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Preface

These lecture notes are written for the Mastermath course “Calculus of Variations” at Radboud
University in Spring 2023. Calculus of variations is an active area of research with important
applications in science and technology, e.g. in physics, material science or image processing.
Moreover, variational methods play an important role in many other disciplines of mathematics
such as the theory of partial differential equations, optimization, geometry and probability theory.

This course provides an introduction to different facets of this interesting field, which is con-
cerned with the minimization (or maximization) of functionals. Further details, applications and
many additional topics can be found in, e.g. the monographs by B. Dacorogna [5], H. Kielhöfer
[11], J. Jost and X. Li-Jost [10] and F. Rindler [12]. To follow the course a solid understanding of
real analysis, functional analysis and measure theory is required.
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Chapter 1

Introduction

The Calculus of Variations (CoV) is concerned with the optimization of shapes, states or pro-
cesses. The property to optimize is given in terms of a functional,

I(u) =
∫
Ω

f (x, u(x),Du(x))dx, Ω ⊂ Rm, (1.1)

involving an unknown function u : Ω → Rn. The function f : Ω × Rm × Rn×m → R is given and
Ω ⊂ Rm is bounded. Our aim is to find a minimizer (or maximizer) u of I within a suitable class of
functions.

Different from the problem of finding a minimum (or maximum) of a real-valued function
g : Rn → R, we look for an unknown function u in an admissible function space which is typically
infinite dimensional. Hence, we are concerned with infinite dimensional minimization problems.

The Calculus of Variations is a classical branch of mathematics and has diverse applications
in physics, engineering and economics. The functional I can represent, e.g. a surface area, path
length, an action, energy or cost. The research field Calculus of Variations is also closely related to
other mathematical disciplines such as geometry, partial differential equations (PDEs), functional
analysis and optimal control.

Historically, the Calculus of Variations emerged from concrete problems in geometry and
physics and its origins date back to ancient times. The field had a large impact on the development
of analysis, in particular, on functional analysis and the theory of PDEs. We discuss several
problems and achievements that played an important role for the development of this field.

• The oldest problem in the Calculus of Variations is Dido’s problem or “isoperimetric prob-
lem” (in Greek, iso means equal and perimetron circumference).

1



The question is which curve of a given length encloses the largest area. Dido was the
legendary founder of the Phoenician city-state of Carthage. When she arrived in the 9th
century BC on the coast of Tunisia, she asked for a piece of land. The king offered her as
much land as she could encompass by an ox-hide. She cut the ox-hide into a long thin strip
and encircled the land, which became Carthage.

A rigorous mathematical proof of the isoperimetric problem was only given in the 19th
century. For an overview and the history of the problem we refer to [2].

• Fermat’s principle in geometrical optics is another important example of a variational prob-
lem. The question is along which path a light ray travels. Pierre de Fermat (1662) claimed
that a path taken between two points by a light ray is the path that can be traversed in the
shortest time. This leads to the problem of finding the function u that minimizes the travel
time T ,

T =
1
c

∫ b

a
n(x, u(x), u′(x))

√
1 + u′2(x)dx,

where n is the index of refraction. It can depend on the position (x, u(x)) and its direction
u′(x).

• The birth year of the Calculus of Variations is considered 1696 when Johann Bernoulli
challenged his colleagues with the Brachistochrone problem (in Greek, brachystos means
shortest and chronos time) of finding the fastest slide. More precisely, if two points A and B
in a vertical plane are given, what is the curve traced out by a point acted on only by gravity,
which starts at A and reaches B in the shortest time?

The Brachistochrone problem was solved shortly after by Johann and Jacob Bernoulli, Got-
tfried Wilhelm Leibniz and Isaac Newton.
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• In the 18th century various variational problems were formulated by Johann and Jakob
Bernoulli, Leonhard Euler, Joseph Lagrange and Adrien-Marie Legendre. Leonhard Euler
introduced in 1744 the notion “Calculus of Variations”. A systematic approach to study vari-
ational problems was developed by Leonhard Euler and Joseph Lagrange around 1755. In
particular, they postulated that the minimizer satisfies the so-called Euler-Lagrange equa-
tions. At that time, the existence of minimizers was taken for granted. However, it turns out
that the Euler-Lagrange equations are only necessary conditions for a minimizer.

These so-called “classical methods in the Calculus of Variations” developed at that time aim
at deriving methods to determine minimizers and to investigate qualitative properties while
the existence of minimizers is taken for granted.

• Very significant for the development of the Calculus of Variations was Dirichlet’s principle
in the 19th century. It allowed to solve the Laplace equation ∆u = 0 by reformulation it as
a variational problem. However, Carl Weierstrass presented in 1860 a counterexample for
the existence of minimizers showing that functionals that are bounded from below do not
necessarily posses minimizers. Hence, Dirichlet’s solution of the Laplace equation required
an existence theory for minimizers.

In beginning of the 20th century, this gap in the proof of the Dirichlet problem was finally
solved by David Hilbert, in particular, he proved the existence of a minimizer. The problem
was very important for development of functional analysis, distribution theory, Sobolev
spaces and PDEs. The existence theory for minimizers is nowadays known as the “direct
method in the Calculus of Variations”. It required to introduce new function spaces (Sobolev
spaces) and weaken the notion of classical derivatives.

To systematically study variational problems, we need to determine a suitable functional I as
in (1.1) and to specify the admissible class of functions. The admissible class is either determined
by properties resulting from a particular application or by the minimal requirements for the well-
posedness of the functional I in (1.1).

In this course, we will first address the classical theory in one dimension, i.e. Ω ⊂ R in
(1.1). We take the existence of minimizers for granted, derive the Euler-Lagrange equations and
aim to compute and/or derive properties of minimizers. Then, we introduce Sobolev spaces that
are needed to study the existence of minimizers and variational problems in higher dimensions,
i.e. Ω ⊂ Rm,m ≥ 2. We derive the Euler-Lagrange equations for higher dimensional variational
problems and consider direct methods that allow to prove the existence of minimizers. Finally, we
discuss modern methods and applications including relaxation and Γ-convergence.
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Chapter 2

Classical theory in one dimension

In this chapter, we consider one-dimensional variational problems and address the classical the-
ory, i.e. we assume minimizers exists and aim to compute them and/or to investigate qualitative
properties of the minimizers.

2.1 Fundamental problem and examples

The fundamental problem of the Calculus of Variations is to minimize functionals of the form

I(u) =
∫ b

a
f (x, u(x), u′(x))dx (2.1)

in a class Φ of admissible functions u : [a, b] → Rn, b > a. Here, f : [a, b] × Rn × Rn →

R, (x, y, z) 7→ f (x, y, z), is a given function which at least has the following properties:

f (·, y, z) is measurable for all y, z ∈ Rn,

f (x, ·, ·) is continuous for all x ∈ [a, b].

We remark that most of the time, we assume f to be continuous or even more regular.
Under these assumptions, the functional I in (2.1) is certainly well-defined ifΦ ⊂ C1([a, b];Rn).

However, this class is often too restrictive in applications. In this chapter, we will mainly consider
the following classes of continuous functions.

Definition 2.1. • The class of continuous functions on [a, b] we denote by

C([a, b];Rn) = {u : [a, b]→ Rn : u continuous}.

• The class of continuously differentiable functions on [a, b] we denote by

C1([a, b];Rn) = {u ∈ C([a, b];Rn) : u differentiable and u′ ∈ C([a, b];Rn)}.

We remark that in the endpoints, the one-sided derivatives u′+(a), u′−(b) are taken.

• The piecewise continuously differentiable functions we denote by

D1([a, b];Rn) =
{
u ∈ C([a, b];Rn) : ∃a = x0 < x1 < · · · , xN = b :

u|[xi−1,xi] ∈ C1([xi−1, xi];Rn), i = 1, . . . ,N
}
.
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• Furthermore, we frequently consider functions that vanish in the endpoints,

C1
0([a, b];Rn) = {u ∈ C1([a, b];Rn) : u(a) = u(b) = 0},

C1
c ([a, b];Rn) = {u ∈ C1([a, b];Rn) : supp(u) ⊂ (a, b) is compact}.

Here, the support of u is defined as supp(u) = {x ∈ (a, b) : u(x) , 0}.

Analogously, we define the classes of functions D1
0([a, b];Rn),D1

c([a, b];Rn),C0([a, b];Rn)
and Cc([a, b];Rn).

For these spaces we consider the following norms. For u ∈ C([a, b];Rn) we denote the maxi-
mum norm by

∥u∥C0([a,b]) = ∥u∥C0 = ∥u∥∞ = max
x∈[a,b]

|u(x)|,

for u ∈ C1([a, b];Rn) we consider the norm

∥u∥C1([a,b]) = ∥u∥C1 = ∥u∥∞ + ∥u′∥∞,

and for u ∈ D1([a, b]; |Rn) we define

∥u∥D1([a,b]) = ∥u∥D1 = ∥u∥∞ + max
i=1,...,N

{
∥u′∥C0([xi−1,xi])

}
We remark that the convergence in C0([a, b];Rn) with respect to ∥ · ∥C0 is equivalent to uniform

convergence. Moreover, the spaces C0([a, b];Rn) and C1([a, b];Rn) are complete and hence, they
are Banach spaces. However, this is not the case for D1([a, b];Rn).

Remark 2.2. From a theoretical point of view one may want to minimize I in the largest possible
class of functions Φ for which (2.1) is well-defined. This is the class of absolutely continuous
functions AC([a, b];Rn). We recall that a function u ∈ C([a, b];Rn) is absolutely continuous if for
every ε > 0 there exists δ > 0 such that for every finite sequence of pairwise disjoint subintervals,
a ≤ x1 < y1 ≤ x2 < y2 ≤ · · · ≤ xN < yN ≤ b,N ∈ N, with

∑N
i=1(yi − xi) < δ, it follows that

N∑
i=1

(u(yi) − u(xi)) < ε.

If u ∈ AC([a, b];Rn), one can show that its derivative u′ exists a.e. in [a, b], u′ ∈ L1((a, b);Rn)
and the fundamental theorem of calculus holds, i.e.

u(x) = u(a) +
∫ x

a
u′(t)dt ∀x ∈ [a, b].

Our assumptions on f then ensure the measurability of x 7→ f (x, u(x), u′(x)).
Finally, we remark that the space AC([a, b];Rn) can be identified with the Sobolev Space

W1,1((a, b);Rn). Sobolev spaces will be introduced in Chapter 3.
In the sequel, we only consider the function classes C1([a, b];Rn) and D1([a, b];Rn), but most

of the results in this chapter can be generalized for absolutely continuous functions.

In many applications, u ∈ Φ additionally has to satisfy certain boundary conditions, e.g.

u(a) = α, u(b) = β, α, β ∈ Rn given.

If we prescribe the values of the function u in the endpoints of the interval, we call these conditions
Dirichlet boundary conditions.
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Example 2.3. We discuss several classical examples for minimization problems.

(i) We aim to minimize the length of the graph of a continuously differentiable function u :
[a, b]→ R, a < b, with prescribed boundary conditions, u(a) = α, u(b) = β, where α, β ∈ R
are given.

Hence, we look for a minimizer of the functional

I(u) =
∫ b

a

√
1 + (u′(x))2dx

within the class Φ = {u ∈ C1([a, b];R) : u(a) = α, u(b) = β}.

(ii) Fermat’s principle states that a light ray travels from one point A = (a, α) ∈ R2 to another
point B = (b, β) ∈ R2 along the path that can be traversed in the shortest time.

Assume that the light ray travels along the graph of a function u ∈ D1([a, b];R) with u(a) =
α, u(b) = β in time T > 0. Then, the distance traveled at time t < T is given by

s(t) =
∫ x(t)

0

√
1 + (u′(z))2dz. (2.2)

The speed of light in a medium is given by c
n , where c is the speed of light in vacuum and n

the index of refraction. In general, the index of refraction depends on the position, (x, u(x)),
and the travel direction, i.e. u′(x). Consequently, using (2.2) we obtain

c
n(x, u(x), u′(x))

=
ds
dt
=

√
1 + (u′(x))2 dx

dt
,

and this implies that

T =
∫ T

0
dt =

1
c

∫ T

0
n(x(t), u(x(t)), u′(x(t)))

√
1 + (u′(x(t)))2 dx(t)

dt
dt

=
1
c

∫ b

a
n(x, u(x), u′(x))

√
1 + (u′(x))2dx = I(u).

Hence, to determine the path of the light ray we aim to find a minimizer of the functional I
within the class

Φ =
{
u ∈ D1([a, b];R) : u(a) = α, u(b) = β

}
.
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(iii) Brachistochrone: We aim to construct the fastest slide that starts at the point A = (0, 0) ∈ R2

and ends at the point B = (b, β) with given b > 0 and β < 0. Assume that in time T > 0
a mass point moves without friction in the gravity field from A to B along the graph of a
function u with u(0) = 0 and u(b) = β.

Energy conservation implies that

gain in kinetic energy = loss of potential energy,
1
2

mv2 = −mgu,

where g is the gravitational constant. Hence, we obtain, as in the case of Fermat’s principle,

v =
√
−2gu =

ds
dt
=

√
1 + (u′(x))2 dx

dt
,

where s is the distance traveled at time t > 0. To find the shape of the slide we need to
minimize the travel time

T =
∫ T

0
dt =

∫ b

0

√
1 + (u′(x))2

−2gu(x)
dx

within the class Φ = {u ∈ AC([0, b];R) : u(0) = 0, u(b) = β}. We remark that the classes
C1([a, b];R) and D1([a, b];R) would be too restrictive in this case, since this excludes the
possibility that the slope of u becomes infinitely steep in x = 0.

2.2 First variation and Euler-Lagrange equations

Let a < b. We consider the functional

I(u) =
∫ b

a
f (x, u(x), u′(x))dx,

where f ∈ C1([a, b] × Rn × Rn;R), (x, y, z) 7→ f (x, y, z), and assume that there exists a minimizer
u in the class

Φ = {u ∈ D1([a, b];Rn) : u(a) = α, u(b) = β},
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where α, β ∈ Rn are given. Then, for all η ∈ C∞c ([a, b];Rn) and s ∈ (−ε, ε) we have u+ sη ∈ Φ and
I(u + sη) ≥ I(u), as u is a minimizer of I. The real-valued function s 7→ I(u + sη), s ∈ (−ε, ε), is
continuously differentiable and has a minimum at s = 0. Therefore, we conclude that

0 =
d
ds

(I(u + sη))
∣∣∣∣
s=0

=

∫ b

a
fy(x, u(x), u′(x)) · η(x) + fz(x, u(x), u′(x)) · η′(x)dx,

(2.3)

where we interchanged differentiation and integration. Here, fy = ( fy1 , . . . fyn) and fz = ( fz1 , . . . fzn)
denote the partial derivatives of f with respect to y and z, and · the inner product in Rn.

Definition 2.4. Let u ∈ D1([a, b];Rn). For η ∈ D1([a, b];Rn),

δI(u, η) =
∫ b

a
fy(x, u(x), u′(x)) · η(x) + fz(x, u(x), u′(x)) · η′(x)dx

is called the first variation of I at u in direction of η.
If δI(u, η) = 0 for all η ∈ C∞c ([a, b];Rn), then u is called a weak extremal of I.

The calculations above show that if u ∈ Φ is a minimizer, then u is a weak extremal of I. We
observe that this also holds for local minimizers. A function u ∈ Φ is a local minimizer of I, if
there exists ε > 0 such that for all v ∈ Φ with ∥u − v∥D1([a,b]) < ε, it follows that I(u) ≤ I(v).

If, in addition, we assume that fz ∈ C1([a, b]×Rn×Rn;R) and u ∈ C2([a, b];Rn), we can apply
integration by parts in (2.3) and obtain the following theorem.

Theorem 2.5. If u ∈ C2([a, b];Rn) is a weak extremal of I and f , fz ∈ C1([a, b]×Rn ×Rn;R), then
u satisfies the Euler-Lagrange equations

d
dx

(
fz(x, u(x), u′(x))

)
− fy(x, u(x), u′(x)) = 0. (2.4)

Proof. The theorem follows from applying integration by parts in (2.3) and the Fundamental
Lemma of the Calculus of Variations (Lemma 2.6). □

Lemma 2.6 (Fundamental Lemma of the Calculus of Variations). If a function u ∈ C([a, b];Rn)
satisfies ∫ b

a
u(x) · η(x)dx = 0 ∀η ∈ C∞c ([a, b];Rn),

then u ≡ 0 on [a, b].

Proof. By contradiction, we assume that u . 0 in [a, b]. Then, there exists x0 ∈ (a, b) and
i ∈ {1, . . . , n} such that ui(x0) , 0. Since u is continuous, there exists δ > 0 such that a < x0 − δ <

x0 + δ < b and

ui(x) >
1
2

ui(x0) > 0 or ui(x) <
1
2

ui(x0) < 0 ∀x ∈ (x0 − δ, x0 + δ).

We now choose a function ψ ∈ C∞c ([a, b];Rn) with

supp(ψi) ⊂ (x0 − δ, x0 + δ), ψi(x0) > 0, ψi ≥ 0 in (x0 − δ, x0 + δ)
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and ψ j ≡ 0 for all j , i. It then follows that∫ b

a
u(x) · ψ(x)dx =

∫ x0+δ

x0−δ
ui(x)ψi(x)dx , 0,

which is a contraction. □

Later, we will show that Lemma 2.6 remains valid for functions that are locally integrable, i.e.
u ∈ L1

loc((a, b)), and generalize it for higher dimensions.

Remark 2.7. • Writing out the Euler-Lagrange equations (2.4) yields

fzz(x, u(x), u′(x))u′′(x) + fzy(x, u(x), u′(x))u′(x)

+ fzx(x, u(x), u′(x)) − fy(x, u(x), u′(x)) = 0.

Here we use the notation fyy =
(

fyiy j

)
1≤i, j≤n

, fzz =
(

fziz j

)
1≤i, j≤n

and fzx =
(
fz1 x, . . . , fzn x

)
.

This is a system of second order ordinary differential equations (ODEs) that linearly depend
on u′′. If the matrix fzz is invertible, we obtain an explicit system of second order ODEs.

• In the particular case that f does not explicitly depend on x, i.e. f (x, y, z) = f (y, z), we
observe that

d
dx

(
f (u, u′) − u′ · fz(u, u′)

)
= fy(u, u′) · u′ + fz(u, u′) · u′′ − u′′ · fz(u, u′) − u′ ·

d
dx

(
fz(u, u′)

)
= u′ ·

(
fy(u, u′) −

d
dx

( fz(u, u′))
)
= 0,

since u is a solution of the Euler-Lagrange equation. Hence, we have a first integral,

f (u, u′) − u′ · fz(u, u′) ≡ c, (2.5)

for some constant c ∈ R.

Example 2.8. We consider the examples discussed in Example 2.3.

(i) Graph length: For the problem of minimizing the length of the graph of a function, we
have f (x, y, z) =

√
1 + z2. The corresponding Euler-Lagrange equation is

0 =
d
dx

 u′(x)√
1 + (u′(x))2

 = u′′(x)√
1 + (u′(x))2

−
(u′(x))2u′′(x)( √

1 + (u′(x))2
)3

=
u′′(x)( √

1 + (u′(x))2
)3 ,

and therefore, u′′(x) = 0. This implies that the graph is a straight line.

(ii) Fermat’s principle: In this case we have f (x, y, z) = 1
c n(x, y, z)

√
1 + z2. In an isotropic

medium the velocity is independent of the direction, i.e. n(x, y, z) = n(x, y). If we assume
that n ∈ C1, then

fz(x, y, z) =
1
c

n(x, y)
z

√
1 + z2

, fy(x, y, z) =
1
c

ny(x, y)
√

1 + z2.
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The corresponding Euler-Lagrange equation is

d
dx

n(x, u(x))
u′(x)√

1 + (u′(x))2

 − ny(x, u(x))
√

1 + (u′(x))2 = 0,

which implies that

nx(·, u)
u′

√
1 + u′2

+ ny(·, u)
u′2

√
1 + u′2

+ n(·, u)
u′′

√
1 + u′2

− n(·, u)
u′2u′′(√
1 + u′2

)3 − ny(·, u)
√

1 + u′2 = 0.

We can rewrite the equation as

nx(·, u)u′
(
1 + u′2

)
− ny(·, u)

(
1 + u′2

)
+ n(·, u)u′′ = 0,

and if n , 0, we obtain

u′′ = −
nx(·, u)
n(·, u)

u′
(
1 + u′2

)
+

ny(·, u)
n(·, u)

(
1 + u′2

)
. (2.6)

(iii) Brachistochrone problem: For this problem we have f (x, y, z) = 1√
−2gy

√
1 + z2. Hence,

the Euler-Lagrange equation (2.6) with 1
c n(x, y) = 1√

−2gy
implies that

u′′ = −
1

2u

(
1 + u′2

)
.

We remark that the equation holds only formally. Due to the singularity at u = 0, Theorem
2.5 cannot be applied.

We note that f does not explicitly depend on x. Hence, we can apply (2.5) in Remark 2.7
and conclude that there exists c ∈ R such that√

1 + u′2

−2gu
−

u′2√
−2gu

1
√

1 + u′2
= c,

i.e.
u(1 + u′2) =

1
−2gc2 .

Remark 2.9. The Euler-Lagrange equations are only a necessary condition for minimizers, but not
a sufficient condition for the existence of a minimizer. Not all functionals that are bounded from
below posses a minimizer. Furthermore, we remark that minimizers are not always of class C2.
For counterexamples we refer to the tutorials.

Later, we address direct methods that allow to prove the existence of minimizers in suitable
(weaker) function spaces.

