we pose:

Conjecture B. Let m be an irreducible representation of a reductive p-adic group
G(F'). Assume that a local Langlands correspondence exists for the Bernstein block
of Rep(G(F)) containing .

(a) If w is simply generic, then its L-parameter is open.

(b) Suppose that G(F') is quasi-split and that the local Langlands correspondence is
normalized with respect to the Whittaker datum (U(F'),&), in the following sense:
every irreducible (U(F'),€)-generic representation is matched with an enhanced
L-parameter such that the enhancement is the trivial representation.

Then m is (U(F),§)-generic if and only if its L-parameter (¢, N') is open and
its enhancement is the trivial representation of mo(Zgv(p, N)).

Part (b), or very similar statements, has been known to several experts. The
authors of [CDFZ] have, independently from the current paper, arrived at the same
formulation. We remark that for irreducible representations of non-quasi-split groups
G(F'), the trivial representation should never occur as the enhancement of a Lang-
lands parameter, because it should already correspond to a representation of the
quasi-split inner form of G(F).

It seems to us that the reason why Conjecture[A]should hold in larger generality is
not so much the genericity of 7, but rather that the L-parameter of 7 is open (as in
Conjecture . One can say that we replace the analytic motivation for Conjecture
from |CaSh|] by algebro-geometric motivation. Our expectations come together in
the next “standard submodule conjecture”.

Conjecture C. Let 7y be a standard representation of a reductive p-adic group
G(F) and let  be an irreducible subquotient of ws. Suppose that (a), (b), (c) or (d)
holds:

(a) a local Langlands correspondence exists for the Bernstein block of Rep(G(F))
containing ws, and the L-parameter of m is open,

(b) m is tempered,

(¢) m is essentially square-integrable,

(d) m and wg are simply generic.

Then 7 is a subrepresentation of wg.

We note that part (d) of our standard submodule conjecture contains conjecture
As we mentioned before, it is expected that under either of the assumptions (b),
(c), (d), the L-parameter of 7 is open. Hence part (a) is the most general case of
Conjecture |[Cl On the other hand, it is not clear how to formulate assumption (a)
purely in terms of G(F)-representations, and even less so when no local Langlands
correspondence is known for the involved representations. That is an advantage of
parts (b), (c), (d) over part (a).

To state our main result, we focus on a Bernstein block Rep(G(F'))® with s =
[M(F),w]. It was shown in [Sol4, Corollary 9.4] that Rep(G(F))* is closely related
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to the module category of a certain affine Hecke algebra Hg. Lusztig [Lus7] has
conjectured that the g-parameters of Hs are always of a special kind, namely they
are parameters that also arise from a Bernstein block of unipotent representations.
Meanwhile, Lusztig’s conjecture has been verified in [Sol7], for all reductive p-adic
groups G(F) that do not have any simple factors of following kinds:

e Lie type E7,?E7 or Eg,

e isogenous to a special orthogonal or symplectic group of quaternionic type.

Theorem D. (see Theorems and
Consider a Bernstein block Rep(G(F))MUE)“] in the category of smooth complex
representations of a reductive p-adic group G(F). Suppose one of the following:

(a) Lusztig’s conjecture [Lus7] about Hecke algebra parameters holds for
Rep(G(F))MIF)«],

(b) G(F) is quasi-split and w 1is generic.

Then parts (b), (c), (d) of Conjecture [ hold.

In particular, Theorem [Dlb proves the generalized injectivity conjecture from
[CaSH], via Conjecture [Cld.

To obtain results about Conjecture [B] or Conjecture [Cla with our techniques, we
need to suppose that a good local Langlands correspondence, constructed via Hecke
algebras, is available. The precise assumptions are formulated in Condition
Currently this condition has been shown to hold in the following cases:

inner forms of general/special linear groups, [ABPS] and [AMS3] §5],

pure inner forms of quasi-split classical F-groups [Hei, MoRel, [AMS4],
principal series representations of quasi-split F-groups [Soll0],

unipotent representations (of arbitrary connected reductive groups over F)
[Lusbl, [Lus6l [Sol5l [Sol6],

e Gy [AuXul.

Theorem E. (see Theorem [7.4)
Suppose that C’ondition holds for Rep(G(F'))®, so for instance we are in one the
cases listed above.

(a) Suppose that w € Irr(G(F'))® is tempered or essentially square-integrable, or that
w (from s) is simply generic and w generic. Then the L-parameter of w is open.

(b) Suppose that m € Irt(G(F'))® has an open L-parameter and is a subquotient of a
standard G(F)-representation ms. Then m is a subrepresentation of ms;.

In particular Conjectures [Bl.a and[C] hold for Rep(G(F))*.

To prove instances of Conjecture [B]b, one would have to know in addition that the
L-packet of an open L-parameter always contains at least one generic representation.
That aspect of Conjecture |B| seems rather challenging.

In the remainder of the introduction we discuss how we proved Theorems [D]and [E]

Reduction from p-adic groups to graded Hecke algebras
Firstly, one can reduce from Rep(G)® to the module category of some kind of affine
Hecke algebra. This has been achieved in full generality in [Sol4], but in the most
general case some technical difficulties remain, which entail that one does not exactly
obtain the module category of a (twisted) affine Hecke algebra. In Section@we check
that this procedure is still good enough to transfer parts (a),(b),(c) of Conjecture
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to statements about modules of (twisted) affine Hecke algebras. When the ¢ from s
is simply generic, Rep(G)* is really equivalent to the module category of an extended
affine Hecke algebra H; x I's, and the equivalence of categories preserves genericity
[OpSol, Theorem EJ.

The next step is reduction from a twisted affine Hecke algebra Hs x C[Ts, ]
to a twisted graded Hecke algebra H, x C[T's,1,], as discussed in Section The
procedure for that is known in general from [Lus3l [Sol2, [AMS3], and preserves all the
relevant properties of representations. This translates Conjecture [C| to statements
about twisted graded Hecke algebras. In fact can also reduce directly from Rep(G)®
to twisted graded Hecke algebras, skipping the slightly messy step with affine Hecke
algebras, that is done in [Sol4].

To proceed, we need the graded Hecke algebra H, to be of geometric type, by
which we mean that it arises from a cuspidal local system on a nilpotent orbit as
in [Lus2l Lus4, [AMS2]. This puts a condition on the deformation parameters k, of
H,,, which can be retraced to a condition on the g-parameters of H;. That condition
is implied by Lusztig’s conjecture |[Lus7] on the g-parameters of Hs, but it allows a
wider choice of parameters than [Lus7]. In Theorem [6.6{ we show that, when G(F') is
quasi-split and w is generic, all the ensuing extended graded Hecke algebras H, x T',
have equal parameters, and in particular are of geometric type.

Representation theory of graded Hecke algebras of geometric type
Finally, we come to the topic of the largest part of the paper: the standard sub-
module conjecture for twisted graded Hecke algebras. In Sections the setup is
quite different from above. We start with a complex reductive group G (not related
to G). In the body of the paper G may be disconnected, but in this introduction we
slightly simplify the presentation by assuming that G is connected. Let M be a Levi
subgroup of G and let £ be a M-equivariant cuspidal local system on a nilpotent
orbit CM in m. To these data Lusztig [Lus2} Lus4] associated a graded Hecke algebra
H(G, M,€&). As a vector space it is a tensor product of three subalgebras:

O(t) ® C[r] @ C[W¢], where t = Lie(T),T = Z(M),Wg = Ng(M)/M.

In the algebra H(G, M, &), r is central and the cross relations between O(t) and
C[Wg] are determined by parameters k,, for & € R(G,T). The graded Hecke algebras
H, discussed above arise from H(G, M, £) by specializing r at some r € Rx.

The irreducible representations of H(G, M, £) are naturally parametrized by G-
conjugacy classes of “enhanced L-parameters for H(G, M, E)”. These are quadruples
(y,o,7,p) where r € C, y € g is nilpotent and o € g is semisimple such that
[0,y] = 2ry. Further p is an irreducible representation of 7o(Zg(y, o)), subject to a
certain cuspidal support condition. We fix v € CM and we extend it to an slo-triple
in m, with semisimple element o,. The above conditions force o € Ad(G)(t + roy),
so we may assume that o € t+ roy,.

For every parameter (y,o,r,p) there is a “geometric standard” module E, ;. ,,
constructed using equivariant perverse sheaves. It has an irreducible quotient M ;.. ,,
which is unique if » # 0. In that sense the Langlands classification holds for
H(G,M,E). It is preferable to pull back E, ., along the sign automorphism of
H(G, M, &), given by

sgn|oy = id, sgn(r) = —r, sgn(sa) = —s, for every root a.
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When R(r) < 0, the modules sgn*E,, ., are precisely the “analytic standard”
modules of H(G, M, €)/(r + ) in the sense of Langlands (Proposition [3.7).

The centre of H(G, M, &) is O(t)"¢ @ C[r], so the space of central characters is
t/We xC. Then Z(H(G, M, E)) acts on sgn*E, ;. , with o € t+r0, by the character
(Wg(o—roy), —r). Moreover, every irreducible H(G, M, £)-module with this central
character is of the form sgn*M, ., » for suitable (3, p'). This allows us to focus on
a fixed pair (o,7) € t® C(0y, 1) in the remainder of the introduction. The nilpotent
parameter y lies in

g% = {X € g nilpotent : [0, X| = 2rX}.
Analogous to (1)), we say that (y,o,r) is open if Ad(Zg(0))y is the unique open
orbit in g%
Let us consider the category Modg »,(H(G, M, £)) of finite dimensional H(G, M, &)-

modules all whose irreducible constituents admit the central character (Wg(o +
roy),r). According to [Lusdl [Sol8], this category is canonically equivalent to

Modnor (Endpy ) (Ki):

where Ky, is a certain Zg(o)-equivariant perverse sheaf on g‘]T\’,T. With these

notations |
Eyor = H*({y},zyKN,Uyr),

Ey»U,T,P = HomWO(ZG (O',y)) (p? Ey,U,?") .
In this setting we deduce the crucial geometric step in our chain of arguments:

Proposition F. (see Propositions and
Let (y,o,r,p) be an enhanced L-parameter for H(G,M,E) and let L, be the local
system on Oy = Ad(Z¢(0))y induced by p. For another parameter (y',o,r,p'):

HomH(G7M75) (Sgn*EZJ',Uﬂ’,P' ) Sgn*E%U,’ﬁP) = HomH(G,M,S) (Ey’,a,r,p’u Ey,o,'r,p)
is monzero if and only if O, C @ and L, appears in IC(g%;, Ly)lo,-

Proposition |F| quickly implies that the irreducible modules sgn*M,/ ;. y with
(v, 0,7) open occur as submodules of standard modules sgn*Ey ;. , (Theorem [3.2)).
In Lemma and Theorem (which comes from [AMSZ2]), we check that irre-
ducible H(G, M, £)-modules which are tempered or essentially discrete series have
open parameters. That proves the larger part of the standard submodule conjecture
for graded Hecke algebras of geometric type.

The condition for genericity of H(G, M, £)-module is derived from |[OpSol, §6]:

V € Mod(H(G, M, £)) is generic if Resg[(v?,”gy’g)‘/ contains the sign representation.

In Proposition we show that every standard module sgn*E, ;. , has at most
one irreducible generic subquotient, like for standard representations of quasi-split
reductive p-adic groups. Hence generic for Hecke algebras corresponds to simply
generic for reductive p-adic groups. By reduction to the case r = 0, we prove:

Theorem G. (see Theorem [4.5)

(a) For fized (o,7) € t® C(oy,1), there is a unique (up to conjugacy) pair (yq, pg)
such that sgn* My, o, is generic. Here (yq,0,7) is an open parameter.

(b) Suppose that (G, M,E) has equal parameters, e.g. it arises from a generic Bern-
stein block for a quasi-split reductive p-adic group. Then CM = {0}, & is the
trivial local system and py = triv.
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Altogether the above results prove the version of Conjecturefor (twisted) graded
Hecke algebras of geometric type. Theorem |D| applies that in the cases where the
reduction from Rep(G(F'))® to twisted graded Hecke algebras works well. Similarly,
Theorem |Ef uses that when a nice LLC via graded Hecke algebras of geometric type
is available.

1. GEOMETRIC CONSTRUCTION OF TWISTED GRADED HECKE ALGEBRAS

All the groups in Sections will be complex linear algebraic groups. We mainly
work in the equivariant bounded derived categories of constructible sheaves from
[BeLu]. For a group H acting on a space X, this category will be denoted D% (X).

Let G be a complex reductive group, possibly disconnected. To construct a graded
Hecke algebra geometrically, we need a cuspidal quasi-support (M,CM q¢&) for G
[AMST]. This consists of:

e a quasi-Levi subgroup M of GG, which means that M° is a Levi subgroup of
G° and M = Zg(Z(M°)°),

e CMis a Ad(M)-orbit in the nilpotent variety my in the Lie algebra m of M,

e ¢& is a M-equivariant cuspidal local system on CM.

