CHARACTERS AND GROWTH OF ADMISSIBLE
REPRESENTATIONS OF REDUCTIVE p-ADIC GROUPS

RALF MEYER AND MAARTEN SOLLEVELD

ABSTRACT. We use coefficient systems on the affine Bruhat—Tits building to
study admissible representations of reductive p-adic groups in characteristic
not equal to p. We show that the character function is locally constant and
provide explicit neighbourhoods of constancy. We estimate the growth of the
subspaces of invariants for compact open subgroups.
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Let F be a non-Archimedean local field, possibly of nonzero characteristic, and
let G be a reductive algebraic group over I, briefly called a reductive p-adic group.
Let 7 be an admissible representation of G on a complex vector space V. Since VE
has finite dimension for every compact open subgroup K C G, the operator 7(f) has
finite rank for all test functions f. The resulting distribution 8, (f) := tr(w(f),V)
is called the character of m. Since V usually has infinite dimension, the operators
m(g) need not be trace-class for g € G. Nevertheless, Harish-Chandra could show

that the character is described by a locally integrable function:

Theorem 1.1 (Harish-Chandra). Let m: G — Aut(V') be an admissible representa-

tion of a reductive p-adic group.

(a) The operator w(g) has a well-defined trace tr,(g) when g belongs to the set

Giss of regular semisimple elements.
(b) The function try: Grss — C is locally constant.

(¢) The function tr,, extended by 0 on G\ Gyss, 1s locally integrable with respect

to the Haar measure i on G, and for any test function f,

0.(f) = /G £(9) tra(9) dus(g).
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(d) Let D(g) for g € Gyss be the determinant of Ad(g) — 1 acting on Lie(G) /
Lie(T) for a mazimal torus T in G containing g. The function G > g —
|D(g)|Y? trr(g) is locally bounded.

The original proof of this deep theorem is distributed over various papers of
Harish-Chandra collected in |7]. A complete account of it can be found in [8]. The
proofs of and @ use the exponential mapping for G, which only works well if
the characteristic of F is zero. It is reasonable to expect that and are valid in
non-zero characteristic as well, but the authors are not aware of a proof. According
to [24, paragraph E.4.4] Harish-Chandra’s proof of @ and @ remains valid if one
replaces C by an algebraically closed field of characteristic unequal to p.

In this article we generalise part of Theorem to representations on modules
over unital rings in which p is invertible. In this purely algebraic setting, we can only
define the character as a function where it is locally constant. To prove @ and @,
we describe explicit neighbourhoods on which tr, is constant. In characteristic 0,
similar results are due to Adler and Korman [1].

Parts and @ seem specific to real or complex representations because they
involve analysis. Unfortunately, our methods are insufficient to (re)prove them, as
we discuss in the last section.

As a substitute we estimate the dimension of invariant subspaces V¥ for certain
compact open subgroups K in G. The authors have not found growth estimates for
these dimensions in the literature. Since VX is the range of an idempotent (K) in
the Hecke algebra associated to K, we get

. 1
dim VE = ﬁ/Ktrﬂ(g) dp(g).

But the estimate in is not strong enough to control these integrals.

Our methods are of a geometric nature and involve the affine building of G. Thus
we will make extensive use of Bruhat—Tits theory, including some hard parts. At the
same time, we use only little representation theory. Both of our main results use the

resolutions constructed by Schneider and Stuhler |18]. These resolutions are based on

a family of compact open subgroups UQEE) for e € N, indexed by vertices of the affine

Bruhat-Tits building. These generate subgroups U((,E) indexed by polysimplices in
the building. The invariant subspaces VU in an admissible representation V' form
a locally finite-dimensional coefficient system on the building. It is shown in [11]
that this coefficient system is acyclic on any convex subcomplex of the building. In
particular, it provides a resolution of V' of finite type.

Here we need acyclicity also for finite subcomplexes of the building because this
provides chain complexes of finite-dimensional vector spaces, which are used in [11]
to express the character of V as a sum over contributions of polysimplices in the
building. We use this formula to find for each regular semisimple element v and each
vertex x in the building a number r such that the character is constant on UJE”W;
the constant r depends on the distance between x and a subset of the building
corresponding to the maximal torus containing +y, on the (ir)regularity of -, and
on the level of the representation V', that is, on the smallest e € N such that V is
generated by the Ugge)—invariants for all vertices y.

Along the way, we also prove some auxiliary results that may be useful in other
contexts. We prove that the parabolic subgroup contracted by an element of a
reductive p-adic group is indeed parabolic and, in particular, algebraic (Proposi-
tion . We describe which points in the building are fixed by a semisimple element
in Section [4l We establish that the level of representations is preserved by Jacquet
induction and restriction (Proposition . The relationship between character
function and distribution is made precise in an algebraic setting in Section [6]
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2. THE STRUCTURE OF REDUCTIVE ALGEBRAIC GROUPS

We fix our notation and recall some general facts from the theory of linear
algebraic groups. Nothing in this section is new and most of it can be found in
several textbooks, for example [20].

Let G be a linear algebraic group defined over a field F. The collections of
characters and cocharacters of G are denoted by X*(G) and X, (G), respectively. Let
G := G(F) be its group of F-rational points. By definition, an algebraic (co)character
of G is a (co)character of G that is defined over F. The corresponding sets are
denoted by X*(G) and X, (G). Let Z(G) be the centre of G and let Z.(G) be the
maximal connected algebraic subgroup of Z(G). We denote the centraliser in G of
an element g € G by Zg(g).

We will assume throughout that G is connected and reductive. An algebraic
subgroup P of G is parabolic if G/P is a complete algebraic variety. We denote the
unipotent radical of P by R,(P). A Lewvi factor of P is a reductive subgroup M
such that P = M x Ry(P).

We write Z(G), Z.(G), P, Ry(P), and M for the groups of F-points of Z(G),
Z.(G), P, Ru(P), and M, respectively. We denote the space of F-points of the Lie
algebra of G by Lier(G).

We say that an algebraic torus 7 splits over F if T(F) = (F*)4m7 as F-groups.
We say that G splits (over IF) if there is a maximal torus T of G that splits over F.

Proposition 2.1. There is a finite Galois extension of F over which G splits.

Proof. For tori this was first proven by Ono |14, Proposition 1.2.1]. This implies
the result for general reductive groups. O

Let S be maximal among the tori in G that split over F and let S := S(F). We
call S a mazimal split torus in G. Notice that every algebraic (co)character of S is
defined over F, as S is split. Let & = ®(G,S) C X*(S) be the root system of G with
respect to S, and let @V C X, (8S) be the dual root system. Let Zg(S) and Ng(S)
denote the centraliser and the normaliser of S in G and let Zg(S) and Ng(S) be
their groups of F-points. The Weyl group of ® is

W(®) = Na(S) / Za(9).

The root system ® need not be reduced if G is not split. The corresponding reduced
root system is

(1) o= {a € ®(G,S): /2 ¢ ®(G,S)}.

For every root a € ®(G,S) there is a unipotent algebraic subgroup U, C G with
group of F-points U,, characterised by the following two conditions:

e Z5(S) normalises U,,
e Liep(U,) is the sum of the S-weight spaces for o and 2a, with respect to
the adjoint action of S on Liep(G).

If o, 200 € ® then Uz, € U,, and it is convenient to write Us, = {1} if & € ® but
2ac ¢ ®. The groups U, /Us, and Us, are naturally endowed with the structure of
an [F-vector space and are isomorphic to their respective Lie algebras. The subset
Uacarea Ua UZg(S) generates the group G.

Let & be a system of positive roots in ® and let A C &4 be the corresponding
basis. Any subset D C A is a basis of a root system ®p :=ZD N ®. The algebraic
subgroup Pp of G generated by Zg(S) and the U, with a € ®p U ®* is parabolic.
Its unipotent radical is generated by the U, with a € 1\ <I>j5. The group Mp

that is generated by J,cq, Ua U Zg(S) is a Levi subgroup of Pp. Moreover,
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Mp = Z5(Sp), where Sp is the connected component of

ﬂ kera C Z(Mp).

a€dp

We note that Py is a Borel subgroup of G, that Pao = Ma = G, and that Sa(F) is
the unique maximal split torus of Z(G).

Definition 2.2. Groups of the form Pp are called standard parabolic (with respect
to S and 7).

Every parabolic subgroup of G is conjugate to exactly one standard parabolic
subgroup. Let ®~ := —®* be the set of negative roots and let Pp be subgroup
of G generated by Zg5(S) and the U, with & € ®p U P~. The parabolic subgroup
Pp is opposite to Pp in the sense that Pp N Pp = Mp is a Levi subgroup of both.
Moreover

LieF(g) = Liep (Ru (PD)) (&3] LieF(MD) @ Lieg (Ru (’pD))
We shall also need the pseudo-parabolic subgroup

(2) P(x) = {p € G+ lim x(\)px(A) " exists}

for an algebraic cocharacter x: F* — G. This limit is meant purely algebraically,
by definition it exists if and only if the corresponding map F* — G extends to an
algebraic morphism F — G. In a reductive group, any pseudo-parabolic subgroup is
the group of F-points of a parabolic subgroup by |20, Lemma 15.1.2].

From now on we assume that the field F is endowed with a non-trival discrete
valuation v: F — QU {oco}. We fix a real number ¢ > 1 and we define a metric on F
by

d(\, 1) = ¢ "7,

Via an embedding G — GL,,, the metric d yields a metric on G = G(FF) as well. Even
though there is no unique way to do this, the resulting collection of bounded subsets
of GG is canonical. This bornology on G is compatible with the group structure, in
the sense that Bleg is bounded for all bounded subsets By and Bs of G.

It follows directly from the properties of a valuation that every finitely generated
subgroup of (F,+) is bounded, and this implies that every unipotent element of G
generates a bounded subgroup.

Following Deligne [6], we assign to any g € G the parabolic subgroup contracted

by g,

(3) P,:={peG:{g"pg~" :n € N} is bounded},
and
(4) My :=P;NPs ={peG:{g"pg~" :n € Z} is bounded}.

The following result, which will be needed in Section was proved in |15, Lemma
2] under the additional assumptions that G is semisimple and almost F-simple.
Although it is apparently well-known that it holds for general reductive groups, the
authors have not found a good reference for this.

Proposition 2.3. The subgroups Py and My for g € G have the following properties:
(a) P, is a parabolic subgroup of G.
(b) Ru(Pg) ={peCG:lim, ,g"pg " =1}.
(c) The parabolic subgroup Py-1 is opposite to P, and Mg is a Levi subgroup
of Py.
(d) gZ(My) is contained in a bounded subgroup of My | Z(My).



CHARACTERS AND GROWTH OF ADMISSIBLE REPRESENTATIONS 5

Proof. We first establish (a). Clearly, P, is a subgroup of G that contains g. The
difficulty is to show that P, is an algebraic subgroup of G, although it is defined
in topological terms. Choose a finite extension field F, of ' which contains the
roots of the characteristic polynomial of g. Then we have a Jordan decomposition
9 = 9sgu = Gugs in G(Fy), see [20, Section 2.4]. Let T be a maximal torus in G
defined over F, that contains gs, and let F be a finite extension field of F, over
which T splits (Proposition . We may and will assume that F is normal over F.
According to [19 Section I.4] the valuation v extends to a valuation ¥ on F. We
abbreviate G (IF‘) =@, and similarly for its algebraic subgroups. Let ® be the root
system of G with respect to T.

Since g, is unipotent, K := {g* : n € Z} is a bounded subgroup of G, and it
centralises gs. For a € ® and pE Us \ {1}, the following are equivalent:
{g"pg~™ : n € N} is bounded,
K{g"pg;" :n € N}K is bounded,
{98pgs™ : n € N} is bounded,
gspgs " = Ap with {\" : n € N} C F bounded,
i(a(gs)) = 0.
We may choose a system of positive roots T with f)( (gs)) >0 for all @ € dF. Let
D C A be the set of simple roots with f)( (g )) = (0. The group P is generated by
T := T(~) and all U, with o € T U ®p. Thus P is the group of F—pomts of the
parabolic subgroup Pp of G, and the collection of non-zero weights of 7' in Liez(Pp)
equals

(5) {aed:9(algs)) >0} = (P, T).