To derive the Euler-Lagrange equations under weaker regularity assumptions, we need the
following lemma.
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Lemma 2.10 (Du Bois-Reymond). Let u : [a, b]→ Rn be a piecewise continuous function. If∫ b

a
u(x) · η′(x)dx = 0 ∀η ∈ C∞c ([a, b];Rn),

then, there exists c ∈ R such that u ≡ c.

Proof. By an approximation argument one can show that∫ b

a
u(x) · η′(x)dx = 0 ∀η ∈ D1

0([a, b];Rn).

For the proof of this statement we refer to the tutorials. It suffices to show that for every ψ ∈

D1
0([a, b];R) there exists a sequence of functions ψm ∈ C∞c ((a, b);R) such that

lim
m→∞

∫ b

a
|ψ′n(x) − ψ′(x)|dx = 0.

To this end we approximate ψ ∈ D1
0([a, b];R) first with a function ψ̃ ∈ D1

c([a, b];R) and then
construct the sequence ψm by convolution of ψ̃ with mollifiers (see Chapter 3).

Let now c = 1
b−a

∫ b
a u(x)dx and ψ(x) =

∫ x
a (u(s) − c)ds. Then, ψ ∈ D1

0([a, b];Rn) and we
conclude that

0 =
∫ b

a
u(x) · ψ′(x)dx =

∫ b

a
u(x) · (u(x) − c)dx =

∫ b

a
(u(x) − c) · (u(x) − c)dx,

where we used that ψ(b) =
∫ b

a (u(x)− c)dx = 0. Consequently, u ≡ c in [a, b], which concludes the
proof. □

Theorem 2.11. Let the function f : [a, b]×Rn ×Rn → R, (x, y, z) 7→ f (x, y, z), be continuous with
respect to x and continuously differentiable with respect to y and z. If u ∈ D1([a, b];Rn) is a weak
extremal of I, then fz(·, u, u′) ∈ D1([a, b];Rn) and u satisfies

d
dx

(
fz(x, u(x), u′(x))

)
− fy(x, u(x), u′(x)) = 0 for a.e. x ∈ [a, b]. (2.7)

Proof. Let η ∈ C∞c ([a, b];Rn) and u be a weak extremal of I. Integration by parts implies that∫ b

a
fy(x, u(x), u′(x)) · η(x)dx =

∫ b

a

(
d
dx

∫ x

a
fy(s, u(s), u′(s))ds

)
· η(x)dx

= −

∫ b

a

∫ x

a
fy(s, u(s), u′(s))ds · η′(x)dx.

Since u is a weak extremal, δI(u, η) = 0. Using this and the equality above we conclude that

0 =
∫ b

a

(
−

∫ x

a
fy(s, u(s), u′(s))ds + fz(x, u(x), u′(x))

)
· η′(x)dx.

Lemma 2.10 now implies that there exists c ∈ R such that

fz(x, u(x), u′(x)) =
∫ x

a
fy(s, u(s), u′(s))ds + c, (2.8)

i.e. fz(·, u, u′) ∈ D1([a, b];Rn). Moreover, differentiating the equation implies that u satisfies
(2.7). □
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The equation (2.8) in the proof of Theorem 2.11 is called the integrated form of the Euler-
Lagrange equations.

We remark that Lemma 2.10 remains valid for functions u ∈ L1
loc((a, b);Rn), which implies

that Theorem 2.11 also holds for functions u ∈ AC([a, b];Rn).

Regularity of minimizers

Under suitable assumptions on f one can show that weak extremals are of class C2 and hence,
they are solutions of the Euler-Lagrange equations (2.4).

Theorem 2.12. Let f , fz ∈ C1([a, b] × Rn × Rn;R) and u ∈ C1([a, b];Rn) be a weak extremal of I.
If

det( fzz(x, u(x), u′(x))) = det
(
( fziz j(x, u(x), u′(x))1≤i, j≤n

)
, 0 ∀x ∈ [a, b],

then, u ∈ C2([a, b];Rn).

Proof. We define p(x) :=
∫ x

a fy(s, u(s), u′(s))ds + c, which is the right hand side of (2.8), and
consider the function

ψ : Rn × [a, b] × Rn × Rn → Rn, (w, x, y, z) 7→ fz(x, y, z) − w,

which is continuously differentiable. For arbitrary x0 ∈ [a, b] we set y0 = u(x0), z0 = u′(x0) and
w0 = p(x0). Then, (2.8) implies that ψ(w0, x0, y0, z0) = 0.

By assumption, det(ψz(w0, x0, y0, z0)) = det( fzz(x0, y0, z0)) , 0, and therefore, the Implicit
Function Theorem implies that there exists a neighborhood U of (w0, x0, y0) and V of z0 and a
function φ : U → V of class C1 such that

ψ(w, x, y, z) = 0 ⇐⇒ z = φ(w, x, y) ∀(w, x, y, z) ∈ U × V. (2.9)

Equation (2.8) implies that

ψ(p(x), x, u(x), u′(x)) = 0 ∀x ∈ [a, b],

and by continuity, we can conclude that (p(x), x, u(x), u′(x)) ∈ U × V for all x that are sufficiently
close to x0. Therefore, from (2.9) it follows that

u′(x) = φ(p(x), x, u(x)),

which shows that u′ is continuously differentiable in a neighborhood of x0. Since x0 was arbitrary,
the theorem follows. □

Next, we prove regularity for weak extremals u ∈ D1([a, b];Rn). In this case, stronger hy-
potheses are needed and the arguments are more involved.

Theorem 2.13. Let f , fz ∈ C1([a, b] × Rn × Rn;R) and u ∈ D1([a, b];Rn) be a weak extremal of I.
Moreover, we assume that

fzz(x, u(x), u′(x)) =
(

fziz j(x, u(x), u′(x)
)
1≤i, j≤n

is positive (or negative) definite on Ω × Rn, where Ω ⊂ Rn+1 is a subset that contains the set
{(x, u(x)) : x ∈ [a, b]}. Then, u ∈ C2([a, b];Rn).
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Proof. We repeat the arguments in the proof of Theorem 2.12 until we arrive at (2.9). However, if
u ∈ D1([a, b];Rn) we cannot conclude that (p(x), x, u(x), u′(x)) ∈ U×V for all x that are sufficiently
close to x0, since the derivative u′ might be discontinuous.

Let x ∈ [a, b] be such that (p(x), x, u(x)) ∈ U ∩ (Rn ×Ω). Then, we conclude that

ψ(p(x), x, u(x), φ(p(x), x, u(x))) = 0 = ψ(p(x), x, u(x), u′(x)).

By the definition of ψ it follows that

0 = fz(x, u(x), φ(p(x), x, u(x))) − fz(x, u(x), u′(x))

=

∫ 1

0

d
ds

(
fz(x, u(x), u′(x) + s

(
φ(p(x), x, u(x)) − u′(x))

))
ds

=

∫ 1

0
fzz

(
x, u(x), u′(x) + s

(
φ(p(x), x, u(x)) − u′(x)

))
ds ·

(
φ(p(x), x, u(x)) − u′(x)

)
.

The integral (matrix) is positive (or negative) definite, since fzz is positive (or negative) definite,
and therefore, it is invertible. We conclude that

φ(p(x), x, u(x)) − u′(x) = 0,

which implies that u′ = φ(p, ·, u) is piecewise continuously differentiable, since p ∈ D1([a, b];Rn).
It follows that u′ is continuous and hence, that u ∈ C1([a, b];Rn). We can now apply Theorem

2.12 to conclude that u ∈ C2([a, b];Rn). □

If fy(·, u, u′) and fz(·, u, u′) are integrable, one can show that Theorem 2.13 remains valid for
functions u ∈ AC([a, b];Rn).

Corollary 2.14. Under the assumptions of Theorem 2.12 or Theorem 2.13, the weak extremal
satisfies the Euler-Lagrange equations (2.4).

Proof. This is an immediate consequence of Theorem 2.12 or Theorem 2.13 and Theorem 2.5. □

For smoother functions f one can show that the weak extremal u is even more regular.

Theorem 2.15. Let the assumptions of Theorem 2.12 or Theorem 2.13 be satisfied. If f , fz ∈
Ck([a, b] × Rn × Rn;R), k ∈ N, then the weak extremal u is in Ck+1([a, b];Rn).

Proof. We assume that k ≥ 2. By Theorems 2.12, 2.13 and Theorem 2.5, it follows that u ∈
C2([a, b];Rn) and u satisfies the Euler-Lagrange equations, i.e.

fzz(·, u, u′)u′′ + fzy(·, u, u′) · u′ + fzx(·, u, u′) − fy(·, u, u′) = 0.

Since fzz is invertible, we can rewrite the equation as

u′′ = ( fzz(·, u, u′))−1
(
− fzy(·, u, u′) · u′ − fzx(·, u, u′) + fy(·, u, u′)

)
.

We observe that the right hand side is continuously differentiable, since by assumption u ∈
C2([a, b];Rn) and f , fz are of class C2. Therefore, u′′ ∈ C1([a, b];Rn) which implies that u ∈
C3([a, b];Rn). The statement of the theorem now follows by iteration. Indeed, if u ∈ C j([a, b];Rn)
and f , fz ∈ C j([a, b] × Rn × Rn;R), j ≤ k, then the right hand side of the equation is of class
C j−1([a, b];Rn), which implies that u′′ ∈ C j−1([a, b];Rn), i.e. u ∈ C j+1([a, b];Rn). □

We remark that if the invertibility conditions on fzz are not satisfied, then the regularity re-
sults may not hold (for examples we refer to the tutorials). On the other hand, if the invertibility
assumptions hold, the Euler-Lagrange equations allow to express u′′ in terms of u and u′.
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Natural boundary conditions

So far, we considered variational problems with Dirichlet boundary conditions, i.e. the functions
satisfy u(a) = α, u(b) = β, for given α, β ∈ Rn. If no such conditions are imposed in one (or both)
endpoints of the interval [a, b], we have variational problems with so-called free boundary values.

Assume that both ends are free and that u is a (local) minimizer of the functional

I(u) =
∫ b

a
f (x, u(x), u′(x))dx

in Φ = D1([a, b];Rn). Then, it follows by repeating the arguments in the beginning of Section 2.2,
that

δI(u, η) = 0 ∀η ∈ C∞([a, b];Rn).

However, note that this condition not only holds for all η ∈ C∞c ([a, b];Rn), but for all η ∈
C∞([a, b];Rn). We now show that this enforces certain boundary conditions on u.

Theorem 2.16. Let f : [a, b] × Rn × Rn → R, (x, y, z) 7→ f (x, y, z), be continuous in x and
continuously differentiable with respect to y and z. If u ∈ D1([a, b];Rn) and

δI(u, η) = 0 ∀η ∈ C∞([a, b];Rn),

then, u satisfies the boundary conditions

fz(b, u(b), u′(b)) = fz(a, u(a), u′(a)) = 0.

These boundary conditions are called natural boundary conditions.

Since C∞c ([a, b];Rn) ⊂ C∞([a, b];Rn), under the hypotheses of Theorem 2.16 it follows that u
satisfies the Euler-Lagrange equations a.e. in [a, b] (see Theorem 2.11).

Proof. Let η ∈ C∞([a, b];Rn). Using integration by parts and the fact that fz(·, u, u′) ∈ D1([a, b];Rn)
by Theorem 2.12, we conclude that

0 = δI(u, η) =
∫ b

a
fy(x, u(x), u′(x)) · η(x) + fz(x, u(x), u′(x)) · η′(x)dx

= fz(x, u(x), u′(x)) · η(x)
∣∣∣∣x=b

x=a
+

∫ b

a

(
fy(x, u(x), u′(x)) −

d
dx

( fz(x, u(x), u′(x))
)
· η(x)dx

= fz(a, u(a), u′(a)) · η(a) − fz(b, u(b), u′(b)) · η(b).

In the last step we used that u satisfies the Euler-Lagrange equations.
Finally, choosing first the function η(x) = x−a

b−a fz(b, u(b), u′(b)), and then the function η(x) =
x−b
a−b fz(a, u(a), u′(a)), it follows that

0 =
∣∣∣ fz(b, u(b), u′(b))

∣∣∣2 = ∣∣∣ fz(a, u(a), u′(a))
∣∣∣2 ,

which proves the theorem. □

The case of one free and one fixed endpoint can be shown accordingly.
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Example 2.17. We consider the Brachistochrone problem, where the starting point A = (0, 0) and
the horizontal coordinate b > 0 of the endpoint B are given, but the value of the vertical coordinate
is not prescribed. We then aim to find the shape of the fastest slide from A to a point B = (x, y)
with x = b. In this case, the minimizer satisfies the boundary conditions

u(0) = 0, u′(b) = 0.

2.3 Inner variations and corner conditions

We consider the functional I in (2.1). In this section, we look at inner variations, i.e. suitable
variations of the variable x and not of the minimizer u as before, and derive additional conditions.
Let η ∈ C∞c ([a, b];R) and the function ψ : [a, b] × (−s0, s0) be defined by

ψ(x, s) = x + sη(x).

If s0 > 0 is small enough, then ∂xψ(x, s) > 0 for all (x, s) ∈ [a, b] × (−s0, s0), which implies that
ψ(·, s) is a family of diffeomorphisms. Moreover, we observe that

ψ(a, s) = a ψ(b, s) = b ∀s ∈ (−s0, s0),

ψ(x, 0) = x ∀x ∈ [a, b],

and call ψ an admissible parameter variation.
Indeed, if we consider the the class

u ∈ Φ = {u ∈ D1([a, b];Rn) : u(a) = α, u(b) = β},

for some given α, β ∈ Rn, then the function

v(·, s) = u ◦ ψ(·, s) ∈ Φ ∀s ∈ (−s0, s0).

Moreover, if u ∈ Φ is a local minimizer of the functional

I(u) =
∫ b

a
f (x, u(x), u′(x))dx,

then, we conclude that
d
ds

(I(v(·, s)))
∣∣∣∣
s=0
= 0.

Evaluating the right hand side we will obtain additional conditions for the minimizer. To this end
we denote the inverse of ψ(·, s) by τ(·, s) = ψ−1(·, s) and observe that

∂xv(x, s) = u′(ψ(x, s))∂xψ(x, s) = u′(ψ(x, s))
1

∂xτ(ψ(x, s))
.

This implies that

I(v(x, s)) =
∫ b

a
f
(
x, v(x, s), ∂x(v(x, s))

)
dx

=

∫ b

a
f
(
τ(x, s), u(x),

u′(x)
∂xτ(x, s)

)
∂xτ(x, s)dx,
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where we used the substitution x 7→ τ(x, s). Hence, we obtain

d
ds

(I(v(x, s)))
∣∣∣∣
s=0
=

∫ b

a

(
fx

(
τ(x, 0), u(x),

u′(x)
∂xτ(x, 0)

)
∂sτ(x, 0)∂xτ(x, 0)

+ fz

(
τ(x, 0), u(x),

u′(x)
∂xτ(x, 0)

)
· u′(x)

(−∂s∂xτ(x, 0))
(∂xτ(x, 0))2 ∂xτ(x, 0) (2.10)

+ f
(
τ(x, 0), u(x),

u′(x)
∂xτ(x, 0)

)
∂s∂xτ(x, 0)

)
dx.

To simplify the expression we observe that τ(x, 0) = x = ψ(x, 0) and ∂xτ(x, 0) = 1. Moreover,
differentiating the equation

τ(ψ(x, s), s) = x

with respect to s and evaluating it in s = 0 implies that

0 = ∂xτ(ψ(x, 0), 0)∂sψ(x, 0) + ∂sτ(ψ(x, 0), 0) = ∂xτ(x, 0)η(x) + ∂sτ(x, 0)

= η(x) + ∂sτ(x, 0).

Consequently, it follows that
∂sτ(x, 0) = −η(x).

Similarly, by differentiating the equation ψ(τ(x, s), s) = x first with respect to s and then with
respect to x and evaluating it in s = 0 we find

∂x∂sτ(x, 0) = −η′(x).

Inserting these identities in (2.10) we finally obtain

d
ds

(I(v(·, s)))
∣∣∣∣
s=0
=

∫ b

a

(
− fx

(
x, u(x), u′(x)

)
η(x) + fz

(
x, u(x), u′(x)

)
· u′(x) η′(x)

− f
(
x, u(x), u′(x)

)
η′(x)

)
dx.

This motivates the following definition.

Definition 2.18. Let u ∈ D1([a, b];Rn) and η ∈ D1([a, b];R). The functional

∂I(u, η) =
∫ b

a

(
− fx

(
·, u, u′

)
η +

(
fz

(
·, u, u′

)
· u′ − f

(
·, u, u′

))
η′

)
is called the first inner variation of u in direction η.

Proposition 2.19. Let f ∈ C1([a, b] × Rn × Rn;R) and u ∈ Φ be a local minimizer of I, then

∂I(u, η) = 0 ∀η ∈ C∞c ([a, b];R).

Proof. This immediately follows from the derivation above. □

We now state the main result in this section which provides additional conditions for minimiz-
ers u in point where the derivative u′ is discontinuous.
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Theorem 2.20. Let f ∈ C1([a, b] × Rn × Rn;R) and u ∈ D1([a, b];Rn) be such that

∂I(u, η) = 0 ∀η ∈ C∞c ([a, b];R).

Then, there exists c ∈ R such that

f (x, u(x), u′(x)) − u′(x) · fz(x, u(x), u′(x)) = c +
∫ x

0
fx(t, u(t), u′(t))dt.

Proof. By assumption, for all η ∈ C∞c ([a, b];R) we have

0 =
∫ b

a

(
− fx

(
·, u, u′

)
η +

(
fz(·, u, u′) · u′ − f

(
·, u, u′

))
η′

)
=

∫ b

a

(∫ ·

a
fx

(
·, u, u′

)
+ fz

(
·, u, u′

)
· u′ − f

(
·, u, u′

))
η′,

where we used integration by parts. The statement now follows from Lemma 2.10. □

Corollary 2.21. Let f ∈ C1([a, b] × Rn × Rn;R) and u ∈ Φ be a local minimizer of I. Then, the
functions

fz(·, u, u′) and f (·, u.u′) − u′ · fz(·, u, u′)

are continuous.

Proof. The continuity of the function fz(·, u, u′) was shown in Theorem 2.11. In fact, we even
have fz(·, u, u′) ∈ D1([a, b];Rn). Moreover, the continuity of the function f (·, u.u′) − u′ · fz(·, u, u′)
follows from Theorem 2.20, since the right hand side of the equation is continuous (even piecewise
continuously differentiable). □

If the minimizer u is in D1([a, b];Rn), these continuity results yield conditions for those points
x ∈ (a, b) where u′ is discontinuous, i.e. where u has a ”corner”. In fact, in such a point x ∈ (a, b)
it follows that

fz(x, u(x), u′−(x)) = fz(x, u(x), u+(x))

and

f (x, u(x), u′−(x)) − u′−(x) · fz(x, u(x), u′−(x))

= f (x, u(x), u′+(x)) − u′+(x) · fz(x, u(x), u′+(x)).

These conditions are called the Erdmann-Weierstraß corner conditions.

Example 2.22. Consider the functional

I(u) =
∫ 2

0
u2(x)

(
1 + (u′(x)

)2)dx

with Φ = {u ∈ D1([a, b];Rn) : u(0) = 0, u(2) = 1}. One can show that I possesses no minimizers
in C2([a, b];Rn). Assuming that a minimizer u ∈ D1([a, b];Rn) exists Corollary 2.21 allows to
uniquely determine is (see tutorials).
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2.4 Second variation

We consider the functional

I(u) =
∫ b

a
f (x, u(x), u′(x))dx

with f ∈ C2([a, b];R) and

Φ = {u ∈ D1([a, b];Rn) : u(a) = α, u(b) = β},

for given α, β ∈ Rn.

If u ∈ Φ is a local minimizer of I and we assume that u ∈ C1([a, b];Rn) then for every
η ∈ C1

0([a, b];Rn) the function

s 7→ I(u + sη), s ∈ (−s0, s0),

has a local minimum at s = 0. This implies that

d
ds

(I(u + sη))
∣∣∣∣
s=0
= 0 and

d2

ds2 (I(u + sη))
∣∣∣∣
s=0
≥ 0.

While the first condition leads to the first variation, evaluating the second condition leads to the
so-called second variation which is an additional necessary condition for the minimizer.

Definition 2.23. For u, η ∈ D1([a, b];Rn) the functional

δ2I(u, η) =
∫ b

a

(
fyy(·, u, u′)[η, η] + 2 fyz(·, u, u′)[η, η′] + fzz(·, u, u′)[η′, η′]

)
is called the second variation of I at u in the direction η.

Here, to shorten notations we use the abbreviation

fzz(x, y, z)[φ, ζ] =
n∑

i, j=1

fziz j(x, y, z)φiζ j for ζ, φ ∈ Rn.

Theorem 2.24. If u ∈ Φ is a local minimizer of the functional I, then

δ2I(u, η) ≥ 0 ∀η ∈ D1
0([a, b];Rn).

Proof. The proof is left as an exercise. The condition can be derived from the fact that the function
s 7→ I(u + sη), s ∈ (−s0, s0), η ∈ C∞c ([a, b];Rn), has a local minimum in s = 0, which implies that

d2

ds2 (I(u + sη))
∣∣∣∣
s=0
≥ 0.