We write T'= Z(M)° = Z(M°)°, t = Lie(T") and
Wye = Stabyg ) (¢€)/M = Ng(M,q€) /M,

which is a finite group. Let &£ be an irreducible M°-equivariant local system on CM*
contained in ¢€|,ne. Then

qu = Wg X Fqg,

where Wg is the Weyl group of a root system and Rye is the We-stabilizer of the
set of positive roots. To these data one associates a twisted graded Hecke algebra

(1.1) H(G,M,qé') :H(f, qu,k‘,r,hqg),

see [Sol9l §2.1]. As vector space it is the tensor product of

e a polynomial algebra O(t @ C) = O(t) ® Clr],

e a twisted group algebra C[We, f4¢],
and there are nontrivial cross relations between these two subalgebras. The most
important cross relation involves a simple root «. It comes with a simple reflection
sa € Wg, a basis element N, of C[We] C C[We, 4] and a parameter ko € C. For
£eO):

Nso€ — (§08a)Ns, = kar(§ — €0 5q) /.

For elements v € I'j¢ there is a simpler cross relation:

N,&= ((oy HN,.

Let gy be the nilpotent variety in the Lie algebra g of G. The algebra can be
realized in terms of suitable equivariant sheaves on g or gy. We let C* act on g
and gy by A- X = A2X. Then every M-equivariant local system on C, and in
particular ¢&, is automatically M x C*-equivariant.

Let P° = M°U be the parabolic subgroup of G° with Levi factor M° and unipo-
tent radical U matching the aforementioned choice of positive roots. Then P = MU
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is a “quasi-parabolic” subgroup of G. Consider the varieties
g={(X,gP)egxG/P:Ad(g )X eCM @ tou},
gy =g0N(gn x G/P).

We let G x C* act on these varieties by

(1.2) (91,A) - (X, 9P) = (A\"*Ad(91) X, g1P).

By [Lus2, Proposition 4.2] there are natural isomorphisms of graded algebras

(1.3) Heex (8) = He o (9n) = O(t) ©c Clr].

Consider the maps

ML (X, g)egxG:Adg VX ecM atau By,

f1(X,9) = prem (Ad(g 1) X), f2(X,9) = (X, gP).

Let g€ be the unique G x C*-equivariant local system on § such that f3 ¢€ = fid€.
Let pr; : g — g be the projection on the first coordinate and define

(1.4)

K = prL!qE € Dgxcx (9).
Let ¢& n be the pullback of ¢€ to gy and put

Ky = prl,N,!q;gN € Dbcxcx (an)-

It is shown in [Sol9, §2.2] that Ky is a semisimple complex isomorphic to the
pullback of K to gy, and that Ky can be regarded as the parabolic induction
of ICsxcx (M, ¢€).

From [Sol9, Theorem 2.2], based on [Lus2l, Lus4l, [AMS2], we recall:

Theorem 1.1. There exist natural isomorphisms of graded algebras

H(G, M, ¢€) — End, K) — End,

b @l b o) BN

The irreducible modules and the standard modules of H(G, M, ¢€) have been
constructed and parametrized in [Lus2) Lus4, [AMS2]. The parameters consist of:

a semisimple element o € g,

reC,

a nilpotent element y € g such that [0, y] = 2ry,

an irreducible representation p of mo(Zgxcx (y)), such that the quasi-cuspidal
support of (a,y, p) is G-conjugate to (M,CM ¢&).

We call (y,o0,r) an L-parameter for H(G,M,¢€) and (y,o,r,p) an enhanced L-
parameter for H(G, M, ¢€). The relation with Langlands parameters for reductive
p-adic groups is explained in [AMS2] §1].

Theorem 1.2. [AMS2, Theorem 4.6]

To each enhanced L-parameter for H(G, M, ) there is associated a standard module

Eyorp, which has a distinguished (unique if r # 0) irreducible quotient My 5.1 ,.
This yields a bijection between Irr(H(G, M, ¢€)) and G-association classes of en-

hanced L-parameters for H(G, M, ¢E).
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The condition on p in enhanced L-parameters for H(G, M, ¢€) is rather subtle
and restrictive. Some instances can be made more explicit:

(1.5) the quasi-cuspidal support of (o, y, triv) is always of the form (L, {0}, triv),

where L is a minimal quasi-Levi subgroup of G, that is, the G-centralizer of a
maximal torus in G°. The reason is that quasi-cuspidal supports are unique up to
G-conjugation and that (y, triv) already appears in the Springer correspondence for
Z(00), which is based on the quasi-cuspidal support (L, {0}, triv). In particular
p = triv can only appear in an enhanced L-parameter for H(G, M, ¢€) if ¢€ is the
trivial equivariant local system on {0}.

The centre of H(G, M, ¢€) contains

(1.6) O(te C)"e = O(t/Wye x C).

Usually this is the entire centre, and therefore we will just call a character of ,
ie. an element (Wyeoo,r) € t/Wye x C, a central character of H(G, M, ¢&).

Not every (o, 1) can be extended to an enhanced L-parameter for H(G, M, ¢€), the
existence of (y, p) already imposes conditions. We pick an algebraic homomorphism

Yo 0 SLa(C) — M with dv, (§3) =

and we put o, = d, ((1) _01) € m. According to [Sol8, Lemma 2.1], in this setting
Ad(G)o — ro, intersects t in a unique Wyg-orbit. Therefore we may, and often will,
assume that

(1.7) the semisimple element (o,7) lies in t® C(0y,,1) C m& C.

In this way (o,7) determines a central character of H(G, M, ¢€). We denote the
completion of Z(H(G, M, ¢€)) with the respect to the powers the ideal

ker (ev(m,ﬂ) : O(f D C)qu — (C)

by Z(H(G, M, ¢E))o.r.
The geometric counterpart of ([1.6]) is the commutative graded algebra

(1.8) H, o (Pt) 2 O(g & ),
which acts naturally on EndZ, (gN)(K ~). The completion of (1.8)) with respect
GxCX

to the maximal ideal determined by (Ad(G)o,r) is denoted H Gex (Pt)or-
Fix (o,r) as above and write

gy ={X €g:[o,X]=2rX, X is nilpotent}.

When 7 # 0, the nilpotency is already guaranteed by the first condition, and g% is
a vector space. On the other hand, when r = 0, g(]"\}r is the nilpotent cone in Zy(o).
In any case g is an irreducible variety. The group

C:=Zgycx(0) = Zg(o) x C*
acts on g3 like in (I.2):
(1.9) (g, \) - X = A2Ad(g)X.

This action has only finitely many orbits [KaLu2, §5.4], so by the aforementioned
irreducibility of g%

(1.10) there is a unique open C-orbit in g7;".
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We record the projection and inclusion maps

o,r Prin .o, -1/ 0,7 jNyGJ .
gy < gy =pr; (gy ) — on.

With these we define

KN,U,T = (prl,N>!j}k\7,a,r(q€N) € ,Dg(g?\}r)

It was checked in [Lus4, §5.3 and §8.12] and [Sol9, Lemma 2.8] that this is a
semisimple complex. The commutative graded algebra Hf (pt) acts naturally on
Endpy, (g;r\;r)(K N,o,r); by the product in equivariant cohomology.
Theorem 1.3. [Sol8 Theorem 2.4]
There are natural algebra isomorphisms
Z(H(G, M, q€)oy @  H(G,M,qE) =
Z(H(G,M 4£))

HY t ® End’
GxEx (p )U’T Héxcx (pt) Dgxcx (o~

kol ~

)(KN) —

~

H}g(o’))((cx (Pt) - ® EndZ, ( ‘JTV’T)(KN:UJ)‘

Zg(o)xCx (pt) Zgo)xex
These induce equivalences of categories

Modg o, (H(G, M, ¢€)) = Modg 5, (End*Db (on) (KN))

GXxCX

= Modﬂ70—7r (End%b (g(]?'\;r) (KN70-’7-)) 5

Za(o)xCX

where fl, o, stands for finite length modules all whose irreducible subquotients admit
the central character given by (o,7).

In particular Theorem can be used to study all irreducible or standard
H(G, M, g€)-modules with central character given by (o, 7).

Since the semisimple complexes Ky and Ky, are so important in this paper,
we provide alternative descriptions. Consider the spaces and maps

prl'n
Cf,w—>mN<—NmN@u—>GxP(mN@u)ﬂv—>gN,

where un(g,X) = (g9,Ad(g9)X). By [BeLu, §2.6.3], for any P x C*-variety Y there
is an equivalence of categories

ind%X5 1 DY ox (V) = Dlyon (G X7 Y),

sometimes called equivariant induction. The functor

. GxC*___x .7y b
NN,!mde(cxprmN : Dpyox (my) — Doy ox (gn)

can be regarded as a version of parabolic induction for equivariant constructible
sheaves. Notice that we may view ¢€ as a P x C*-equivariant sheaf on which U acts
trivially. By [Sol9, (2.30)—(2.33)] there is an isomorphism

(1.11) Ky 2 punyind§XES prly  ICpox (M, g€).

Let T5, be the smallest algebraic torus in G° x C* whose Lie algebra contains (o, r).
It was checked in [Sol8| (2.9)] that

TO’T . . . X
(112) gy = g]a\}r and g‘]’\}r — (gN)To,r =gn (g;‘\}T « (G/P)e p((Co‘)).
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We let T, act on G x¥’ (my @ u) by (h,2) - (9, X) = (hg, 27 2X), and we let
iN,U,T : (G xP my @N)TG’T — G x P (mN & u)
be the inclusion.

Lemma 1.4. In D%g(o)x(cx (o%") we have isomorphisms

KN,J,T = p1"17!ICZG(cr)><(C>< (97\}7‘ X (G/P)exp((ca)aj}kV,a,rqEN)
& MN,!i}(V,a,rlndGXCXprmNICPX(CX (mN, qf,‘)

Proof. Consider the commutative diagram

(1.13) (G xP my @ u)Ter D2 G <P (my @ u)
%A T . T UN
Jwm Jw
Tor pr . 0, . - jN,o’,'r . pr
o =gy =gy = (an)7 an gy

where juy (X, gP) = (9,Ad(g)X). With the left half of the diagram we rewrite
(1.14) EN o = PU11jN s dEN = KN Uy LN,00GEN-
Like in , one checks that
(G xPmy @u)lor = {(X,gP) € gy x G/P: Ad(g7)X € my @ u}lor
= g x (G/P)™P(E),
Via this isomorphism jy, becomes g% — g% x (G/P)*P(€?) and uy becomes pr;.
As j}"\,pmq}‘,’N lies in D%G(a)xﬁcx (6%"), this turns the right hand side of into
pry IC 7 (oyxcx (8% % (G/P)™PC) g% 4€y),
which proves the first isomorphism in the statement.

The square in (1.13)) is Cartesian, so by base change [BeLul, Theorem 3.4.3], (1.14))
becomes N 1i}y , . Jmy 19 y- By [Sol9, (2.22)], this is isomorphic to

X . ~
HNEN g o S DT GE 22 v i 6 INAE X Gy ot n 1P 0E =2
MNIZNUrlndPXCXprmN(ij‘cM)lqg uNwNarmdPxCXprmNICchx (my,q¢€). O
Comparing (1.11)) and Lemma we see that K ., can be regarded as a re-
stricted parabolic induction of IC(mp, ¢€).

2. THE INTERNAL STRUCTURE OF STANDARD MODULES

From Theorem one sees that all irreducible or standard H(G, M, ¢€)-modules
with central character (Wyeo—ro,, r) arise in some way from the semisimple complex
Knoron gy . Forye gy we write

Cy=Zc(y) = (Za(o) x C*) N Zgxex (y),
where G x C* acts as in ((1.9). Let
O, = Ad(C)y C g’
be the C-orbit of y. The equivalence of categories
(2.1) indg, : D&, ({y}) = DE(0,)
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transforms any representation p of mo(Cy) into a C-equivariant local system on O,.
We form the (equivariant) intersection cohomology complex ICC(gi}T,indgy (p)), a
C-equivariant perverse sheaf on g%". In the literature this object is often denoted

ICc (0, indgy (p)), but we prefer a notation that specifies the variety on which it is
defined.

Theorem 2.1. [Sol8, Theorem 4.2]

Every simple direct summand of Ky s, is (up to a degree shift) isomorphic to
ICc(g}T\}r,indgy (p)). for (y,p) such that (y,o,r,p) is an enhanced L-parameter for
H(G, M, q¢€). Conversely, for every such (y,o,r,p), ICC(g‘]’\}T,indgy (p)) is (up to a
degree shift) a direct summand of Ky o,y

With Theorems and and techniques from [Lus4, [AMS2], we provide a
description of the irreducible H(G, M, ¢&€)-modules.