As mentioned above, P is also a pseudo-parabolic subgroup of G, so there is a
cocharacter ¥ € X,(G) with P, = P(X). In fact, any ¥ € X.(7) with

(6) {a€®:(a,x) 20} =Py, T)

will do. To prove that P, = Pg N G is a parabolic subgroup of G, we must find
a cocharacter x that satisfies (6) and is defined over F. Then P, = P(x) will be
pseudo-parabolic and hence parabolic.

Let T be the group of field automorphisms of FF over F. Since g € G(F) and T acts
continuously, the subgroup P is T-invariant by (3| . so that o ¥ oy~ ! satisfies @
for all v € T". Since the set of solutlons of @ forms a cone in the free abelian group
X.(T), it contains

A H Y(x 71)\
yel
Thus Pg = P()ZF) The cocharacter X' is defined over F'. The field extension
F C F' is finite and purely inseparable see for example [10, Section 7.7]. Hence
some positive multiple x of X' is defined over F and still satisfies @ This yields
P, = P(x) and finishes the proof of (a).

Now we prove (b). Liez(P,) is spanned by the vectors X € Liez(G) with
Ad(gs)X = AX with #(X\) > 0. Similarly, Liez(R4(P,)) is spanned by the root
subspaces Lieg(Ua) with o € ®(P,, T) but —a ¢ ®(P,, T). These are precisely the
o € @ with 9(a(gs)) > 0. Therefore

hm g"hg;" =1 <<= heRy(P,).
Since all powers of g, are contained in the bounded subgroup K., these statements

are also equivalent to lim, .., g"hg™" = 1. Now (b) follows because R, (P,) =
Ru(Py) N Py.
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Next we establish (c). Let x be a cocharacter of G defined over F with P, = P(x).
The same reasoning as in the proof of (a) shows that P,-1 = P(—x). The assertion
now follows by applying [20, Theorem 13.4.2] to Py and Py-1.

Finally, we turn to (d). The eigenvalues of Ad(g,) acting on Liez(M,) all have
valuation 0. Hence Ad(g) lies in a bounded subgroup of the adjoint group of ]\7[g.
Equivalently, the image of g in M, / Z(M,) generates a bounded subgroup. Finally,
we note that M, / Z(M,) can be identified with a subgroup of M, / Z(M,). O

3. SOME BRUHAT-TITS THEORY

We keep the notation from Section[2] Let F be a non-Archimedean local field
with a discrete valuation v. We normalise v by v(F*) = Z. Let O C F be the ring
of integers and P C O its maximal ideal. The cardinality g of the residue field O/
is a power of a prime number p. We briefly call F a p-adic field.

Bruhat and Tits [3l[4L[21] constructed an affine building for any reductive p-adic
group G = G(F). More precisely, they constructed two buildings, one corresponding
to G and one corresponding to the maximal semisimple quotient of G. We call the
latter the Bruhat—Tits building of G and denote it by B(G,F). Relying on [18 §1.1]
and [23] Section 1], we now recall its construction. The main ingredients are certain
subgroups U, and H, of G.

3.1. The prolonged valuated root datum. Let (-,-): X,(S) x X*(S) — Z be
the canonical pairing. There is a unique group homomorphism

v: Zg(S) — X*(S) ®7z R
such that (v(2), x|s) = —v(x(z)) for all x € X*(Z(S)). Let
H :=ker(v) = {z € Zc(S) : v(x(2)) = 0 for all x € X*(Za(S5))}.

be the maximal compact subgroup of Zg(S).

Bruhat and Tits [4] defined discrete decreasing filtrations of H and U, by compact
open subgroups H, and U, ., respectively. These groups satisfy the properties of
a “prolonged valuated root datum” [3, §6.2]. We first describe these subgroups in
the special case where G splits over F. Then each U, is a one-dimensional vector
space over F, and a Chevalley basis of Lier(G) gives rise to an isomorphism U, = TF.
Chevalley bases are known to exist but they are not unique. We fix one, and we use
suitable subsets as bases of Liep(Pp) and Lier(Mp), for any standard parabolic
subgroup Pp with Levi factor Mp. Thus U, is endowed with a discrete valuation v,
and one defines

(7) Ua.r = vy ([r, 00]) for r € R.

By assumption, the maximal split torus is a maximal torus, that is, S = Zg(S). For

r < 0 we may put H, = H, but Hy is more difficult to define. According to [4, 5.2.1]

there is a canonical smooth affine O-group scheme 3 such that 3(F) = Zg(S). Let 3.

be the neutral component of 3 and put Hy := 3.(O). The inclusions
HyC3(0)CH

are all of finite index. We define

(8) H,:={z€ Hy:v(x(z) —1) > rforall x € X*(Zg(S))}

for r > 0 as in 18| Proposition 1.2.6].

Now we extend the above construction to a non-split group G. Proposition [2.]
provides a finite Galois extension F of F over which G splits. The strategy of descent
is explained in [3, Chapitre 9]; the basic idea is to construct the required groups
first in G (INF) and then to intersect them with G(F). This does not work as such
because the root system of G(F) is usually larger than that of G(F), so that must be
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taken into account as well. Bruhat and Tits descend in two steps: first from split to
quasi-split, then from there to the general case. This is, in all probability, necessary
for the proof, but the conclusions can be written down in one step. Of course it is by
no means obvious that the groups we will define below form a (prolonged) valuated
root datum: proving this is precisely what most of the work in [4] is dedicated to.
If X is any object constructed over F, then we will denote the corresponding
object over F by X. According to |19, Proposition 1.2.3] F is also a local field, and
there is a unique discrete valuation o: F — Q U {oo} that extends v. By definition,
B(F*) = eEZ/l]FZ,
where eg /F € N is the ramification index of F over F. The constructions above still
work for this non-normalised valuation .
Let S C G(F) be a maximal F-split torus that contains S(F). Since S D S,
restriction of characters defines a surjection

(9) ps: PU{0} = dU{0}.
For a € ®*d and r € R the descent |4, 4.2.2 and 5.1.16] boils down to
Usr i=Us N ( H [7[3,7' X H Uﬁ,m-)a

peps ' {a} Beps ' {20}
U2a,7‘ = U2a N Uoz,'r‘/2-

(10)

These groups do not depend on the chosen ordering of the factors. For a standard

Levi subgroup Mp C G and a € ®p, our consistent choice of Chevalley bases

ensures that it does not matter whether we consider the groups U, , in G or Mp.
We can use to define a valuation on U, by

(11) Vo (Ua) :=sup{r € R:uy € Uy}

Clearly this reproduces in the split case. Let Iy, be the set of » € R at which U, ,
jumps, or equivalently the set of values of v, (except v, (1) = 00). By construction,

I'g = ez /IFZ for all 8 € ®, which implies

-1
ngageF/FZ for all o € ®.

More precisely, |3, 6.2.23] and |18, Lemma 1.2.10] yield n, € N for o € ® with the
following properties:

o 'y =n,Z;

® Nyo = Ny for w e W(P);

® Noy = Ny OF Nog = N /2 whenever o, 2a € .
Similar to one defines for r € R (see |18} 1.2.6] and [23, Section 1]) :

(12) H, :=7Zg(S)N <FI X H ﬁﬁJ).
Bepg'{0}
A particularly useful property of the above groups, which holds more or less by the

definition of a prolonged valuated root datum |3, Proposition 6.4.41], is as follows.
Let a, f € ®U{0} and let r,s € R, with > 0 if « =0 and s > 0 if 8 = 0. Then

(13) [Ua.r, Ug,s] C subgroup generated by U UnatmB,nr+ms>

n,meZso
where Uy = H; and Usy = {1} if 0 ¢ ® U {0}. We will need an iterated version of
this, which must have been known already to Bruhat and Tits, but for which the
authors did not find a reference.
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Lemma 3.1. Let a; € T U{0},7; € R and u; € Uy, r, fori=1,2,--- ,n. Assume
that r; > 0 whenever a; = 0. Then

[ulv [u23 [ o [un—lvun] e H]

lies in the group generated by the UZ?:l kioi, S0y kiris where the k; run over Zsg.

Proof. Let us call the group in question K. Suppose that y; € Usn k0,527, kirs
for some k; € Z~o (depending on j). Notice that >, k;; cannot be a negative
root, and that > , k;r; > 0if 7", kja; = 0. We will show by induction on [ € N
that

[ur,91 - yi) is an element of K.

For [ = 1 this is . For [ > 2 we can rewrite it as
[ur, y1 - wi] = wigruy un, vz - wilyr b = [un, yilyafun, ye -yl
By the induction hypothesis all terms on the right are in K.
For the actual lemma we use another induction, with respect to n. The case
n = 1is trivial. For n > 1, the induction hypothesis provides y; as above, such that

[ur, [uz, [+ [up—1,un] -+ ]I} = [ur, y1 - wils

which by the above lies in K. O

3.2. The affine Bruhat—Tits building. The image of any cocharacter F* —
Z.(G) lies in Sa C S, the maximal F-split torus in Z.(G). Hence X.(Z.(G)) =
X.(Sa). The standard apartment is

The affine Bruhat-Tits building B(G,F) will be defined as G x Ag / ~ for a suitable

equivalence relation ~.

Let (-,-)aq be a W(®)-invariant inner product on Ag. Then the different irre-
ducible components @) of ®¥ are orthogonal and on R®) the inner product is
unique up to scaling. Thus we may assume that {(a¥,a") a4 = 1 for all short coroots

v v
a’ € PV,
The centraliser Zg(S) acts on Ag by

g-x =z +0(g).

This extends to an action of Ng(S) on Ag by affine automorphisms, such that
the linear part of  + g -z is given by the image of g € Ng(S) in W(®). In
particular, the action of g on Ag is a translation if and only if ¢ € Zg(S). The
affine hyperplanes

(14) Asar i ={r € Ag: (z,a) =k} foraec®and kel
turn Ag into a polysimplicial complex. The open polysimplices are called facets,
that is, a facet in Ag is a non-empty subset F' C Ag such that
o FC Ag o or F lies entirely on one side of Ag q k for all « € ® and k € I'y;
e [ cannot be extended to a larger set with the first property.
Thus the closure of a facet is a polysimplex, and a facet is closed if and only if it
is a single point. Moreover, a facet is open in Ag if and only if it is of maximal
dimension, in which case we call it a chamber.
The affine action of Ng(.S) on Ag respects the polysimplicial structure. In fact,
N¢(S) is generated by the translations coming from Zg(S) and the reflections in
the hyperplanes Ag q :

ez + (k- (z,a))a" aed kel,,

where ¥ € ®V is the coroot corresponding to c.
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For a non-empty subset 2 C Ag we define
(15) fa: ® = RU {0}, fa(a) := — inf (x,a) = sup (z, —a).
z€eQ z€Q
This gives rise to the following subgroups of G:

Uq = subgroup generated by U Capred Ua,fo(a)s

(16) Nq :={n € Ng(S) :n -z =z for all z € Q},
PQ = NQUQ = UQNQ.

The latter is a group because nUgn ™! = U,q for all n € Ng(S). For Q = {z} we
abbreviate Ug = U,, which should not be confused with the root subgroups U,,.

Given a partition ® = ®+ U ®~ of (G, S) in positive and negative roots, we
let U* be the subgroup of G generated by Uascox Ua. We write

Ug =UaNUT and Uy =UgNU".
Proposition 3.2 (3, 6.4.9]). These subgroups have the following properties:

(a) UaNUqs = Uq, fo(a) for all a € .
(b) The product map

H Ua,fg(a) — Ua:

acdrednd*

is an isomorphism of algebraic varieties, for any ordering of the factors.
(c) Uq = Ui Ug (UgNNg(S9)).