Computing the second order derivative and evaluating it at s = 0 we obtain the second variation.
One can then show that the condition remains valid for all η ∈ D1

0([a, b];Rn). □

Theorem 2.25. If u ∈ Φ is a local minimizer of the functional I, then u satisfies the Legendre
condition, i.e.

fzz(x, u(x), u′±(x)) is positive definite ∀x ∈ [a, b].
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Proof. Let x0 ∈ (a, b) and u′ be continuous in x0. Moreover, let ζ ∈ Rn be arbitrary and ε > 0 be
such that (x0 − ε, x0 + ε) ⊂ (a, b). Then, the piecewise linear and continuous function η, where η
is such that η(x0) = εζ and

η ≡ 0 in [a, x0 − ε] ∪ [x0 + ε, b],

η affine in [x0 − ε, x0 + ε],

is in D1([a, b];Rn).
We observe that ηxi = ±ζ in [x0 − ε, x0 + ε], i = 1, . . . , n. Theorem 2.24 now implies that

0 ≤
δ2I(u, η)

2ε
=

1
2ε

∫ x0+ε

x0−ε

(
fzz(x, u(x), u′(x))[ζ, ζ] + O(ε)

)
dx

=
1
2ε

∫ x0+ε

x0−ε

(
fzz(x, u(x), u′(x))[ζ, ζ]

)
dx + O(ε)

−−−−→
ε→0

fzz(x0, u(x0), u′(x0))[ζ, ζ].

If x0 is a point in [a, b] where u′ is discontinuous, or if x0 = a or x0 = b, then we consider a
sequence (xn)n∈N0 ⊂ (a, b) such that xn ↗ x or xn ↘ x as n → ∞. Then, we apply the argument
above to the sequence (xn)n∈N0 , and taking the limit, it follows that

fzz(x0, u(x0), u′(x0))[ζ, ζ] ≥ 0.

□

Under suitable assumptions on the second variation, the existence of a minimizer can be
shown.

Theorem 2.26. Let u ∈ Φ be a weak extremal of the functional I, where

Φ = {u ∈ C1([a, b];Rn) | u(a) = α, u(b) = β}

and α, β ∈ Rn are given. If there exists λ > 0 such that

δ2I(u, η) ≥ λ
∫ b

a

(
|η(x)|2 + |η′(x)|2

)
dx ∀η ∈ C1

0([a, b];Rn),

then, u is a strict local minimizer of I.

Proof. For the proof we refer to the tutorials. □
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Chapter 3

Function spaces and tools from
functional analysis

In this chapter, we recall properties of Lebesgue and Sobolev spaces and several basic tools and
results from functional analysis. If not stated otherwise, Ω ⊂ Rn always denotes an open set,
where Ω = Rn or Ω ⊊ Rn.

• We denote the space of real-valued continuous functions on Ω by C(Ω) = C(Ω;R). For
k ∈ N the space of real-valued k-times continuously differentiable functions on Ω is denoted
by Ck(Ω) = Ck(Ω;R) and C∞(Ω) = C∞(Ω;R) =

⋂∞
k=0 Ck(Ω).

• Moreover, Ck(Ω), k ∈ N0, denotes the subspace of functions in Ck(Ω) such that the function
and its derivatives up to order k can be continuously extended to the boundary ∂Ω, and
C∞(Ω) =

⋂∞
k=0 Ck(Ω).

• We denote by
Ck

c(Ω) = {u ∈ Ck(Ω) : supp(u) ⊂ Ω compact}

the subspace of functions in Ck(Ω) with compact support. Here, supp(u) = {x ∈ Ω : u(x) , 0}
denotes the support of u.

We consider Ck(Ω), k ∈ N0, with the norm

∥u∥Ck(Ω) =
∑
|α|≤k

∥∂αu∥L∞ , u ∈ Ck(Ω),

where ∥u∥L∞ = maxx∈Ω{|u(x)|} is the maximum norm of u : Ω → R. Moreover, we use the
multi-index notation to denote partial derivatives,

∂αu = ∂α1
x1
· · · ∂αn

xn u, α = (α1, . . . , αn) ∈ Nn
0,

where the order of α is defined as |α| =
∑n

i=1 αi.
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3.1 Lp-Spaces

In this section, we summarize several important properties of Lebesgue spaces, for proofs and
further details we refer to [5] or [7].

Definition 3.1. Let 1 ≤ p ≤ ∞. A Lebesgue measurable function u : Ω→ R belongs to Lp(Ω) if
∥u∥Lp < ∞, where

∥u∥Lp =


(∫
Ω
|u|p

) 1
p 1 ≤ p < ∞,

ess supΩ{|u|} p = ∞.

Recall that
ess sup

Ω

{u} = inf {µ ∈ R : |u| ≤ µ a.e. in Ω} .

Moreover, u ∈ Lp
loc(Ω), if u : Ω → R is measurable and u|V belongs to Lp(V) for every open

subset V that is compactly contained in Ω, i.e. V is compact and V ⊂ Ω. For compactly contained
subsets we use the notation V ⊂⊂ Ω.

The abbreviation a.e. means that a property holds almost everywhere, i.e. for almost all x ∈ Ω.
Two functions that coincide a.e. are identified in Lp(Ω) and hence, the spaces Lp(Ω) consist of
equivalence classes of functions.

Example 3.2. Consider the function u(x) = 1
|x| . Then, u < L1(R) and u < L1

loc(R), as∫ 1

0

1
|x|

dx = ∞.

However, for v(x) = 1
|x|r , r > 0, we have∫ 1

0

1
|x|r

dx =

∞ r ≥ 1,
1

1−r r < 1.

This implies that v ∈ Lp
loc(R) if and only if pr < 1, i.e. p < 1

r .

Theorem 3.3 (Important inequalities). Let 1 ≤ p ≤ ∞.

• Minkowski inequality: If u, v ∈ Lp(Ω), then

∥u + v∥Lp ≤ ∥u∥Lp + ∥v∥Lp .

• Hölder inequality: If u ∈ Lp(Ω) and v ∈ Lq(Ω), where 1
p +

1
q = 1, then uv ∈ L1(Ω) and

∥uv∥L1 ≤ ∥u∥Lp∥v∥Lq ,

with the convention that p = 1 if q = ∞ and p = ∞ if q = 1.

• General Hölder inequality: If u j ∈ Lp j(Ω), 1 ≤ p j ≤ ∞ for j = 1, . . . ,m, and 1
r =

∑m
j=1

1
p j

,
then

∏m
j=1 u j ∈ Lr(Ω) and ∥∥∥∥∥∥∥∥

m∏
j=1

u j

∥∥∥∥∥∥∥∥
Lr

≤

m∏
j=1

∥u j∥Lp j .
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Remark 3.4. If Ω is bounded, an important consequence of Hölder’s inequality is the continuous
embedding

Lp(Ω) ↪→ Lq(Ω) ∀1 ≤ q ≤ p ≤ ∞,

i.e. Lp(Ω) ⊂ Lq(Ω) and there exists a constant c > 0 such that ∥u∥Lq ≤ c∥u∥Lp for all u ∈ Lp(Ω).

Definition 3.5. We say that a sequence (um)m∈N ⊂ Lp(Ω) converges (strongly) to u in Lp(Ω), if
u ∈ Lp(Ω) and

lim
m→∞

∥um − u∥Lp = 0.

We then use the notation um → u in Lp(Ω).
Moreover, a sequence (um)m∈N ⊂ Lp

loc(Ω) converges to u in Lp
loc(Ω) if um → u in Lp(V) for

every compact subset V ⊂ Ω.

Theorem 3.6. Lebesgue spaces have the following important properties:

• For 1 ≤ p ≤ ∞, ∥ · ∥Lp is a norm and Lp(Ω) equipped with this norm is a Banach space, i.e.
a complete normed vector space.

For p = 2, the space L2(Ω) with the inner product

⟨u, v⟩ =
∫
Ω

uv, u, v ∈ L2(Ω),

is a Hilbert space, i.e. a complete inner product space.

• Let 1 ≤ p ≤ ∞. If (um)m∈N ⊂ Lp(Ω) is a sequence that converges to u in Lp(Ω), then there
exists a subsequence (umk )k∈N that converges to u a.e. in Ω.

• If 1 ≤ p < ∞, then the step functions as well as C∞c (Ω) are dense in Lp(Ω).

Consequently, Lp(Ω) is separable, i.e. it contains a countable dense subset.

Finally, we recall properties of mollifiers. For ε > 0 we write Ωε = {x ∈ Ω : dist(x, ∂Ω) > ε}.
Let φ ∈ C∞(Rn) be defined as

φ(x) =

ce
1

|x|2−1 , |x| < 1,
0 |x| ≥ 1,

where the constant c > 0 is chosen such that
∫
Rn φ = 1. The function φ is called the standard

mollifier.
Moreover, for ε > 0 we set

φε(x) =
1
εnφ

( x
ε

)
, x ∈ Rn.

We observe that φε satisfies

φε ∈ C∞c (Rn), φε ≥ 0,
∫
Rn
φε = 1, supp(φε) ⊂ Bε(0),

where Bε(0) = {x ∈ Rn : |x| < ε} denotes the open ball of radius ε > 0 and center 0 in Rn.
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Definition 3.7. Let f ∈ L1
loc(Ω). Then, its mollification is defined as the convolution of f with φε,

fε = φε ∗ f in Ωε,

i.e.
fε(x) =

∫
Ω

φε(x − y) f (y)dy =
∫

Bε(0)
φε(y) f (x − y)dy, x ∈ Ωε.

Mollifiers allow to construct smooth approximations for general (rough) functions. Several
properties (e.g., certain identities or inequalities) are much easier to prove if the functions involved
are smooth. Hence, typically one first proves a certain statement for smooth functions and then
uses smooth approximations to extend it for less regular functions.

Theorem 3.8. Let f ∈ L1
loc(Ω). Then, the mollification fε has the following properties:

(i) fε ∈ C∞(Ωε).

(ii) fε → f almost everywhere as ε→ 0.

(iii) If f is continuous on Ω, then fε → f as ε→ 0 uniformly on compact subsets of Ω.

(iv) If 1 ≤ p < ∞ and f ∈ Lp
loc(Ω), then fε → f as ε→ 0 in Lp

loc(Ω).

Proof. See, e.g. Appendix C in [7]. □

3.2 Sobolev spaces

Definition and basic properties

We call
C∞c (Ω) = {u ∈ C∞(Ω) : supp(u) ⊂ Ω compact}

the space of test functions.
If u ∈ C1(Ω), then integration by parts implies that∫

Ω

u∂xiφ = −

∫
Ω

(∂xiu)φ ∀φ ∈ C∞c (Ω),

i = 1, . . . , n. This identity allows to generalize the notion of derivatives. In fact, the integral on the
left hand side is well-defined if u is locally integrable. This motivates the following definition.

Definition 3.9. Let u, v ∈ L1
loc(Ω) and i ∈ {1, . . . , n}. Then, v is the weak partial derivative of u

w.r.t. xi, if ∫
Ω

u∂xiφ = −

∫
Ω

vφ ∀φ ∈ C∞c (Ω).

In this case, we use the notation v = ∂xiu.
Moreover, we call u weakly differentiable if the weak partial derivatives ∂x1u, . . . , ∂xnu exist.

If the weak partial derivative exists, it is unique (up to sets of measure zero) by the following
generalization of the Fundamental Lemma of the Calculus of Variations:
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Lemma 3.10. Let u ∈ L1
loc(Ω) be such that∫

Ω

uφ = 0 ∀φ ∈ C∞c (Ω).

Then, u ≡ 0 a.e. in Ω.

Proof. We note that the integral is well-defined by Hölder’s inequality.
Let φε be the standard mollifier and uε = φε ∗ u. If x ∈ Ω and ε > 0 is small enough, then

supp(φε(x − ·)) ⊂ Ω is compact. Consequently, φε(x − ·)) ∈ C∞c (Ω) and we conclude that

uε(x) =
∫
Ω

φε(x − y)u(y)dy = 0.

Finally, since uε → u a.e. in Ω as ε→ 0, it follows that

u(x) = lim
ε→0

uε(x) = 0 a.e..

□

Remark. • Weak derivatives are unique (up to a set of measure zero).

• If u ∈ C1(Ω), then the classical derivative and the weak derivative coincide.

• The notion of weak derivatives generalizes the classical notion of derivatives, however, note
that not every function in L1

loc(Ω) is weakly differentiable. An example is given below.

Example 3.11. Let Ω = (−1, 1) ⊂ R.

(a) Consider the function u(x) = |x|. Then, u is weakly differentiable and

u′(x) = v(x) =

1 x > 0
−1 x < 0.

Indeed, let φ ∈ C∞c (Ω). Then, we obtain∫ 1

−1
u(x)φ′(x)dx =

∫ 0

−1
(−x)φ′(x)dx +

∫ 1

0
xφ′(x)dx

=

∫ 0

−1
φ(x)dx −

∫ 1

0
φ(x)dx = −

∫ 1

−1
v(x)φ(x)dx,

where we used integration by parts and the fact that φ has compact support in (−1, 1).

(b) Consider the function

u(x) =

1 x > 0
0 x < 0.

Then, u is not weakly differentiable. Indeed, assume that the weak derivative exists, u′ =
v ∈ L1

loc(Ω). Let φ ∈ C∞c ((0, 1)) and extend it by zero on (−1, 0]. Using that v is the weak
derivative of u we obtain∫ 1

−1
v(x)φ(x)dx = −

∫ 1

0
u(x)φ′(x)dx = −

∫ 1

0
φ′(x)dx = 0,
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since φ(0) = φ(1) = 0. Consequently,∫ 1

0
v(x)φ(x)dx = 0 ∀φ ∈ C∞c ((0, 1)),

and Lemma 3.10 implies that v = 0 a.e. in (0, 1). Similarly, we conclude that v = 0 a.e. in
(−1, 0).

Therefore, for any φ ∈ C∞c ((−1, 1)) it now follows that

0 =
∫ 1

−1
v(x)φ(x)dx = −

∫ 1

−1
u(x)φ′(x)dx = −

∫ 1

0
φ′(x)dx = φ(0),

i.e. φ(0) = 0 for all φ ∈ C∞c ((−1, 1)), which is a contradiction.

Similarly, one can define weak derivatives of higher order.

Definition 3.12. Let u, v ∈ L1
loc(Ω) and α ∈ Nn

0. Then, v is the αth weak partial derivative of u, if∫
Ω

u∂αφ = (−1)|α|
∫
Ω

vφ ∀φ ∈ C∞c (Ω).

In this case, we write v = ∂αu.

Using these generalized notions of derivatives we now introduce spaces of weakly differen-
tiable functions.

Definition 3.13. Let 1 ≤ p ≤ ∞.

• The Sobolev space W1,p(Ω) is defined as

W1,p(Ω) = {u ∈ Lp(Ω) : the weak partial derivative ∂xiu

exists and ∂xiu ∈ Lp(Ω), i = 1, . . . , n},

endowed with the norm

∥u∥W1,p =

∥u∥pLp +

n∑
i=1

∥∂xiu∥
p
Lp


1
p

, 1 ≤ p < ∞,

∥u∥W1,∞ = ∥u∥L∞ +
n∑

i=1

∥∂xiu∥L∞ .

• The Sobolev space Wk,p(Ω), k ∈ N, is defined as

Wk,p(Ω) = {u ∈ Lp(Ω) : the weak partial derivative ∂αu

exists and ∂αu ∈ Lp(Ω), for all multiindices |α| ≤ k},

endowed with the norm

∥u∥Wk,p =

 ∑
0≤|α|≤k

∥∂αu∥pLp


1
p

, 1 ≤ p < ∞,

∥u∥Wk,∞ =
∑

0≤|α|≤k

∥∂αu∥L∞ .
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• We say that a sequence (um)m∈N ⊂ W1,p(Ω) converges to u in W1,p(Ω), and use the notation
um → u in W1,p(Ω), if u ∈ W1,p(Ω) and

lim
m→∞

∥um − u∥W1,p = 0.

Moreover, we say that um → u in W1,p
loc (Ω) if um → u in W1,p(V) for every open subset V

such that V ⊂⊂ Ω.

Remark 3.14. • For p = 2 it is customary to write W1,2(Ω) = H1(Ω). In this case, H1(Ω) is a
Hilbert space with inner product

⟨u, v⟩H1 =

∫
Ω

(uv + ∇u · ∇v), u, v ∈ H1(Ω).

• For n = 1 and Ω ⊂ R an open interval, one can show that u ∈ W1,p(Ω) if and only is u = ũ
a.e. in Ω, where ũ is absolutely continuous and its derivative ũ′ ∈ Lp(Ω) (which exists a.e.).

• If Ω is bounded, we have the following inclusions

C1(Ω) ⊊ W1,∞(Ω) ⊊ W1,p(Ω) ⊊ Lp(Ω) ∀1 ≤ p < ∞.

Example 3.15. Let Ω = B1(0) = {x ∈ Rn : |x| < 1}. We aim to determine for which values of
s > 0, n and p the function

u(x) = |x|−s

belongs to W1,p(Ω).
First, we observe that if the weak derivative ∂xiu exists, it must be given by

∂xiu(x) = −s
xi

|x|s+2 = vi(x), i = 1, . . . n.

Indeed, u is smooth in B1(0) \ {0} and the claim follows by considering test functions that vanish
in a neighborhood of the origin.

Let φ ∈ C∞c (Ω) be an arbitrary test function and 0 < ε < 1. Then,∫
Ω

u∂xiφ =

∫
Bε(0)

u∂xiφ +

∫
Ω\Bε(0)

u∂xiφ

=

∫
Bε(0)

u∂xiφ +

∫
∂Bε(0)

uφνidS −
∫
Ω\Bε(0)

(∂xiu)φ =: I1 + I2 − I3,

where ν denotes the inward pointing unit normal vector on ∂Bε(0).
We note that u ∈ L1(Ω) if and only if s < n and |∇u| ∈ L1(Ω) if and only if s+1 < n. Moreover,

if s + 1 < n, then by dominated convergence it follows that

I1 → 0 and I3 →

∫
Ω

(∂xiu)φ as ε→ 0.

Since u(x) = ε−s for x ∈ ∂Bε(0), we obtain

|I2| ≤ ∥φ∥L∞

∫
∂Bε(0)

ε−sdS (x) ≤ cε−s+n−1 → 0 as ε→ 0,
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for some constant c ≥ 0. Consequently, taking the limit ε→ 0 in the equation above, we conclude
that ∫

Ω

u∂xiφ = −

∫
Ω

(∂xiu)φ,

which shows that vi is the weak partial derivative ∂xiu of u if s + 1 < n.
Finally, |∇u(x)| = s

|x|s+1 lies in Lp(Ω) if and only if p(s+1) < n, which implies that u ∈ W1,p(Ω)
if and only if s < n−p

p .

Using the Minkowski inequality and completeness of Lp(Ω) one can show that Sobolev spaces
are Banach spaces.

Theorem 3.16. Let 1 ≤ p ≤ ∞ and k ∈ N. Then, Wk,p(Ω) is a Banach space.

Proof. Let u, v ∈ W1,p(Ω). Then, the Minkowski inequality implies that

∥u + v∥W1,p =

∥u + v∥pLp +

n∑
i=1

∥∂xiu + ∂xiv∥
p
Lp


1
p

≤

(∥u∥Lp + ∥v∥Lp)p +

n∑
i=1

(∥∂xiu∥Lp + ∥∂xiv∥Lp)p


1
p

≤

∥u∥pLp +

n∑
i=1

∥∂xiu∥
p
Lp


1
p

+

∥v∥pLp +

n∑
i=1

∥∂xiv∥
p
Lp


1
p

= ∥u∥W1,p + ∥v∥W1,p ,

where we used the triangle inequality for the p-norm in Rn+1 in the last inequality. The other
properties of a norm and that W1,p(Ω) is a linear space are clear.

To prove completeness, let (um)m∈N be a Cauchy sequence in W1,p(Ω). Then, (um)m∈N and
(∂xium)m∈N, i = 1, . . . n, are Cauchy sequences in Lp(Ω). Since Lp(Ω) is complete, there exist
v0, v1, . . . , vn ∈ Lp(Ω) such that

um → v0, ∂xium → vi in Lp(Ω), i = 1, . . . , n.

It remains to show that um → v0 in W1,p(Ω), i.e. we need to show that ∂xiv0 = vi, i = 1, . . . , n. To
this end let φ ∈ C∞c (Ω). Then, we obtain∫

Ω

v0∂xiφ = lim
m→∞

∫
Ω

um∂xiφ = − lim
m→∞

∫
Ω

(∂xium)φ = −
∫
Ω

viφ,

where we used that ∂xium is the weak partial derivative of vm, i = 1, . . . , n. This shows that the
weak partial derivatives ∂xiv0 of v0 exist and ∂xiv0 = vi ∈ Lp(Ω).

We remark that the limits in the integral equation above can be justified by Hölder’s inequality.
Indeed, if fm → f in Lp(Ω) and g ∈ Lq(Ω), 1

p +
1
q = 1, then∣∣∣∣ ∫

Ω

fmg −
∫
Ω

f g
∣∣∣∣ ≤ ∫

Ω

|( fm − f )g| ≤ ∥ fm − f ∥Lp∥g∥Lq → 0 as m→ ∞.

□
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Approximations, extensions and traces

Theorem 3.17 (Global approximation). Let 1 ≤ p < ∞ and u ∈ W1,p(Ω). Then, there exists a
sequence um ∈ C∞(Ω) ∩W1,p(Ω) such that

um −−−−−→
m→∞

u in W1,p(Ω).

Note that the approximation theorem is not valid for p = ∞. If the boundary ∂Ω is sufficiently
regular, functions in Sobolev spaces can even be approximated by functions in C∞(Ω), and not
only in C∞(Ω). In fact, the following statement holds:

Let Ω be open and bounded with ∂Ω of class C1 and 1 ≤ p < ∞. If u ∈ W1,p, then there exists
a sequence um ∈ C∞(Ω) such that

um −−−−−→
m→∞

u in W1,p(Ω).

Remark 3.18. Theorem 3.17 was proven by N. G. Meyers and J. Serrin in 1964. Before that, the
statement of Theorem 3.17 was believed to be wrong without smoothness assumption on ∂Ω. At
that time it was customary to use the notation

Hk,p(Ω) = C∞(Ω) ∩Wk,p(Ω)
∥·∥Wk,p

.

Hence, Theorem 3.17 shows that Wk,p(Ω) = Hk,p(Ω).