Lemma 2.2. The irreducible modules of End*Db( oy (KN or) are
2y 17

My orp= Hom%g(gg}r) (ICC(gi\}T, indgy (p)), KN,a,r),

where (y,o,r, p) is an enhanced L-parameter for H(G, M, ¢E). Here the prime indi-
cates a suitable degree shift, so that ICC(gi}T,indgy (p)) becomes a direct summand
Of KN,U,T-

Proof. We use a modified version K }V@r of Kng,. The only change is that for
every simple direct summand of Ky, , the degrees are shifted, so that it becomes
an actual perverse sheaf. Thus K j\, o 18 @ direct sum of simple perverse sheaves.
Then End;‘)bc (QTV,T)(K N.o.r) is naturally isomorphic to End;‘)bC (g(]fv,T)(K N,or) as alge-
bras, only the gradings are different. Recall that
c/ce
(2.2) Endpy (oo (KN g,) = Bndpy, oor) (KN,) /e,

From [Lus4, §5] and (2.2]) we see that:
o End%bc(g;’\;’“)<KJ/V,a,r) =0 forn <0, /
* Cor Omz, (pt) Drez, EndDb?(g?\;r)(KNﬂm) is the nilpotent radical of
Cor Ot By g ()
/
We conclude that the irreducible modules of EndZ,, (gw)(K N,or) can be identified
C\YN
. . . 0
with the irreducible modules of EndDbc (Q%T»)(K N.or)- By Theorem those are the

) is finite dimensional and semisimple.
R

Hom,, (=) (ICc (g} ind, (0)). K g0
where (y, 0,1, p) is an enhanced L-parameter for H(G, M, ¢€). O
With Lemma [4.2] we can decompose

(2-3) KN,U’T = @y P ICC(g(]T\}r’ indgy (p)) ® M sO,TP"

We warn that, while this is a direct sum of constructible sheaves, there may be
nonzero morphisms (in higher degrees) between different intersection cohomology
complexes in the sum.
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Let iy : {y} — g% and ip, : Oy — g be the inclusions. From [Lusd), §10] and
[Sol8, §3.2] we see that one way to define the standard H(G, M, ¢€)-modules is:

Byor = H*({yhi,Knor),
Eyvazrvp = Homﬂ-O(Cy) (p7 Ey,O',T') :
The action of H(G, M, ¢€) comes from Theorem ﬁ and EndZ,, (0% (KN.,o.r), which
bl gN ) )y

acts via the natural homomorphism to End%bc (D) (z;/K Noor)-

Let us denote equality in the Grothendieck of finite length End;')b (gm)(K Now)-
C\¥N
modules by =. Like in [Lus4, 10.3.(c)] we deduce from (2.3) that

(2'4) Ey,o,r = @y’ o H* (Z’LICC (g(]T\}Tv indcy/ (p,))) ® My’,a,r,p’a

where the sum runs over all enhanced L-parameters (y',o,r,p’) for H(G, M, ¢&).
Here and later H*(?) is an abbreviation of @, ., H"(?). The action of m(C,) on
Ey o, corresponds to the natural action of mo(Cy) on the first tensor factors on the

right hand side of ([2.4)).
Recall that z'y = Diy D where D denotes the Verdier duality operator. For p €

Irr(mo(Cy)) C Dbcy({y}) we have Dp = pV, the contragredient representation. The
analogue of (2.4)) for £, ., involves the space

Homyc,) (p, H* (4,1Cc (g, indg ,(p)))) =
(2.5) Hom,, ¢, ) (H* (i DICc (g%, indcy, (PN, p") =

Hom, (¢, (H*(i;ICc (g indcy, "), p").
By definition the dimension of the last line of (2.5) is the multiplicity of p¥ in
iZICc(gK}T,indgy, (p"V)). Equivalently the dimension of (2.5 equals
(2.6) the multiplicity of indgy (p”) in ifgyICc(g‘]’\}T, indcy, (™).
By [Lus4l, §10.6], or by applying complex conjugation to both sides, that equals
(2.7) the multiplicity u(y, p,v’,p’) of indgy (p) inip ICc (g indcy/ ().
Notice that (2.6) and (2.7) can only be nonzero if O, C O,/. As in [Lusd, Corollary
10.7] and [Sol8, Proposition 5.1], (2.4 and (2.7) determine the semisimplification of

standard modules, namely
(2.8) Ey orp = direct sum of the M .. » with multiplicities (2.7).

To arrive at (2.4) and (2.8), Lusztig uses a filtration of £, ,, by submodules defined

in terms of the cohomological grading from K7 , . [Lus4, §10.2]. That provides some

information about which constituents of £, ;. , appear as submodules or quotients,

but it is not yet explicit.

Proposition 2.3. Letﬂ/ egy .

(a) If r #0 and Oy ¢ Oy, then Homgg(,ar,46) (Byt o,r5 Byor) = 0.

(b) Suppose that Oy C O,. There is a homomorphism of H(G, M, ¢€)-modules
Jylvy : Ey’,UJ' — E ;0,7

canonical up to the action of mo(Cy).
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Proof. (a) As r # 0, by [AMS2, Theorems 3.20 and 4.6], every irreducible quotient
of Ey ,, is isomorphic to M,y ,, , for some enhancement p’. Let

¢ € Homyc,n,06) (Ey o, By or)
and suppose that ¢ # 0. Then ker(¢) is a proper submodule, so Ey , ./ ker(¢) has
at least one quotient of the form M,/ ,, . Now ¢ induces an injection
Ey’,o',r/ker((b) — Ey,o,m

which in particular maps the quotient M, . » injectively to a subquotient of £, ;.
However, by , and the assumption, Fy ,, does not have any subquotients
isomorphic to My .. This contradiction shows that ¢ # 0 is impossible.

(b) Let KX, o be the version of Ky ., obtained from g€V instead of ¢€. We need

to construct a homomorphism of EndZ, (ga,r)(K N.or)-modules
C\¥N

Jy’,y : H*({y/}a i;’KN,O'J’) — H*({y}J;KN,J,r)
Via Verdier duality, this equivalent to the construction of a homomorphism of
End%%(g%r)(K]\/, -modules
(2.9) Dy H'({y}, iy KN or) = H({y'} i KN o)-

7U7r)

Recall that Ky, . is a bounded complex of C-equivariant constructible sheaves with
finite dimensional stalks on g%;". Since there are only finitely many C-orbits in g3}
[KaLu2, §5.4], there exists an open neighborhood U, of y in g%/ such that every
section of Ky, . over Uy is completely determined by its stalk at y. From Oy C O,
we see that U, N O, is nonempty. Pick y; € U, N O,. Every element of the stalk

z'ZK]\/,UT comes from a unique section over Uy, so it determines an element of the
-k \/ . .
stalk i Ky .. That yield canonical maps

(210)  iyKN gy =iy KN gyp and  H*({y}, KN o0) = H* ({51}, 15, KN o.)-

Pick g1 € C with g1 - y1 = . The action of g; provides an isomorphism of
* v
EndDg(gf\;r) (K o,)-modules

(2.11) g H ({yi}, i, Ko p) = H ({y'} iy KXoy
The composition of (2.10) and (2.11)) is the desired map (2.9).

It remains to analyse the dependence on the choices of Uy, y; and gi. Consider
different y» € U, and g2 € C' with g2 - y» = v/. Then

(212) 92_191 : H*({yl 7ile]\\/f,U,r) - H*({y2}7iZZKJ\<7,J,T)

is an isomorphism, canonical up to multiplying g» on the right by elements of Cy,.
The isomorphism

(2.13) g2 H*({y2}, i3, KN o) = H ({y'} iy Ko )

is the canonical in the same sense. Equivalently, and are canonical up
to multiplying g2 on the left by elements of C'ys. The constructibility of the involved
sheaves entails that this action of Cy factors through mo(Cy).

From this we deduce that the choice of U, was inessential. For any alternative
Uy, the intersection U, N Uy contains an open neighborhood of y with the same

property. We can take yy in that smaller neighborhood, and by (2.12)) and ([2.13])
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that is just as good as y;. Altogether the only non-canonicity of (2.9) comes from

the Endfl‘)g(g;,\;r)(K]\/,,U’T)—linear action of mo(C,y) on H*({y'}, iz/K]\\/f,o,'r)' O

We note that at this point it is still possible that E,,, = 0 or Ey,, = 0,
because it may be impossible to extend (o, y) or (o,y’) to an enhanced L-parameter
for H(G, M, ¢€). To improve on that, we bring in enhanced L-parameters (y, o,r, p)
and (y/,0,r,p’). We denote the vector space underlying p by V,,.

Proposition 2.4. (a) If the multiplicities (2.6)) and (2.7) are zero and r # 0, then

Hompy g ar,46) (Ey om0 Ey,or,p) = 0.

(b) Suppose that the multiplicities u(y, p,vy', p') and are monzero, so in particu-
lar O, C Oiyl Then Jyy , induces a nonzero H(G, M, ¢€)-module homomorphism
from Vy @ Ey 5 v toV,® Ey 5., (with H(G, M, ¢€)-action only on the second
tensor factors).

(¢) Jyy gives rise to u(y, p,y', p') linearly independent H(G, M, g€)-homomorphisms
from Ey g7 0 t0 Ey g p.

Proof. (a) This can be shown in the same way as Proposition [2.3|a.
(b) The map DJ,, , from (2.9)) sends the linear subspace

(2.14) H*({y},;1Cc (o indg: , (p7))) € H*({y}, iy KX o)
to the linear subspace
(2.15) H*({y'}, i;,ICc(g}’\}r,indgy, (PV) =p".

The map DJ,, from (2.14)) to (2.15)) is injective because
o,r . C N ~ 7, . C /\
ICc(gN ,ind y (p )) = IC(Oy ,ind y (p ))

has no subsheaves supported on O, \ O, [Achl, Lemma 3.3.3]. By assumption (2.14)
contains a copy of p¥, and DJy, , sends that nontrivially to p’V. In other words, Jy/
sends p' C Ey ., nontrivially to a copy of p in E,,,. Now we split Ey ,,, resp.
E, o, into isotypic component for the action of m(Cy ), resp. of mo(Cy). We obtain
that via these splittings J,, restricts to a nonzero homomorphism from the p'-
isotypic component V,y ® Ey 5., of Ey 5, to the p-isotypic component V, ® Ey 5.+,
of By 5.

(c) By the equality of and (2.7)), the mo(Cy)-representation (2.14)) contains a
direct sum of u(y,p,y’,p’) copies of p¥. As we observed in the proof of part (b),
DJ, , injects that into p/V. By duality, there are u(y, p,vy’, p’) linearly independent
surjections of p’ C Ey 5, onto a copy of p in Ey ,,. To each of these we can apply
the argument from part (b), and that provides u(y, p,vy’, p’) linearly independent
elements of Homg (g, 11,46) (Ey om0 s Eyorp)- O

3. OPEN PARAMETERS FOR TWISTED GRADED HECKE ALGEBRAS

We say that an L-parameter (y,o,7) or (y,o,r,p) for H(G, M, ¢€) is open if the
Zgxcx(o)-orbit of y is open in g3/. We may also use Zg(o) instead of C' =
Zaxcex(0) = Zg(o) x C*, for they have the same nilpotent orbits. Since there
is a unique open orbit in g% (L.10)), we could equivalently require that the C-orbit

of y is dense in g7’
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For r = 0 we can reformulate the above condition in easier terms:
(3.1) (y,0,0) is open if and only if y is regular nilpotent in Zg(o).

Lemma 3.1. Let (y,o,7,p) be an open enhanced L-parameter for H(G, M, qf).
Then Ey 5., 18 irreducible and equals My g 5.

Proof. For connected G this is [Lus4, Corollary 10.9.c]. We spell out that argument
in general. Any constituent of E, ., is of the form My ,, ,, where O, C O,.
The “open” property of y forces O, = O,. Next (2.8)) shows that indgy (p) must

equal indg ('), so that My 5,y = My sy, From (2.8) and (2.7) we see that
Y

M,y -, appears with multiplicity one in Ey 5, ,. We conclude that the two modules

coincide. n

The main result of this section is a quick consequence of the insights collected so
far.

Theorem 3.2. Let (y, 0,7, p) be an enhanced L-parameter for H(G, M, g€). Suppose

that (y', 0,7, p") is an open L-parameter for H(G, M, qE), such that My . y occurs

as a subquotient of Ey 5.y ,-

(a) My o is isomorphic to a submodule of Ey s .

(b) Every irreducible subquotient of Ey .y, isomorphic to My o, » is a submodule
of Eyorp-

Proof. (a) From (2.8)) we see that the multiplicity (2.8) is nonzero and that O, C O,.
By Proposition [2.4b there exists a nonzero H(G, M, ¢€)-module homomorphism

from Ey 5, to By 5 ,. By Lemma Ey 6rp = My 5. is irreducible, so this
homomorphism is injective.