We define an equivalence relation ~ on G x Ag by
(g,2) ~ (h,y) <= there is n € Ng(S) with nz =y and g~ hn € U,.
As announced, the Bruhat—Tits building of G is
B(G,F) =G x Ag | ~.
The group G acts naturally on B(G,F) from the left, and the map
As — B(G,F), x— (Lz) /)~

is an Ng(S)-equivariant embedding. An apartment of B(G,F) is a subset of the
form g- Ag with g € G, and g- Ag = Ag if and only if g € Ng(.5). Since all maximal
split tori of G are conjugate by [2, Théoreme 4.21], there is a bijection between
apartments in B(G,F) and maximal split tori in G.

A facet of B(G,F) is a subset of the form g - F'; where g € G and F' is a facet
of Ag. For a polysimplicial complex X, we denote the set of vertices by %° and the
set of n-dimensional polysimplices in ¥ by X" for n € N.

For any subset 2 C B(G,F), we denote the pointwise stabiliser of 2 by Pq. This
is consistent with when Q C Ag.

4. FIXED POINTS IN THE BUILDING

An element g of G is called compact if its image in G/Z(G) belongs to a compact
subgroup of G/Z(G). According to the Bruhat—Tits Fixed Point Theorem (see [3|
§3.2]), the compact elements of G are precisely those that fix a point in the building
B(G,F). In this section, we study how the fixed point subset B(G,F)” depends on ~.

Let H be a group of polysimplicial automorphisms of B(G,F). If x,y € B(G,F)?,
then H fixes the geodesic segment [z,y] pointwise by [3, 2.5.4]. Consequently,
B(G,F)H is a convex subset of B(G,F). Recall that a chamber complex is a polysim-
plicial complex ¥ such that:

e all maximal polysimplices of ¥ (the chambers) have the same dimension;
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e given any two chambers C; and Cs of ¥, there exists a gallery of chambers
connecting Cy and Cs.

If g € G is compact and belongs to a maximal split torus S of G, then there is a
chamber in the corresponding apartment Ag that is fixed pointwise by g. There exist,
however, regular semisimple elements v € G that fix no chamber in the building
pointwise. For such elements the fixed point subcomplex is not necessarily a chamber
complex. But once g fixes a chamber, say, because it belongs to a maximal split
torus, the fixed point subset is automatically a chamber complex:

Lemma 4.1. Suppose that H fizes a chamber C C B(G,F) pointwise. Then B(G,F)H
18 a chamber complex.

Proof. This is well-known, but we include a proof anyway. Let = € B(G,F)? and
let A, be an apartment that contains C' and z. Since dim C' = dim A, and B(G,F)#
is convex, it contains an open subset of some chamber C, C A, with z € C,.
Thus H fixes C, pointwise and B(G,F) is the union of all its closed chambers.
Suppose that C is any collection of chambers of an apartment Ag of B(G,F).
Then |Joee C is convex if and only if all minimal galleries between elements of C
are contained in C. Hence B(G,F)# N Ag contains all minimal galleries between its
chambers. (]

4.1. The split case. Let S C G be a split maximal torus and let v € S be a compact
element. Then v(x(v)) = 0 for all x € X*(S), so that ~ fixes the apartment Ag
pointwise. The subcomplex B(G,F)Y C B(G,F) is convex and S-invariant. Its core
is formed by the apartment Ag and from there “hairs” extend in all directions. This
terminology applies quite well to one-dimensional buildings, but in general such a
hair is a (not necessarily bounded) chamber complex. Since S acts by translations
on Ag, it shifts all these hairs. If v € S is regular, then B(G,F)7/S is compact by
[90 Section 9.1]: the length of the hairs is finite.

Now we study when an arbitrary point € B(G,F) is fixed by v € S. Choose
a chamber Cy C Ag and let p be the retraction of B(G,F) to Ag centred at Cp.
Let @ be a system of positive roots in ® such that f,,)(a) > fe,(a) for all a € ®7;
equivalently, @t contains all roots with f,()(a) > fe, (). Let A be the basis of ®
corresponding to ®7.

Then Uc, N Uy C Upe) NUq for all o € @, so Uy, C Up_(x). Furthermore,
N¢, = N,(z), which together with Proposition shows that Pc, C Uéfo Pz
Since Pg, acts transitively on the set of apartments containing Cy by [3, 7.4.9], there
isu € UC+O with = up(z). Thus we want to know which part of the apartment uAg
is fixed by 7.

By definition, u € UECO fixes all y € Ag satisfying —a(y) < fe,(«) for all « € T,
These points constitute a cone in Ag N uAg, which is fixed by v. We are interested
in the larger subset (uAg)?”, which is a convex subcomplex of B(G,F)?. Hence the
complex Y := u~1(uAg)? is convex as well. Concretely, this means that Y C Ag
is determined by a system of equations —a(y) < r, for certain r, € R, a € 7.
We need some notation to make this more explicit. The singular depth of v in the
direction o €  is

sda(y) = v(a(y) - 1).
We also let sd(v) := max sdy (7).
aedt
Recall that the height of a positive root is defined as follows:

e ht(a) =1if a € 7 is simple;

e ht(a + B) = ht(a) + ht(8) if o, B, + B € PT.
Since ht extends to a group homomorphism X*(G/Z.(G)) — R, we may regard
it as a point in the apartment Ag. Since y is contained in the same apartment,
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this gives meaning to the linear combination y + sd(y) ht for y € Y appearing in
Proposition [4.2] (c) below.
By Proposition [3.2}|(b)| we can write

(17) u = H Ug, with  ua € Uy, fo, ()
aedt
Proposition 4.2. Lety € u=!(udg).
(a) The compact element v € S fizes x = up(x) if and only if [y,u™?'] € U:EI).
(b) ua € Us,—a(y)—sda(y) for all simple roots o € A.

(c) ue U;+Sd(7) e where sd(y) ht € Ag.

Proof. (a) Since v € S fixes p(z) € Ag,
(@) = yup(z) = yuy™ p(x).
This point equals = up(z) if and only if yu=ty~tup(z) = p(z), which is equivalent
to [y,u™'] € Pyy). Asu € U and y normalises U™, this is equivalent to [y,u™'] €
_qrt
Pp(m) NUT = UP(I).

(b) The decomposition is unique once we fix an ordering on ®*, but the
terms u, may depend on this ordering. Let ®* := ®* \ A be the set of non-simple
positive roots. Then |J,cg-(Ua NUg,) generates a normal subgroup Ug, of Uéfo.
The quotient U, éfo JUE, is abelian and can be identified with a lattice in the F-vector
space [[,ca Ua- The image of u in U&*‘(}/U("}(J is [[oea Yo, which shows that the
ingredients u,, of for o € A are independent of the ordering of ®.

Suppose now that v fixes uy € uAg. By part (a), we have [y,u™'] € U;. Since ~
normalises the groups U, , for « € ®T, r € R, this implies

(18) ou Uy = [ sua'1U; € US /U
acA

But on the vector space U, the map a — [y, a] can be identified with multiplication
by a(y) — 1. Hence (18)) is equivalent to

(19) Uq € (a(’Y) - 1)71Ua,—a(y)
for all & € A. Together with (7)) implies the statement (b).

(c) We fix an ordering &+ = {a, ag, ..., g} with ht(a;) < ht(a;41) for all i, and
we get a unique decomposition u = [[,_; uq, in U¢,- Similarly, Proposition
yields a unique decomposition

E
(20) [T u e = ou™] = yugugl - ug !y o oy - - ey
i=1

By construction [y,u"!], € U%ch(a), and +y fixes uy if and only if, even more,

(21) [V, v € Un—ay) for all « € 7.
Assuming , we will show by induction on ht(«) that
(22) [’Ya u;l} € Ua,—a(y)—i—(l—ht(a))sd(’y) for all a € o,

Like in , this statement is equivalent to ua € Uy, —a(y)—sda (v)+(1—ht(a))sd(y)s
which for roots « of height 1 is part (b).

Let us assume for roots of height less than k. Let N<j be the product of
the groups U, for roots a of height greater than k. This is a normal subgroup
of the Borel group SU™, and the subgroups U, C U™ for a root a of height k
become central in the quotient U /Ns. We may determine the a-component for a
root « of height k by computations in Ut /N~y because of the uniqueness of the

decomposition .
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Now we split u up as u<purUsg, where the factors uy, ug and u~y contain the
contributions u, of positive roots v with height less than k, equal to k, and greater
than k, respectively. In the quotient U' /N~ j,, we may drop usy, and u; becomes
central. Hence

(23)  [vout] = quljuy iy uckupus e = gty u gy fuc g,
= 7“;1771Uk7u2;1{771u<k = [7, u;l}[»y’uzllc] = ( H [’)/,u;lo [7,u2,1€},
ht(a)=k

where we compute in the quotient Ut /N~ . We will use the induction hypothesis
and the estimate on [y, u], to estimate [y, u,!] when ht(a) = k.
We first rewrite a commutator [, 21 - - - 2;] as a product of iterated commutators

(24) C(Zh LA 7Zik) = [Ziu [Ziza tet [Zik—l’ [77 ZZkH . ]]
We claim that [y, z1 - - - ;] is a product of the factors C'(z;,,...,2;,) with 1 <i4; <
iy < -+- < i < 7, each factor appearing exactly once. The proof is by induction

on j, the case j = 1 being clear. For the induction step, we use
[vs 21+ 2] = vy~ [%22 zjler Y

Y21y ey - "CEkal = [y, 21] - [21, w1]@y - [21, wo]a - - - [21, 2]

[
By the induction hypothesis, [7, 22 - - - 2;] is the product in some order of the factors
C(ziyy.--y2i,) forall 2 < iy < -+ < i < j. Plugging this into the second
equation above shows that [y, z1 - - - z;] is the product in some order of the factors
C(ziys---y2i,) forall 1 <i; <--- <1 < j. By the way, a more careful induction
argument also yields the order of the factors: it is the reverse lexicographic order
for the words (j — i, ix— 1,ik 2y e ey i)

Now we apply this to u<k =u 1 -uzl = 21 --- 2. By the induction hypothesis

a1

and by Lemma all the occurrlng C (u;}l yo u;}k) lie in the group generated by

the U, , with a = 25:1 kjoi; and r = sdq,, (v) + Z?Zl kjri,, where k; € Z~o and
ry = o, () — s, (3) + (1~ hifa, )sd().

For such o € ®* and r € R we have

k
(25) 7 =sda;, () + Y kj(—ai, (y) —sda,, (7) + (1 = ht(a;,)))sd(7)) =

Jj=1

— a(y) + (1 — ht(a))sd(y < 1+ Z k; ) — maxsda, (7)) >

J

—a(y) + (1 — ht(a))sd(y).

For a root « of height k, and show that [y,u;!] must lie in the largest
of the groups U, _q(y) and Uy, Now we see from that in any case [y,u;!] €

Ua,—a(y)+(1—ht(a))sd(y) SO

ug 'y ta € U —a(y)-hi(a)sd(y) = Ua MUy gy O

Given an arbitrary point y € Ag, the condition in Proposition (c) does not
imply that v fixes uy. Counterexamples exist whenever ® contains an irreducible
root system of rank greater than one.

Proposition [4.2) only applies to fixed points of semisimple elements that lie in
a split maximal torus. (We will not consider the fixed points of non-semisimple
elements of G in this article.) For elements of non-split maximal tori we need yet
another aspect of Bruhat—Tits theory.
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4.2. The non-split case. The construction of the Bruhat—Tits building over p-adic
fields is functorial with respect to finite field extensions by [3, 9.1.17]. For any such
extension F/F, the group

[ := {0 € Aut(F) : o|p = idr}

acts naturally on B(G,F), and B(G,F) is contained in B(G,F)'. In particular, for
every g € G(F) we have an inclusion

(26) B(G,F) = B(G,F)? N B(G,F) C B(G,F)" 49,

where (g) € G(F) denotes the subgroup generated by g.