We aim to extend functions in W1,p(Ω), Ω ⊂ Rn open, to functions u ∈ W1,p(Rn). This can
be subtle, since extending a function u ∈ W1,p(Ω) by zero in Rn \ Ω may lead to a function that
no longer has a weak derivative (see Example 3.11). The following theorem provides sufficient
conditions for the existence of an extension operator.

Theorem 3.19. Let 1 ≤ p ≤ ∞ and Ω ⊂ Rn be bounded with Lipschitz boundary ∂Ω. Let
V ⊂ Rn be open and bounded such that Ω ⊂⊂ V. Then, there exists a bounded linear operator
E : W1,p(Ω)→ W1,p(Rn) such that the following properties hold for all u ∈ W1,p(Ω):

• Eu = u a.e. in Ω,

• supp(Eu) ⊂ V,

• ∥Eu∥W1,p(Rn) ≤ c∥u∥W1,p(Ω), for some constant c > 0 depending on p,Ω and V.

In this case, E is called the extension operator and Eu the extension of u.

We recall that a bounded set Ω ⊂ Rn has a Lipschitz boundary if for every x ∈ ∂Ω there exists
a ball Bρ(x) = {y ∈ Rn : ∥x − y∥ < ρ} ⊂ Rn, a neighborhood U ⊂ Rn of the origin and a bijective
mapping ψ : U → Bρ(x) such that ψ : U → Bρ(x) and ψ−1 : U → Bρ(x) are Lipschitz continuous
and ψ(U+) = Bρ(x) ∩Ω, ψ(U0) = Bρ(x) ∩ ∂Ω, where

U+ = {x ∈ U : xn > 0}, U0 = {x ∈ U : xn = 0}.

Next, we aim to assign boundary values along ∂Ω to a function u ∈ W1,p(Ω), which can be
done via traces. Note that, since ∂Ω is a set of measure zero, there is no direct meaning to the
restriction of a function u ∈ W1,p(Ω) to ∂Ω, as u is only defined a.e. in Ω.
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Theorem 3.20. Let Ω ⊂ Rn be bounded with Lipschitz boundary ∂Ω and 1 ≤ p ≤ ∞. Then, there
exists a bounded linear operator T : W1,p(Ω)→ Lp(∂Ω) such that

• Tu = u|∂Ω, if u ∈ W1,p(Ω) ∩C(Ω)

• ∥Tu∥Lp(∂Ω) ≤ c∥u∥W1,p(Ω) ∀u ∈ W1,p(Ω), for some constant c > 0 only depending on p and
Ω.

In this case, T is called the trace operator and Tu the trace of u on ∂Ω.

Definition 3.21. We define W1,p
0 (Ω) as the closure of C∞c (Ω) in W1,p(Ω),

W1,p
0 (Ω) := C∞c (Ω)

∥·∥W1,p

Corollary 3.22. Let Ω ⊂ Rn be bounded with Lipschitz boundary ∂Ω and 1 ≤ p ≤ ∞. Then, the
following holds:

u ∈ W1,p
0 (Ω) ⇐⇒ Tu = 0.

Sobolev embeddings and Poincaré inequality

Next, we investigate whether functions in Sobolev spaces W1,p(Ω) lie in ”nicer” functions spaces.
This turns out to be the case, but it depends on whether p < n, p > n or p = n.

Theorem 3.23 (Sobolev embeddings). Let Ω be be bounded with Lipschitz boundary ∂Ω.

(i) If 1 ≤ p < n then W1,p(Ω) ↪→ Lq(Ω) for all 1 ≤ q ≤ p∗, where p∗ = np
n−p ∈ (p,∞), i.e.

W1,p(Ω) ⊂ Lp∗(Ω) and there exists c > 0 depending on Ω and p such that

∥u∥Lp∗ (Ω) ≤ c∥u∥W1,p(Ω) ∀u ∈ W1,p(Ω).

(ii) If p = n then W1,p(Ω) ↪→ Lq(Ω) for any 1 ≤ q < ∞, i.e. W1,p(Ω) ⊂ Lq(Ω) and there exists
c > 0 depending on Ω, p and q such that

∥u∥Lq(Ω) ≤ c∥u∥W1,p(Ω) ∀u ∈ W1,p(Ω).

(iii) If p > n then W1,p(Ω) ↪→ C(Ω), i.e. W1,p(Ω) ⊂ C(Ω) and there exists c > 0 depending on Ω
and p such that

∥u∥C(Ω) ≤ c∥u∥W1,p(Ω) ∀u ∈ W1,p(Ω).

Remark 3.24. Taking the limit p→ n in Theorem 3.23 (i) in the case p < n, we would expect that
W1,n(Ω) ↪→ L∞(Ω), but this is not true for n ≥ 2. A counterexample is given by the function

u(x) = ln
(
ln

(
1 +

1
|x|

))
, x ∈ B1(0) ⊂ Rn,

(see exercises). On the other hand, by Theorem 3.23, we conclude

W1,n(Ω) ⊂
⋂

1≤p<∞

Lp(Ω).
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For bounded subsets Ω ⊂ Rn one can even show that embedding W1,p(Ω) ↪→ Lp(Ω) is com-
pact, i.e. the embedding W1,p(Ω) ↪→ Lp(Ω) is continuous and every bounded sequence in W1,p(Ω)
has a subsequence that converges in Lp(Ω).

If a space V is compactly embedded into a space W we use the notation V ↪→↪→ W.

Theorem 3.25. Let Ω ⊂ Rn be be bounded with Lipschitz boundary ∂Ω. Then, the embedding
W1,p(Ω) ↪→ Lp(Ω) is compact for all 1 ≤ p ≤ ∞.

Next, we prove the Poincaré inequality, which allows to bound the Lp-norm of functions in
W1,p

0 (Ω) in terms of the Lp-norm of their gradient.

Theorem 3.26 (Poincaré inequality). Let 1 ≤ p ≤ ∞ and Ω ⊂ Rn be open and bounded with
respect to one coordinate direction. Without loss of generality we assume that

Ω ⊂
{
x ∈ Rn : 0 ≤ xn ≤ d

}
, for some d > 0.

Then, there exists a constant c > 0 such that

∥u∥Lp(Ω) ≤ c∥|∇u|∥Lp(Ω) ∀u ∈ W1,p
0 (Ω).

Proof. Let us first assume that u ∈ C∞c (Ω). Then, using that u(0) = 0 it follows that

u(x) =
∫ xn

0

d
dt

u(x1, . . . , xn−1, t)dt.

Consequently, Hölder’s inequality implies that

|u(x)|p ≤
(∫ xn

0

∣∣∣∣∣ d
dt

u(x1, . . . , xn−1, t)
∣∣∣∣∣ dt

)p

≤

(∫ xn

0
1dt

) p
q
∫ xn

0

∣∣∣∣∣ d
dt

u(x1, . . . , xn−1, t)
∣∣∣∣∣p dt

= xp−1
n

∫ xn

0

∣∣∣∣∣ d
dt

u(x1, . . . , xn−1, t)
∣∣∣∣∣p dt.

Integrating over Ω we obtain

∥u∥pLp(Ω) ≤

∫
Ω

xp−1
n

∫ xn

0

∣∣∣∣∣ d
dt

u(x1, . . . , xn−1, t)
∣∣∣∣∣p dtdx

≤

∫
Rn−1

∫ d

0
xp−1

n

∫ d

0

∣∣∣∣∣ d
dt

u(x1, . . . , xn−1, t)
∣∣∣∣∣p dtdxndx1 · · · dxn−1

≤
dp

p

∫
Rn−1

∫ d

0

∣∣∣∣∣ d
dt

u(x1, . . . , xn−1, t)
∣∣∣∣∣p dtdx1 · · · dxn−1 ≤

dp

p
∥|∇u|∥Lp(Ω),

where we used that Ω is bounded with respect to xn, Fubini’s Theorem and that u has compact
support in Ω.

Finally, if u ∈ W1,p
0 (Ω), then there exists a sequence (um)m∈N in C∞c (Ω) such that um −−−−−→

m→∞
u in

W1,p(Ω). For um ∈ C∞c (Ω), m ∈ N, the Poincaré inequality holds. Since ∥um∥Lp(Ω) −−−−−→
m→∞

∥u∥Lp(Ω)

and ∥|∇um|∥Lp(Ω) −−−−−→
m→∞

∥|∇u|∥Lp(Ω), we can pass to the limit m → ∞ in the inequality for um and

conclude that the Poincaré inequality remains valid for functions in W1,p
0 (Ω). □
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Theorem 3.27 (Poincaré inequality; mean-value version). Let 1 ≤ p ≤ ∞ andΩ ⊂ Rn be bounded
and connected with Lipschitz boundary ∂Ω. Then, there exists a constant c > 0 depending on Ω
and p such that

∥u − (u)Ω∥Lp(Ω) ≤ c∥|∇u|∥Lp(Ω) ∀u ∈ W1,p(Ω),

where we use the notation (u)Ω = 1
|Ω|

∫
Ω

u.

Proof. By contradiction we assume that there exists a sequence (um)m∈N ⊂ W1,p(Ω) such that

∥um − (um)Ω∥Lp > m∥|∇um|∥Lp .

We define
vm =

um − (um)Ω
∥um − (um)Ω∥Lp

, m ∈ N,

and observe that ∥vm∥Lp = 1, (vm)Ω = 0 and ∥|∇vm|∥Lp < 1
m. Consequently, (vm)m∈N is a bounded

sequence in W1,p(Ω) and Theorem 3.25 implies that there exists a subsequence (vmk )k∈N such that
vmk → v in Lp(Ω). We conclude that ∥v∥Lp = 1 and (v)Ω = 0.

Moreover, we also have ∇v = 0 a.e. in Ω. Indeed, for all φ ∈ C∞c (Ω) we observe that∣∣∣∣∣∫
Ω

v∂xiφ

∣∣∣∣∣ = lim
k→∞

∣∣∣∣∣∫
Ω

vmk∂xiφ

∣∣∣∣∣ = lim
k→∞

∣∣∣∣∣∫
Ω

(∂xivmk )φ
∣∣∣∣∣

≤ lim
k→∞
∥∂xivmk∥Lp∥φ∥Lq = 0,

where we used Hölder’e inequality. This implies that v ∈ W1,p(Ω) and ∇v = 0 a.e. in Ω. Since Ω
is connected, Lemma 3.28 implies that v = d for some constant d ∈ R. We conclude that (v)Ω = 0
and therefore, v = 0 a.e. in Ω. This is a contradiction to the fact that ∥v∥Lp = 1. □

Lemma 3.28. Let Ω be connected and u ∈ W1,p(Ω) such that ∇u = 0 a.e. in Ω. Then, u = c a.e.
in Ω for some constant c ∈ R.

Proof. The proof is left as an exercise. □

3.3 Weak convergence and weak compactness

In this section we recall results about weak convergence and weak compactness that we need to
prove the existence of minimizers. In fact, when we apply the direct method we consider mini-
mizing sequences. We then try to extract a subsequence that converges and show that the limit of
this subsequence is the minimizer of the functional.

Let X be a Banach space with norm ∥ · ∥X and X∗ be its dual space, i.e. the space of all bounded
linear functionals l : X → R. The dual space endowed with the norm

∥l∥X∗ = sup
∥u∥X≤1

|l(u)|, l ∈ X∗,

is a Banach space.
We say that a sequence (um)m∈N in a Banach space converges (or converges strongly) if there

exists u ∈ X and limm→∞ ∥um − u∥X = 0.
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Definition 3.29. We say that a sequence (um)m∈N ⊂ X converges weakly to u in X if

l(um) −−−−−→
m→∞

l(u) ∀l ∈ X∗.

We use the notation um ⇀ u in X.
We say that a sequence (lm)m∈N ⊂ X∗ converges weakly∗ to l in X∗ if

lm(u) −−−−−→
m→∞

l(u) ∀u ∈ X.

We use the notation um ⇀∗ u in X∗.

Example 3.30. • Let 1 ≤ p < ∞. The dual space of Lp(Ω) can be identified with Lq(Ω),
where 1

p +
1
q = 1. We have the dual pairing

⟨u, v⟩Lp,Lq =

∫
Ω

uv, u ∈ Lp(Ω), v ∈ Lq(Ω),

which is well-defined due to Hölder’s inequality.

This implies that um ⇀ u in Lp(Ω) if and only if∫
Ω

umv −−−−−→
m→∞

∫
Ω

uv ∀v ∈ Lq(Ω).

• If 1 ≤ p < ∞ and l ∈
(
W1,p(Ω)

)∗
, then there exist v0, v1, . . . , vn ∈ Lq(Ω), 1

p +
1
q = 1, such

that

l(u) =
∫
Ω

v0u +
m∑

i=1

vi∂xiu

 ∀u ∈ W1,p(Ω).

Moreover, um ⇀ u in W1,p(Ω) if and only if um ⇀ u in Lp(Ω) and ∂xium ⇀ ∂xiu in Lp(Ω)
for i = 1, . . . , n.

Remark. Let X be a Banach space and X∗ be its dual.

• Every strongly convergent sequence in X converges weakly, but not every weakly convergent
sequence converges strongly.

• If dimX < ∞ then weak convergence is equivalent to strong convergence.

Proposition 3.31 (Properties of weakly and weakly∗ convergent sequences). Let X be a Banach
space and X∗ be its dual.

• Every sequence in X that weakly converges is bounded in X.

Every sequence in X∗ that weakly∗ converges is bounded in X∗.

• Let (um)m∈N be a sequence in X and (lm)m∈N be a sequence in X∗.

If um ⇀ u in X and lm → l in X∗, then lm(um)→ l(u).

If um → u in X and lm ⇀∗ l in X∗, then lm(um)→ l(u).

32



Corollary 3.32. Let 1 ≤ p ≤ ∞, Ω ⊂ Rn is bounded with Lipschitz boundary ∂Ω and (um)m∈N be
a sequence in Lp(Ω) such that um ⇀ u in W1,p(Ω). Then, there exists a subsequence (umk ) such
that umk → u in Lp(Ω).

Proof. By Proposition3.31, the sequence (um)m∈N is bounded in W1,p(Ω). Therefore, the statement
follows from the compact embedding W1,p(Ω) ↪→↪→ Lp(Ω), see Theorem 3.25. □

A consequence of the Hahn-Banach theorem is that convex subsets are weakly closed.

Theorem 3.33. Let X be a Banach space and V ⊂ X be closed and convex. If (vm)m∈N ⊂ V is a
sequence and v ∈ X such that vm ⇀ v in X, then u ∈ V.

Finally, we recall an important property of reflexive Banach spaces, i.e. (X∗)∗ ≃ X, which is a
consequence of the Banach-Alaoglu Theorem.

Proposition 3.34. Let X be a reflexive Banach space. Then, every bounded sequence has a weakly
convergent subsequence.

Example 3.35. If 1 < p < ∞, then the spaces Lp(Ω) and W1,p(Ω) are reflexive. However, this is
not the case for L1(Ω), L∞(Ω),W1,1(Ω) and W1,∞(Ω).

Consequently, if (um)m∈N is a bounded sequence in Lp(Ω) or in W1,p(Ω) and 1 < p < ∞, then
it possesses a subsequence that converges weakly.
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Chapter 4

Euler-Lagrange Equations in higher
dimensions

In this chapter, we consider variational problems, where the integrals are not defined on an interval
as in Chapter 2, but on higher dimensional domains Ω ⊂ Rn, n ≥ 2. We first address the classical
theory and show how the theory of elliptic partial differential equations (PDEs) relates to the field
Calculus of Variations. Then, we extend the class of admissible functions and introduce the setting
for variational problems in Sobolev spaces. The latter setting is needed to apply direct methods
which allow to prove the existence of minimizers.

4.1 Classical theory

Let Ω ⊂ Rn be open and bounded with C1-boundary ∂Ω. We consider the functional

I(u) =
∫
Ω

f (x, u(x),∇u(x)) dx, (4.1)

where f : Ω×R×Rn → R, (x, y, z) 7→ f (x, y, z, ) is assumed to be twice continuously differentiable.
As in Chapter 2, we first aim to find a minimizer of I within the class

Φ =
{
u ∈ C1(Ω) : u = g on ∂Ω

}
,

where g : ∂Ω→ R is a given C1-function.
Assume that u ∈ Φ is a local minimizer of I. If φ ∈ C∞c (Ω) and s ∈ (−s0, s0), s0 > 0, then

u + sφ ∈ Φ and we conclude that

0 =
d
ds

(I(u + sφ))
∣∣∣∣
s=0
=

d
ds

(∫
Ω

f (·, u + sφ,∇(u + sφ))
) ∣∣∣∣

s=0

=

∫
Ω

 fy(·, u,∇u))φ +
n∑

i=1

∂zi f (·, u,∇u)∂xiφ

 =: δI(u, φ).
(4.2)

Note that we can interchange differentiation and integration as the integrand is sufficiently regular
and the set Ω is compact. As in Chapter 2 in case of one-dimensional problems, we call δI(u, φ)
the first variation of I at u in the direction of φ.
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We conclude that weak extremals satisfy the Euler Lagrange equation, which is stated in the
following theorem.

Theorem 4.1. Let u ∈ C2(Ω) ∩ Φ satisfy

δI(u, φ) = 0 ∀φ ∈ C∞c (Ω).

Then, u satisfies the Euler-Lagrange equation

− div (∇z f (x, u(x),∇u(x))) + ∂y f (x, u(x),∇u(x)) = 0, x ∈ Ω.

Proof. Applying integration by parts in the second term of δI(u, φ), see (4.2), we conclude that∫
Ω

(
fy(·, u,∇u)) − div (∇z f (·, u,∇u))

)
φ = 0 for all φ ∈ C∞c (Ω).

The Euler-Lagrange equations now follow from the Fundamental Lemma of the Calculus of Vari-
ations (Lemma 3.10). □

Remark. For one-dimensional variational problems the Euler-Lagrange equations are ODEs, while
higher dimensional variational problems (n > 1) lead to PDEs. In general, the Euler-Lagrange
equations are quasilinear elliptic PDEs of second order.

To simplify notations we only consider scalar functions u : Ω → R, but the results in this
chapter remain valid for vector-valued functions u : Ω → Rm, m ∈ N. In this case, the Euler-
Lagrange equations are systems of quasilinear elliptic PDEs.

Example 4.2. • The probably most important example is the Dirichlet integral which corre-
sponds to the function f (x, y, z) = 1

2 |z|
2. It leads to the functional

I(u) =
1
2

∫
Ω

|∇u|2

and the corresponding Euler-Lagrange equation is the Laplace equation

∆u = 0 in Ω.

It is the a linear elliptic PDE of second order.

• Consider the function f (x, y, z) = 1
2 |z|

2 + H(y), where H is continuously differentiable with
H′(y) = h(y). This leads to the functional

I(u) =
∫
Ω

(
1
2
|∇u|2 + H(u)

)
,

and the corresponding Euler-Lagrange equation is the semilinear Poisson equation

−∆u + h(u) = 0 in Ω.
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• Finally, we consider the function f (x, y, z) =
√

1 + |z|2. Then, the functional

I(u) =
∫
Ω

√
1 + |∇u|2

describes the surface area of the graph of u, and the corresponding Euler-Lagrange equation
is the quasilinear minimal surface equation

div

 ∇u√
1 + |∇u|2

 = 0.

As we observed for one-dimensional minimization problem, the class of continuously differ-
entiable functions is too restrictive. We now generalize the setting to allow for larger classes of
admissible functions Φ. In particular, we consider less regular minimizers and introduce the vari-
ational setting in Sobolev Spaces. This is essential for proving the existence of minimizers based
on direct methods.

4.2 Variational integrals on Sobolev spaces

Let Ω ⊂ Rn be open and bounded with Lipschitz boundary ∂Ω. We consider the functional

I(u) =
∫
Ω

f (x, u(x),∇u(x)) dx, (4.3)

where the function f : Ω×R×Rn → R, (x, y, z) 7→ f (x, y, z), is of class C1. Moreover, we assume
that

| f (x, y, z)| ≤ c
(
1 + |y|p + |z|p

)
∀(x, y, z) ∈ Ω × R × Rn, (4.4)

for some 1 < p < ∞ and some constant c > 0. This growth condition implies that I is well-defined
for u ∈ W1,p(Ω), in particular, |I(u)| < ∞.

We aim to find minimizers within the class

Φ =
{
u ∈ W1,p(Ω) : u = g on ∂Ω in the sense of traces

}
=

{
u ∈ W1,p(Ω) : u − g ∈ W1,p

0 (Ω)
}
,

where g ∈ W1,p(Ω) is given. Note that the second equality holds by Corollary 3.22.

Remark. The condition u − g ∈ W1,p
0 (Ω) allows us to formulate the boundary conditions u = g on

∂Ω in a weak sense. Indeed, by Theorem 3.20 the trace operator T is a bounded linear operator
from W1,p(Ω) to Lp(∂Ω).