(b) Proposition enables us to apply the proof of part (a) in u(y, p,y, p’) linearly
independent ways. That produces a direct sum of u(y,p,y’, p’) copies of My 5,
as a submodule of Ey ., By (2.8), this exhausts all occurences of My ;. as a
subquotient of Ey ;. ,. O

The parameters (y, o, r, p) can also be presented in another way. By [Kalu2| §2.4]
we can find a homomorphism of algebraic groups
Yy : SLa(C) — G° such that:

(3.2) o dvy((§5)) =v,

e g0:=0 —dy((§ L)) commutes with the image of dy,,.
Moreover the G°-conjugacy class of (y,o,r) determines the G°-conjugacy class of
(y,00,7) and conversely. We recall from [AMS2, Lemma 3.6] that there is a na-

tural isomorphism 7o(Cy) = mo(Za(00,y)), and that the data (y,o,r,p) up to G-
association carry exactly the same information as (y, 09,7, p) up to G-association.

Lemma 3.3. Let (y,0,r) be an L-parameter for H(G, M, ¢€), with r # 0. Equivalent
are:

(i) (y,0,7) is open,

(ii) g% equals {X € Zy(op) : [0 — 00, X] = 2rX}
Proof. Since g3 = ggla’l and Zgeo(0) = Zgeo(r~'o), we may replace (y,o0,7) by
(y,7710,1) and assume that r = 1.
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(i) = (ii) Pick a maximal toral subalgebra t' of g containing o, and let R be the
root system of (g,t'). Then

ol
v = @QER:Q(U)ZQ fa-

The open Zge(0)-orbit in gf\}l contains an element with nonzero parts in every root
subspace g, with a(o) = 2. Conjugating y by an element of Zgo (o) if necessary,
we may assume that y has this property. Let R’ be the minimal parabolic root
subsystem of R containing {a € R : a(o) = 2}. It gives a Levi subalgebra

I __
g _t@@QER’gO“

which contains y as a distinguished nilpotent element. Let G’ be the algebraic Lie
subgroup of G° with Lie algebra g/, and let 7, : SLa(C) — G’ be as in (3.2). As
Zy(09) is a Levi subalgebra of g’ containing y,

(3.3) the distinguishedness of y forces og € Z(g') C t'.

In particular any root o with (o) = 2 satisfies a(og) = 0 and a(o —op) = 2. Hence
(ii) holds for this specific og. Since oy is determined by (y, o, r) up to G°-conjugacy,
(ii) holds for all possible oy.

(ii) = (i) Notice that y,dv,((99)),dv((§ L)) is an sly-triple in Zg(op). It is
known from [Kos, Lemma 4.2.c] or [ChGi, Lemma 3.7.24] that the orbit of Zge(c9)N
Zgo (d%, ((1) 91) ) through ¥ is open in

{X € Zy(o0) : [dry ((§ 21)), X] = 2X} = {X € Zy(o0) : [0 — 00, X] = 2X} = g3

The group Zge (o) contains Zge (00) N Zge (dyy (§ Y1) ), so its orbit through y is also

open in gf\}l. ]

An L-parameter (y,o,7) or (y,o00,7) (or with p included) is called bounded if
a G-conjugate of og lies in iR ®z X,(T). We recall that by [Sol8, Lemma 2.2]
Ad(G)o intersects t = C @7 X.(T) whenever there exists an enhanced L-parameter
for H(G, M, ¢€) with this 0. To explain the terminology, we note that exp(iR ®z
X.(T)) is the maximal compact subgroup of 7. Thus a parameter is bounded if and
only if exp(oy) lies in a bounded closed subgroup of G. More generally we say that
(y,o,r) is essentially bounded if a G-conjugate of oq lies in Z(g) @ iR ®z X.(T).

The next result is a variation on a property of Langlands parameters for reductive
groups, announced in [CEZ, §0.6].

Lemma 3.4. Let (y,o,7) be an L-parameter for H(G, M, ¢€).
(a) Ify is distinguished in g, then (y,o,r) is essentially bounded.
(b) If R(r) # 0 and (y,o,r) is essentially bounded, then it is an open parameter.

Proof. (a) By the same reasons as for (3.3)), o¢ lies in Z(g).
(b) By [AMS3, Proposition 1.4] we may assume that og,0c —ro, € t. Let T’ be a
maximal torus of Zg(og) whose Lie algebra t' contains t + Co = t 4+ Co,,. Then

o =oo+dy((§2)) with oy € Z(g) ®iR®7zX.(T) and dy,((§ %)) € RozX.(T").

In particular oy takes imaginary values on all roots of (g,t), while ¢ — oy =
dvy((5 2.)) takes values in 7R on all roots. As rRN4R = {0}, (ii) from Lemma
holds, and we conclude by applying Lemma [3.3] O
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We warn that Lemmas B.3] and B4lb are false for r = 0. Just take o = 0 and note
that (y,0,0) is a bounded parameter satisfying (ii), for any nilpotent element y.

Bounded parameters are related to H(G, M, ¢€)-modules which are tempered in
the sense of [AMS2| Definition 3.24]. The definition says that O(t)-weights of a
module must lie in a certain negative cone. In particular any subquotient of a
tempered module is again tempered.

Besides tempered representations, in an important role in harmonic analysis is
played by (essentially) discrete series representations. For graded Hecke algebras
they are also defined in [AMS2l Definition 3.24], it says that their weights must
belong to the interior of a suitable negative cone.

To see the connection between tempered representations and bounded parameters
best, we involve the sign automorphism of H(G, M, ¢€). Let det : Wye — {£1} be
the determinant of the action of Wye on X*(T'), an extension of the sign character
of the Weyl group W. Then sgn : H(G, M, ¢€) — H(G, M, ¢€) is defined by

sgn(Ny) = det(w) Ny, sgn(r) = —r, sgn(§) =& we Wy, £ € O(ta C).

Theorem 3.5. [AMS2, §3.5 and §4] and [Sol8, Theorem 3.4]

(a) Let (y,o,r,p) be an enhanced L-parameter for H(G, M, q€). The following are
equivalent when R(r) < 0:
e the parameter (o,y,r) is bounded,
o Eyorp is tempered,
o My orp is tempered.
When R(r) < 0, My s, is essentially discrete series if and only if y is distin-
guished nilpotent in g.
(b) Let (y,o,—r,p) be an enhanced L-parameter for H(G, M, ¢€). The following are
equivalent when R(r) > 0:
e the parameter (o,y,—r) is bounded,
o sgn*ky , ., is tempered,
o sgn*M, , ., is tempered.
When R(r) > 0, sgn*M, 5 ., is essentially discrete series if and only if y is
distinguished nilpotent in g.
(¢) When R(r) =0, H(G, M, ¢€) does not have nonzero essentially discrete modules
on which r acts as r.

We will refer to sgn*E, , ., as an analytic standard module. These are useful
because often r has to be specialized to a positive real number r, and then Theorem
b yields tempered or essentially discrete H(G, M, ¢€)-modules on which r acts
as r. To emphasize the contrast, we will sometime call £, ;. , a geometric standard
module.

Theorem 3.6. Let E be a H(G, M, ¢€)-module on which r acts as r € C. Assume
one of the following:

e R(r) <0 and E is geometric standard,
e R(r) > 0 and E is analytic standard.

Let V' be an irreducible subquotient of E, which is tempered or essentially discrete
series. Then V is a submodule of E.

Proof. First we suppose that J(r) > 0, and we write F = sgn*E, , _,,. In view
of (2.8), V = sgn*M, , _, » for some v/, p’. Theorem b says that (y/, o, —r) is
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bounded or that 3’ is distinguished nilpotent in g. By Lemma (y/,0,—r) is an

open parameter. Now Theorem tells us that My , _, » is a submodule Ey , _, ,,
so V' is a submodule E. The case R(r) < 0 is entirely analogous, only now using
part (a) of Theorem O

There are yet other standard modules, namely those appearing in the Langlands
classification for graded Hecke algebras [Eve|]. To construct those one starts with an
irreducible tempered representation 7 of a parabolic subalgebra H” of H (determined
by a set of simple roots P). One twists 7 by a character ¢ in positive position with
respect to the set of simple roots outside P, and then induces to H.

This works when I' ¢ is trivial, when we include a nontrivial I'ye or C[I'y¢, fi4e] we
have to be careful because it might mess up the uniqueness of irreducible quotients
in the Langlands classification. A solution is provided by [Sol2, Corollary 2.2.5]
and [Sol4] (8.11)]: one must choose the subgroup of I'j¢ that occurs in a parabolic
subalgebra of

H(G, M, qE) = H(t, qu, k,r, hqé‘)

depending on the data 7,t. Namely, one takes the largest subgroup I'p; of I'ye
that stabilizes P and t. Next one replaces 7 by an irreducible representation 7/ of
H(t, WpL'py, k,r,f4e) whose restriction to H” contains 7, or equivalently an irre-
(t7WPFP,t7k7r7hq£)
(t,Wp,k,r)

H(t,Wye k,r,lqe) ’
HWpT b ke ) (T @ 1)

Langlands standard modules. With Clifford theory, in the version of [Solll, §11] and
[AMS3| §1], we can write

ducible direct summand of indﬁ 7. We call modules of the form

(3.4) ind

;. AHEWpT py krlige)
T = lndH(tvaFP,t,mk:ruth)(p® T)
for a suitable projective representation p of I'p; -. In that notation, (3.4) becomes

H(t’W £:k,r,g 5) . H(f,W e,k 5) . H(f,Wg,k,l‘)
0Py i) (P O T O 1) = gD e (0 @ iy ) (7 @ 1))

This shows that every Langlands standard module of H(t, Wye, k, 1, fj4¢) is an inde-
composable direct summand of

. H(EWoe kor,
(3.5) 1ndHE,(7W";m,])r "S)V

for some Langlands standard H(t, Wg, k, r)-module V', namely indgg’%g’z% (T®t)

above. If Q C G is the standard parabolic subgroup such that Wq% = WpRpy, then
H(Qa M: qg) = H(t7 WPFP,t7 k: r, hq5)7

and the Langlands standard module (3.4) depends only on the data (Q,7',t) up
to G-conjugacy. The relations between the various kinds of standard H(G, M, ¢&)-
modules are as follows.

Proposition 3.7. Let r € C*.
(a) When R(r) > 0, the Langlands standard modules of H(G, M,q€)/(r — 1) are

precisely the analytic standard modules.
(b) When R(r) < 0, the Langlands standard modules of H(G, M,q€)/(r — r) are

precisely the geometric standard modules.
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(¢) The Langlands standard modules of H(G, M, q€)/(r) are precisely its irreducible
modules.

Proof. (a) This is shown in [Sol8, Proposition B.4].
(b) This can be shown in the same way as [Sol8, Proposition B.4], just apply sgn*
to all the modules in the proof of parts (c) and (d).
(c) By Clifford theory in the form [Sol4l Lemma 8.4], the set of irreducible repre-
sentations of

H(G7 M, qg)/(r) = O(t) X C[qu)? th]
with central character Wyec is naturally in bijection with Irr(C[(Wye)e, ige]), via

: dO(t) ><](C[(I/Vqé')vuq“:]
O(OXC[(Wae)esge]”

. H(t,W Suk)rvu 5) / —
Vo= indg i, kg, (T ©1) = ind

Consider a Langlands standard module
O()xC[Wye bqe]
O(t)x(C[W(;F}it,hqg](T/ ®t).

Since 7/ € Irr(O(t) X C[WpI py, fige]) is tempered, the real part of its central character
WpLpc is 0. Hence the real part of the central character WpI'p,ct of 7/ @ t is t.
Furthermore t is positive with respect to the simple roots outside P, so

(qu)t - Stabwqg (ZP, t) C Wpstabrqg (ZP, t) = Wpr,t.
Now [Sol4, Lemma 8.4] says that Irr(C[(Wye)et, ge]) parametrizes the irreducible
modules with central character represented by ct of both O(t) x C[Wye, bqe] and
Ot) xC[WpT py, bge]. Tt follows that ind 0 “S1Vae fae]

O(O)XCWpT p,¢ bge]
of 7/ ®t, so V is irreducible.
By the Langlands classification from [Eve|, in the form [Soldl Proposition 8.5],

every irreducible H(G, M, ¢€)/(r)-module V' occurs as a quotient of some Langlands
standard module V. By the irreducibility of V' we have V' = V. O

preserves the irreducibility

4. GENERIC REPRESENTATIONS OF GRADED HECKE ALGEBRAS

In this section we assume that the 2-cocycle ¢ involved in H(G, M, ¢€) is trivial.
Then (/1.1)) simplifies to
(4.1) H(G, M, q¢€) = H(G°,M°,E) x Ty,

see [AMS2| §4]. In other words, H(G, M, ¢€) is a graded Hecke algebra extended
with a finite group. The triviality of f4¢ is known when H(G, M, ¢€) arises:

(i) from an extended affine Hecke algebra H x I' via localization, as in [Lus3]
Sol2, [AMS3],
(ii) from a classical p-adic group [Heil, [AMS4],
(iii) from a Bernstein component of a reductive p-adic group, such that the under-
lying supercuspidal representations are simply generic [OpSo, Theorem A.1].