In general, B(G,F) is strictly smaller than B(Q,F)F, even if IF‘/IF is a Galois
extension (in which case I is its Galois group). Rousseau [17] proved that B(G,F) =
B(G,F)" if F/F is a tamely ramified Galois extension, see also [16]. Consequently,
(26) is an equality for such extensions.

Let T = T (F) be a maximal torus and F/F a finite Galois extension over which 7°
splits, as in Proposition Since T is defined over F, it is I-stable, and hence the

corresponding apartment AT(IF“) of B(G,F) is I'-stable. The action of I on AT(]F) is

linear, so that the origin of flT(fF) is fixed. Thus Rousseau’s above result implies
that

(27) B(G,F)N 1217-(&:) #( if F/F is tamely ramified.

Any g € G acts on Lier(G) / Liep (Zg(g)) by the adjoint representation. The
collection E(g) of eigenvalues (in some algebraic closure of F) is finite and does not
contain 1. Assume that G is not a torus and that g is regular, that is, Zg(g) has
the smallest possible dimension. The number

sd(g) == )\Ieng();)v()\ 1)
is well-defined because every eigenvalue lies in a finite field extension of F. For
irregular g € G we put sd(g) = oo, because in that case the multiplicity of the
cigenvalue 1 of Ad(g) € Endy(Lieg(G)) is too high. Finally, if G is a torus, then we
define sd(g) = 0 for all g € G. This definition stems from [1, Section 4], where sd(g)
is called the singular depth of v. We note that

(28) sd(gz) = sd(g) = sd(hgh™) for z € Z(G) and h € G.

Let 7 and F be as above and let & = @(Q(F),’T(F)) be the corresponding root
system. Let v be the discrete valuation that extends v and suppose v € T'. Then

sd(y) = maxsda(7v),
acd

which agrees with the notation from Proposition [£.2}(c). Notice that sd(vy) > 0, for
if sdo(v) < 0 then 9(a(y)) <0, so o(a(y)™) > 0 and sd_,(y) = 0.

Now we specialise to a compact regular semisimple element v € T'. Then B(G, F)”
is non-empty by the Bruhat-Tits Fixed Point Theorem. If T'/Z.(G) is anisotropic,
then B(G,F)7 is a finite polysimplicial complex (see [18] p. 53]) and there is an open
neighbourhood U of 7 in G such that B(G,F)V = B(G,F)".

If T/Z.(G) is not anisotropic, we have a weaker substitute. Since B(G,F)Y/T
is compact, there exists an open neighborhood V of v in T such that B(G,F)9 =
B(G,F)Y for all g € V. Let H, be as in (12), but with respect to (Q(F),T(]F‘))
First the authors believed that one could take V = 71{[,, NT for any r > sd(v), but
this turns out to be incorrect in general. We thank the referee for pointing out the
weakness in our former argument.
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Lemma 4.3. Write ht(®) := max,ce+ ht(a) and let 1 > ht(®)sd(y). Then
B(G,F)"" = B(G,F)Y for allh € H.NT.

Proof. In view of it suffices to prove the corresponding statement for fixed

points in the building B(G,F). We use the notation from the proof of Proposition
but with some additional tildes. We want to know when ~ fixes uy, for some
point y € Ag. According to , this is equivalent to

(29) [%u_l]a S Uay,a(y) for all o € ®.

From we know that apart from [y, u_!], all the contributions to [y, u '], come
from commutators of elements ugl with ht(8) < ht(«). Supposing that ug has
already been fixed for all roots g of smaller height than «, determines which
Uy € Uy can give rise to fixed points uy.

Recall from Sectionthat we have a Chevalley basis of Liez(G) and correspond-

ing isomorphisms of algebraic groups U, = F. These restrict to
Uar Z{NEF:5()\) > 1} for all r € R,

and if u, corresponds to A, € F, then [y, u;'] becomes (1 — a(y))\s. Because we
are interested in uy, the component u,, is determined only modulo U, (), that is,

Ao modulo {\ € F: #(\) > —a(y)} is all that matters.
Now we compare vy with vh. We note that for all 5 € ®

(30) o((1—=B(v) = (1= B(vh)) = o(B()(B(h) = 1))
= 5(B(h) — 1) = sdg(h) > r > ht(®)sd(7).

By the valuation of a contribution from C(u;}l e u;}k) to [y,u™, is at least
(31) —a(y) + (1 = ht(a))sd(7).

Recall that C(u;}l ,e u;lk) also involves [y, ufkl}. If we use vh instead of v, then
by and we get a new element whose v,-value differs only in the fractional
ideal of F where the valuation is at least

—a(y) + (1 = ht(a))sd(v) + ht(P)sd(y) = —a(y) + sd(7).

So, if the ug with ht(8) < ht(a) have already been fixed, then the condition
for both v and vh leads to two sets of solutions for A\,, and these sets differ only in
the parts of valuation at least

—a(y) +sd(y) —sda(y) = —a(y).

But these parts do not influence the point uy. Hence ~vh fixes such a point uy if
and only if v does. Since this holds for all y € Ag we conclude that

B(G,F)"" = B(G,F)". O

5. THE GrOUPS UY

Schneider and Stuhler introduced an important system of compact subgroups
of GG, which they used to derive several interesting results on complex smooth
G-representations in [18]. These subgroups were also studied by Moy and Prasad in
[12,13] for their theory of unrefined minimal types, and by Vignéras in [23] in the
context of G-representations on vector spaces over general fields.

Let R be the set RU {r+ : € R} U {co} endowed with the ordering

r<r+<s<st+<oo if r <s.
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We define addition and multiplication with positive numbers on R in the obvious
way, so that they respect the ordering. For example
r+(s+)=(r+s)+ and 2-r+=(2r)+.
Starting with the filtrations and we define for « € ® and r € R:

Ua,rJr = U Ua,s; Ua,oo = {1}7

s>r

H,, = U H,, H,, :={1}.

s>r

(32)

Since the filtrations are discrete, we have Uy 4 = Uq ¢ for sufficiently small € > 0,
and similarly for H,, .

For a function f: ® U {0} — R, let Uy be the subgroup of G generated by
Uaca Ua,f(a) U Hy (o). For non-empty Q C Ag we vary on by
(Q, —a)+ if o is constant on £,

(33) fo:dU{0} R, a~ .
Sup,cq (¢, —) otherwise.

For e € R>(, we define
Ug(le) = Ufs*ﬁ‘e'
Notice that the closure Q of € yields f% = f& and hence Ug ) = Ug(f).

Ezample 5.1. Let G = GL,,(F). We identify the standard apartment Ag of B(GL,,, F)
with R™ /R(1,1,...,1), such that the set of vertices is the image of Z". Denote the
smallest integer larger than r+ € R by [r+]. Recall the fractional ideals P in F

for m € Z. For a point = (21,...,2,) € Ag and e € R>o we have
1+ pletl  gplee—zitet] Plen—mitet]
Ul = S el

. ..__'-fmxnfrn—ﬁeﬂ
[21—2n+et] [no1—zntet] fe+]
B B 1+

If e € Z>o and Q C Ag is the standard chamber, defined by 1 >z > -+ > 2, >
x1 — 1, then

Lot g e
et T T ,
US(;) _ . - 1 n qgeJr‘ln‘ o
petl Cqpen et

Notice that Uéo) is contained in the standard Iwahori subgroup of GL,,(F), and that
they are not equal because the diagonal entries differ.

The groups Us(ze) satisfy the following unique decomposition property.
Proposition 5.2 (|3, 6.4.48)). For any ordering of ®°¢ the product map
Hey x [ WS nUa) = U

aEdpred
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is a diffeomorphism. Moreover Ug(le) NNg(S) = Hoy and for a € dred

Ua,ri(0)+e " Usa fz20)+e  of 200 € .

By a diffeomorphism between p-adic algebraic varieties we mean a homeomor-
phism f, such that f and f~! are given locally by convergent power series. The
above product map is obviously algebraic, but its inverse need not be.

There is a version of the unique decomposition property with ®°4 U {0} instead
of ®™4_ Tt follows easily from Proposition since H.y normalises Ug ;.

The above decomposition implies that the subgroups Ug(f) behave well with
respect to field extensions and Levi subgroups.

Lemma 5.3. Let F/F be a finite field extension and let ﬁg(f) C G(F) be defined like
U C G(F). Then U = U nG(F).
Proof. Let S and ps be as on page [7| and let fls D Ag be the corresponding apart-
ment of B(G,F). Then f&(e) = f5(ps()) for all a € . Now apply Proposition [5.2
and Equations and . O

Let Mp = Mp(F) be a standard Levi subgroup of G. Then a maximal split
torus S of GG is a maximal split torus of Mp as well, and the standard apartment
of B(MD, F) is

Ap = (X.(S) | Xu(Ze(Mp))) @z R = (X.(S) / X.(Sp)) ®z R.

Since SA C Sp, there is a quotient map between the apartments
(34) As = Asp, T ap,
in the buildings for G and Mp.

Lemma 5.4. Let Qp be the image of Q0 in the standard apartment Ap of the
building for Mp. Then UY) = US) 0 Mp and

US) = (U 0 Ru(PD) (US) 1 Mp) (U N Rul(P)).

Proof. For Q2 C Ag and a € ®p we clearly have f3 (a) = f¢(a). Asthe groups Uy,
and H, are the same in Mp and in G, the statement follows from Proposition[5.2l [

We are mainly interested in the cases where €2 is a point, a facet or a polysimplex.
Theorem 5.5. For a point x, a polysimplex o, and a general subset Q of an
apartment Ag, the following hold:

(a) Us(f) is open if Q is bounded.

) Ug(;) is compact.
) Ug(f) is normal in Pq.
) ) fizes the star of x pointwise.
e) U((Te) = H;c vertex of o U"’E/’e) Zf@ € ZZO'
) If x is an interior point of o and e € Z>¢, then Ul =y,
) Us(f) ) Uf(ze ) whenever e <eé.

) The groups U(ge) for e € N form a neighbourhood basis of 1 in G.

(i) The group generated by the commutators [Us(f), US(;‘ )] is contained in Uée+e ),
Since Uy, = {1} if and only if r = oo, @follows from Proposition Statements

(c)] and [(d)] show that the order of the product in [(e)] does not matter. The proofs of
(b)H(e)] and [(g)H{(h)] may be found in [18, Section 1.2]. Property[(f)]is [23, Proposition
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1.1], whereas [(i)| follows from [3| 6.4.41]. Notice that so far these properties hold
only for subsets of the standard apartment Ag. However, allows us to define

(35) Ul =g U;f)lg g !

for any non-empty subset €2 of an apartment gAg. Now Theorem holds in the
entire building B(G, F).

We need one more important property. We define the hull H(o,7) of two
polysimplices o and 7 as the intersection of all apartments containing ¢ U 7. This
finite polysimplicial complex is a combinatorial approximation to the closed convex
hull of 0 U 7. Similarly, we can define the hull H(x, z) of two arbitrary points
x,z € B(G,F). The proof of [23, Lemma 1.28] yields

(a) If 2,z € B(G,F) and y € H(x, z), then U\” C U UL,
The fixed points of the groups U, in the standard apartment are described by
[3, 7.44]:

Ag“’k ={z € As: (z,a) > —k},

(36)
AGH = {w € s {a,0) =~k —n7').

for all @« € ® and k € T',,. Let [r]r, for r € R denote the largest element of T',, that
is strictly smaller than r. For z € Ag, (36), Proposition and Theorem [5.5)|(c)|
yield

Agée) ={y e As: (y,a) > |a(z) —e|p, for all a € B},

(37) U Ule
BG,F)U = p, - A%

5.1. The level of representations. The system of subgroups (UQ(;S)>I€B(Q7F)O for
fixed e € Z>¢ is a “consistent equivariant system of subgroups” in the terminology

of [11, §2.2] because of properties @ @, and @ in Theorem and . The

main result of |[11], which was inspired by [9, Section 7.1], uses these subgroups to
construct resolutions of G-representations and suitable subsets thereof. We now
describe this in greater detail.