For the first variation of δI(u, φ) to be well-defined for u ∈ W1,p(Ω) we need stronger assump-
tions than (4.4). In particular, we need the following growth conditions for the partial derivatives
of f , ∣∣∣∂y f (x, y, z)

∣∣∣ ≤ c
(
1 + |y|p−1 + |z|p−1

)
,

|∂z f (x, y, z)| ≤ c
(
1 + |y|p−1 + |z|p−1

) ∀(x, y, z) ∈ Ω × R × Rn, (4.5)
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for some constant c > 0.
We show that (4.5) implies that we can interchange differentiation and integration and derive

the first variation of I at u in the direction of φ for functions u ∈ Φ and φ ∈ W1,p
0 (Ω). Let

s ∈ (−s0, s0), s0 > 0, then we observe that

d
ds

( f (·, u + sφ,∇u + s∇φ)) ≤
∣∣∣∂y f (·, u + sφ,∇u + s∇φ)φ + ∇z f (·, u + sφ,∇u + s∇φ) · ∇φ

∣∣∣
≤ c1

(
1 + |u + sφ|p−1 + |∇u + s∇φ|p−1

)
(|φ| + |∇φ|)

≤ c2
(
1 + |u + sφ|p + |∇u + s∇φ|p + |φ|p + |∇φ|p

)
≤ c3

(
1 + |u|p + |∇u|p + |φ|p + |∇φ|p

)
,

(4.6)

for some constants c1, c2, c3 > 0. Here, we used the growth restriction (4.5) in the second step and
Young’s inequality, i.e.

ab ≤
ap

p
+

bq

q
,

1
p
+

1
q
= 1 ∀a, b ∈ [0,∞),

in the second step. Moreover, in the last estimate we used that the function y 7→ yp, p > 1, is
convex on [0,∞) and consequently, |a + b|p ≤ c(|a|p + |b|p) for some c > 0 and all a, b ∈ [0,∞).

The upper bound in (4.6) is uniform with respect to s ∈ (−s0, s0) and belongs to L1(Ω), since
u, φ ∈ W1,p(Ω). Therefore, by dominated convergence we can interchange differentiation and
integration and conclude that

δI(u, φ) =
d
ds

(I(u + sφ))
∣∣∣
s=0

=

∫
Ω

∂y f (·, u,∇u)φ +
n∑

i=1

∂zi f (·, u,∇u)∂xiφ

 .
We obtain the following theorem.

Theorem 4.3. Let Ω ⊂ Rn be open and bounded with Lipschitz boundary ∂Ω and let f : Ω × R ×
Rn → R, (x, y, z) 7→ f (x, y, z), be a continuously differentiable function that satisfies the growth
conditions (4.5). If u ∈ Φ is a minimizer of I, then u satisfies∫

Ω

(
∂y f (·, u,∇u)φ + ∇z f (·, u,∇u) · ∇φ

)
= 0 ∀φ ∈ W1,p

0 (Ω). (4.7)

The equation (4.7) is called the weak form of the Euler-Lagrange equation.

Proof. We observe that

f (x, y, z) = f (x, 0, 0) +
∫ 1

0

d
dt

( f (x, ty, tz))dt ∀(x, y, z) ∈ Ω × R × Rn.

Therefore, by following the same steps as in the estimate (4.6) we can show that (4.5) implies that

| f (x, y, z)| ≤ c(1 + |y|p + |z|p),

for some constant c > 0. This shows that if u ∈ W1,p(Ω), then |I(u)| < ∞. The theorem now
follows from the derivation of the weak form of the Euler-Lagrange equation above. □

37



Definition 4.4. We call u ∈ Φ a weak solution of the boundary value problem

−div (∇z f (x, u(x),∇u(x))) + ∂y f (x, u(x),∇u(x)) = 0 x ∈ Ω, (4.8)

u(x) = g(x) x ∈ ∂Ω,

if (4.7) holds for all φ ∈ W1,p
0 (Ω).

Remark. We remark that the PDE in (4.8) is of second order, however, the definition of weak
solutions only requires that the solution possesses weak derivatives of first order.

On the other hand, if a weak solution of the boundary value problem (4.8) is of class C2,
then it is a solution of the boundary value problem in the classical sense, i.e. it satisfies the
PDE and boundary values pointwise. This can be shown by integration by parts and applying the
Fundamental Lemma of the Calculus of Variations.

Example 4.5. In case of the Dirichlet integral,

I(u) =
1
2

∫
Ω

|∇u|2,

we have f (z) = 1
2 z2, which satisfies (4.5) with p = 2. The weak form of the Euler-Lagrange

equation is ∫
Ω

∇u · ∇φ = 0 ∀φ ∈ W1,2
0 (Ω).

Remark 4.6. We remark that the results of this chapter remain valid in the vector-valued case, i.e.
for functions u : Ω→ Rm, m ≥ 2,Ω ⊂ Rn. Then, the function f : Ω × Rm × Rm×n → R,

(x, y, z) = (x1, . . . , xn, y1, . . . , ym, z11, . . . , zmn) 7→ f (x, y, z),

is a assumed to be of class C1 and I is given by

I(u) =
∫
Ω

f (x, u(x),Du(x))dx, u ∈ W1,p(Ω;Rm),

where Du(x) denotes the Jacobian matrix. Under suitable growth assumptions on f the first vari-
ation exists and the corresponding Euler-Lagrange equations are a system of quasilinear elliptic
PDEs,

−div (Dz f (x, u(x),Du(x))) + Dy f (x, u(x),Du(x)) = 0, x ∈ Ω,

where Dz f is an Rm×n-matrix with entries ∂zi j f . The system can be written componentwise as

−

n∑
j=1

∂x j∂zi j f (x, u(x),Du(x)) + ∂yi f (x, u(x),Du(x)) = 0, i = 1, . . . ,m.
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Chapter 5

Direct methods

Throughout this chapter Ω ⊂ Rn denotes an open and bounded subset with Lipschitz boundary
∂Ω. We aim to prove the existence of minimizers for functionals of the form

I(u) =
∫
Ω

f (·, u,∇u) (5.1)

in the class Φ = {u ∈ W1,p(Ω) : u − g ∈ W1,p
0 (Ω)}, where g ∈ W1,p(Ω) is a given function and

1 < p < ∞. The minimal requirement for the function f : Ω × R × Rn → R is that it is a
Carathéodory function, i.e. x 7→ f (x, y, z) is measurable for every (y, z) ∈ R × Rn and (y, z) 7→
f (x, y, z) is continuous for almost every x ∈ Ω. However, to simplify the presentation we typically
assume that f is more regular. We use the direct method that allows us to prove the existence of
minimizers without the detour of solving differential equations (Euler-Lagrange equations). We
first explain the key ideas of the method in an abstract setting and then apply it to functionals of
the above form.

The origins of the direct methods go back to David Hilbert, Henri Lebesgue and Leonida
Tonelli who proved the existence of a minimizer for the Dirichlet integral at the beginning of
the 20th century. However, Sobolev spaces did not exist at that time and the result was phrased
differently. The problem of the existence of minimizers for the Dirichlet integral was important in
the development of analysis in general, in particular, for functional analysis, measure theory, the
theory of Sobolev spaces and PDE theory.

5.1 General strategy

Let X be a topological space (e.g. a Banach space with the norm topology or a closed and convex
subset of a Banach space with the weak or weak∗ topology) and J : X → R ∪ {±∞}. We aim to
solve the abstract minimization problem

inf
u∈X

J(u), (5.2)

i.e. we aim to find u∗ ∈ X such that J(u∗) = minu∈X J(u).

Definition 5.1. We call J sequentially coercive if for all α ∈ R the sublevel set {u ∈ X : J(u) ≤ α}
is sequentially precompact, i.e. for every sequence (um)m∈N ⊂ X such that J(um)m∈N ≤ α for some
α ∈ R possesses a convergent subsequence.
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We call J sequentially lower semicontinuous if for all sequences (um)m∈N ⊂ X with um → u
in X as m→ ∞ it holds that

lim inf
m→∞

J(um) ≥ J(u).

The direct method provides sufficient conditions for the existence of a minimizer and can be
phrased as follows.

Theorem 5.2 (Direct Method). Let X be a topological space J : X → R ∪ {±∞} be sequentially
coercive and sequentially lower semicontinuous. Then, there exists at least one solution of (5.2),
i.e. there exists u∗ ∈ X such that J(u∗) = minu∈X J(u).

Proof. Assume that there exists u ∈ X such that J(u) < ∞. Otherwise, every u ∈ X is a minimizer
of the (degenerate) minimization problem. We consider a minimizing sequence (um)m∈N ⊂ X,

lim
m→∞

J(um) = α := inf{J(u) : u ∈ X} < ∞.

Either the sequence (J(um))m∈N diverges to −∞ or the sequence converges. Hence, there exists
µ ∈ R such that J(um) ≤ µ for all m ∈ N. By the sequential coercivity of J, the sequence (um)m∈N

possesses a convergent subsequence, which we denote again by (um)m∈N, such that um → u∗ in X.
By the sequential lower semicontinuity of J is follows that

α ≤ J(u∗) ≤ lim inf
m→∞

J(um) = α.

This implies that α = J(u∗), i.e. u∗ is a minimizer. □

The direct method reduces the existence proof for minimizers to establishing sequential coer-
civity and sequential lower semicontinuity of the functional. We will see that for integral func-
tionals such as (5.1), sequential lower semicontinuity follows from convexity properties of the
integrand and the coercivity from certain lower bounds. We remark that both properties depend
on the chosen topology in X. In fact, for stronger topologies (i.e. topologies for which fewer
sequences converge) the sequential lower semicontinuity of J becomes a weaker requirement, but
it becomes harder to show that J is sequentially coercive. For weaker topologies the opposite is
true.

The functional J and the set of admissible functions X are typically given in a concrete prob-
lem, but we need to choose a topology in which both sequential coercivity and sequential lower
semicontinuity of the functional hold. We always consider infinite-dimensional Banach spaces and
hence, can use either strong or weak convergence. In most cases, sequential coercivity with respect
to the strong convergence does not hold, whereas sequential coercivity with respect to the weak
convergence is true under reasonable assumptions. Therefore, we consider weak convergence and
use the direct method in the following version:

Corollary 5.3. Let X be a Banach space and let J : X → R ∪ {±∞} be a functional with the
following properties:

• Sequential weak coercivity: For all α ∈ R, the sublevel set {u ∈ X : J(u) ≤ α} is sequentially
weakly relatively compact, i.e. for every sequence (um)m∈N ⊂ X such that J(um) ≤ α for all
m ∈ N and some α ∈ R possesses a weakly convergent subsequence.
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• Sequential weak lower semicontinuity: For every sequence (um)m∈N ⊂ X such that um ⇀ u
(weak convergence), we have

J(u) ≤ lim inf
m→∞

J(um).

Then, there exists u∗ ∈ X such that J(u∗) = minu∈X J(u).

In reflexive Banach spaces X we have the following sufficient condition for sequential weak
coercivity.

Proposition 5.4. Let X be a reflexive Banach space and J : X → R be a functional such that

∀(um)m∈N ⊂ X such that lim
m→∞

∥um∥ = ∞ it follows that lim
m→∞

J(um) = ∞.

Then, J is sequentially weakly coercive.

Proof. For a proof we refer to the tutorials. □

In the next sections, we formalize these ideas for Sobolev spaces and functionals of the form
(5.1). Before we state sufficient conditions for weak coercivity and weak lower semicountinuity
for general functionals we consider the Dirichlet integral as a model case.

5.2 Model case: Dirichlet integral

Let Ω ⊂ Rn be open and bounded with Lipschitz boundary ∂Ω. We consider the functional

I(u) =
∫
Ω

|∇u(x)|2 dx, (5.3)

and aim to find a minimizer of I within the class

Φ =
{
u ∈ W1,2(Ω) : u − g ∈ W1,2

0 (Ω)
}
,

for a given g ∈ W1,2(Ω).

Theorem 5.5. There exists a unique minimizer u ∈ Φ of (5.3) and u satisfies the weak form of the
corresponding Euler-Lagrange equations∫

Ω

∇u · ∇φ = 0 ∀φ ∈ W1,2
0 (Ω). (5.4)

Conversely, if u ∈ Φ satisfies (5.4), then it is a minimizer of (5.3).

Proof. The proof is divided into several steps. We first show the existence of the minimizer.
Step 1: We observe that g ∈ Φ and this implies that

0 ≤ m := inf{I(u) : u ∈ Φ} ≤ I(g) < ∞.

Let (uk)k∈N ∈ Φ, k ∈ N, be a minimizing sequence, i.e.

I(uk) −−−−→
k→∞

m.
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We aim to show that (uk)k∈N is bounded. To this end, we estimate the functional I(uk) as follows,

I(uk) =
1
2

∫
Ω

|∇uk|
2 +

1
2

∫
Ω

|∇(uk − g) + ∇g|2

=
1
2

∫
Ω

|∇uk|
2 +

1
2

∫
Ω

(
|∇(uk − g)|2 + |∇g|2 + 2∇(uk − g) · ∇g

)
≥

1
2

∫
Ω

|∇uk|
2 +

c
2

∫
Ω

|uk − g|2 +
1
2

∫
Ω

(
2∇uk · ∇g − |∇g|2

)
=

1
2

∫
Ω

|∇uk|
2 +

c
2

∫
Ω

(
|uk|

2 + |g|2 − 2ukg
)
+

1
2

∫
Ω

(
2∇uk · ∇g − |∇g|2

)
,

for some constant c > 0, where we used Poincaré’s inequality (Theorem 3.27) and uk − g ∈
W1,p

0 (Ω). We now use Young’s inequality, ab ≤ 1
εa2 + εb2, for all a, b ∈ R and ε > 0, to conclude

that
2∇uk · ∇g ≥ −

1
2
|∇uk|

2 − 8|∇g|2, −2ukg ≥ −
1
2
|uk|

2 − 8|g|2.

Inserting these estimates in the inequality above it follows that

I(uk) ≥
1
4

∫
Ω

|∇uk|
2 +

c
4

∫
Ω

(
1
2
|uk|

2 − 7|g|2
)
−

9
2

∫
Ω

|∇g|2

≥ c1∥uk∥
2
W1,2(Ω) − c2∥g∥2W1,2(Ω),

for some constants c1, c2 > 0. Since g ∈ W1,2(Ω), I(uk) −−−−→
k→∞

m and m < ∞, this implies that

(uk)k∈N is a bounded sequence in W1,2(Ω).
By Proposition 3.34, there exists a subsequence (ukl)l∈N and u ∈ W1,2(Ω) such that

ukl ⇀ u in W1,2(Ω).

Moreover, by Theorem 3.33 we conclude that u−g ∈ W1,2
0 (Ω), sinceΦ is closed (the trace operator

is continuous) and convex. This shows that I : Φ→ R is weakly coercive.
Step 2: Next, we show the weak lower semicontinuity, i.e. if (uk)k∈N is a sequence in W1,2(Ω)

such that uk ⇀ u in W1,2(Ω), then lim infk→∞ I(uk) ≥ I(u).
In fact, using the estimate

|∇uk|
2 = |∇(uk − u) + ∇u|2 = |∇(uk − u)|2 + |∇u|2 + 2∇(uk − u) · ∇u

≥ |∇u|2 + 2∇(uk − u) · ∇u,

it follows that

I(uk) ≥ I(u) + 2
∫
Ω

∇u · ∇(uk − u).

The last term converges to zero, since u ∈ W1,2(Ω) and uk ⇀ u in W1,2(Ω). Consequently, we have

lim inf
k→∞

I(uk) ≥ I(u),

which proves the claim.
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Step 3: By Step 1 I is weakly coercive and by Step 2, I is weakly lower semicontinuous.
Hence, Theorem 5.3 implies that I(u) = m.

Step 4: To prove uniqueness, let u, v ∈ Φ be such that I(u) = I(v) = m. Then, w = u+v
2 ∈ Φ,

and the convexity of the function x 7→ x2 implies that

m ≤ I(w) ≤
1
2

I(u) +
1
2

I(v) = m.

Consequently, equality must hold and it follows that

1
2

I(u) +
1
2

I(v) − I(w) =
∫
Ω

(
1
2
|∇u|2 +

1
2
|∇v|2 −

|∇u + ∇v|2

2

)
= 0.

However, by the convexity of x 7→ x2, the integrand is non-negative, and we conclude that

1
2
|∇u|2 +

1
2
|∇v|2 −

|∇u + ∇v|2

2
= 0 a.e. in Ω.

Since x 7→ x2 is strictly convex, it follows that ∇u = ∇v a.e. in Ω.
Finally, Poincaré’s inequality and using that ∇u = ∇v a.e. implies that∫

Ω

|u − v|2 ≤ c
∫
Ω

|∇u − ∇v|2 = 0,

which proves that u = v a.e. in Ω.
Step 5: The weak form of the Euler-Lagrange equation follows from Theorem 4.3. On the

other hand, if ū ∈ Φ satisfies (5.4), then w = u − ū ∈ W1,2
0 (Ω) for all u ∈ Φ. Moreover,

I(u) = I(ū + w) =
∫
Ω

|∇(ū + w)|2 = I(ū) +
∫
Ω

∇ū · ∇w + I(w)

= I(ū) + I(w) ≥ I(ū),

where we used that ū satisfies the weak form of the Euler-Lagrange equations and I(w) ≥ 0. This
shows that ū is a minimizer of I. □

5.3 Integral functionals with convex integrands

We now address more general functionals and extend the existence (and uniqueness) theory for
minimizers that we developed for the Dirichlet integral. Let Ω ⊂ Rn be open and bounded with
Lipschitz boundary ∂Ω. We consider the functional (5.1),

I(u) =
∫
Ω

f (·, u,∇u),

where f : Ω × R × Rn → R is continuously differentiable. Moreover, the admissible class of
functions is

Φ = {u ∈ W1,p(Ω) : u − g ∈ W1,p
0 (Ω)},

for some p ∈ (1,∞) and a given function g ∈ W1,p(Ω).
The following lemma provides sufficient conditions for weak coercivity.
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Lemma 5.6. Assume that there exist constants c1 > 0 and c2 ≥ 0 such that

f (x, y, z) ≥ c1|z|p − c2 ∀(x, y, z) ∈ Ω × R × Rn. (5.5)

Then, the functional I in (5.1) is sequentially weakly coercive.

Remark. Allowing that I(u) = ∞, the functional I is well-defined under assumption (5.5).

Proof. Let u ∈ Φ with I(u) ≤ c0. Then, (5.5) implies that

c1

∫
Ω

|∇u|p ≤
∫
Ω

( f (·, u,∇u) + c2) = I(u) + c2|Ω| ≤ c0 + c2|Ω|. (5.6)

Moreover, using the Poincaré inequality (Theorem 3.26) we can estimate the Lp-norm of u by

∥u∥Lp ≤ ∥u − g∥Lp + ∥g∥Lp ≤ c∥|∇(u − g)|∥Lp + ∥g∥Lp

≤ c (∥|∇u|∥Lp + ∥|∇g|∥Lp) + ∥g∥Lp .
(5.7)

Let now (uk)k∈N ⊂ Φ be a sequence such that I(uk) ≤ c0. Then, combining the estimates (5.6)
and (5.7) implies that (uk)k∈N is bounded in W1,p(Ω). Therefore, by Proposition 3.34 there exists
ū ∈ Φ and a subsequence (ukl)l∈N such that ukl ⇀ ū in W1,p(Ω), which shows that I is weakly
coercive. □

Next, we address the weak lower semicontinuity of I. For the proof we need the following
result from measure theory.

Remark (Egoroff’s Theorem). Let uk : Ω → R, k ∈ N, be a sequence of measurable functions
such that

uk → u a.e. in Ω,

where Ω ⊂ Rn is measurable and |Ω| < ∞. Then, for every ε > 0 there exists a measurable set
Aε ⊂ Ω such that

|Ω \ Aε| ≤ ε, uk → u uniformly in Aε.

Theorem 5.7. Let f be bounded from below and assume that

z 7→ f (x, y, z) is convex for all x ∈ Ω, y ∈ R. (5.8)

Then, I is sequentially weakly lower semicontinuous in W1,p(Ω).

Proof. Let (uk)k∈N be a sequence such that uk ⇀ u in W1,p(Ω). We need to show that

m := lim inf
k→∞

I(uk) ≥ I(u).

Upon passing to a subsequence, if necessary, we can assume that

lim
k→∞

I(uk) = m.

Step 1: By Proposition 3.31, (uk)k∈N is a bounded sequence in W1,p(Ω). Moreover, since the
embedding W1,p(Ω) ↪→ Lp(Ω) is compact (Theorem 3.25), we conclude that, upon passing to a
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subsequence, uk → u in Lp(Ω).Again, upon passing to a subsequence, if necessary, we can assume
that uk → u a.e. in Ω by Theorem 3.6.

By Egoroff’s theorem, for every j ∈ N there exists a measurable set A j ⊂ Ω such that

uk → u uniformly in A j, |Ω \ A j| ≤
1
j
, (5.9)

and we can choose the sets in such a way that A j ⊂ A j+1 for all j ∈ N.
Furthermore, let B j := {x ∈ Ω : |u(x)| + |∇u(x)| < j}, for j ∈ N, and observe that |Ω \ B j| → 0

as j→ ∞, since the function |u| + |∇u| is integrable. Together with (5.9) it follows that∣∣∣Ω \ (A j ∩ B j)
∣∣∣ −−−−→

j→∞
0.

Step 2: Without loss of generality we can assume that f ≥ 0. Otherwise we apply the argu-
ments to f + α, for some α > 0. We observe that

I(uk) =
∫
Ω

f (·, uk,∇uk) ≥
∫

A j∩B j

f (·, uk,∇uk)

≥

∫
A j∩B j

( f (·, uk,∇u) + ∇z f (·, uk,∇u) · ∇(uk − u)) ,

where we used that f is convex with respect to z, see (5.8). Since f is continuously differentiable
and (uk)k∈N converges uniformly to u in A j, it follows that

f (·, uk,∇u) −−−−→
k→∞

f (·, u,∇u),

∇z f (·, uk,∇u) −−−−→
k→∞

∇z f (·, u,∇u),

uniformly in A j ∩ B j. Furthermore, |∇uk|⇀ |∇u| in Lp(Ω) and therefore, we conclude that

m = lim
k→∞

I(uk) ≥ lim
k→∞

∫
A j∩B j

( f (·, uk,∇u) + ∇z f (·, uk,∇u) · ∇(uk − u))

≥

∫
A j∩B j

f (·, u,∇u).

For the proof of the convergence of the second term we refer to the tutorials.
Step 3: Finally, by monotone convergence and since (A j ∩ B j) ⊂ (A j+1 ∩ B j+1), it follows that

m ≥ lim
j→∞

∫
A j∩B j

= I(u).