In the references to (ii) and (iii) this is shown for the relevant extended affine Hecke
algebras, and then one can apply (i).

Recall that det : Wye — {£1} denotes the determinant of the action of Wye on
X*(T'). It can also be regarded as a onedimensional representation of C[W,e|. We
say that

(4.2) a H(G, M, g€)-module V is generic if Rest(CMa8)

CWie] V contains det.

This compares well with the definition of genericity for representations of extended
affine Hecke algebras, see Theorem Like for quasi-split reductive groups [Rod
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Shal|, there are multiplicity one properties for generic representations of extended
graded Hecke algebras.

Proposition 4.1. Let Q C G be a quasi-Levi subgroup containing M, so that
H(Q, M, ¢€) is a parabolic subalgebra of H(G, M, qE). Let (m,V) be a H(Q, M, ¢€)-
module.

(a) The multiplicity of det in Res(c[(Gng)( ngg%qQV) equals the multiplicity
of det in V', as representations of the version Wg of Wye for (Q,M,q€). In

particular V is generic if and only if ind Eg%qg\/ 1S generic.

(b) Suppose that (7, V) is irreducible and generic. Then
. . H(G,M,qE)
dlmHomC[qu](md H(Q. Mgg)V det) =1
H(G,M,q€)
H(Q,M q€)
multiplicity one.
¢) dim Homgpy 1(sgn*(Ey 5. 0),det) < 1 for every enhanced L-parameter (y,o,r, p
[ q£] Y,0,7,p

for H(G, M, ¢€).

and ind V' has a unique generic irreducible subquotient, appearing with

Proof. (a) and (b) These can be shown in the same way as for extended affine Hecke
algebras, see [Soll0, Lemma 3.5] and |[OpSol Lemma 7.2]. Alternatively, one can
apply [Soll(, Theorems 6.1 and 6.2] to [Soll0, Lemma 3.5].

(c) Conjugating the parameters by a suitable element of Ngo(7T), we may assume
that $(o) lies in the closed positive cone in tg = R®z X, (T"). Alternatively, we can
maneuver R(—o) to the closed positive cone. Therefore we can arrange that we are
in one of the situations where [Sol8, Lemma B.3] applies, with Q = Zg(0p). It says
that e(o,7) # 0, which is needed to use [Sol8, Theorem B.2]. That result tells us

_ i qH(G M) 1Q
Ey,a,r,p - lndH(Q,M7q5) Y,0,7,p°

This remains valid upon applying sgn* on both sides, by the isomorphism

. G,M,q€ . (H(G,M,qE
ind EQngg(sgn ESy,,) — sgnt (deEQ,M,ZS; EyQUJM,) '
h®wv — sgn(h) ® v
Now part (a) shows it suffices to prove that
(4.3) dim HomC[Wq%] (sgn* (Ey orp)s det) <

Notice that o9 € Z(q), so that (y,o,r) is an essentially bounded parameter for
H(Q, M, ¢€). Suppose for the moment that » # 0. Then Lemma (3.4 Eb says that
(y,o0,7) is an open parameter, and by Lemma E Ey o,rp 18 irreducible. In this case
part (b) proves ([4.3).

Recall from [AMS2, Lemma 3.6] that m0(Za(or,y)) = m0(Za(oo,y)) does not
depend on 7, where o, = 0 + d’yy(( )) Hence there is a family of H(Q, M, ¢€)-
modules sgn*E, ;. ,, parametrized by r € C. It follows from [Sol8, Theorem 3.2.b]
that the underlying family of C[th]—modules is constant. We already showed that
for r # 0 it contains det at most one time, so the same holds when r = 0. (]

It is known, for unipotent representations of (adjoint) p-adic groups from [Ree| and
for principal series representations of quasi-split p-adic groups from [Sol10], that the
Langlands parameters of generic representations are precisely the open parameters,
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with the trivial representation of a component group as enhancement. We intend to
prove an analogous statement for extended graded Hecke algebras.

Lemma 4.2. Fiz (0,1) = (09 +10y,7) € t® C(0y, 1).

(a) Every irreducible H(G, M, g€)-module with central character (Wygoo,r) is a sub-

. .. H(G,M, &
quotient of 1nd0(({®(c)q )(Cgoyr.

(b) Up to Zg(o)-conjugacy, there exists precisely one enhanced L-parameter (y, o,r, p)
for H(G, M, q€) such that sgn*(My s.r,) is generic.

Proof. (a) Any irreducible H(G, M, ¢€)-module V with central character (Wyeo0, )
has an O(t @ C)-weight (o, r) with o’ € Wygop. Then

. H(G,M,qE ~
HomH(GvMaqg) (lnd(’)((t@((:)q )(CU(I)J”’ V) = HomO(t@C) ((CO'(),T" V) 7& 0,

so V is a quotient of indg((?ég’qg)Cgé’r. On the other hand, indﬂg((?ég’qg)(cgw and
indﬂ(g((?ég’qg)(@ow have the same irreducible subquotients, with the same multiplici-

ties [Solll, Lemma 9.1.a].
(b) The group ij‘g for H(M, M, q¢€) = O(t & C) is trivial, so

Hom ey (Coy,r,det) = C.
q

By Proposition [£.1]a also

H(G,M,qc‘:)c

(4.4) Homgipw,e) (indO(taa(C)

o0, det) =~ C.

By [AMS2, Theorem 4.6] every irreducible H(G, M, ¢€)-module with central char-
acter (Wye00, —r) is of the form sgn*(M, ;. ,). By part (a) and ([{.4), exactly one
of these modules is generic. That corresponds to a unique G-conjugacy class of
(y,0,p), and since (o, r) was fixed we find that (y, p) is unique up to Zg(o). O

The C[Wye]-module structure of M, o, can be studied more easily in the case
r = 0, so we consider that first.

Proposition 4.3. Let (y,00,0) be an open L-parameter for H(G, M,qE), so y is
regular in Zy(op).

(a) There ezists a unique enhancement py € Irr(mo(Za(00,y))) such that
sgn*(My.60.0,p0) 1S generic.

(b) Suppose that v =0 and that ¢€ is the trivial equivariant local system on CM =
{0}. Then po = triv in part (a).

W™ My,

contains trivyy,.. First we consider the analogous question for H(G°, M°,£). To

avoid confusion, we endow modules for this algebra with a superscript o. Write

Q = Zg(op) and q = Lie(Q). By [AMS2, (34)], for p° € Irr(Zge (00, v)):

Proof. (a) The condition to be checked is equivalent with: Resg

° . JH(G®,M°.E) 5 ,Q°
(4.5) My700’07po = de(QO,MO,E) .00.0,0°
The C[W¢l]-module structure of (4.5)) follows from [AMS2, (33)]:
H(G®,M°,E) 5 ro _ o ClWel
(4.6) Rescy, My 50000 = 1ndC[Won]My7po,
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where M, , comes from the generalized Springer correspondence [Lusl] for
(Q°,M°,E). By Frobenius reciprocity (4.6) contains trivyy, if and only if My s
contains triv ;.qgo. By [Lusll Theorem 9.2], the latter happens if and only if

I

Ad(Q°)y N (CM @ unq)is dense in CM @ uny.

This holds in our setting because (by assumption) Ad(Q°)y is the regular nilpotent
orbit in q = Zy(00) and CM @ (uNq) C q. From [Lusll, Theorem 9.2] we also obtain
that p° is unique.

Consider p € Irr(m(Zg(y))) whose restriction to mo(Zge(y)) contains p°. In the
notation from [AMS2, Lemma 3.18] we have p = p° x 7V where 7V where 7V is an
irreducible representation of the stabilizer Sy of p° in Zg(y)/Zg-(y). Then [AMS2,
(67)] says that

(4.7) My 600, =T X M) 0,0

Y,00,
where the latter module is described explicitly in [AMS2, Lemma 3.16]. This de-
scription simplifies a bit in our setup, because the 2-cocycles in [AMS2, §3] are by
assumption trivial. Namely, the structure of (4.7) as C[Wye]-module is

(4.8) indg%ﬂ (T®J)

for some extension J of trivyy, of W(;g. Here We C Wég C Wye such that Wég /We
is naturally isomorphic to S,c. This J comes from [AMS2, Proposition 3.15], and
it is only unique up a characters. As the underlying vector space of J is that of
trivyy,, we may renormalize the operators J(y) with v € Wég, and arrange that J =
triv. Now it is clear that, if we take 7 = trivspo, then contains trivyy,,. Thus
po = p° X triv fulfills the requirements. By Lemma [4.2la it is unique.

(b) Under these assumptions, the generalized Springer correspondence for (Q°, M°, &),
encountered in the proof of part (a), becomes the classical Springer correspondence
for Q°. Then contains trivyy, if and only y is regular nilpotent in q and
p° = triv. (Since these constructions are in the end based on [Lusl], we have to use
the normalization of the Springer correspondence from there.) Then pg in part (a)
reduces to tl"ino(ZQo(y)) XTIV = iV 24 (y))- O

With geometric arguments we will deduce a property of generic representations
for r # 0, which will enable us to rule out that their L-parameters are not open.

Lemma 4.4. Let (y,o0,r,p) be an enhanced L-parameter for H(G, M, ¢E), with r #
0. Let (y',0,7) be an open parameter with the same (o,r). If sgn*M, ,. , is generic,
then sgn*Ey ;. » is generic for some enhancement p'.

Proof. As sgn*E, ;. , is generic,

Resg[(g,;g’qg)Ey@T contains trivyy,,.
Recall from Section [3| that ¢ = o = ¢ + dy,((§ % )). We can vary 7 in C and
obtain a family of H(G, M, ¢€)-modules Ey ,, .

From Lemma [3.3{ we know that o) = o — dv,/((§ %, )) commutes with y € g%
That enables us to regard E, 5,0 as a member of a family of H(G, M, ¢€)-modules
By to0+(1-t)oy,0 Parametrized by t € C.

By [Sol8, Theorem 3.2.b], which is based on [Lus2], the two underlying families of

C[Wge]-modules are constant. All those modules, in particular E, 5,0 and Eyﬁ&o,
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contain trivyy,.. From Lemma b and Proposition @a we deduce that this is
only possible if Ey o0 has a constituent My, ot 0,005 where y, is regular nilpotent in

Zy(o(). From Theorem and Proposition [2.3|b we see that
(49) My,a(’),O,po = Ey,aé,O,po
The proof of (ii) = (i) in Lemma shows that not only Ad(Zg(0))y/, but also
Ad(Zgo (0,0 —0}))y’ is dense in g;". In particular Ad(Zge (0}))y’ contains y, which
shows that

Ad(Zo-(00)y € Ad(Zg-(op)y’ € Ad(Za-(op)us C o
From Proposition b we see that J, , factors as

embeds in Ey 10 via Jy, .

Jygvy' Iy
(4.10) Eyg,oé,o — Ey/ﬂé’o —= F

With we conclude that the module My, 510,00 18 @ constituent of Ey o105 50
both contain triviy, ..

Consider the family of H(G, M, ¢€)-modules E,/ o/ ,, where o] = o{+dv, ((§ °,))
for r € C. Again by [Sol8, Theorem 3.2.b], as C[Wy¢]-modules they form a constant
family. In particular all members contain trivyy,.. We return to our initial r € C,

so that 0, = 0. As Ey ,, is a direct sum of modules E , » (with multiplicities),
H(G,M,qE)
C[qu

is generic. O

/ .
100,50

. / . . N
there exists a p’ such that Res Ey orp contains trivyy, .. Now sgn*Ey/ ;. »

We are ready to complete the analysis of the L-parameters of generic irreducible
H(G, M, g€)-modules.

Theorem 4.5. Consider an enhanced L-parameter (y,o,r, p) for H(G, M, ¢€).

(a) If (y,0,7) is not open, then sgn*(My o r.,) is not generic.

(b) If (y,0,7) is open, then sgn*(My o) is generic for a unique enhancement p,
say pg-

(¢) If g€ is the trivial equivariant local system on CM = {0}, then p, = triv.

Proof. (a) Suppose that sgn*(My . ,) is generic. By Lemma (or Proposition

a if r =0) Ey o, is generic for some open parameter (3, 0,7, p’). From Lemma

we know that My o,y = Ey 5, 50 sgn*(My 5, ) is generic for an enhanced

L-parameter with the same (o, r) as before. This contradicts Lemma b.

(b) This follows from Lemma [4.2]b and part (a).