Let 7 be a representation of G on a Z[1/p]-module V', where p is the characteristic
of the residue field of F. For any polysimplicial subcomplex ¥ C B(G,F) we define

Cu(%5V) = @ VY @2 Z{0}.
ocexn

If 7 is a face of o, then UL C U”) by Theorem [5.5|(e)| above, so that VU~ D VUs”
Fix any orientation of B(G,F) and declare o endowed with the opposite orientation
to be equal to —o € Z{o}. We define a boundary map

(38) On: Cr(Z;V) = Cp1(3; V), VR o v I (o).

Here 0(o) is the usual boundary of o, a weighted sum of codimension-one faces of o.
This yields a chain complex (C*(E; V), 8*), that is, 9> = 0. We augment it by

(39) B: Co(Z;V) =V,  veze .
Ifge Gand g-X C X, then g acts on C.(2; V) by
g-(w®o)=m(glv®g-o,

where ¢ - 0 is endowed with the orientation coming from o.
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Theorem 5.6 (|11, Theorem 2.4]). Let ¥ be a convex subcomplex of B(G,F), let
€ € Lo, and let m: G — Aut(V) be a representation as above. Then (C.(3;V), 0,)
is exact in all positive degrees, and the augmentation map 0y induces a bijection

Ho(%5v) = Y voe,
rex°

Definition 5.7. A (smooth) G-representation V has level e € Z> if

v= Y V&

zeB(G,F)°

This level is similar to the depth of a representation defined by Vignéras in
[22, I1.5.7], generalising [12]|. More precisely, if V' is irreducible and e is the smallest
integer such that V has level e, then the depth of V lies in (e — 1, e]. The category
of G-representations of level e is studied in |11, Section 3]. If V' is a complex
G-representation of level e and ¥ = B(G,F), then Theorem recovers a result
of Schneider and Stuhler [18, I1.3.1]. As we will see later, Theorem for finite
subcomplexes has independent significance.

Let P be a parabolic subgroup of G with unipotent radical R, (P). We let

V(Ru(P)) i= span{r(g)v — v : g € Ru(P)}, Vi) i=V / V(Ra(P)).

The representation (g, (p), V,(p)) of P or P/Ry(P) is called the (unnormalised)
parabolic restriction of V.

Let (p, W) be a smooth representation of P/R,,(P). Inflate it to a representation
of P and construct the smoothly induced G-representation Ind%(W). This is known
as the (unnormalised) parabolic induction of W.

Proposition 5.8. Let P C G be a parabolic subgroup.

(a) If V is a G-representation of level e, then Vg (p) is a representation of
P/Ry(P) of level e.
(b) If W is a representation of P/Ry(P) of level e, then Ind% (W) has level e.

Proof. We first establish (a). We may assume that P = Pp is a standard parabolic
subgroup. Then U C Pp. |3, Proposition 7.3.1] yields G = PpNg(S)Uc for any
chamber C C Ag. Since C is a fundamental domain for the action of G on B(G,TF),

B(G,F)° =G -C° = PpNg(S)UcC® = PpNg(S)C° = PpAS,.
The definition of the level and Lemma [5.4] yield

v= Y vE =3 N pve?

z€B(G,F)° pEPD x€AY
c Z ZP.VUQ(Ce)nMD: Z Z p_VU};b)_
pEPD z€AY pEPp xpEAY

This implies that Vg, (p,) has level e as well:

vt vty
VR“(PD) = Z Z p ) VRU(EI)DD) = Z VRu(?DD)
PEPp zp €AY zpEB(Mp F)°

Now we establish (b). For notational convenience, we assume that P = Pp
is standard parabolic, so that we may identify P/R,(P) with Mp = Mp(F). A
representation of Mp has level e if and only if it is a quotient of a direct sum of copies
of the regular representation on CZ’O(MD/Ux(;)) for points xp in the building of Mp;
here CZ° denotes the space of locally constant functions with compact support. Since
Jacquet induction preserves direct sums and quotients, it suffices to prove that the
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Jacquet induction of C°(Mp/ UQ(CED)) has level e. Inspection shows that this Jacquet
induction is isomorphic to the regular representation on C;°(G/ Ru(PD)UéeD)).
The subgroup Ru(PD)UQEi,) of G is an inductive limit of compact subgroups

because Uéi,) is compact and R, (Pp) is unipotent. It is useful to choose a special
sequence of compact subgroups exhausting R,,(Pp), namely,

K, :=~"(U{) N Ru(Pp))y™",
where 7 is a central element of Mp that is strictly positive, that is, | K, = Ru(Pp).
We also consider the subgroups K, = fy”(Uggi,) N Ru(Pp))y™™ in the opposite
unipotent group; then () K, = {1}.

The space C°(G/ Ru(PD)U;fD)) is the coinvariant space for the right action of
Ru(PD)UgE;) on C°(G). This coinvariant space for an increasing union of compact
subgroups is the inductive limit

C(G/Ru(Pp)UL)) 2 lim C2(G/ K, UL) 2 lim C(G /4" (U 1 PD> "),
Here x is a pre-image of xp in the building for G for the map in . Thus
Uée) NMp = ,Ei,) and

UL = (U N Ru(Pp)) - (U N Mp) - (Uf?) N Ru(Pp)).
Any smooth compactly supported function on G/ 7”(U£e) N Pp)y~" is invariant
under right translation by K, for sufficiently large m because [ K,, = 1. Hence
we may rewrite

C(G/Ru(Pp)UL)) 2 1lim C (G | K™ (UL N Pp)y™™)

)

> 1ig C (G / Kpy" (UL N Pp)y™™) = lim CF (G /4" Uy ™).

Since the regular representations on C2°(G /4"UL)y=m) = C°(G/ULY) have level e,
so has their inductive limit. Hence C°(G /Ry (PD)U(E)) has level e as asserted. [

6. CHARACTERS OF ADMISSIBLE REPRESENTATIONS

We define the character of an admissible representation first as a distribution
and then describe how to interpret it as a locally constant function on suitable
open subsets. Our discussion is purely algebraic and also works for representations
over arbitrary fields whose characteristic is different from the characteristic p of the
residue field of F.

There is a Haar measure p on G such that p(K) € Z[1/p] for all compact open
subgroups K C G by |11, Lemma 1.1]. Let H(G,Z[1/p]) be the Z[1/p]-module of
locally constant functions G — Z[1/p] with compact support. Define the convolution
product of fi, fo € H(G,Z[1/p]) by

(f1 # ) /f1 ) fa(g™R) dpa(g).

We call H(G, Z[1/p]) endowed with this multiplication the Hecke algebra. It is an
associative idempotented, non-unital Z[1/p]-algebra. Every element of G naturally
defines a multiplier of H(G, Z[1/p]), but is not contained in H(G,Z[1/p]). Given a
pro-p compact open subgroup K C G, we let

(K) = w(K) "1k € H(G,Z[1/p])
be the corresponding idempotent.

A smooth representation 7 of G on a Z[1/p]-module V becomes a H(G, Z[1/p))-
module in a natural way, and we have (K)V = VX the module of K-invariant
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vectors in V. We call an H(G, Z[1/p])-module W smooth if W = lim (K)W, where
the limit runs over all pro-p compact open subgroups K of G. There is a natural
equivalence between the following categories:

e smooth representations of G on Z[1/p]-modules,
e smooth H(G,Z[1/p])-modules

(see |11} Proposition 1.3]). We say that a representation G' on a K-vector space V'
has good characteristic if the characteristic of the field K does not equal p.

In good characteristic, we may define the algebra H(G, K), whose smooth modules
are in bijection with smooth representations of G on K-vector spaces. Such a
representation (7, V) is called admissible if VX has finite dimension for all compact
open subgroups K C G. An admissible representation in good characteristic gives
rise to a distribution

0.: H(G,K) = K, fe=te(n(f),V).

If K = C, then Harish-Chandra’s Theorem shows that this distribution is
associated to a locally integrable function, that is, 0.(f) = [ f(g) - tr=(g) du(g)
for all f € H(G,C) and a locally integrable function tr7T Furthermore tr, is
locally constant on the subset of regular semisimple elements. Since this subset
has full measure, the distribution 6, is determined by the values of tr; on regular
semisimple elements. If V' has infinite dimension, then tr, is not locally constant
near a unipotent element u because the closure of the conjugacy class of u contains 1
and tr;(1) = dimV = oc.

Since integration requires analysis, the notion of a locally integrable function is
unclear for a general field K. The following definition of a character function makes
sense for any field K:

Definition 6.1. Let (7, V) be an admissible K-linear representation of G and let
g€ G We write tr, (g) = T € K if there is a compact open subgroup K such that
tr(7( =7 [ f( ) for all f € H(G,Z[1/p]) that are supported in KgK.

By definition, the domain of definition domtr, of tr, is open in G, and tr,
is locally constant on domtr,. Moreover, the trace property of 6, forces the
function tr, to be a class function, that is, dom tr, is invariant under conjugation
and tr,(grg~1) = tr.(z) for all g € G and = € dom tr,.

In the following sections, we will show that dom tr, contains all regular semisimple
elements, and given such an element g, we will describe a subgroup K for which tr,
is locally constant on KgK. We begin with some preparatory results. First we
describe the trace distribution as a limit of locally constant functions and relate the
latter to the trace function.

Let K be a compact open pro-p subgroup of G (these exist by [11, Lemma 1.1]).
Since the space VE of K-invariants in V is finite-dimensional, the linear operator
m((K)g(KY)) has finite rank for all g € G. Hence

xx(9) = tr(n((K)g(K)), V) = u(K) " tr(n(lxg), V) = p(K) " tr(n(lgx), V)

defines a K-biinvariant function on G; here we used that 7(g(K)), 7((K)g(K)), and
7({K)g) have the same trace. By construction,

(40) te(m(f),V) = /G £(9)xx (g) du(g)

for all K-biinvariant compactly supported functions f on G. Let (K,)nen be a
decreasing sequence of compact open pro-p subgroups with (| K,, = {1}. Then any
locally constant, compactly supported function is K,,-biinvariant for some n € N,
so that holds for K = K, for all sufficiently large n. In this sense, the trace
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distribution is the limit of the locally constant functions xx in a distributional sense.
The following lemma is trivial:

Lemma 6.2. The trace function exists at v € G and has value T if and only if
there is ng € N with xk, (9) = 7 for all g € K,,7Kn, and all n > ng. Furthermore,
then try is defined and constant on K, vK,,.

Let v € G be a regular semisimple element. Then ~ is contained in some maximal
torus T'. Let T™° C T be the subset of regular elements. It is well-known that the
map

(41) V: G/T x T™ = G, (gT,t) — gtg™ ',
is open. We are going to quantify this statement by providing compact open

subgroups K, K¢ C G, and Ky C T such that ¥(KgT x Kr7) contains KyK for a
given regular element v of 7. We first consider the split case.

Lemma 6.3. Suppose that T' contains the maximal split torus S of G. Then the
map
Ut = U uw [u,y)]

s a diffeomorphism.

Proof. For o, B, + B € ® U {0}, we have [Uy,Us] C Uqy3, where we interpret Uy
as Zg(T). Let U™ be the group generated by the U, with a € ®* of height at
least n. Then

Ut=vWou®o...out®) 5 (1}

is a filtration of U™ by normal subgroups. Moreover, as algebraic groups

v s ] 0ftin
acd(n)

where ®(™) denotes the set of roots of height n. The group U, /Us, carries a canonical
F-vector space structure, so we can speak of Au, for A € F and u,, € U, /Usq.
Given v € U™, we recursively construct u,, € U™ such that

[un ce e Ug .ul,f}/] c vU(n+1).