□

Combining Theorem 5.7 with Lemma 5.6 we obtain an existence theorem for minimizers.

Theorem 5.8. Let f be continuously differentiable and satisfy the coercivity assumption (5.5) and
the convexity assumption (5.8). Then, there exists u ∈ Φ such that

I(u) = inf
v∈Φ

I(v).
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Proof. Lemma 5.6 implies that I is weakly coercive and by Theorem 5.7 I is weak lower semi-
continuous. Hence, the statement is an immediate consequence of Corollary 5.3. □

Remark 5.9. • If, in addition, f satisfies the hypotheses of Theorem 4.3, then, the minimizer
satisfies the weak form of the Euler-Lagrange equations, i.e.∫

Ω

(
∂y f (·, u,∇u)φ + ∇z f (·, u,∇u) · ∇φ

)
= 0 ∀φ ∈ W1,p

0 (Ω).

Moreover, if the minimizer u ∈ C2(Ω) and f : Ω × R × Rn → R is twice continuously dif-
ferentiable, then one can show that u is a classical solution of the Euler-Lagrange equation,
i.e.

−div (∇z f (·, u,∇u)) + ∂y f (·, u,∇u) = 0 in Ω,

u = g on ∂Ω.

• If u is real-valued, u : Ω→ R, the hypothesis of Theorem 5.8 are nearly optimal, in the sense
that weakening any of them, there exists a counterexample to the existence of a minimizer
(see tutorials and [5]).

The theorem can be generalized for the vectorial case, u : Ω → RN ,N ≥ 2, however, the
assumptions are then far from being optimal.

• Under additional assumptions, one can show that the minimizer is, in fact, more regular,
i.e. of class C1,C2 or even C∞. We have shown such regularity results for one-dimensional
problems in Chapter 2. For higher dimensional problems, showing additional regularity is
much more involved.

Example 5.10. (i) For the Dirichlet integral, we have

f (x, y, z) = f (z) =
1
2

z2.

Hence, all hypotheses of Theorem 5.8 are satisfies for p = 2. In this case, we have even
shown stronger results (see Theorem 5.5).

(ii) For the p-Laplacian we have

f (x, y, z) = f (z) =
1
p

zp, 1 < p < ∞.

All hypotheses of Theorem 5.8 are satisfies and the hypothesis of Theorem 4.3 as well. The
corresponding Euler-Lagrange equation is

div
(
|∇u|p−2∇u

)
= 0 in Ω.

(iii) Weierstrass’ example: We consider

I(u) =
∫ 1

0
x(u′(x))2dx

with Φ = {u ∈ W1,2((0, 1)) : u(0) = 1, u(1) = 0}. In this case, the coercivity assumption
(5.5) is not satisfied and one can show that no minimizer exists (see tutorials).
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(iv) Bolza’s example: We consider

I(u) =
∫ 1

0
((u′(x))2 − 1)2 + (u(x))4dx

with Φ = W1,4
0 ((0, 1)). Then, the convexity assumption (5.8) is not satisfied and one can

show that no minimizer exists (see tutorials).

Convexity (and even strict convexity) in the variable z is not sufficient for the uniqueness of
minimizers. However, we can prove uniqueness, e.g. if f is strictly convex in y and z, i.e.

f (x, λy1 + (1 − λy2), λz1 + (1 − λ)z2) < λ f (x, y1, z1) + (1 − λ) f (x, y2, z2) (5.10)

for all x ∈ Ω, y1, y2 ∈ R, z1, z2 ∈ R
n such that y1 , y2, z1 , z2 and λ ∈ (0, 1).

Theorem 5.11. Let f be strictly convex in y and z, i.e. f satisfies (5.10). Then, there exists at most
one u ∈ Φ such that

I(u) = inf
v∈Φ
{I(v)}.

Proof. Let u, v ∈ Φ, λ ∈ (0, 1) and consider the function η : Ω→ R,

η(·) = f (·, λu + (1 − λ)v, λ∇u + (1 − λ)∇v) − λ f (·, u,∇u) − (1 − λ) f (·, v,∇v).

We observe that η ≤ 0 in Ω and η(x) < 0 if u(x) , v(x). Consequently, it follows that

I(λu + (1 − λ)v) − λI(u) + (1 − λ)I(v) =
∫
Ω

η ≤ 0.

This inequality is strict, unless u = v a.e. in Ω, which implies that I is strictly convex.
Finally, assume that u and v are both minimizers of I and u , v. Then, using that u+v

2 ∈ Φ and
the strict convexity of I, we conclude that

inf
w∈Φ

I(w) ≤ I
(u + v

2

)
<

1
2

I(u) +
1
2

I(v) = inf
w∈Φ

I(w),

which is a contradiction. □

Finally, we show that for functionals where the integrand only depends on ∇u the convexity
assumption in Theorem 5.7 is also necessary for sequential weak lower semicontinuity.

Theorem 5.12. Let f : Rn → R be continuous and satisfy the growth assumption

| f (z)| ≤ c(1 + |z|p) ∀z ∈ Rn,

for some c > 0 and 1 < p < ∞. We consider the functional

I(u) =
∫
Ω

f (∇u(x))dx, u ∈ W1,p(Ω).

If I is sequentially weakly lower semicontinuous then f is convex.
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Proof. We only present the proof for n = 1, i.e. f : R→ R and Ω ⊂ R is an open interval. For the
general case we refer to [4]. We need to show that f is convex, i.e.

f (λz1 + (1 − λ)z2) ≤ λ f (z1) + (1 − λ) f (z2) ∀z1, z2 ∈ R, λ ∈ (0, 1). (5.11)

Step 1: We consider the function u(x) = zx, x ∈ R, where z = λz1 + (1 − λ)z2 which implies
that u′ = z and hence, f (u′) = f (z). We aim to construct a sequence (uk)k∈N such that uk ⇀ u in
W1,p(Ω) and such applying the weak lower semicontinuity of I with this sequence implies (5.11).

Let ṽ : [0, 1]→ R be defined as

ṽ(x) =

(z1 − z)x, x ∈ [0, λ],
(z2 − z)x + z − z2, x ∈ [λ, 1],

and extend ṽ periodically to a function v : R → R, i.e. v(x) = ṽ(y) if x = m + y,m ∈ Z, y ∈ [0, 1].
Now, we consider the sequence uk(x) = 1

k v(kx) + u(x), k ∈ N, and show that

∥uk − u∥L∞ ≤
c
k

∀k ∈ N. (5.12)

Indeed, we have

|uk(x) − u(x)| =
∣∣∣∣∣1k v(kx)

∣∣∣∣∣ = 1
k
|ṽ(y)| ≤

1
k
λ(1 − λ)(z1 − z2) ∀x ∈ Ω,

where kx = l + y, l ∈ Z, y ∈ [0, 1].
Step 2: We show that uk ⇀ u in W1,p(Ω). Note that by Step 1 it remains to show that u′k ⇀ u

in Lq(Ω), where 1
p +

1
q = 1. Indeed, since Ω is bounded (5.12) implies that uk → u in Lq(Ω) for all

1 ≤ q ≤ ∞.
Let ϕ ∈ C∞c (Ω), then ∫

Ω

u′kϕ = −
∫
Ω

ukϕ
′ −−−−→

k→∞

∫
Ω

uϕ′ =
∫
Ω

uϕ′, (5.13)

where we that uk ⇀ u in L1(Ω). If g ∈ Lq(Ω), 1
p +

1
q = 1, the claim follows by an approximation

argument. Indeed, C∞c (Ω) is dense in Lq(Ω) and hence, for all ε > 0 there exists ϕ ∈ C∞c (Ω) such
that ∥g − ϕ∥ < ε. Using Hölder’s inequality we conclude that∣∣∣∣∣∫

Ω

u′kg −
∫
Ω

u′g
∣∣∣∣∣ ≤ ∫

Ω

∣∣∣u′kϕ − u′ϕ
∣∣∣ + ∫

Ω

∣∣∣u′k(g − ϕ)
∣∣∣ + ∫

Ω

∣∣∣u′(g − ϕ)
∣∣∣

≤

∫
Ω

∣∣∣(uk − u)′ϕ
∣∣∣ + sup

k∈N
∥u′k∥Lp∥g − ϕ∥Lq + ∥u′∥Lp∥g − ϕ∥Lq

≤

∫
Ω

∣∣∣(uk − u)′ϕ
∣∣∣ + c∥g − ϕ∥Lq ,

for some constant c ≥ 0. The first terom on the right hand side converges by (5.13), and the second
term can be made arbitrarily small by the denseness of Cc∞(Ω) is dense in Lq(Ω).

Step 3: By assumption, I is weakly lower semicontinuous and uk ⇀ u in W1,p(Ω). This implies
that

|Ω| f (z) = |Ω| f (λz1 + (1 − λ)z2) ≤ lim inf
k→∞

∫
Ω

f (u′k).
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We observe that

u′k(x) = v′(kx) + u′(x) =

z1 y ∈ [0, λ],
z2 y ∈ [λ, 1],

where kx = l + y, l ∈ Z, y ∈ [0, 1].
Finally, if Ω = (m, l) with m, l ∈ Z then∣∣∣{x ∈ Ω : u′k(x) = z1}

∣∣∣ = λ|Ω|,∣∣∣{x ∈ Ω : u′k(x) = z2}
∣∣∣ = (1 − λ)|Ω|.

We conclude that

|Ω| f (z) = lim inf
k→∞

∫
Ω

f (u′k) = lim inf
k→∞

∫
{u′k=z1}

f (u′k) +
∫
{u′k=z2}

f (u′k)


= λ|Ω| f (z1) + (1 − λ)|Ω| f (z2),

which proves (5.11). If Ω is an arbitrary open interval, we can approximate it with a sequence of
intervals with integer endpoints and the error will tend to zero as k → ∞. □

From Theorem 5.7 and Theorem 5.12 applied to f and − f , we get a characterization of integral
functions that are continuous with respect to the weak topology of Lp.

Corollary 5.13. Let f : Rn → R be continuous and satisfy the growth assumption

| f (z)| ≤ c(1 + |z|p) ∀z ∈ Rn,

for some c > 0 and 1 < p < ∞. Consider the functional

I(u) =
∫
Ω

f (∇u(x))dx, u ∈ W1,p(Ω).

Then, I is sequentially weakly continuous then f is linear.
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Chapter 6

Relaxation

We now consider the following situation: suppose that we want to prove the existence of a solution
to the minimization problem

min{ F(x) : x ∈ X } (6.1)

where F : X → (−∞,+∞]. What we have seen in the last chapter is that, if we can find a
topology for which F is coercive and lower semicontinuous, then the Direct Method of Calculus
of Variations (see Theorem 5.2) ensures the existence of a solution. Note that we need to choose a
topology!

The two properties required by Direct Methods wants different properties of the topology:
(sequential) lower semicontinuity is a condition on weakly converging sequences. The less weakly
converging sequences we have, the easier it is for a functional to be weak lower semicontinuous.
Thus, lower semicontinuity prefers a topology with a lot of open sets, so it is more difficult for a
sequence to converge. On the other hand, coercivity would like as few open sets as possible, since
it’s a property about compactness. This competition between the two required properties makes
the choice of the topology a crucial part of the task to solve a minimization problems. Usually, this
choice is dictated by considerations coming from the nature of the phenomenon modeled by F that
reflects on the pre-compactness of sequences with equibounded energy, namely considerations on
the coercivity: assume that (xn)n∈N ⊂ X is such that

sup
n∈N

F(xn) < +∞.

Is there a topology ensuring that (xn)n∈N is pre-compact? This fixed the natural topology for the
problem1. Then, the question is whether or not the functional F is lower semicontinuous or not
with respect to such topology. If it is, well, we are in business to get the existence of a solution
to the minimization problem. As you can guess, the interesting case is when it is not! This is not
simply a technicality for mathematicians, but it is the way the model really captures complex be-
haviors of what situation F represents. In particular, oscillations, concentration, and jumps. Here,
we will focus of the former type. The latter two require the introduction of functional spaces more
general than Sobolev spaces (like spaces of function of bounded variations, or Young measures),
and it is beyond the scope of the course.

1Of course, one can consider different topologies.
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Consider the case where F : X → (−∞,+∞] is a functional, and a topology on X. We are not
assuming F to be lower semicontinuous, or even coercive with respect to such topology.Thus, the
minimization problem (6.1) does not necessarily have a solution. Nevertheless, we wonder if it is
possible to understand the behavior of a minimizing sequence (xn)n∈N ⊂ X for F. In particular, we
are interested in a variational characterization of minimizing sequences for F. Namely, we want
to understand if we can we find a functional F : X → (−∞,+∞] such that

inf{ F(x) : x ∈ X } = min{ F(x) : x ∈ X }, (6.2)

and if (xn)n∈N ⊂ X is a minimizing sequence for F, then, up to a subsequence, it converges (in
some topology) to a minimizer of F. Moreover, it would be also important to have that every
minimizer of F is the limit of a minimizing sequence for F. In this way we can study minimizers
of F and, by using the two properties above, be sure that objects that almost minimize the initial
functional F are close (with respect to the chosen topology) to them.

We focus on the case of functionals defined on a metric space. This is because the metric
structure allows for a sequential characterization of the relaxed functional, that coincides with the
topological definition. This equivalence is not true in a general topological space. Nevertheless,
motivated by applications, we will discuss the case of relaxation with respect to weak topologies.

6.1 Relaxation in metric spaces

In this section, (X, d) will denote a metric space. Moreover, with R we denote R ∪ {±∞}

The question we want to address is the following: how to find, if possible, such a functional
F? The answer is quite intuitive, if you think about it for a moment, before reading the definition.
Consider the function F in Figure 6.1. This function is not lower semicontinuous at the point x̄.
The lack of lower semicontinuity is because we defined F at x̄ in the wrong way! Indeed, the
correct value would have been F(x̄) = 1. Why is that? Well, because you can find a sequence
(xn)n∈N converging to x̄ with

lim
n→∞

F(xn) = 1.

Note that the fact that the limit exists is a very nice coincidence. We could have used the liminf
instead.

Figure 6.1: The function F and its sequential lower semicontinuous envelope F.
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Thus, given x ∈ X, in order to define F(x) we want to look at all possible ways to approximate
x with a sequence (xn)n∈N, and choose that that gives the lowest amount of energy. This gives the
heuristics for the following definition.

Definition 6.1. Let F : X → R. We define F : X → R, the sequential lower semicontinuous
envelope of F, as

F(x) B inf
{

lim inf
n→∞

F(xn) : xn → x
}
,

for every x ∈ X.

Remark 6.2. It is important to note the the lower semicontinuous envelope depends on the topology
we are using to define the notion of convergence of sequences. Different topologies will lead to
different lower semicontinuous envelopes for the same functional F.

Remark 6.3. Note that F ≤ F.

Remark 6.4. Note that the sequential lower semicontinuous envelope F has a local character.
Namely, if G : X → R is a functional such that G = F in a ball B(x, r), for some r > 0, than
F(y) = G(y) for all y ∈ B(x, r).

First of all, we would like to justify the name of the functional F.

Lemma 6.5. The functional F is sequentially lower semicontinuous.

Proof. Let x ∈ X, and let (xn)n∈N be such that xn → x. We want to prove that

F(x) ≤ lim inf
n→∞

F(xn).

Without loss of generality, we can assume F(x) > −∞, otherwise there is nothing to prove. For
each n ∈ N, by definition of F, we get that there exists yn ∈ X such that

d(xn, yn) <
1
n
, F(yn) ≤ F(xn) +

1
n
. (6.3)

Note that, the second inequality in (6.3), we cannot have F(xn) = −∞, for n large. Indeed, by
using our assumption, and the definition of F(x), we get

−∞ < F(x) ≤ lim inf
n→∞

F(yn).

By choice of the sequence (yn)n∈N, we get that yn → x. Therefore, by definition of F(x), and by
using 6.3, we obtain that

F(x) ≤ lim inf
n→∞

F(yn) ≤ lim inf
n→∞

[
F(xn) +

1
n

]
= lim inf

n→∞
F(xn).

This proves the desired result. □

We now prove a property of the sequential lower semicontinuous envelope that is very useful
when .
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Lemma 6.6. Let F : X → R. Then, for every x ∈ X there exists a sequence (xn)n∈N ⊂ X such that

F(x) = lim
n→∞

F(xn),

and with xn → x.

Proof. First of all, note that if F(x) = +∞, then for every sequence (xn)n∈N ⊂ X with xn → x, we
have

lim
n→∞

F(xn) = +∞.

Thus, any sequence works. Now, assume F(x) < +∞. By definition of F(x), for each n ∈ N \ {0},
there exists a sequence (yn

k)k∈N ⊂ X with yn
k → x as k → ∞, such that

lim inf
k→∞

F(yn
k) ≤ F(x) +

1
n
,

in the case F(x) > −∞, and such that

lim inf
k→∞

F(yn
k) ≤ −

1
n
,

in the case F(x) = −∞. Thus, for each n ∈ N, we can choose k(n) ∈ N such that

d(yn
k(n), x) <

1
n
,

and
lim inf

k→∞
F(yn

k) ≤ F(x) +
2
n
,

in the case F(x) > −∞, and such that

lim inf
k→∞

F(yn
k) ≤ −

1
2n
,

in the case F(x) = −∞. Define the sequence (xn)n∈N as xn B yn
k(n). This sequence enjoys the

desired properties. □

In computing the sequential lower semicontinuous envelope, it is useful to focus only on the
terms that are not continuous, as the following proposition shows.

Proposition 6.7. Let F,G : X → R. Then,

F +G ≥ F +G,

provided that the right-hand side and the left-hand side are well defined. Moreover, the equality

F +G = F +G

holds if G is continuous and everywhere finite.
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Remark 6.8. The fact that G is continuous and finite every where is essential to have the second
part of the above result. The necessity of continuity can be seen by considering the following
example: let F,G : R→ R be defined as

F(t) B
{

0 for t , 0,
1 for t = 0,

G(t) B
{

1 for t , 0,
0 for t = 0,

respectively. Then we have a strict inequality for t = 0. Indeed

F(0) +G(0) = 0 +G(0) < 1 = F(0) +G(0) = F +G(0).

The necessity of having G finite can be seen by using a similar example.

We now show that the sequential lower semicontinuous envelope is the functionals that we
were seeking for in order to characterize the limiting behavior of minimizing sequences for a
given functional. Before, we recall the definition of a cluster point.

Definition 6.9. Let (xn)n∈N be a sequence in a topological space. We say that x is a cluster point,
or accumulation point, of the sequence, if there exists a subsequence (xnk )k∈N that converges to x.

Theorem 6.10. Let F : X → R be a coercive functional. Then, F is coercive and the following
holds

inf{ F(x) : x ∈ X } = min{ F(x) : x ∈ X }. (6.4)

Moreover, every cluster point of a minimizing sequence for F us a minimum point for F. Finally,
every minimun point for F is the limit of a minimizing sequence for F.

Proof. Note that, without loss of generality, we can assume that F . +∞.

Step 1: Coerciveness. Let α ∈ R. We claim that{
F ≤ α

}
=

⋂
t>α

{F ≤ t}. (6.5)

Indeed, let x ∈
{
F ≤ α

}
, and let t > α. Then, by definition of F(α), there exists (xn)n∈N with

xn → x such that
F(α) = lim

n→∞
F(xn).

Therefore, there exists n̄ ∈ N such that for all n ≥ n̄, it holds F(xn) ≤ t. Thus, x ∈ {F ≤ t}.
To prove the opposite inclusion, let

x ∈
⋂
t>α

{F ≤ t}.

Then, for all t > α, there exists (xt
n)n∈N ⊂ {F ≤ t} such that xt

n → x. Then,

F(x) ≤ lim inf
n→∞

F(xt
n) ≤ t.

Since this holds for all t > α, we get that F(x) ≤ α, as desired.
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Now, by using the coercivity of F, we have that {F ≤ t} is closed for all t ∈ R. In particular,
from (6.5), we get that

{
F ≤ α

}
is compact for every α ∈ R, being intersection of compact sets.

Step 2: Validity of (6.4). The functional F is sequentially lower semicontinuous (see Lemma
6.5) and sequentially coercive (see Step 1). Therefore, we can apply the Direct Method (see
Theorem 5.2) to ensure that the minimization problem for F has a solution.

We now prove the equality in (6.4). Note that

inf{ F(x) : x ∈ X } ≥ min{ F(x) : x ∈ X }

because F ≥ F. To prove the opposite inequality, we argue by contradiction. Assume that

inf{ F(x) : x ∈ X } > min{ F(x) : x ∈ X }, (6.6)

and let x̄ ∈ X be a minimum point of F. Then, by Lemma 6.6 we can find a sequence (xn)n∈N ⊂ X
with xn → x̄ such that

F(x̄) = lim
n→∞

F(xn).

This, combined with (6.6), yields

min{ F(x) : x ∈ X } = F(x̄) = lim
n→∞

F(xn) = lim
n→∞

F(xn) ≥ inf{ F(x) : x ∈ X } > min{ F(x) : x ∈ X }.

This gives the desired contradiction.

Step 3: Cluster points. Let (xn)n∈N ⊂ X be a minimizing sequence for F, and let x ∈ X be a
cluster point of it. Then, by the lower semicontinuity of F, we have that

F(x) ≤ lim inf
n→∞

F(xn) ≤ lim inf
n→∞

F(xn) = inf{ F(x) : x ∈ X } = min{ F(x) : x ∈ X },

where in the last step we used (6.4). Thus, x is a minimum point for F.

Step 4: Minimum points of F. Let x ∈ X be a minimizer of F. By Lemma 6.6, there exists a
sequence (xn)n∈N ⊂ X converging to x such that

min{ F(x) : x ∈ X } = F(x) = lim
n→∞

F(xn).