(¢) Under the current assumptions M is a minimal quasi-Levi subgroup L of G, see

(L.B). Let (y, 0,7, pg) be as in part (b) and write o = oo+ dyy,((§ L2, )). Recall from

[AMS2l, Lemma 3.6] that mo(Zg(or,y)) = mo(Za(00,y)) does not depend on 7.
Arguing with families of H(G, M, ¢€)-modules as in the proof of Lemma we

deduce that

(4.11) sgn*(Ey,o,rp,) is generic for every r € C,

and in particular for r = 0. We can get some useful information from the proof of
Lemma with ¢’ = y. There we encountered the enhancement py of (y4,00,0).

Proposition [4.3lb says that py equals the trivial representation of mo(Zg(00,y)). In
view of (4.10) and (4.11]), we need to identify the unique enhancement p, of (y, oo, 0)

such that J,, , induces a nonzero homomorphism

My, 00,0,triv = Viriv @ By, 00,0,triv — Vo, @ Eyo0,0,0-
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Put Q = Zg(0p) and notice that mo(Zg(00,v)) = m0(Zg(y)). Standard modules are
compatible with parabolic induction, under a condition €(c,r) # 0 [Sol8, Theorem
B.1]. Here ad(oy) is invertible on Lie(G)/Lie(Q), so €(0p,0) # 0. We obtain
. H(G,L,triv) -Q
Ey 50,00, = lndH(Q,L,tﬁv) ¥,00,0,04”

and similarly for Ey, »,0.tiv- Hence it suffices to identify the p, so that J,, , induces
a nonzero homomorphism of H(Q, L, triv)-modules

(4.12) E©

Yg:00,0.09 " Ey70070709'
We consider the C[Wye]-modules underlying . These are standard modules
as appearing in the Springer correspondence for (possibly disconnected) reductive
group @ and its (possibly extended) Weyl group We.

Since ¢€ is trivial, so is the local system ¢& ~ used to construct K. With that
in mind, [Sol8, Proposition 3.6] says that

ES o =H.(P27™), P =P ={gLeQ/L:Ad(g )y €ung}.

The action of m9(Zg(y)) on EY o is induced by the left multiplication action of

Y,00,

Zg(y) on 777? . The same holds with y, instead of y. By the regularity of y, in g:

PENQL/L=L/L and P2 = Zg(yy)/Zge(yg) = Q/Q°.
We obtain
(4.13) E©

Yg,00,0,triv

= H.(Py)#elval) = Hy(Zo(yy)/ Zoo (y9)) 72 = Ho(Q/Q°)?,

which has dimension one. The image of (4.13)) by J,, , is a subspace of H()(P?? )

fixed by Zg(y), so it only appears in V,, ® EY

1.00,0.p4 when p, = triv. (]

We conclude this section with a proof of the generalized injectivity conjecture for
geometric graded Hecke algebras.

Corollary 4.6. Let E be an analytic standard H(G, M, g€)-module and let M be a
generic irreducible subquotient of E. Then M is a submodule of E.

Proof. Write E = sgn*E, ;. ,. Since M has the same central character as F, it
equals sgn* My 5., v for some 3/, p'. By Theorem [.5](y/, o, 7) is open. Now sgn*M =
My orp is a subqotient of sgn*E = E, ;. ,, and Theorem [B.2}a says that it is
isomorphic to a submodule of sgn*FE. We apply sgn* again to conclude that M is
isomorphic to a submodule of E. As E has a unique generic irreducible subquotient
(Proposition {4.1lc), that must be a submodule and equal to M. O

5. TRANSFER TO AFFINE HECKE ALGEBRAS

We will show how the representation theoretic results from the previous sections
can be translated to suitable affine Hecke algebras. This section is largely based on
[Lus3l [Sol2l [AMS3].

Let R = (X, R,Y,RY,A) be a based root datum and let W be the Weyl group of
R. Let \,\* : R — Z>0 be W-invariant functions such that \*(a) = A(«) whenever
a¥ ¢ 2Y. Let q be an invertible indeterminate. To these data one can associate an
affine Hecke algebra

H=H(R,\ A\, q),
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as for instance in [Lus3, [Sol3]. The underlying vector space is C[X]®@C[W]®C[q, q!]
and the quadratic relation for a simple reflection s, is

(Tsa + 1)(Tsa - qz/\(a)) =0.

Let I be a finite group acting on R and on 7' = Hom(X,C*). Assume that A and
A* are I-invariant and that a(y(17)) = 1 for all v € I'; @ € R. For any 2-cocycle
h:I'? — C* we can build the twisted affine Hecke algebra

H x C[T, 4] = H(R, A\, \*,q) x C[T, ],

see [AMS3], Proposition 2.2]. As a vector space it is the tensor product of its sub-
algebras H and C[I', ], and for a standard basis element T, of C[I', ] we have the
cross relations

TyTwbe Ty =T, 17v(0:) weW,zeX.

We can specialize q to any ¢ € C*, and then we obtain Hecke algebras denoted
H(R, AN q) and H(R, A\ A*, q) x C[T', .

In practice we will only specialize to ¢ € R+g.

When { is trivial, [OpSol, §6 and (8.9)] provide a good notion of genericity for H xT'-
modules, as follows. The elements T, with w € W and « € T form a C[q, q~!]-basis
of a subalgebra H (W, ¢*) x T'. The Steinberg representation of H(W,q*) x T' (with
q specialized to some chosen ¢ € C*) has dimension one and is defined by

(5.1) St(Toy) = det(wr).

Here det denotes the determinant of the action of WT' on X. We say that a H x I'-
module V is generic if q acts as multiplication by some ¢ € C* and Resz(”VEqA)NFV
contains St.

The centre of H x C[I', f] contains
(5.2) oM @ Clg,q '] =2 O(T/WT x C*).

Often we will analyse representations of HxC[I, i] via localization to suitable subsets
of T/WT x C*. That involves decomposing representations along their weights for
, which works well for finite length representations but does not always apply to
infinite dimensional representations. Therefore we will usually restrict our attention
to the category Modg(H x CI[T', f]) of finite length (or equivalently finite dimensional)
modules.

There is a two-step reduction procedure which assigns to H x C[I',§] a twisted
graded Hecke algebra that governs a well-defined part of its representation theory.
A suitable family of such twisted graded Hecke algebras covers the entire category
Modg(H x C[T, ]).

We write tg = R ®z Xi(T) and Tr = exp(tg). We fix a unitary element u €
Hom(X, S') C T, and we want to study representations whose O(T)"!-weights are
close to WI'uTg in T/WT'. There is a subroot system R, = {a € R : sq(u) = u},
with a basis A, determined by A. These fit into a based root datum

Ru= (X,Ru,Y, R, Ay).
The group (WT),, decomposes as
(WD), = W(R,) x Ty, Tyu={ye(WD),:v(A,) =A,}
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Let Ay, A; be the restrictions of A\, \* to R, and let b, be the restriction of f§ :
(WT)2 — T? — C* to I'2. Altogether these objects yield a new twisted affine Hecke
algebra

Hou % Clu, ] = H(Rus Aus Ay @) % CTy, u),

a subalgebra of HxC[I, j]. An advantage is that u is fixed by W (R,,), so a(u) € {£1}
for all @ € R,,. There is a (WT),-equivariant map

exp,, : t = T,exp,(0) = uexp(o).

It is a local diffeomorphism around tg and restricts to a diffeomorphism tg — uTRk.
Via this map we can pass from H,, x C[['y, f,] to a twisted graded Hecke

Hy, % C[ly, §u] = H(t, (WT)y, ky, T, §u)-
Here the parameter function k, : R, — Z is given by
(5.3) kuo = (AMa) + a(u)X*(a))/2.

The next theorem was proven in [AMS3 Theorems 2.5, 2.11 and Proposition 2.7],
based on similar results in [Lus3, §8-9] and [Sol2, §2.1]. The part about genericity
was checked in [Sol10, Theorems 6.1 and 6.2].

Theorem 5.1. The following three categories are canonically equivalent:

e finite dimensional H x C[T', g]-modules, all whose O(T/WT x C*)-weights
belong to WTulr X Rsg,

e finite dimensional H, x C[Ty,i,]-modules, all whose O(T/(WT, x C*)-
weights belong to ulr X R,

e finite dimensional H, xC[T'y, ti,]-modules, all whose O(t/(WT), x C)-weights
belong to tg x R.

The equivalences have the following features:

(i) They are compatible with parabolic induction and parabolic restriction.

(i) They respect temperedness.

(i1i) They respect essentially discrete series when tk(R,,) = rk(R), and otherwise the
involved category of H x C[I', t]-modules does not contain essentially discrete
series representations.

(iv) They respect genericity whenever § is trivial.

(v) Any Ot @ C)-weight of a H,, x C[I'y, t,]-module is transformed into a
O(T x C*)-weight (exp,(0),exp(r)) for Hy x C[T'y, by] and into a collection of
O(T »x C*)-weights (wexp,(0),exp(r)) for H x C[T', ], where w runs through
a certain set of representatives for WT' /(WT),.

Langlands standard modules for twisted affine Hecke algebras can be defined like
for twisted graded Hecke algebras, see . This provides satisfactory collections of
standard modules in each of the three categories in Theorem In each case they
are in bijection with the irreducible modules in that category, via taking irreducible
quotients of standard modules.

Lemma 5.2. The equivalences of categories in Theorem restrict to bijections
between the three sets of Langlands standard modules.

Proof. Theorem [5.1] respects almost all the operations and properties involved in
(Langlands) standard modules, the only potential issue being the weights in part
(v). Between H,, x C[T'y, f,,] and #H,, x C[['y, i,], Theorem [5.1|induces a bijection on
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weights, so the equivalence of categories provides a bijection between the respective
sets of standard modules.

It may seem that Theorem [5.1] does not necessarily match those two sets with
standard modules for H x C[I',f]. The problems lies in part (v) at the level of
parabolic subalgebras (associated to a set of simple roots P), which entails that a
positive character t for HE x C[yp, 1u) may be moved by I'p even if it is fixed by
I'p¢. In such a situation the essentially tempered irreducible representation 7 ® ¢ of

is sent by Theorem [5.1] to

. THPXC[Cp,] ;s
ndye ciry,, (7 ©1)

where 7 is the image of 7 via Theorem for the appropriate subalgebras. The
standard H x C[I', j]-module associated to (P,7',t) is

. HxCIT,h] /

dePNC[Fp,t,h] (T"®1).
In Theorem this is matched with the standard H, x C[['y, f,]-module

. 1 HuXC[Cy,bu]

AF i) (72 1)

Thus Theorem sends standard modules for H,, x C[I'y, f,] to standard modules
for H x C[I',g]. Since we have an equivalence of categories and on both sides the
standard modules are canonically in bijection with the irreducible modules, the
equivalence is also bijective on standard modules. O

There are always classifications of irreducible H x C[I', f]-modules, see [Sol3], but
in general these do not involve parameters like Langlands parameters for reductive
p-adic groups. To get the geometry from Sections into play, we need fairly
specific parameter functions A, A\*, and the 2-cocycle fj cannot be arbitrary either.
Some twisted affine Hecke algebras that can be analysed geometrically feature in
[AMS3], §2], they are based on reductive complex groups and cuspidal local systems
like our graded Hecke algebras.

But the class of twisted affine Hecke algebras to which Sections can be ap-
plied is larger, we only need that for every fixed u Theorem yields a geometric
graded Hecke algebra. If we only want to transfer the results about submodules of
standard modules, the subalgebra C[I', f] does not cause additional complications,
and a slightly more relaxed condition suffices:

Condition 5.3. The twisted affine Hecke algebra H(R, A, \*,q) x C[I',4] is such
that, for each twisted graded Hecke algebra

H(t7 (Wr)ua kuy,r, hu) = H, x (C[Fu: hu]
involved in Theorem for some unitary element u € Hom(X, S 1) C T, there are
data (Gu, My, g€y, Ey) like in Section (1| and a Lie group isomorphism t x Wee, =
Lie(T,) x (WT),, which induces an algebra isomorphism H, = H(GS, M, &,).
Notice that Condition 5.3 puts no restrictions on f, which is good because often it
is difficult to make f explicit. That renders it largely irrelevant how I';, arises from

Gy D GS. In Condition [5.3] we could simpy take Gy, of the form GS x T, where the
action of I';, on G, preserves a pinning.

Theorem 5.4. Let H x C[I',t] be a twisted affine Hecke algebra satisfying Condi-
tion . Let E be a Langlands standard H x C[T', t]-module on which q acts as
multiplication by g € Ryg and let V' be an irreducible subquotient of F.
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(a) If V is tempered or essentially discrete series, then it is a submodule of E.
(b) Suppose q > 1, 1y is trivial and V' is generic. Then V is a submodule of E.

Proof. Since E is standard, it admits a central character, say (WT't,q). Put u =
t|t|~! € Hom(X, S'), so that t € uTk. By Theorem the category Modg wre,q(H)
is equivalent with the category

MOdﬂ,(WI‘)u|t\,logq(Hu X C[Fua hu])a

where H,, = H(G,, M,, ¢&,) by Condition By Lemma E' corresponds to
a Langlands standard module E, of H, x C[I'y,t,], on which r acts as logq € R.