Then u := upg(p) - - uz - u1 belongs to U™ and satisfies [u,v] = v. The construction
will show that the u,, and hence v depend algebraically on v and that the class
of u, in U™ /UM+Y) is unique. It follows that the map u — [u, 7] is bijective and
that the inverse map is algebraic.

Let wy, = [uy---u2 - u1,7] and define wy := 1. These elements satisfy the
recursive relation

—-1_-1 —-1_-1
Wp = UpUp—1 """ ulry(un—l o ul) YoYU Y

Y=y [t wn] [, Al

If u, € U™, then [u,,] € U™ and [w, ', u,] € U because [Ut,UM™)] C
Ut Since U™ /UMY is commutative, we have w, € wy,_1[u,,y]U"Y.
Hence u,, must solve the equation [uy,,~] € w;, ! vU™ . As

-1 -1 1 -
= Wp-1W,, _1UnWn—-1Uy, Up YU, Y

[tas7] = (1 - a(’y))ua for ug € Uy /U,

the map [?,7]: U™ /U+D) — ™) /g(+1) s invertible. Since w, ;v € U™ by
induction assumption, there is a unique coset wu, U™ with wy,_1[u,,y]U"t) =
vU™ Y | and it depends algebraically on w;llv. We may pick a representative in
this coset by an algebraic map. If we do this in each step, then the final result u
depends algebraically on v and satisfies [u,y] = v. In each step, there is a unique
way of lifting a solution of the equation [u,7] = v from UT /U™ to Ut/ UM+,
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in the first step, there is a unique solution in U+/U(2). Hence there is a unique
ue Ut with [u,7] = v. O

Proposition 6.4. Suppose that the maximal torus T containing v is split, so
that G is split. Let Ag be the apartment corresponding to S = T, let x € Ag,
and let v € R>gq()- Then the map ¢ in restricts to an injective map from

(Uéo)/HoJr) X H,y~ onto a neighbourhood of v that contains U,é’”)fy.
Proof. First we prove injectivity on the indicated domain. Assume ¥ (g17,¢1) =
Y(goT,tz). Then gy tgit1gy ‘g = t2 € T. Since t; is regular, this implies g5 'g1 €
Ng(T). But Ng(T)n U;O) =Zc(T) =T, so that 47 = goT and therefore t; = ts.
Since G splits, the definition (8) yields H, C T. As ¢(u, hvy) = [u, hy]hy, Lemma
shows that ¢(G/T x H,,v) contains U H,.,~ for any positive system & C ®.
We may decompose any element of Uﬁ”y asy =y, -y_-yo with yx € Ut N Uér)
and yo € Hy47y. There are vy € Uy and u_ € U_ such that

Yiyo = uryouy' and y_yo = u_you .

Now sd(yo) = sd(y) > 0 and [u4,yo] = y+ € Ul force Ut € Ul c . For
the same reason, u_ € Ulr=sdm) 5 good approximation for ¢ ~1(y) is (u_u,yo):
(42) Pu_uy,yo) = u_uyyoui 'u=' = u_y,you '
= u_yruZy-yo = [u—, y+ly+y-yo = [u—, y+ly.
Theorem |5.5/{(1)| yields
[u_,yy] € [UT4D, U] c UPr==4t),
but we can be more precise. Let r’ > r the smallest number with UQET') #* Ui,

Choose € € (0,7 —r) such that Ul =y» (this is possible because the filtrations
and are discrete). Now Theorem 5.5]|(1)| yields

[U_, y+] S Uzgrl).

In other words, ¥ (u_u,yp) =y in Pz/UéTl).
Next we try to find a solution of the form ¥ (u_uyg,tyo) = y. By this is
equivalent to

P(g,tyo) = ui'uZtyu_uy = (u_uy)Hyy, u](u—uy) yo.

Since u_uy € UQEO) C Ng (Uy,)), the right hand side lies in Ug(f/)yo. Thus we
transformed the original problem

(U /Hoy x Hyyv) 2 Uy
to the problem

¢(U£O)/H0+ X Hyiy0) 2 Uy

Since H,+v = H,1yo, ' > r and

U yo C UL Hyyy € U,
repetition of this process yields a solution ¢ ~1(y). O

Now we consider a regular element 7 of a non-split maximal torus T' = T (F).
Furthermore, we want to generalise the statement by allowing the choice of an
arbitrary = € Ag. Let F be a splitting field of 7, let G = G(F), and let T := T (F).
This is a split maximal torus in G, which therefore corresponds to an apartment flf
in the building B(G,F). Recall the subgroups H, C Z5@) (T(IF‘))
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For z € B(G,F), let 7 (x) be the point of A that is nearest to 2. Let W be the

root system corresponding to an apartment of B(G, IF‘) that contains z and mrp(x).
We define

(43) dr(z) := max [B(mr(z)) — B(z)].

Be\pred

If F/F is tamely ramified, then shows that AT N B(G,F) is non-empty, that is,
there is z with dr(x) = 0. .
Alternatively, let C C A4 be a chamber containing mp(z), let PA.c" B(G,F) —

flT~ be the associated retraction. Then

dr(x) = max a(mr(@)) - alpj, c(@)]

Proposition (c) yields

(44) dr(z) < ht(®)sd(y)  for all 2 € B(G,F)7.
Lemma and yield

(rt+dr(2)) _ [7(r+dr(@)) 7 (r)
(45) plrtdr(@) = glrtdr@) n g(F) C U@ N Ue-

Lemma 6.5. Let v € T be regular and let v € Rxyq(). Let x € B(G,F) and
abbreviate K, = Ui(;)(w) NG. Then UJ(CTerT(I))'y 15 contained in 1/)(Kx X (ﬁnyﬁT)).

Proof. Equation and Proposition show tNhat every element of Ua(fHdT(m))w
is conjugate in G(F) to an element of H,.v N T (F). Since the maps

¥ (G(F)/T(F)) x T(F) = G(F) and <: (G(F)/T(F)) x T(F) — G(F)

are injective and open, respectively on Ug)(w)/f[% X (ﬁH’y N T(]I:’)) and on the
intersection of this set with G,

()

x (H4yNT(F))) NG.
Moreover, by Proposition the right hand side contains

(46) Uy NG DOy n G = glrtar@y, O

There is a decreasing sequence (K,,)nen of normal compact open subgroups in K,
with () K, = {1}. Since K, is open in GG, we may use this sequence to approximate
the trace distribution as in . Since K, is normal in K, then the space of
K,,-biinvariant functions is invariant under conjugation by elements of K. This
implies that the function g, is invariant under conjugation by elements of K.
Therefore, Lemma shows that xx, is constant on UQEHdT(z))W once it is constant
on ﬁH_’y NT. In the following, we may therefore restrict attention to elements of a
torus in G.

7. THE LOCAL CONSTANCY OF CHARACTERS

Let (7, V) be an admissible representation of G in good characteristic, of level
e € Z>p. Let v be a regular semisimple element of a maximal torus 7' C G and
let € B(G,F)° be a vertex in the building of G. We are going to find r(y) € N
depending only on v and the level e of the representation, such that tr, is defined

and constant on UéT(VHdT(m)) with dr(z) as in .
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7.1. Local constancy for compact elements. First we assume, in addition,
that v is a compact element, so that ~ fixes some point in the affine building. The
assertions for general elements are reduced to the compact case in Section [7.2]

Our definition of r(v) is somewhat complicated and probably not optimal. It
is likely that r(vy) = max{sd(y),e} works, but we can only prove this if T has a
subtorus S that is a maximal F-split torus of G.

Let T = T(F) C G be a maximal torus containing v and let F/F be a finite Galois
extension splitting 7. Recall the subgroups Ut c G(F) and H, C 25 (T(]F))
Let B be a Borel subgroup of G(F) containing 7 (F) and let U, be its unipotent
radical. We define U:,‘f = ﬁ; N G. Since B need not be defined over F, T’ x U}' need
not be a Borel subgroup of G. In fact U;f can be reduced to {1}, for example if T
is anisotropic.

Definition 7.1. For x € B(G,F) define dr(z) as in and let d(y) € R be the
smallest number such that

(47) BG,F)" C U} - {w € BG,F) : do(a) < d(x)}.
We have d(y) < oo because B(G,F)Y/T is compact.

Theorem 7.2. Define r(7y) := max{ht(®)sd(y),e+d(v)}.

(a) The function tr, is defined and constant on ’YHr(»y)-s- NT, and on all G-
congugacy classes intersecting this set.

(b) The function tr, is constant on UgET(VHdT(w))fy, for any x € B(G,TF).

(¢) If T has a subtorus S that is a mazimal F-split torus of G, then d(y) =0
and we may omit the factor ht(®) in the definition of r(v), that is, tr, is
constant on vﬁmax{sd(,y)7@}+ NnT.

If F/F is tamely ramified, then shows that there is a point = € B(G,F) with

dr(z) = 0, so that tr, is constant on U;T(V))fy.

The number r(v) will reappear frequently in the following. We will not need the
definition of r(7) but only Theorem [7.2}(a). That is, the following results remain
true for a smaller value of r(y) provided Theorem [7.2}(a) can be established for it.

Proof. (a) Theorem implies a formula for tr(w(f), V), which is worked out in
[11, Proposition 4.1]. We need some notation to state this trace formula. For
g € G, let X9 be the set of all polysimplices o € ¥ with go = o and let ¢,(g) = £1,
depending on whether the automorphism of ¢ induced by g preserves or reverses
orientation. For a locally constant function f supported in P,, [11, Proposition 4.1]
asserts

. imo (e)
(48)  tr(n(f),V) =lim Fl@) D (=)™, (g) tr(n(g), VY") dulg),
9ELs oexy
where the limit means that there is a finite convex subcomplex g such that the
right hand side is the same for all P,-invariant finite convex subcomplexes ¥ of
B(G,F) with ¥ D ¥y. Thus we want to show that the function

(49) g 3~ (g) tr(n(g), VUS)
oexg

is constant on UQET(””dT(”))y for all sufficiently large P,-invariant finite convex

subcomplexes 3. The function 7y is invariant under conjugation by elements of P,
because ¥ is P,-invariant. 3

Lemma yields B(G,F)? = B(G,F) for all g € H,(,y4vNT, because r(7y) >
ht(®)sd (). Since
(50) —E[e—i-dT(m)—&- C U(eerT(I)) C N:ge)7

wr(x)
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the operator m(g~17) restricts to the identity on VUs” | for all z with dr(z) < d(7).

Let D be a set of simplices in B(G,F)?, such that D is a fundamental domain
for the action of U;: on Uy - B(G,F)” and every o € D contains an interior point x
with dr(x) < d(y). Equation becomes

(61 m5(9) = Y. w9 tr(m(g), V) = S eo(ugu) tr(r(u gu), VI,
uoE€x9 uo €9

where the sum runs over all polysimplices uo € X9 = 37 with ¢ € D and u € U:,Jf .
Notice that we pick only one u for each such polysimplex. Given another u; € U;
with uyo = uo, we have uy 'u € Py, so 0(uy,9) = 0(u, g), where

O(u,g) == eo(u" ' gu) tr(7r(u_1gu)7 VUf(fE)).
Recall that
{ucUf :[utgleP,}={uclU :g(uos) =ucs}.
The equality 9 = X7 implies that
fueUt :utgleP}={ucU":[ut ] ecP,}

We denote this set by U (o) and we write Ut (0) = U (0) N G. Let p be a Haar
measure on U, normalised so that (U (0)) = 1. Now we can rewrite as

™(9) = Xpep T=.0(9), where
62 mol) = X bwo= Y b= [ olug)dut).
usESINUF o weU (o) /UL NP, Uz (o)
By Lemma [6.3] the map
by : Ut U ums [ul,g]

is a diffeomorphism. We claim that qﬁ;l(U}') =Uf.