By using (6.4) we then obtain that (xn)n∈N is a minimizing sequence for F. □

6.2 Characterizations of the relaxed functional

In this section, we want to provide several characterizations of the sequential lower semicontinuous
envelope.

Proposition 6.11. Let F : X → R. Then, F is characterized by the following two properties:

(i) (Liminf inequality) For every x ∈ X, and (xn)n∈N ⊂ X converging to x, it holds

F(x) ≤ lim inf
n→∞

F(xn);
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(ii) (Limsup inequality) For every x ∈ X, there exists (xn)n∈N ⊂ X such that

F(x) ≥ lim sup
n→∞

F(xn),

and xn → x.

Proof. Step 1. We first show that F satisfies (i) and (ii). Let us start with (i). Let x ∈ X, and
(xn)n∈N ⊂ X converging to x. Then, using the definition of F(x) we get

F(x) = inf
{

lim inf
n→∞

F(yn) : yn → x
}
≤ lim inf

n→∞
F(xn).

This proves (i). As for (ii), this follows from Lemma 6.6.

Step 2. Let G : X → R be a functional satisfying the following two properties:

(a) For every x ∈ X, and (xn)n∈N ⊂ X converging to x, it holds

G(x) ≤ lim inf
n→∞

F(xn);

(b) For every x ∈ X, there exists (xn)n∈N ⊂ X such that

G(x) ≥ lim sup
n→∞

F(xn),

and xn → x.

We claim that G = F. For, we first show that G ≤ F. Fix x ∈ X. Let (xn)n∈N ⊂ X be the sequence
provided by Lemma 6.6. Then, xn → x and

F(x) = lim
n→∞

F(xn) ≥ G(x),

where last equality follows from (a). To prove that G ≥ F, fix x ∈ X, and let (xn)n∈N ⊂ X be the
sequence given by (b). Then, xn → x and

G(x) ≥ lim sup
n→∞

F(xn) ≥ F(x),

where last equality follows from (i). This concludes the proof. □

Remark 6.12. The limsup inequality is also called recovery sequence. The reason is that, for the
sequence (xn)n∈N provided by (ii), it holds

F(x) = lim
n→∞

F(xn).

This follows from (ii) combined with (i). Note that there can be more than one recovery sequence.

The characterization provided by Proposition 6.11 is how, very often, the relaxed functional
is identified. Assume that you are given a functional F : X → R and you want to identify its
sequential lower semicontinuous envelope. What you do is that you have to guess a candidate
G : X → R. Then:
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Step 1: Prove that G is sequentially lower semicontinuous;
Step 2: Prove that G ≤ F;
Step 3: Prove that the liminf inequality holds;
Step 4: Construct a recovery sequence.

A possible way to guess the candidate G is to work on the liminf inequality, and then prove
that the lower bound obtained is optimal, by constructing a recovery sequence. As a first step,
though, you need to make sure that the functional G is lower semicontinuous. For, the following
properties come in handy.

Proposition 6.13. Let G : X → R. Then, the followings are equivalent:

(i) G is sequentially lower semicontinuous;

(ii) The superlevel set {G > t} is open, for all t ∈ R. Namely, for every x ∈ X and every t ∈ R
with G(x) > t, there exists r > 0 such that G(y) > t, for all y ∈ B(x, r);

(iii) The sublevel set {G ≤ t} is closed, for all t ∈ R;

(iv) It holds
G(x) = sup

r>0
inf

y∈B(x,r)
G(y) = lim

r→0
inf

y∈B(x,r)
G(y),

for all x ∈ X.

Moreover, in order to prove that a functional is lower semicontinuous, usually one proceeds
by building up on the lower semicontinuity of simple functionals. We start by considering the op-
eration of infimum and supremum. Note that we are (sequentially) lower semicontinuous, because
these results also holds for lower semicontinuous functionals (see Definition 6.23): indeed, the
proofs of the results use the topological properties provided by the above characterization.

Proposition 6.14. Let Fi : X → R be (sequentially) lower semicontinuous for all i ∈ I, where I is
a set of indexes (even not countable). Then, the functional U : X → R defined as

U(x) B sup
i∈I

Fi(x)

is (sequentially) lower semicontinuous. Moreover, for any finite set J ⊂ I, it holds that the func-
tional L : X → R defined as

L(x) B inf
i∈J

Fi(x)

is (sequentially) lower semicontinuous.

Remark 6.15. The infimum of a countable family of lower semicontinuous functions may fail to
be lower semicontinuous. As an example, consider the case where fn : R → R are given by
fn(x) B ((nx + 1) ∨ 0) ∧ 1. Then

inf
n∈N

fn(x) =
{

1 if x ≥ 0,
0 if x < 0,

which is not lower semicontinuous.
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We now consider what happens when considering algebraic operations.

Proposition 6.16. Let F,G : X → R be (sequentially) lower semicontinuous. Then, λF is (se-
quentially) lower semicontinuous for all λ > 0, and, if F +G is well defined (namely there are no
cases where we have to sum ±∞with ∓∞), then also F+G is (sequentially) lower semicontinuous.

Remark 6.17. Note that, if F is lower semicontinuous, and λ < 0, then λF is not necessarily lower
semicontinuous. Find an example for this!

The proofs of the above two propositions are left as an exercise to the reader.
We now define a topological notion of lower semicontinuous envelope, that has more to do

with the word envelope. As it usually happens, the sequential and the topological notion are
equivalent in metric spaces, but they differ in a general topological space.

Definition 6.18. Let F : X → R. We define lsc(F) : X → R, the lower semicontinuous envelope,
as

lsc(F)(x) B sup{G(x) : G ≤ F, G : X → R is lower semicontinuous },

for every x ∈ X.

Remark 6.19. Using Proposition 6.14, we get that lsc(F) is the greatest lower semicontinuous
functional that is not greater than F.

We first give a local characterization of the lower semicontinuous envelope, in the same spirit
as the characterization (v) in Proposition 6.13 of lower semicontinuous functions.

Proposition 6.20. Let F : X → R. Then,

lsc(F)(x) = sup
r>0

inf
y∈B(x,r)

F(y) = lim
r→0

inf
y∈B(x,r)

F(y),

for every x ∈ X.

Proof. Consider the functional
H(x) B sup

r>0
inf

y∈B(x,r)
F(y).

Step 1. We claim that H ≤ lsc(F). By the definition of lsc(F), we just need to prove that H is
lower semicontinuous and that H ≤ F. The latter property follows directly from the definition
of H. As for the former, we use the characterization of lower semicontinuous functions given by
Proposition 6.13: we check that the superlevel sets of H are open. Let t ∈ R, and let x ∈ {H > t}.
Then, by definition of H(x), there exists r > 0 such that

inf
y∈B(x,r)

F(y) > t.

In particular, for each y ∈ B(x, r), it holds that

inf
z∈B(y,r−d(x,y))

F(z) > t,

and thus H(y) > t as well. This proves that B(x, r) ⊂ {H > t}.
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Step 2. To prove the opposite inequality, the lower semicontinuity of H, together with Propo-
sition 6.13, yields that, for every G : X → R lower semicontinuous and such that G ≤ F,

G(x) = sup
r>0

inf
y∈B(x,r)

G(y) ≤ sup
r>0

inf
y∈B(x,r)

F(y) = H(x),

for every x ∈ X. Thus, lsc(F) ≤ H. This concludes the proof. □

We now prove that, in a metric space, the sequential lower semicontinuous envelope coincides
with the lower semicontinuous envelope.

Proposition 6.21. Let F : X → R, where (X, d) is a metric space. Then, lsc(F) = F.

Proof. Step 1. We first show that lsc(F) satisfies (i) of Proposition 6.11. Let x ∈ X, and (xn)n∈N ⊂

X converging to x. By the lower semicontinuity of lsc(F) we have that

lsc(F)(x) ≤ lim inf
n→∞

lsc(F)(xn) ≤ lim inf
n→∞

F(xn),

where in the last step we used the fact that lsc(F) ≤ F.

Step 2. We now show that (ii) of Proposition 6.11 holds. Let x ∈ X. Assume lsc(F)(x) < +∞,
otherwise there is nothing to prove. Let (tn)n∈N ⊂ R be such that

lim
n→∞

tn = lsc(F)(x), lsc(F)(x) < tn. (6.7)

Using Proposition 6.20, we get

sup
k∈N

inf
y∈B(x,1/k)

F(y) = sup
r>0

inf
y∈B(x,r)

F(y) = lsc(F)(x) < tn.

Therefore, for every k ∈ N \ {0}, we get that

inf
y∈B(x,1/k)

F(y) < tn.

In particular,
inf

y∈B(x,1/n)
F(y) < tn.

for all n ∈ N \ {0}. Since we have a strict inequality, by using the definition of infimum, we get
that for all n ∈ N there exists xn ∈ B(x, 1/k(n)) such that

F(xn) < tn, (6.8)

Therefore, the sequence (xn)n∈N converges to x, and, by using (6.7) we get

lim sup
n→∞

F(xn) ≤ lim
n→∞

tn = lsc(F)(x),

where in the last step we used (6.8). Thus, (xn)n∈N is a desired recovery sequence. □
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6.3 Relaxation with respect to weak and weak∗ topologies

The previous section was in the framework of a metric space. That was important because some
of the results we proved do not hold in a general topological space (X, τ). In particular, in proving
the sequential characterization of the relaxation (see Proposition 6.21), and the limiting behaviour
of minimizing sequences (see Theorem 6.10) we use is the fact that X satisfies the first axiom
of countability, namely that every point has a countable neighbourhood basis (for metric spaces,
given by balls with rational radius). This is not satisfied by weak topologies.

Remark 6.22. Note that the result of Proposition 6.20 still holds in a general topological space,
up to replacing the supremum over r > 0 with the supremum over all open sets U ⊂ X such that
x ∈ U.

We are interested in such a issue because in the applications that we will see (and in most
of the modern applications), weak topologies are those that need to be used in order to identify
the lower semicontinuous envelope. In particular, in the next section, we will consider the weak
topology of Lp for p < ∞ and the weak∗-L∞ for p = ∞. These topologies does not come from a
metric, and therefore the sequential characterization given by Proposition 6.21 is not valid, for a
general functional F. We thus wonder what is the object given by the sequential characterization
of Proposition 6.21, and what is its relation to the lower semicontinuous envelope.

First of all, we give the topological definition of lower semicontinuity.

Definition 6.23. Let (X, τ) be a topological space, and let F : X → R. We say that F is lower semi-
continuous at the point x ∈ X if, for every t ∈ R with F(x) > t, there exists an open neighborhood
U of x such that

F(y) > t

for all y ∈ U. We say that F is lower semicontinuous if it is lower semicontinuous at all points.

Remark 6.24. A lower semicontinuous function is sequentially lower semicontinuous, but the
opposite is not true in general. Proposition 6.13 shows that, in a metric space, the two notions
coincide.

By using Proposition 6.14 we get the following.

Lemma 6.25. Let F : X → R. Then, lsc(F) is lower semicontinuous.

Remark 6.26. Note that the sequential lower semicontinuous envelope F might fail to be lower
semicontinuous in a general topological space.

We now state a similar characterization of the lower semicontinuous envelope in the same
spirit as those for the sequential lower semicontinuous envelope.

Lemma 6.27. Let F : X → R. Then,

lsc(F)(x) = sup
U∈N(x)

inf
y∈U

F(y),

for all x ∈ X, where N(x) denotes the family of neighbourhood of x.

In general, F and lsc(F) are different, but the two are always ordered.

Lemma 6.28. Let F : X → R. Then, F ≥ lsc(F).
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We now state a result ensuring that the lower semicontinuous envelope is, in a general topo-
logical space, the right object to consider, if we want to characterize in a variational way the
asymptotic behavior of minimizing sequences.

Theorem 6.29. Let F : X → R be a coercive functional. Then, lsc(F) is coercive and the following
holds

inf{ F(x) : x ∈ X } = min{ lsc(F)(x) : x ∈ X }. (6.9)

Moreover, every cluster point of a minimizing sequence for F us a minimum point for lsc(F).
Finally, if X satisfies the first axiom of countability, then every minimun point for lsc(F) is the limit
of a minimizing sequence for F.

Remark 6.30. Note that the difference with Theorem 6.10 is in the additional requirement needed
to ensure that every minimum point of lsc(F) can be achieved as limit of a minimizing sequence
for F.
Remark 6.31. The above result does not hold, in general, if we put F in place of lsc(F). This is the
main difficulty in dealing with relaxation in general topological spaces: the object that we need,
lsc(F), is difficult to work with, while the object is easier to identify, F, is not the one we need.

We now wonder if there are conditions ensuring that the two notions of relaxation are equal.
We have hope because (this is a general result in Functional Analysis), in a reflexive and separable
Banach space (X, τ), for each bounded set B ⊂ X there exists a metric d : B × B → [0,∞) that
metrizes the weak convergence on B. Therefore,given a functional F : X → R, in the computation
of the relaxed functional, we need to be able to restrict our attention to bounded sets. This is
possible if F is coercive, as the following result shows.

Proposition 6.32. Let (X, ∥ · ∥) be a normed vector space. Let τ be either

(i) The weak topology on X, and assume X∗ separable;

(i) The weak∗ topology on X, and assume X ⊂ Y ′, with Y a separable normed space.

Let F : X → R be a coercive functional with respect to the topology τ. Then, F = lsc(F).

In the applications we will consider the space X = Lp(Ω;RM) endowed wit the weak topology
if p < ∞, or the weak∗ topology if p = ∞. We thus specialize the above result to our case of
interest.

Corollary 6.33. Let p ∈ (1,∞], and let F : Lp(Ω;RM)→ R be a coercive functional with respect
to the weak topology of Lp if p ∈ (1,∞), or with respect to the weak∗ topology of L∞ if p = ∞.
Then,

F = lsc(F),

where both relaxations are with respect to the above topologies.

Remark 6.34. Let p ∈ (1,∞), and let F : Lp(Ω;RM)→ R. Using Proposition 5.4, we get that F is
weakly coercive if and only if

F(u)→ ∞ as ∥u∥Lp → ∞.

In the case p = ∞, we can ensure weak∗ coerciveness of F by imposing that

F(u) = +∞ if ∥u∥L∞ > R,

for some R > 0.
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The above corollary does not hold for the weak topology of L1, since L1 is not a reflexive
Banach space. Nevertheless, it is still possible to find a growth condition ensuring the equality
between the two notions of relaxation.

Proposition 6.35. Let F : L1(Ω;RM)→ R, where Ω ⊂ RN is a measurable set, be such that

F(u) ≥
∫
Ω

φ(|u|) dx,

for all u ∈ L1(Ω;RM), where φ : [0,∞]→ [0,∞] is an increasing function such that

lim
t→∞

φ(t)
t
= ∞.

Then, F = lsc(F), where both relaxations are with respect to the weak L1 topology.

Remark 6.36. The difference between the growth condition needed in Corollary 6.33 for p > 1,
and that needed in Proposition 6.35 for p = 1, is that in the latter we require a rate of growth of F
at infinity, while in the former we just ask for it to blow up at infinity.

The technical reason for asking for a superlinear growth in Proposition 6.35 is to ensure that
the relaxed functional is defined over L1 functions. If the functional F has only linear growth, then
the relaxed functional might required to be defined over measures. An example is the so called
area functional: F : W1,1(Ω)→ [0,+∞] defined as

F(u) B
∫
Ω

√
1 + |∇u|2 dx.

Note that, since F only depends on the gradient, and not on the function u, we can think of it as
defined over the subspace of Lp of gradients of functions. This functional has linear growth in ∇u,
and it turns out that its relaxation has to be defined over functions whose gradient is a measure.
These are the so called functions of bounded variation.

For the proofs of Proposition 6.32 and of Proposition 6.35 we refer to [8, Proposition 3.16,
Proposition 3.18].

6.4 Laurentiev phenomenon and relaxation

Minimization problems are difficult to solve. This is why being able to find an approximate so-
lution with numerical methods is a fundamental task. Classical methods in approximations (like
the finite element method) use Lipschitz functions. Therefore, it is of high interested to answer
the following question: consider a functional F : Lp(Ω;RM) → R, where p ∈ [1,∞), and let
A ⊂ Lp(Ω;RM). For instance,A = Lip(Ω;RM). Is is true that

inf
A

F = inf
X

F?

Of course, the inequality
inf
A

F ≥ inf
X

F
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holds, and we want to know if it can be strict. We first illustrate it with a finite dimensional
example. Consider the function f : R→ R defined as

f (x) B
{

1 if x ∈ Q,
0 if x ∈ R \ Q.

Then, it is clear that
inf
Q

f > inf
R

f .

Indeed, despite the fact that Q is dense in R, we cannot achieve the value 0 = infR f just by using
rational points.

In 1926, Laurentiev studied such a phenomenon for integral functional, and in 1934 Maniá
found a surprisingly easy example where the strict inequality holds. Let F : W1,1((0, 1)) → R be
defined as

F(u) :=
∫ 1

0
[u3(x) − x]2(u′(x))6 dx.

He proved that
inf

Lip((0,1))
F > min

W1,1((0,1))
F.

What is surprising is that the functional F seems very nice. Yet, it is not possible to approximate
its minimum over W1,1 with Lipschitz functions.

We now interpret the Lauretiev phenomenon by using the theory of relaxation. There is a
natural way to include the constraint in the functional. Define G : X → R as

G(x) B
{

F(x) if x ∈ A,
+∞ else.

Then, it holds that
inf
A

F = inf
X

G.

Moreover, x ∈ A is a minimizer of F over A if and only if x is a minimizer of G over X. Thus,
we can equivalently study the unconstrained minimization of G. What happens if we relax the
functional G? Do we get back the original F or not? This is the essence of the Laurentiev phe-
nomenon:it might happen that

G ≥ F,

with strict inequality for u ∈ X \ A and this is what causes the Laurentiev phenomenon. Some
research has been done in order to identify the mismatch, as well as identifying conditions that
prevent this phenomenon from happening. Moreover, delicate numerical techniques have been de-
veloped to simulate numerically minimizers for functionals exibiting the Laurentiev phenomenon.

6.5 Relaxation of integral functionals defined on Lp: strong topology

Strong topology is usually too strong! Namely, when we are given a functional, we need to choose
the topology to use in order to either apply the Direct Method, or to relax the functional. In most
cases, the functional F : X → R under consideration

Nevertheless, it is important to understand lower semicontinuity, continuity, and relaxation of
integral functionals with respect to strong topologies. We start by investigating lower semiconti-
nuity.
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Proposition 6.37. Let Ω ⊂ RN be a measurable set, and p ∈ [1,+∞]. Let f : Ω × RM → R be
such that

z 7→ f (x, z)

is lower semicontinuous for a.e. x ∈ Ω. Moreover, assume that

• If p < ∞, that
f (x, z) ≥ a(x)|z|p + b(x),

for a.e. x ∈ Ω, and all z ∈ RM, where a, b ∈ L1(Ω) are non-negative functions;

• If p = ∞, that
f (x, z) ≤ C,

for a.e. x ∈ Ω, and all z ∈ RM, where C < +∞.

Then, the functional F : Lp(Ω;RM)→ R defined as

F(u) B
∫
Ω

f (x, u(x)) dx

is sequentially lower semicontinuous with respect to the strong topology of Lp(Ω;RM).

Proof. Let (un)n∈N ⊂ Lp(Ω;RM) be such that un → u, where u ∈ Lp(Ω;RM). Then, there exists a
subsequence (unk )k∈N such that

unk (x)→ u(x) for a.e. x ∈ Ω.

Thus, by assumption, we get that

f (x, u(x)) ≤ lim inf
k→∞

f (x, unk (x)) (6.10)

for a.e. x ∈ Ω. Therefore, using Fatous’s Lemma, we get

F(u) =
∫
Ω

f (x, u(x)) dx ≤
∫
Ω

lim inf
k→∞

f (x, unk (x)) ≤ lim inf
k→∞

∫
Ω

f (x, unk (x)) = lim inf
k→∞

F(unk ).

Since the left-hand side is independent of the subsequence (unk )k∈N, we conclude that

F(u) ≤ lim inf
k→∞

F(un),

as desired. □

Remark 6.38. The bounds on the integrand f are necessary in order to get lower semicontinuity
of the functional F. Indeed, consider the function f (x) B x4, and let

F(u) B
∫ 1

0
f (u) dx.

For each n ∈ N \ {0} define un : (0, 1)→ R as

un B n1/3
1(0,1/n).

64



Then, un ∈ L2, and un → u in L2, where u ≡ 0, but

F(u) =
∫ 1

0
f (u) dx = 0 , +∞ = lim

n→∞
F(un) =

∫ 1

0
f (un) dx = lim

n→∞
n1/3.

Thus, the functional F is not continuous with respect to the strong topology of L2. Note though,
that it is continuous with respect to the strong topology of Lp, for all p ≥ 4.

Applying the above result to f and to − f yields the continuity result for integral functionals
with respect to the strong topology of Lp.

Proposition 6.39. Let Ω ⊂ RN be a measurable set, and p ∈ [1,+∞]. Let f : Ω × RM → R be a
Borel function with

• If p < ∞, that
f (x, z) ≥ a(x)|z|p + b(x),

for a.e. x ∈ Ω, and all z ∈ RM, where a, b ∈ L1(Ω);

• If p = ∞, that
f (x, z) ≥ −C,

for a.e. x ∈ Ω, and all z ∈ RM, where C > 0.

Assume that
z 7→ f (x, z)

is continuous for a.e. x ∈ Ω. Then, the functional F : Lp(Ω;RM)→ R defined as

F(u) B
∫
Ω

f (x, u(x)) dx,

is sequentially continuous with respect to the strong topology of Lp(Ω;RM).

As for the case of lower semicontinuity and continuity with respect to the weak topology, we
can also characterize strongly lower semicontinuous and strongly continuous integral functionals.