By (3.5)), E, is a direct summand of 1ndH“NC[F" u“]EO for some Langlands standard
H,, module E;. More concretely, the Steps from 1.} show that

. HyXCCy e o
(5.4) By = indg el 5 (pu © EY),

where I, is the stabilizer of EY in I, and p, is a projective representation of I',.
By Proposition [3.7]

e [0 is analytic standard if ¢ > 1,
e I is geometric standard if ¢ < 1,
e E¢ is irreducible if ¢ = 1.

In the case ¢ = 1, we deduce from that FE, inherits the complete reducibility of
E?, and then all its subquotients are submodules. Therefore we may assume from
now on that ¢ # 1.

Via Theorem V' corresponds to an irreducible subquotient V,, of E,. By

Clifford theory, see for instance [RaRa, Appendix|, [Solll §11] and [AMS3, §1],

RengxC[Fu,hu}Vu is completely reducible, and all its irreducible summands are in

one I'y-orbit. Via a composition series of p, ® E, we see that V,, arises from a
subquotient of that unique up to I'y. It follows that V, contains an irreducible
subquotient of Ey, say V,, and is generated by V0 as C[I', i, ]-module.

Clifford theory tells us that V,, is a direct summand of 1ndH“NC[F“’h“]V° The

action of I, on R, stabilizes A,, so preserves positivity and negathty of O(t)-

weights. Hence V,; is tempered if and only if 1ndH"NC[F“’h"] V.7 is tempered, if and only

if V,, is tempered. The same holds with essentlally discrete series instead of tempered.
If V, is generic and f,, is trivial, then |[OpSol (8.13)] says that V;, = det xV,? and V)
is generic. Thus, in both cases (a) and (b), V. has the same property as supposed
for V,,. Now Theorem [3.6|in case (a) and Corollary [4.6/in case (b) prove the theorem
for the subquotient V,; of EJ.

Let soc(E,) denote the socle of E,, that is, the sum of all irreducible submodules.
Since indH“NC[F“’h“] preserves completely reducibility [Solll Theorem 11.2] and E,
is a direct summand of 1ndH“NC[F“’u“]E5:

soc(Ey) = C[I'y, bu] - soc(E,).

We already saw that V] is an irreducible submodule of E;, which generates V,,, so
Vi € ClIy, by] - soc(E;). Thus V,, C soc(E,), which means that it is a submodule.
We can go back to H x C[I', f]-modules via Theorem from which we conclude
that V' is a submodule of E. U
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6. TRANSFER TO REDUCTIVE p-ADIC GROUPS

Let F' be a non-archimedean local field and let G a connected reductive F-group.
We will call G(F') a reductive p-adic group, although char(F) > 0 is allowed. We
warn that G is not related to G from Section

We are interested in smooth complex representations of G(F'), which form a ca-
tegory Rep(G(F')). Let Rep(G(F'))® be a Bernstein block in there, coming from a
unitary supercuspidal representation w of a Levi subgroup M(F') C G(F).

It is well-known that in many cases Rep(G(F'))® is closely related to the module
category of a (twisted) affine Hecke algebra. At the same time, it is known from
[Sol4] that one can increase the generality of such comparison results by using graded
instead of affine Hecke algebras.

Let Xy (M(F)) be the group of unramified characters of M(F), and let X, (M(F))
be the subgroup Hom(M(F),R~(). Recall that Rep(G(F))® consists of all smooth
G(F)-representations 7 such that every irreducible subquotient of 7 has cuspidal
support in (M(F), X, (M(F))w) up to G(F')-conjugacy. Let W; be the finite group
associated to s = [M(F'),w| by Bernstein, and let W, be the subgroup that sta-
bilizes w. Let t be the Lie algebra of X,,,(M(F)), identified with the tangent space
to Xpr(M(F))w at w. Since W, operates faithfully on X, (M(F))w [BeDe, §2.16],
W, acts faithfully on t.

We define a root system R, as in [Soldl, §6.1], where it is called ¥,g,. Parameters
k¥ and a 2-cocycle b, of Ty, & W, /W (R,) (denoted ;! in [Sol4]) are constructed
in [Sol4, §7].

Theorem 6.1. [Sol4l Theorems B and C and (8.2)]
There exists an equivalence between the following categories:

e finite length smooth G(F)-representations 7, such that all irreducible sub-
quotients of m have cuspidal support in (M(F), X;L(M(F))w) up to G(F)-
conjugacy,

e finite dimensional modules of the twisted graded Hecke algebra

H(t, W w, k¥, bw) = H(t, W(Ry), k%) x C[Tw, bo],
all whose O(t)-weights belong to tg = Lie(X(M(F))).

This equivalence is canonical up to the choice of the 2-cocycle b, and it has the
following properties:

(i) compatibility with normalized parabolic induction and restriction,
(ii) respects temperedness,
(iii) sends essentially square-integrable G(F)-representations to essentially discrete
series H(t, Ws ., k¥, i,,)-modules (but not always conversely),
(iv) compatibility for twisting G(F)-representations by elements of X .(M(F)) and
H(t, W, k%, 1) -modules by elements of Lie(X5.(G(F))) C tr.

Notice that there is no r in the graded Hecke algebras in Theorem They
relate to Sections by specializing r at some r > 0.

Let £L(F) C G(F) be a Levi subgroup containing M(F') and let 7 € Irr(L(F))
be a tempered representation with cuspidal support in (M(F), X .(M(F))w). Let
X € X.(L(F)) be in positive position with respect to a parabolic subgroup P(F) C
G(F) with Levi factor L(F'). Then Iggg (T ® x) is a standard representation as
in the Langlands classification for G(F'). Moreover every standard representation
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G(F)-representation with cuspidal support in (M (F), X;L(M(F))w) (up to G(F)-
conjugation) is of this form.

Lemma 6.2. The equivalence in Theorem restricts to a bijection between the
sets of Langlands standard representations in both categories.

Proof. Let H(X, wa, k“.f.) be the parabolic subalgebra of H(t, W;,, k¥, f,,) deter-

mined by £(F'). The properties in Theorem imply that Iggg (T ® x) is matched
with

(61) ind (1) (7 @ log (1),

where 7y denotes the image of 7 under Theorem for L(F) and log(x) is fixed
by W£,. By assumption x is positive with respect to all roots of Z°(M)(F) in
Lie(P(F)/L(F)). The root system R, consists of scalar multiples of the roots of
Z°(M)(F) in Lie(G(F)), but some of those roots may be left out depending on w.
As a consequence the condition for a character of H(t, wa, k¥, b.,) to be in positive
position may be weaker than the corresponding condition for X, (£(F')). Thus
log(x) is in positive position (but one cannot conclude that in opposite direction).
This shows that is a standard module in the traditional sense, and since wa
fixes log(x) it is also a Langlands standard module as in (3.4)).

Thus the equivalence of categories in Theorem sends standard representations
to Langlands standard modules. These two “standard” sets are canonically in bi-
jection with the irreducible representations in the respective categories. Hence the
equivalence of categories is bijective on standard representations. U

When w is simply generic [BuHe|, one can improve on Theorem Let U be the
unipotent radical of a minimal parabolic F-subgroup B of G. For a nondegenerate
character ¢ of U(F'), the G(F)-orbit of the pair (U(F),§) is called a Whittaker
datum for G(F'). By conjugating with a suitable element of G, we may assume that
M contains a Levi factor of B. We recall that an M (F')-representation 7 is called
simply generic if Homypynaq(r) (7, €) has dimension one. Although this depends on
the choice of the Whittaker datum for G(F'), we suppress that in our terminology.

Theorem 6.3. [OpSo, Theorem E] and [Sol4, Theorem 10.9]

Assume that the supercuspidal unitary representation w € Irr(M(F)) is simply
generic. There exists an extended affine Hecke algebra Hs x I's whose module ca-
tegory is canonically equivalent with Rep(G(F))*. This Hs is constructed from the
following data:

o the complex torus X (M(F))w C Irr(M(F')),
e a root system Rs such that W(Rg) x I's = W,
o g-parameters in R>1 as in [Sold, (3.7)] and A\, \* as in [Sol4l, (9.5)].

The equivalence of categories Rep(G(F'))* = Mod(Hs x I's):

(i) is compatible with normalized parabolic induction and restriction,
(ii) respects temperedness,
(iii) sends essentially square-integrable G(F)-representations to essentially discrete
series Hs X I's-modules and conversely,
(iv) preserves genericity.
(v) is compatible with twisting by unramified characters of G(F),
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From Theorem one can obtain Theorem m (when w is simply generic) by
applying a variation on Theorem [5.1] to Hs x 'y, that is essentially what happens
in [Soldl §6-7]. We need the version of Theorem [5.1| proven in [Sol2, §2.1], with q
specialized to ¢ € Rsq, r specialized to r € Rsg and A\, \*, k" real-valued (but not
necessarily integral). From Theorem iv and Theorem iV we deduce:

Corollary 6.4. If w is simply generic, then fi,, = 1 and the equivalence of categories
in Theorem preserves genericity.

Like in Section [B] to apply our results from Sections we need the graded
Hecke algebras in Theorem[6.1]to be of geometric type, a condition on the parameter
functions £“. Lusztig |[Lus7] has conjectured that it is valid in general.

Condition 6.5. Let G(F'), M(F'),w and H(t, W(R,), k“) x C[I', i,] be as in The-
orem There must exist data (G, M, ¢€w, &) as in Section |1, 7 € Rs, and an
isomorphism t x W, = Lie(T},) X Wye,_, which induce an algebra isomorphism

H(t, W(R,,), k) = H(G, M2, E,)/(x — 7).

In [Sol7], it is shown that Condition holds when all simple factors G(F) of
G(F) satisfy:
e G(F) is not of type Er,2Ey, Fx,
e G(F) is not isogenous to a symplectic or special orthogonal group of quater-
nionic type.

Theorem 6.6. Assume that Condition holds for a unitary supercuspidal rep-

resentation w of a Levi subgroup M(F) C G(F'). Let mg be a standard G(F)-

representation with cuspidal support in XL (M(F)) and let w be an irreducible sub-

quotient of mg.

(a) If w is tempered or essentially square-integrable, then it is a subrepresentation
of Tst.

(b) Suppose that w is simply generic and w is generic. Then 7 is a subrepresentation
of Tst.

Proof. This can be shown exactly like in Theorem [5.4] using the results in Section
instead of those in Section (Bl O

For quasi-split groups, we will improve on Theorem by verifying Condition
6.5l The next result was already known for principal series representations [Soll10l
Lemma 6.4], and anticipated in [OpSo|, Appendix].

Theorem 6.7. Let G(F) be quasi-split and let w be a generic unitary supercuspidal
representation of M(F'). Then the twisted graded Hecke algebra H(t, W (Ry,), k) x
C[Tw,bw] from Theorem is 1somorphic to an extended graded Hecke algebra with
equal parameters.

Proof. As observed in and before Corollary fo = 1 and H(t, W(R,),k¥) x I,
can be obtained from the extended affine Hecke algebra Hs x I's in Theorem @
by applying the reduction procedure from [Sol2), §2.1] and more generally [AMS3]
Theorems 2.5 and 2.11]. The effect on the parameters is given by . In view of
[Sol4l (95)], this works out to

(6.2) ke =log(qa)/log(qr) or kg =log(gax)/log(qr),
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with g4 and gq« as in Harish-Chandra’s p-function [Sol4, (3.7)]. Which of the options
from depends on w. We must use ¢, if a (as a function on Xy, (M (F))w) takes
the same value at w and at the base point of X, (M (F))w chosen in [Sold] §3], and
we must use g« otherwise.

Thus k* agrees with the function k% (for o’/ 2 w) from [OpSo, Proposition A.2],
except that the domain of k% is obtained from the domain of k& by omitting the
o’s with k2 = 0. Put

R, ={a € R, : ki #0}
and let I',» be the stabilizer in W(R,,) of the set of positive roots in R,s. As in
[Sol10, Lemma 6.3], one checks that

H(t, W (Ry), k) % T 2 H(t, W (R ), k7 ) x (Tyr % T).