It is clear that ¢;1(U;f) D U4 Suppose that u € ¢;1(U7J5), that is, u " tgug™! €
U} NG. For any 7 € Gal(F/F) we have

Goutgu="1u"tgu) =1(u Hgr(u),

so T(u)u=t € ) (g). Since (77"5 is unipotent and F-split, the same holds for \u
with A € F. Hence

Pl € Zgg (9)° = T(B).
Also 7(u) is unipotent and 7(u) € T(F)u C B, we must have 7(u) € Uj;. Then
r(w)u~t € Uf N T(F) = {1}, which means that 7(u) = u. Hence u € Uj N
g(fF)Gal(]f’/]F) _ U;f.
As Ujf (o) = byt ( T (o) N P,), ¢, restricts to a diffeomorphism
¢y : U (0) = P, NUL.
The same statements hold for ¢, : U — U For every u; € U (o), thought of as

appearing in 7s (g), the element uy = ¢ (¢4(u1)) appears in 75, 5(7). We do not
know whether u;0 equals uso or not, fortunately that is not needed. Now

0(uz,7) = € ([ug s 11) tr(m([uy " 717), V)
= e ([ur ", glg(g ™)) tr(w((ur ', g w(g)m(g "), VI=).

Since ©9 = X7, g~y fixes o pointwise, while in view of and the definition of D,
7(g~17) acts as the identity on VUs” | Therefore

(53) O(uz, ) = eo ([urt, 919)) tr(n(urt, glg), V=) = B(ur, g),
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which shows that every term of the integral also occurs in 7y, » (7).
The proof of Lemma shows that (with respect to any basepoint in U;f ) the
generalised eigenvalues of the differentials

Dé.,, Dy : Lieg(Uf) — Liez(U7)

are {1 —a(y):a € ®t} and {1 — a(g) : @ € ®+}, and they occur with multiplicity
do := dim Lieg(Uy /Uzq). The restriction h =y~ 1g € Hyq(y)+ N T(F) implies

v(l —a(g)) = v(l —a(y)a(h)) = v(l - aly) +a(y)(1 - a(h))) = v(1 - a(y))

for all € ®. Hence ¢, ¢, : Ut — Uz both have Jacobian [Tocar 11— a(g)H%“,
at any point of U}'

The group U; need not be defined over F, but it always equals the Gal(fF/IF)—
invariants in the algebraic F—group (7;5 . The Galois group permutes the roots
of (G,T), so the invariants are contained in the product U% of the root groups
U, (F) for which Gal(F/F)a ¢ R(B,T). The action of Gal(F/F) on U% is given by
permutations of these roots and the Galois action on F. It follows that the Galois
invariant elements U;f in U% form an analytic F-variety, diffeomorphic to a vector
space.

Knowing this, a direct calculation shows that (at any point of U}) both ¢,

and ¢, : U — U have Jacobian [, ||1 — a(g)H%‘*/[F:F], where the product runs

over all @ € ®* such that the restriction of a to T appears in Liep(U;). As the
diffeomorphisms ¢4, ¢, : Uf (¢) — P, N U7 have the same Jacobian, and by (53),

molo)= [ omadu = [ 0067600, )

Ut (o)
= [ bt dn() = ().
U (o)
This holds for all o € D, so
ms(9) = Z Ts,0(9) = Z Ts.0(7) = 12(7).

oceD oceD

(b) Lemma shows that any element of U,ET(W)MT(I))'V is P,-conjugate to one of
vH,(y)+ NT. Hence (b) follows from (a).

(c) To a large extent we will copy the proof of part (a), but we take advantage
of UT - Ag = B(G,F). This clearly implies d(v) = 0, so that D is a collection of
simplices of Ag. This D works for both v and g = vh. We may replace ht(®)sd(y)
by sd(v) in the definition on r(v), because the factor ht(®) was only needed to
ensure that B(G,F)? equals B(G,F)".

With these choices the proof of (a) mostly goes through, even though we do not
know whether or not g and  have the same fixed points. We now have two possibly
different sets Uq‘f (o), one for g and one for v, but the map ¢- Lo ¢, still provides a
diffeomorphism between them. [l

7.2. Local constancy for non-compact elements. We would like to generalise
Theorem to all regular semisimple elements. This is possible using Jacquet
modules and parabolic restriction as in |5]. Although the methods in [5] are algebraic
and not restricted to complex coefficients, Casselman refers to earlier work which was
written with complex representations in mind. This makes it hard to judge whether
Casselman’s proofs work for representations in good characteristic. Fortunately,
Vignéras [22] proved the required results in this generality.
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Let v € T be a semisimple element and let P, C G be the parabolic subgroup
contracted by -y, which is defined in . Since F is complete with respect to the

valuation v, Proposition .’ shows that ~ is compact in M,. It follows from
Proposition that Lieg Ru(’PW)) C Liep(G) is the sum of all eigenspaces of
Ad(v) corresponding to eigenvalues with strictly positive valuation. (Although
the eigenvalues may lie in a field extension of F, this subspace is defined over F.)

Similarly, Ry (P, -1) corresponds to the y-eigenvalues with strictly negative valuation.

The description of (standard) parabolic subgroups in Deﬁnitionshows that M.,
contains a maximal split torus of G, say S,. It may happen that v ¢ S.,. Let x be a
point of the apartment A, of B(G,F) corresponding to S,. Proposition implies

(54) Ul = (U NRu(Py-1)) (U N M) (U NRy(Py)),
or, in other words, UI(e) is well-placed with respect to (P, M.,). The collection

X ={gz € B(G,F) : g lies in the maximal compact subgroup of T’}

is finite and y-invariant. Since 7' C M., the subgroup Ua(f) is well-placed with respect

to (Py, M,) for every 2’ € X. The group K© = Nerex US) is also well-placed:
K© = (K© AR (P,1)) (K© N M) (K€ NRu(P,)) = KKK,
It follows that
VKO 2 K ROy = K, kT C K,
so that the sequence K(©) for e € N has all the properties claimed in 6]

Theorem 7.3 ([22, 11.3.7]). Let (7,V) be an admissible smooth G-representation
in good characteristic and let g € G be such that Py = P,. There exist increasing

. (e)
sequences of finite-dimensional vector spaces Ve c VK( ) and V(e) ) - Vé"(&)

Ru(P.
such that i
() U VO @ VR(P,) =V and U, Vi p. ) = Vi,
(b) The quotient map V. — V/V(Ru(Py)) = Vr,(p,) restricts to bijections

. A E© K
Ve Véi)(Pw) and (U, V)" = Vo, ),

(c) V() is stable under T(1gergr)-

This setup allows us to use the (elementary) arguments from [5, page 104], which
result in

e e _ K(C)
(55) tf(M(K( JgK(©) "T(lggr@),V) = tr(WR“(PA,)(g)avRuo(p,y))

for all g € G with P, = P,. Notice that the set of such g is contained in M., so it
is not open in G unless v is compact in G.

Theorem 7.4. Let vy be a regular semisimple element. Then tr,(v) and g ) ()
are both defined, and they are equal.

Proof. Since vy is compact in M., Theorem tells us that trr, P, 18 well-defined

and constant near 7. Pick an e € N such that it is constant on 'yK((]e). Now
yields

. (o)
g py (1) = 01 (TR, () (7 % (K )>), Veu(p,)) = tr(mr.p,)(7), Vp{io(p,y))

= tr (K Oy K ©) (1o xc0), V).

As the subsets K(©)vK () form a neighbourhood basis of v in G, taking the limit
e — oo and invoking Lemma shows that tr,(v) is well-defined and equals

e, p) (7). O
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This theorem, which Casselman [5] proved for complex representations, enables
us to reduce the computation of traces from general semisimple elements to compact
semisimple elements. Theorem [7.2]tells us on which neighbourhood of + the function
g p) is constant. But this is only a neighbourhood in M,. We also want to
know on which neighbourhood in G the function tr, is constant. Let () be such
that Theorem (a) holds when we view v as a compact element in M, .

Theorem 7.5. Let v be a regular element of a (not necessarily split) mazximal
torus T of G. Let (mw,V) be an admissible representation of G of level e in good
characteristic.

(a) The function tr, is defined and constant on ﬂr(7)+7 NT, and on all
G-conjugacy classes intersecting this set.

(b) The function tr, is constant on UéthdT(w))’y, for any x € B(G,TF).

Proof. For every root a € <I>(Q(I~F),T(I~F)) and every g € f[r(v)yy N T we have
6(a(g)) = ﬁ(a('y)) because gy~' is compact. Together with , this implies
P, = P,, so that Theorem H applies to all g € ﬁr(,y +yNT and tells us that
tre(g) = trwRu(Pw)(g). Theorem and Proposition show that trr, .  is

constant on H,.(,)4y N T, so the same goes for trr. This proves (a), from which (b)
follows upon applying Lemma [6.5 O

This theorem is similar to |1, Corollary 12.11], which was proved only for complex
representations and “tame” elements . Our neighbourhoods of constancy are
usually smaller than those in [1], because Theorem (a) is not optimal. The
results of Adler and Korman suggest that Theorem could be valid whenever
the maximal torus T splits over a tamely ramified extension of F. Possibly this has
something to do with Rousseau’s result .

8. A BOUND FOR THE DIMENSION OF VX

In this section, we will use the resolutions of [11] to estimate the dimension
of VUi” for an admissible representation (m, V) of G in good characteristic. We
abbreviate K, 1= UL,

First we estimate the growth of some related double coset spaces in order to show
that our later estimates are optimal, at least for GL,,.

Since every irreducible smooth representation is a subquotient of a parabolically
induced one, the essential case is V = Ind% (W), where P is a parabolic subgroup
of G and (p, W) is a supercuspidal representation of P/R,(P). There is a natural
isomorphism
(56) Vi~ (@ whnekes

PgK.
where the sum runs over all double (P, K.)-cosets. The space P\G/K, is finite
because P\G is a complete algebraic variety (and hence compact in the p-adic
topology) and K. is open. We will discuss how |P\G/K.| grows as e increases,
under some simplifications. If P is a Borel subgroup and p is a character, then
|P\G/K.| and dim V¥¢ have equivalent growth rates.

Suppose that G is split. Let S be a split maximal torus of G and let Pp be a
standard parabolic subgroup of G. The dimension of Pp\G is

dim(Pp\G) = dimp (LieF(G)/LieF(PD)) = Z dimyg Liep(Uy,) = |27| — [}
ac®—\o

Let z € Ag. By construction, the groups K. decrease equally fast in every direction;
if K. corresponds to a lattice L(¢) in Lier(G), then K41 corresponds to PL,
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where P is the maximal ideal in the maximal compact subring of F. Hence a
double coset PpgK. contains approximately ¢@™(PP\G) double (PD, K€+1)—cosets.
Therefore, |Pp\G/K.| grows, in first approximation, like ¢¢4™(Fp\G),

Now we focus on the easier example G = GL,, and let P and S be the stan-
dard Borel subgroup and the standard maximal torus in GL, (F). The irreducible
representations of S = P/Ry(P) are characters. Let (p,C) be such a character
and let V' be the parabolically induced representation of G. Since any character is
trivial on K, NS for large enough e, CPN9keg™ =~ C for large enough e, so that
dim(VEe) = |P\G/K,| for large e. These numbers are routine to compute:

(57) |P\G/K9‘ ~ enflqen(nfl)/2

in the sense that the quotient of both sides tends towards a constant as e — co.

For complex representations, we may use the growth rate of dim V¢ to estimate
the growth of the character. It will, however, turn out that these estimates are far
from optimal. The idea is simple enough: if tr; is constant on K., then

tra(y) = |K17| /K ) () = r(r({Ke))).