The setup for H and H(t,W(R,),k“) in [Soldl §3] entails that the roots in our
setting are the coroots in [OpSo, Appendix A]. More precisely, from [OpSo| (A.4)
and (A.5)] one sees that o over there corresponds to hy, from [Sol4], which is just
a € Ry in Theorem Consider an irreducible component R of Ry. Let o € R
be long and B € R be short. Then [OpSo|, Proposition A.2] says that kr := kg//k:g/
equals either 1 or the square of the ratio of the lengths of o and 8 (which is 1, 2 or
3). If kg # 1, then we can divide all long roots in R by kg, and obtain a new root
system R’ with the same Weyl group. As observed in [Sol3l, Example 5.4], this gives
rise to an algebra isomorphism

H(t, W(R), k%) — H(t, W (R'), k'),
which is the identity on O(t), such that k" takes the value k‘g/ € R-p on all roots in

R'. Rescaling all the elements of R’ by a factor 2/ kg/ (still not touching t), we may
further assume that £’ = 2 on R’. We do this for all irreducible components R of
R?', and we obtain an algebra isomorphism

(6.3) H(t, W (Ro), k7 ) — H(t, W(R.,), k)
which is the identity on O(t), and £’ = 2 on R/,. In (6.3) each root is scaled by a

factor that depends only on k. Since k7 = k“|Rr_, is T'yr 3 T,-invariant, the iso-
morphism (6.3)) is T',» x I'y,-equivariant. Hence it extends to an algebra isomorphism

H(t, W(Ry), k) % Ty 2 H(t, W (R ), k%) % (T % T)
— H(t, W(RL)), k") x (Tyr x Ty,). O
From Theorem [6.7 we deduce that Condition [6.5] is automatic.

Lemma 6.8. In the setting of Theorem C’ondition holds with (M,CM ,q€) =
(T, {0}, triv).

Proof. Let G° be a connected complex reductive group with a maximal torus 7', so
that R(G°,T) = R, and

t x W(R,) = Lie(T) x W(G°,T).
By passing to a cover, we may assume that the derived group of G° is simply
connected. The action of I'yy x I'y, on t x W(R,/) can be transferred to Lie(T") x
W(G®,T), and then (using the simply connectedness of G ) lifted to an action

on G° that preserves a pinning. In this way we build the complex reductive group
G=G°x Ty xTy,).
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Since W, acts faithfully on t, Zg(T) = Zgo(T) = T'. In particular T is a quasi-
Levi subgroup of G, and it admits a quasi-cuspidal support (7', {0}, triv). All the
parameters ko for (7, {0}, triv) are equal to 2 [Lus2l §0.3]. Moreover the 2-cocycle
Htriv 1S trivial because I'ys x I'y, acts naturally on all the relevant perverse sheaves
constructed from (7', {0}, triv). We conclude that

H(t, W(R,), k) x Ty 2 H(t, W(Ry), k%) % (T % Ty) 2 H(G, T, triv)/(r — 1). O
We are ready to prove the generalized injectivity conjecture from [CaSh].

Theorem 6.9. Let wy be a standard representation of a quasi-split reductive p-
adic group G(F). Let m be a generic irreducible subquotient of wg. Then 7 is a
subrepresentation of mst.

Proof. Let (M(F),w') be the cuspidal support of 7 (and hence of 7s). The nor-
malized parabolic induction of a nongeneric irreducible representation is not generic
[BuHe], so w’ must be generic. More precisely, when we choose a representative
(U(F),&) for the Whittaker datum so that M N is a maximal unipotent subgroup
of M, then ' is (U(F) N M(F),&)-generic. Let |x| be the absolute value of the
central character of w’. Then |x| € X (M(F)) and w = ' ® |x|~! is unitary.
Twisting by unramified characters does not perturb the genericity of w’, so we are
in the setting of Theorem Condition [6.5 holds by Lemmal6.8] so Theorem [6.6/b
yields the desired statement. O

7. RELATIONS WITH THE LOCAL LANGLANDS CORRESPONDENCE

To prepare for the upcoming arguments, we compare properties of (enhanced)
L-parameters for reductive p-adic groups and for twisted graded Hecke algebras.

Let Wg be the Weil group of F' and let LG = G¥Y x Wy be the Langlands dual
group of G(F). Let M(F) be a standard Levi subgroup of G(F) and let MY C G be
the associated standard Levi subgroup on the dual side. Let (¢, ge) be a bounded
enhanced cuspidal L-parameter for M(F'), in the form

by : Wr x SLy(C) — M

and with ge an irreducible representation of the appropriate component group Sg.
Consider the group

Gy, = Zgy ($slw )
from [AMSI] (75)]. We mainly need its identity component
Gy, = Zay.((Wr))®.

Let My, be the quasi-Levi subgroup of G, determined by (MY, ¢y, ge) and let ¢&€
be the cuspidal local system (determined by ge) on the nilpotent orbit in Lie(Mgy, )

from ¢p|s1,(c)-
Recall from [Hail, §3.3.1] that the group of unramified characters X,,(G) is natu-
rally isomorphic to the complex torus

an(LG) = (Z(gv)IF)%robpﬂ
where Ir denotes the inertia subgroup of Wg. From these data we build

H(¢p, ge) = H(Gy, x Xnr(G"), My, x Xue(*G),qE).
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It is almost the same as the algebra
H(d’ba v, (¢, F) = H(G(ﬁb X an(Lg)a Mqu X an(Lg)a C]ga F)

from [AMS3|, (3.9)]. The only difference is that we set all the indeterminates r; from
[AMS3] equal to r, by dividing out the ideal generated by the r; — r; with ¢ # j.

Let X1 (PM) € Xyu(PM) be the subgroup corresponding to X} (M(F)) C
Xor(M(F)). As

Z(M)° x Xpe(GY) = Xpr(MY)

is a finite covering [AMS3, Lemma 3.7], X} (*. M) can be identified with a subgroup
of Z(M)° x X1 (LG).

Recall that an L-parameter (y,o,r) for H(¢s, p) contains (up to conjugation)
precisely the same information as (y, 0g,r), for op as in . As worked out in
[AMS3], §3.1], the exponential map for GV provides a natural bijection from

e the set of enhanced L-parameters (y, o, r, p) or (y, 0o, 1, p) for H(¢p, ge), with
r = —log(qr)/2 and og € X;H(*M) to
e the set of enhanced L-parameters for G(F') with cuspidal support in
(M(F), X5 (" M) ¢y, ge).
Here the group Xy (M(F)) = X, (¥ M) acts naturally on L-parameters for M(F),
by adjusting the value ¢(Froby) while keeping ¢|1,.«gr,(c) fixed. We refer to this
as twisting Langlands parameters by unramified characters.
We note that in [AMS3], §3.1] the role of g is played by log(é(Frobz)¢,(Frobg)~1).
Explicitly, exp(y, o, —log(qr)/2, p) = (¢, p) where

dl1y = By, ¢(Frobr) = exp(oo)¢s(Frobr), ¢((§1)) = exp(y).

If we present ¢ as a Weil-Deligne parameter ¢, then
@' (Frobg) = exp(c)¢p(Frobg) and the nilpotent operator for ¢’ is y.

Recall the definition of an open Langlands parameter from . We call a Langlands
parameter 1) : Wx x SLy(C) — LG for essentially bounded if 4)(Frobz) = (a, Frobr)
with aZ(G") in a bounded subgroup of G¥/Z(G"). By the Langlands classification
for L-parameters [SiZi], every discrete L-parameter 1) is essentially bounded. More
precisely, 1 can be expressed (uniquely up to conjugation) as a bounded discrete
L-parameter twisted by an element of X~ (*G).

Lemma 7.1. Let (y,o,r,p) be an enhanced L-parameter for H(¢,p), with r =
—log(qr)/2 and oo € X;L(EM).

(a) (y,0,r,p) is bounded if and only if exp(y,o,r,p) is bounded. The same holds
with essentially bounded.

(b) (y,o,m, p) is open if and only if exp(y,o,r, p) is open.

Proof. (a) Recall from that o = o0 +dv,((§ %, )). The first condition is equiv-
alent with og = 0 because oq € X1 (*M), and the second condition is equivalent
with o9 = 0 because ¢, is bounded.

Both for H(¢, p) and for G(F'), essential boundedness is equivalent with oy €
Z(g") Nlog(X (" M)).
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(b) We analyse the vector space in which y lives:
0, N = {X €9y, : [0, X] = 2rX}
= {X € Lie(Zgy (66(Wp))) : [0, X] = —log(qr) X }
={X €¢": [0, X] =log(gz") X, Ad(¢p(w)) X = X Yw € Wg}.
As ¢y is bounded, Ad(¢,(w)) only has eigenvalues of absolute value 1. Hence
0,78 = {X €g" : Ad(exp(0)dp(Frobp)) X = g5 X, Ad(¢p(w)) X = X Vw € Ip},

which equals gg, for (¢', p) the Weil-Deligne parameter associated to exp(y, o,r, p).
This shows that the nilpotent parts of the L-parameters on both sides can be chosen
form the same vector space g; U]f," = g¢/

The group whose orbits on g, & determine the “open” property is

(7.1) Zgv(¢'(Wr)) = Zg(64(Wr), exp(0)) = Zgy (66(Wr),exp(0))Z(G")W

On the other hand, for gv 0]\7; openness comes from orbits for the group

Za . Xur(Eg) (0), which has identity component

(7.2) 264, (0)° x Xur(G) = Zgy (96(W ), exp(0))° x Xur(*G).

On both sides, the unique open orbit in the vector space is already a single orbit
for the identity component of the acting group, by [KaLuZ §2 6]. Since Z(G") acts
trivially, the 1dent1ty components of the groups ([7.1)) and ([7.2)) have exactly the same

orbits on gg 0]\7," =g/ & Thus (y,o,r, p) is open if and only 1f Yy hes in the unique open

orbit of ( in g(\; 01\7 , which is the same as the open orbit of (7.1 in gg,. That
condition is equlvalent to openness of exp(y, o, r, p). Il

The following result has been proven in another way in [CDEZ, Proposition 4.1
and §6], although in less generality.

Proposition 7.2. Every essentially bounded (e.g. bounded or discrete) L-parameter
for G(F) is open.
Proof. Every enhanced L-parameter for G(F') has a cuspidal support [AMSI]. That
can be written as (M(F'), ¢, ge) with (¢, ge) a cuspidal enhanced L-parameter for a
Levi subgroup M(F') of G(F). Then ¢ is discrete, so by [SiZi| of the form z¢, with
¢, bounded discrete and 2z € X (! M). Now Lemma allows us to transfer the
issue to L-parameters for H(¢p, ge). In that setting, we proved the desired statement
in Lemma 3.4

Alternatively, one can translate the proofs of Lemmas [3.3] and [3.4] directly to the
current setting. ]

To get Langlands parameters into play from representations of a reductive p-
adic group G(F'), we need to assume some reasonable form of the local Langlands
correspondence involving Hecke algebras. As in Section [6] we consider a Bernstein
block Rep(G(F))® determined by a unitary supercuspidal representation w of M (F).
We write

Lr(G(F))° = Irr(G(F)) N Rep(G(F))".

Condition 7.3. A local Langlands correspondence is known for Irr(G(F))* and
Irr(M(F))®. Let (¢, p) be the enhanced L-parameter of w.
There is an isomorphism between the graded Hecke algebras of geometric type
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o H(t, W, kY, 1) from Theorem
o H(¢,p)/(r —log(qr)/2) from [AMS3, §3.1]

induced by isomorphisms between (txW; ,,, R.,) and the analogous data for H(¢, p, ).
The same holds if we twist w by a unitary unramified character of M(F).
Furthermore, the local Langlands correspondence for Irr(G(F'))® can be con-

structed via Theorem the above isomorphisms (for all such twists of w) and

the parametrization of Irr (H(¢, p, r)/(r — log(gr)/2)) from [AMS3, Theorem 3.8].

We point out that Condition [7.3]is stronger than Condition [6.5, and we refer to
[AMSI], [AMS2, [AMS3] for more background. A list of cases in which Condition
has been verified can be found in [Sol8, Theorem 5.4] and in the introduction before
Theorem [E] We expect that Condition [7.3]is always fulfilled.

Theorem 7.4. Assume Condition and let T € Irr(G(F))*.

(a) If w is tempered or essentially square-integrable, then its L-parameter is open.

(b) Suppose that s = [M(F'),w] with w simply generic, and that 7 is generic. Then
the L-parameter of m is open.

(¢) Suppose that the L-parameter of w is open and that w is a subquotient of a
standard G(F)-representation wg. Then 7 is a subrepresentation of wg.

Proof. (a) By the known properties of the LLC imposed by Condition or by
[AMS2, [AMS3], the L-parameter of 7 is bounded or discrete. As mentioned in [CEZ,
§0.6] and shown in [CDFZ], such an L-parameter is open. Alternatively, that can
also be shown with Lemma [3.4] and the translation from L-parameters for H(¢, p, r)
to L-parameters for G(F') in [AMS3] §3].

(b) By T heoremand Corollary the associated H(¢, p, r)-module 7y is generic.
Then Theorem |4.5| says that the L-parameter of my is open, and the constructions
in [AMS3| §3] entail that the L-parameter of 7 € Irr(G(F)) is open.

(c) Condition and the comparison/reduction results in Sections |5 and |§| transfer
this to a statement about H(¢, p, r)-modules. That statement is proven in Theorem
3. 2) O

We note that Theorem b proves Conjecture a for all the cases listed in [Sol8|,
Theorem 5.4] or just before Theorem |[E| Theorem also verifies Conjecture [C| in
all those instances.
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