Equip the finite-dimensional vector space V0 with some norm. Since the range of
(K.)v is contained in Ve C V&0 and the largest eigenvalue of (K.)v is controlled
by the operator norm |[{Ko)v(Ko)|.,, we get the estimate

lloo
(58) [trx(9)] < [{(Ko)y (Ko)ll - dim Ve

Since the function v — (Ko)v(Kp) is locally constant, the local growth of the
right hand side is equivalent to that of dim V%<, This depends on ~ via e. For x
sufficiently close to the set of singular elements (namely, for sd(v) > e+ d(v)) we
may take e = sd(y) by Theorem

Unfortunately, a direct computation for GL,, shows that

oo
ZdimVKe -u{g € Ko :sd(g) = e}
e=0
diverges, already for GLo. Hence the estimate does not imply the local
integrability of tr,. The authors have not been able to detect the additional
cancellation in our trace formula that makes the character locally integrable.
Instead, we estimate of the growth of dim VX, For convenience, we assume that
2 = o is the origin of the apartment Ag and that e € Z>.
Theorem assigns to every convex subcomplex ¥ of B(G,F) a subspace of V,
namely the image s VU of 8y Co(X,V) — V. This space admits an
important alternative description if ¥ is finite.

Theorem 8.1 ([11, Theorem 2.12]). The elements

ug = 3" (~)Im ULy e H(G, Z[1/p))

are idempotent and

uOH(G,Z[L /) = S (UEYH(G, Z[1/p)),

(1 —uH(G, Z[L/p) = () (1~ (U))H(G, Z[1/p)).

In particular,
im(9p: Co(X,V) = V) = Z VUL _ US)V.
zEN®
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It is shown in [11] that there is a convex subcomplex ¥y such that (Ué”)u(;) =

( ér)>u(§0) for all convex subcomplexes ¥ with ¥ D 3. The following lemma

describes Xg explicitly. To state it, we need some notation. For o« € & we define
Agt ={z € Ag: (z,a) >r},
Ag?r ={z € Ag: {(z,a) € [-rr]}
Ag, ={r € As : (z,a) < -1},

and for any map e: ® — {4,0, —} we write

Gr= () A4S
acd

Most of the sets AGS,T are empty, some are compact, and the others are unbounded.
The non-empty Ag . partition Ag. Let A% . be the union of the bounded A ,; this
is a polysimplicial subcomplex of Ag which is star-shaped around o. The subcomplex
B, =P, A%J of B(G,F) is obviously stable under the action of all the groups Ués)
for s € R>g. We may think of B, as a combinatorial approximation to a ball of
radius r around o.

Lemma 8.2. Letr € Z>. and let ¥ C B(G,F) be any finite convex subcomplex that
contains B,._.. Then

U = Uy

o r—e

= Y (=D)rEu)NU).

c€EB,_.
Proof. Fix e: ® — {+,0,—} such that Ag, _ is unbounded. First we establish
( é”><Uff)> = éT)><UI(f, ) for certain facets F, F' C Ag, .. The coroots a" € @V
with €(«) = 0 span a proper subspace Afm_ C Ag. We may pick a non-zero vector
0¢ € Ag such that

(1) d¢ is orthogonal to Ag |,

(2) A%,r—e + RZO(SG c Ag',r—eV

(3) 6¢ lies in the span of an irreducible root subsystem ¥V of ®" (here we
decompose ®V as a direct sum of irreducible root systems).

For every facet F' C A%’,r—e let M(F) C Ag,r_e be the unique facet such that for all
x € F there exists A > 0 with x + X - §¢ C M(F). We claim that

(59) (USWUE) = (USOWULGpy)  for F C A, .
In view of the unique decomposition property (Proposition this is equivalent to
(U VUE) MU = (U VUL ) N0 for all o € 079,

By definition, Uér) NUy = Uyyrs and Ul(f) NUs = Uy —a@z)4et for x € F. If
€(a) = —, then —a+e > r on F'UM(F), so that

Unrp 2 Ua N (U VUL )

If €(a) # —, then sup,cp —a(z) < sup,epry —a(z), which combined with Uéf) C
U](Ve[)(F) yields Ul(f) NU, = U](\f[)(F) N Uy,. This finishes the proof of .
Now we use to establish some cancellation. Every facet F' in Ag can be

written uniquely as F' = Fy x F'| , where Fiy and F| are facets in R¥"Y and UL C Ag,
respectively. Consider a facet F' C A§7r_ . such that M~1(F) is not empty. Then
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M(F) = F, and M~1(F) consists of facets of F. Property (3) above shows that
F| =F, for any F' € M~'(F). Hence

U F'=71xF|,
F'eM—1(F)
where 7 C RUVY consists of the facets of Fy that contain points of the form = + Ad¢
with z € F and A > 0. In particular, 7 is diffeomorphic to

(1,116 +{z € F: (z,0° =c}

for some ¢ € R, so that the Euler characteristic of 7 is zero. Therefore,
(60) Z (_1)dimF’ _ Z (_1)dimF&,(_1>dimFL _

F'eM—1(F) FreM—-1(F)
Z (71)dim‘r'(71)dimFL =0,
7/ facet in T

which together with yields

(61) S (IO UE) = 0 e HIG,Z[1/p).
FreM—1(F)

Suppose that Ag is any apartment of B(G,F) that contains o and at least one facet
F' € M~1(F). As §¢ points away from o, the apartment Ag contains points of F, so
that F C Ag. This enables us to extend the map M to all facets of B(G,F). Recall
that any Weyl chamber Ag‘ C Ag is a fundamental domain for the action of P, on
B(G,F). On A} we define M according to the above recipe and by M(F) := F if
FC A%W_E N AL, The properties (1)—(3) of §¢ ensure that M(F) and F have the
same isotropy group in P,, so we can extend M P,-equivariantly to B(G,TF).

Since X contains o and is a convex subcomplex of B(G,TF), its collection of facets
is stable under M. By definition

(U yus? = (UD) D (=) i)
oex
=@ Y > i),
F facet of ¥ F'eM—1(F)
Now (which only holds for facets of unbounded Ag, ) shows that the facets
of ¥\B,_. do not contribute to this sum. As M is the identity on facets of B,_,
we remain with <UO(T))u(;) = (Uér)>ug§376. O

Remark 8.3. Lemmaprovides a direct proof of the special case of [11, Proposition

3.6] where the consistent system of idempotents is (Uée)% this proof does not use
the fact that the Hecke algebra is Noetherean.

We turn to the space of invariants VUs” . Since it has finite dimension, it is
contained in the range of u(; ) for some finite convex subcomplex ¥ C B(G,F). We

may as well assume that ¥ contains B,_., so that Lemma [8.2] yields

(r) r e ego T e
VI = WY = (3 ()M ) s v.
o€EB,_.

The right hand side is contained in ) po <Uo(r)><U;£e)>V by Theorem [5.5l(e)
It is the space of U\ -invariants in Y weBo. <U£G)>V because >, o (UMY is
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P,-invariant. Let P, D (UO(T)> act on P, cpo ( £6)>V by g- (z,v) = (g z,7(g9)v).
Then Y, po (U)W US?)V is a quotient of @, o (US”)V. The addition map

(@ <U;e)>v)U‘ST) -(z <U;e>>v)w

z€EBY_, x€B?°

r—e

is surjective because Uér) is compact and we are working in good characteristic.
Since there are only finitely many G-orbits of vertices in B(G,F),

(62) my = max dim VUs"
z€B(G,F)

()
exists. The dimension of (@, cpo <U§e)>v) Ys" is at most mV|Bf3_€/U(ET)|.

It remains to estimate the number of UéT)—orbits of vertices in B,_.. For o € ®
let d,, be the dimension of Liep(U, /Uaq) and let dg be the dimension of Lieg(Z¢g(S)).
Recall that ¢ = |O/%| and that n_'Z is the set of jumps of the filtration of Ul,.

Lemma 8.4. The number of Ué”—orbz’ts on B2

r—e

dana | d2anoa
Q :=exp <log(q) Z —5 + T)

aedred

is of order O(r&mAs Q) where

Proof. Recall from and Proposition that

P,=U,N, =USU,; (P,NNg(95)),
for any positive root system ®* of ®. Hence every facet of B,_. = P, - Ag,rfe is of
the form u- F with u € UU, and a facet F of Ag. Fix F and choose a positive root

system ®* such that a(F) > 0 for all « € &*. Then U, C Uy fixes F pointwise,
so that we only need w € U;. By Propositions [3.2li(b)| and the product maps

I Veo—U [ @.nu?)—vtnu?

aedredndt aedredngt+

are diffeomorphisms. Together with the conventions we get

63) (U U U = ] [Uaw:Ua U
aedredNd+
= H [Ua,OUQa,O : Ua,r+U2a,2r+]
aedrednd+
- H [Ua,O/UQa,O : Ua,r+/U2a,2r+] : [UZQ,O : U2a,2r+}-
aedredndt

Since we are dealing with unipotent pro-p-groups, these indices can be read off
from the Lie algebras. For a € ® and s € n,'Z, the construction from (7)) and
shows that U,,s 2 Uq,s+ corresponds to multiplying a lattice in Liep(U,) with the
maximal ideal P of O, see also |21} 3.5.4]. Hence

[UOL7S/U2(X,2S : Ua,s+/U2a,25+] = qdaa
[Ua,O/UQQ,O : Ua,r+/U2a,2r+] - qd“ [na'r+l

where [y+] denotes the smallest integer larger than y+ € R. Similarly

[U2a,0 : Uz rt] = q2e ’—nzoﬂ”/2+'\7
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from which we conclude that

64) [U5:UTnUM= [ gtelrertlgtelnzer/at]
acdrednNd+
< H qda(nur+1)/2qd2a(n2ur+2)/4.

agdred

This number is an upper bound for the number of Uér)—orbits in U, - F. Since it
does not depend on F', we only need to multiply it with the number of facets of
A%ﬂn_ e While this number is not easily expressible in a formula, it clearly grows
like rdim As O

Theorem 8.5. Let (m, V) be an admissible G-representation of level e € Z>q in
good characteristic. Let r € R>. and define Q and my as in Lemma and .
Then

dim VU(gr) — O(mvrdim Ag Qr)
ILL(U(ST)) dlm VU((]T) _ O(mdeim AsqfrdoQ*T)
with constants independent of V' and r.

Proof. The first estimate follows from Lemma and the arguments above. Propo-
sition [5.2] yields

[Uo(s) : U(SH_S)] = [HS-i- : HT+S+} H [Ua7s+U2a,s+ : Ua,r+s+U2a,T+s+]

agpred

for all s € Z>¢. A calculation like the one in and shows that this index is
at least

qrdo H qrnadaqrngadza/Z.
aEdred

(We cannot be exact because we do not know at which points the filtration of H
jumps.) This yields the second estimate. O

These estimates are sharp in some examples: (57)) shows that (a) and (¢) cannot
be improved for GL,,. Here all n, and d, are 1, ® is reduced, and there are
n(n — 1)/2 positive roots, so that Q = ¢"(»~1)/2,

9. CONCLUSION

Let G be a reductive p-adic group and let (p, V') be an admissible representation
of G on a vector space V' of characteristic not equal to p. We have seen that the
character of (p,V) is a locally constant function on the set of regular semi-simple
elements, and we have described explicit open subsets on which it is constant.
Furthermore, we have estimated the growth of the dimensions of the fixed-point
subspaces VUi for e — 0o. Both results are based on the main result of [11] about
the acyclicity of certain coefficient systems on the affine Bruhat—Tits building.

It is still unclear whether Harish-Chandra’s theorem about the local integrability
of the character function for complex representations can be established using these
resolutions. This may depend on a better understanding of the character formulas.
While the resolution in [11] does provide an explicit formula for the character, more
work is required to understand and simplify this formula.
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