Proposition 6.40. Let p ∈ [1,∞], and Ω ⊂ RN be a measurable set. Let f : RM → R be a Borel
function with

• If p < ∞, that
f (x, z) ≥ a(x)|z|p + b(x),

for a.e. x ∈ Ω, and all z ∈ RM, where a, b ∈ L1(Ω);

• If p = ∞, that
f (x, z) ≥ −C,

for a.e. x ∈ Ω, and all z ∈ RM, where C > 0.
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Define F : Lp(Ω;RM)→ R as

F(u) B
∫
Ω

f (x, u(x)) dx.

Then, F is lower semicontinuous with respect to the strong topology of Lp if and only if

z 7→ f (x, z)

is lower semicontinuous for a.e. x ∈ Ω.

Proposition 6.41. Let p ∈ [1,∞], and Ω ⊂ RN be a measurable set. Let f : RM → R be a Borel
function with

• If p < ∞, that
| f (x, z)| ≤ a(x)|z|p + b(x),

for a.e. x ∈ Ω, and all z ∈ RM, where a, b ∈ L1(Ω);

• If p = ∞, that
| f (x, z)| ≤ C,

for a.e. x ∈ Ω, and all z ∈ RM.

Define F : Lp(Ω;RM)→ R as

F(u) B
∫
Ω

f (x, u(x)) dx.

Then, F is continuous with respect to the strong topology of Lp if and only if

z 7→ f (x, z)

is continuous for a.e. x ∈ Ω.

Remark 6.42. Continuity with respect to the weak topology is a more restrictive condition than
continuity with respect to the strong topology, since a strongly converging sequence is weakly
converging, but the opposite is not true. This reflects on the fact that in Corollary 5.13 the integrand
f is required to be linear (in particular, it is continuous), while in Proposition 6.41 we only ask for
continuity of the integrand.

6.6 Relaxation of integral functionals defined on Lp: weak topology

We now want to compute explicitly the relaxation of integral functionals of the form

F(u) B
∫
Ω

f (u) dx, and F(u) B
∫
Ω

f (∇u) dx,

with respect to the weak topology of Lp(Ω;RM) (and weak∗-L∞(Ω;RM)), where Ω ⊂ RN is an
open set. The reason why we consider both is that, in the latter case, there is a difference in the
case min{N,M} = 1 and min{N,M} > 1. We will only focus, as we did in Theorem 5.12, on the
case N = M = 1. On the other hand, for the former case, the dimensions N and M play no role,
but a deep result on weak convergence in Lp is needed (the so called Riemann-Lebesgue Lemma,
see Theorem 6.61).
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In particular, we will prove what is called an integral representation result: the relaxed func-
tional is still an integral functional. Moreover, we will be able to give an explicit form of the
integrand defining the relaxed functional.

Before digging into details, let’s make some heuristics: if we have an integral functional F :
Lp(Ω;RM)→ R of the form

F(u) B
∫
Ω

f (∇u) dx,

we know that, if f is convex, then F is sequentially weakly lower semicontinuous in Lp for p < ∞,
or weakly∗-L∞ for p = ∞ (see Theorem 5.7). We also know that the converse is true if M = 1
(see Theorem 5.12; this can be extended to the case min{N,M} = 1). We might therefore wonder
if the relaxation of the functional F, namely finding the greatest lower semicontinuous functional
not greater than F has anything to do with the integral functional whose integrand is the greatest
convex function not greater than f .

6.6.1 Convex functions

In this section we investigate convex functions and the operation of convexification, namely, given
a function f , finding the greatest convex function maximized by f .

Definition 6.43. Let f : RM → R. We say that f is convex if

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y),

for all x, y ∈ RN , and all λ ∈ [0, 1].

Remark 6.44. Here we only consider the case of finite valued convex functions. The definition
can be extended also to the case of maps in R, and the inequality has to hold when the right-hand
side is well-defined.

Convex functions are supremum of affine functions, as the following result shows.

Proposition 6.45. Let f : RM → R. Then, f is convex if and only if f is the supremum of affine
functions. Namely, f is convex if and only if

f = sup
{
φ : RM → R : φ ≤ f , φ affine

}
.

Moreover, if f is convex, it is possible to find (ai)i∈N ⊂ R
M and (bi) ⊂ R such that

f (z) = sup
i∈N

[ai · z + bi]

for all z ∈ RM.

The proof is left as an exercise to the reader (and it will be given as an homework).

Remark 6.46. The second part of the previous result follows from a general fact, know as Lin-
delöf’s Theorem: let Ω ⊂ RM be an open set, and consider a family of functions G ⊂ C0(Ω).
Define

f B sup
g∈G

g.
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Then, there exists a countable subfamily G1 ⊂ G such that

f = sup
g∈G1

g.

Namely, the supremum over a generic family of continuous functions is the supremum over a
countable family of continuous functions.

Finally, note the the countable families (ai)i∈N ⊂ R
M and (bi) ⊂ R cannot be the same for all

convex functions f : RM → R. Indeed, if a ∈ RM is such that a , ai for all i ∈ N, then there is no
i ∈ N such that a · z ≥ ai · z + bi for all z ∈ RM.

We now prove that convex functions are locally Lipschitz functions.

Definition 6.47. Let f : RN → R. We say that f is locally Lipschitz if, for every compact set
K ⊂ RN , it holds

sup
x,y∈K

| f (x) − f (y)|
|x − y|

< +∞.

In such a case, the above supremum is called the Lipschitz constant of f , and denoted by Lip( f ; K).
Finally, if Lip( f ; K) is uniformly bounded, for all compact subsets K ⊂ RN , we say that f is
Lipschitz.

Proposition 6.48. Let g : RM → R be convex. Then, g is locally Lipschitz. In particular, for each
R > 0 we have

|g(x) − g(y)|
|y − x|

≤
|M − m|

R
,

for all x, y ∈ B(z,R), where m,M ∈ R are such that m ≤ g(z) ≤ M for all z ∈ B(z, 2R).

Proof. Step 1. We first consider the one dimensional case M = 1. Fix z ∈ R, R > 0, and
y, x ∈ B(z,R). Without loss of generality, we can assume y > x and g(y) ≥ g(x). Since g is convex,
we have that slopes are increasing (actually, this is a characterization of being convex). Namely,

g(x2) − g(x1)
x2 − x1

≤
g(x4) − g(x3)

x4 − x3
,

for all x1 < x2 < x3 < x4. This implies that

g(y) − g(x)
y − x

≤
g(z + 2R) − g(z + R)

R
≤
|M − m|

R
,

where the last inequality follows from the definition of m and M. This, combined with the other
cases (that are treated similarly), gives the result for M = 1.

Step 2. Let us now consider the general case M > 1. Fix z ∈ RM, R > 0, and y, x ∈ B(z,R).
Consider the function g̃ : R→ R given by

g̃(t) B g(tx + (1 − t)y).

Then g̃ is convex. Let t1, t2 > 0 be such that

P B t1x + (1 − t1)y ∈ ∂B(z,R), Q B t2x + (1 − t2)y ∈ ∂B(z, 2R).
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Figure 6.2: The function f and its convex envelope f c.

By using the definition of g̃, and of the points t1 and t2, from Step 1 we get that

|g(y) − g(x)| = |̃g(1) − g̃(0)| ≤
|M − m|
t2 − t1

≤
|M − m|

R
|y − x|,

where in the last step we used the fact that (t2 − t1)|y − x| = |P − Q| ≥ R. This gives the desired
result. □

Remark 6.49. Two deep results in Analysis ensure that Lipschitz functions are differentiable for
almost every point. The case M = 1 uses sophisticated techniques in Measure Theory (such as
Absolutely Continuous functions and differentiation of measures), and the generalization to the
higher dimensional case is known as Rademacher’s Theorem.

Corollary 6.50. A convex function is continuous.

Remark 6.51. Proposition 6.48 can be extended to the case where g is allowed to take the value
+∞. In that case, Lipschitzianity holds locally in any open set contained in {g < +∞}.

Remark 6.52. The above regularity result is peculiar to finite dimensional vector spaces. Indeed, if
X is an infinte dimensional vector space, and g : X → R is convex, then g could be discontinuous
at every point. This comes from the fact that in infinite dimension, we can have a dense subspace
where g = +∞.

Remark 6.53. Convex functions enjoy higher order regularity properties, namely they admit a
suitable weak notion of second derivative for almost every point. This deep result is known as
Alexandrov’s theorem.

We now investigate the convex envelope of a function.

Definition 6.54. Let f : RM → R. We define f c : RM → R, the convex envelope of f , as

f c(z) B sup{g(z) : g : RM → R convex , g ≤ f },

for z ∈ RM.
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Remark 6.55. The convexification of a function f : RM → R, namely taking its convex envelope,
is a nonlocal operation (see Figure 6.2). Namely, if we change the function f in a ball B(x, r), the
convex envelope might change also outside B(x, r). For instance, let f , g : R → R be defined as
f ≡ 1, and g B 1 − 1[0,1]. Then, f c = f , but gc , g. This is what makes this operation difficult
to compute in practice (other than examples in one dimensions with regular functions, where the
convexification can be deduced just by looking at the graph of f ).

The following property of the convex envelope follow directly from the definition.

Lemma 6.56. Let f : RM → R. Then, f c is convex.

By using the characterization of convex functions as supremum of affine functions (see Propo-
sition 6.45), it is possible to prove the following result.

Lemma 6.57. Let f : RM → R. Then,

f c(z) = sup{g(z) : g : RM → R affine , g ≤ f }.

In particular, f c > −∞ if and only if there exist a ∈ RM and b ∈ R such that f (z) ≥ a · z+ b, for all
z ∈ RM.

We now prove a representation formula for the convex envelope, that allows us to recover
the value of f c by using convex combinations of values of f . This will be crucial in the limsup
inequality of the proof of the integral representation result.

The heuristic idea is the following: consider the case N = 1. Given an affine function φ :
RM → R with φ ≤ f , we can move it up until it touches the graph of f . This can happen at one
point, or more. In the latter case, let (x, f (x)) and (y, f (y)) be two points of contact. Then, the
value of f c in any point z of the form λx + (1 − λ)y, with λ ∈ [0, 1] is such that

f c(z) ≤ λ f (x) + (1 − λ) f (y) ≤ f (z).

By using this idea, and taking into consideration that, in higher dimension, convex combinations
of segments are not sufficient, we have the following result.

Proposition 6.58. Let f : RM → R ∪ {+∞}. Then,

f c(z) = inf

 k∑
i=1

λi f (zi) : k ∈ N,
k∑

i=1

λi = 1, λi ≥ 0, z1, . . . , zk ∈ R
M,

k∑
i=1

λizi = z

 ,
for all z ∈ RM

Proof. Without loss of generality, we can assume that there exist a ∈ RM and b ∈ R such that
f (z) ≥ a · z + b, for all z ∈ RM. In particular, f c > −∞ (see Lemma 6.57). Let g : RM → R be
defined as

g(z) B

 k∑
i=1

λi f (zi) : k ∈ N,
k∑

i=1

λi = 1, λi ≥ 0, z1, . . . , zk ∈ R
M,

k∑
i=1

λizi = z

 .
We claim that g is convex.

70



We first show how to conclude once the claim is proved. By definition of g, we have that
g ≤ f . Thus, g is an admissible competitor in the definition of f c, and therefore f c ≥ g. To prove
the opposite inequality, since f c ≤ f , for all z ∈ RM, we have that

g(z) ≥ inf

 k∑
i=1

λi f c(zi) : k ∈ N,
k∑

i=1

λi = 1, λi ≥ 0, z1, . . . , zk ∈ R
M,

k∑
i=1

λizi = z


≥ f c(z),

where in the last step we used the fact that f c is convex (see Lemma 6.57), and thus the minimum
is attained for k = 1 and z1 = z (this is what the inequality defining convexity is about).

We are thus left with proving that g is convex. Let z1, z2 ∈ R
M, t ∈ (0, 1), and set

z B tz1 + (1 − t)z2. (6.11)

Assume without loss of generality that g(z1), g(z2) < ∞ otherwise there is nothing to prove. Fix
ε > 0 and let k1, k2 ∈ N, y1

1, . . . , y
1
k1
∈ RM, y2

1, . . . , y
2
k2
∈ RM, λ1

1, . . . , λ
1
k ≥ 0, λ2

1, . . . , λ
2
k ≥ 0 with

k1∑
i=1

λ1
i =

k2∑
i=1

λ2
i = 1,

k1∑
i=1

λ1
i y1

i = z1,

k2∑
i=1

λ2
i y2

i = z2, (6.12)

such that

g(z1) + ε ≥
k1∑

i=1

λ1
i f (y1

i ), g(z2) + ε ≥
k2∑

i=1

λ2
i f (y2

i ). (6.13)

Then, using (6.11), and (6.12), we get

z = t
k1∑

i=1

λ1
i y1

i + (1 − t)
k2∑

i=1

λ2
i y2

i =

k1∑
i=1

[tλ1
i ]y1

i +

k2∑
i=1

[(1 − t)λ2
i ]y2

i ,

and
k1∑

i=1

[tλ1
i ] +

k2∑
i=1

[(1 − t)λ2
i ] = 1.

Thus, the definition of g yields that

g(z) ≤
k1∑

i=1

[tλ1
i ] f (y1

i ) +
k2∑

i=1

[(1 − t)λ2
i ] f (y2

i )

≤ t[g(z1) + ε] + (1 − t)[g(z2) + ε]

= tg(z1) + (1 − t)g(z2) + ε,

where in the previous to last step we used (6.13). The arbitrariness of ε > 0 allows to conclude. □

Remark 6.59. The infimum in the above representation formula is not always attained. For in-
stance, consider f (x) B e−x2

. Then, f c ≡ 0, and the infimum in the above representation formula
is never attained.
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Remark 6.60. The above result can be refined as follows: if f : RM → R, then

f c(z) = inf

 M+1∑
i=1

λi f (zi) :
M+1∑
i=1

λi = 1, λi ≥ 0, z1, . . . , zM+1 ∈ R
M,

M+1∑
i=1

λizi = z

 , (6.14)

that is, in dimension M we only need to take convex combinations of at most M + 1 points. The
proof of (6.14) result is based on the Carathéodory Theorem for the convex envelope of a set
(stating basically the same result for the convex hull of a set), together with the fact that, for each
z ∈ RM, it holds

f c(z) = inf
{
t ∈ R : (z, t) ∈ conv[epi( f )]

}
,

where, for a set E ⊂ RM+1, the convex hull conv(E) of E is the intersection of all of the convex
sets containing E.

Note that M + 1 is the optimal number of points, in the sense that convex combinations of at
most M points are not sufficient to get f c(z). As an example (not trivially even or M = 1), take
z1, z2, z3 ∈ R

2 such that z2 − z1 and z3 − z1 are linearly independent, and define f : R2 → R as

f (z1) = f (z2) = f (z3) = 0, f (z) = 1 for all other points z ∈ R3.

Then f c(z) = 0 if z is a convex combination of z1, z2, z3 (namely in the triangle whose vertexes are
z1, z2, z3), and f c(z) = 1 otherwise. But if we were allowed only to take convex combinations of
two points, we would get a function g : R2 → R that is 1 everywhere but on the segments joining
the points z1, z2, and z3, but not on the interior of the triangle.

6.6.2 Periodic functions and weak convergence in Lp

We now prove an important result that justifies the intuitive fact that the macroscopic behavior
of a repeated (periodic) pattern is given by the average of the pattern in a cell. This results was
firstly proved in the context of Fourier series, in order to get the convergence of the series, and
later extended to the more general situation we consider in here.

Theorem 6.61 (Riemann-Lebesgue’s lemma). Let p ∈ [1,∞], Ω ⊂ RN be an open bounded set,
and Q ⊂ RN be an open cube. Let f ∈ Lp(Q;RM). Extend f to the whole RN in a Q-periodic way,
namely define (with an abuse of notation)

f (z) B f (y),

where z ∈ RM is written as z = y+ q for some y ∈ Q and q ∈ ZN . For n ∈ N define fn ∈ Lp(Ω;RM)
as

fn(x) B f (nx).

Then,

(i) fn converges to f weakly in Lp(Ω;RM), if p ∈ [1,∞);

(ii) fn converges to f weakly∗ in L∞(Ω;RM), if p = ∞,

where f denote the average of f in Q.
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Proof. First of all, note that since Ω is bounded, we have that f ∈ L1(Ω) (see Remark 3.4). We
divide the proof in several steps.

Step 0. Without loss of generality, we can assume that

(i) Q B (−1/2, 1/2)N ;

(ii) M = 1;

(iii) f = 0.

Indeed, a change of variable allows to prove the result for a general cube, once that for the unitary
cube is established. As for (ii), this follows from the fact that weak convergence acts component-
wise. Finally, assume that the result if proved under the assumption that the average of the function
in a periodicity cell is zero. Then, given f ∈ Lp(Q), consider g B f = f . Then, g has zero average,
and thus the function gn, where gn(x) B g(nx), converges weakly in Lp (or weakly∗ in L∞) to zero.
This means that ∫

Ω

fnφ dx − f
∫
Ω

φ dx→ 0,

for every φ ∈ Lp′(Q) if p < ∞, or for every φ ∈ L1(Q) if p = ∞. This proves that, without loss of
generality, we can reduce to the case where (i), (ii), and (iii) hold.

Step 1. Assume Ω = 1
k Q, for some k ∈ N \ {0}. Let φ ∈ Cc(Ω). Let {zn

i }i∈N be an enumeration
of 1

nZ
N . For each n ∈ N, consider the grid of cubes {Qn

i }i∈N, where Qn
i B zn

i +
1
n Q. Let

In B {i ∈ N : Qn
i ⊂ Q}.

Note that a change of variables gives∫
Qn

i

fn(x) dx =
1

nN

∫
Q

f (x) dx, (6.15)

for all i ∈ In, and all n ∈ N. Since φ is a continuous function with compact support, it is uniformly
continuous. Namely, for each ε > 0 there exists δ > 0 such that

|φ(x) − φ(y)| < ε,

for all x, y ∈ Ω with |x − y| < δ. Fix ε > 0 and let δ > 0 given as above. Let n̄ ∈ N be such that for
all n ≥ n̄ it holds n

√
N < δ. Note that

|x − zn
i | < δ,

for all x ∈ Qn
i , for all i ∈ In, and for all n ≥ n̄. Up to increasing the value of n̄, we can also assume
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n̄ ≥ k. Then, for n ≥ n̄, we get

∣∣∣∣∣ ∫
Ω

fn(x)φ(x) dx
∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∑
i∈In

∫
Qn

i

fn(x)φ(x) dx

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
∑
i∈In

∫
Qn

i

fn(x)[φ(x) − φ(zn
i )] dx

∣∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣∣
∑
i∈In

∫
Qn

i

φ(zn
i ) fn(x) dx

∣∣∣∣∣∣∣∣
≤ ε

∑
i∈In

∫
Qn

i

| fn(x)| dx +

∣∣∣∣∣∣∣∣
∑
i∈In

φ(zn
i )

∫
Qn

i

fn(x) dx

∣∣∣∣∣∣∣∣
≤ ε∥ f ∥L1(Q) +

∑
i∈In

|φ(zn
i )|

nN

∫
Q

f (x) dx

= ε∥ f ∥L1(Q),

where the last step follows from our assumption that f = 0, while in the previous to last step we
used (6.15) together with the fact that n ≥ n̄ ≥ k. Thus, by the arbitrariness of ε > 0, we conclude
that

lim
n→∞

∫
Q

fnφ dx = 0,

for all φ ∈ Cc(Ω).

Step 2. Assume p ∈ (1,∞] and let g ∈ Lp′(Ω), with Ω = Q. Fix ε > 0. Then, thanks to
Theorem 3.8, it is possible to find φ ∈ Cc(Ω) such that

∥g − φ∥Lp′ (Ω) < ε. (6.16)

Write ∫
Ω

fng dx =
∫
Ω

fn(g − φ) dx +
∫
Ω

fnφ dx. (6.17)

By Step 1, we know that

lim
n→∞

∫
Ω

fnφ dx = 0. (6.18)

Using Hölder inequality (see Theorem 3.3) we can estimate∣∣∣∣∣ ∫
Ω

fn(g − φ) dx
∣∣∣∣∣ ≤ ∥g − φ∥Lp′ (Ω) ∥ fn∥Lp(Ω) ≤ ε sup

n∈N
∥ fn∥Lp(Ω), (6.19)

where last step follows from (6.16). We now claim that

sup
n∈N
∥ fn∥Lp(Ω) < ∞. (6.20)

Indeed, if p = ∞, we simply gets that

∥ fn∥L∞(Ω) = ∥ f ∥L∞(Ω)
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for all n ∈ N. Assume now p <= ∞. Since Ω is bounded, there exists k ∈ N such that Ω ⊂ kQ.
Therefore, by using (6.15)e, we get that

∥ fn∥
p
Lp(Ω) ≤ kN∥ f ∥Lp(Q).

Therefore, by using (6.17), (6.18), (6.19), and (6.20), we get

lim
n→∞

∣∣∣∣∣ ∫
Ω

fng dx
∣∣∣∣∣ ≤ Cε.

Since ε > 0 is arbitrary, we get the desired result.

Step 3. Now, assume Ω ⊂ RN to be a generic bounded open set, and let φ ∈ Cc(Ω). Then,
it is possible to find k ∈ N such that it is possible to cover the support of φ with the closure of a
finite of non-overlapping translations of the cube 1

k Q, each of which lies inside Ω. Then, the result
follows by Step 1 on each cube, due to the linearity of the integral.

Step 4. Assume p = 1. For t > 0 consider the truncation operator Tt : L1(Ω)→ L∞(Ω) defined
as

Ttu(x) B



u(x) if |u(x)| ≤ t,

t if u(x) ≥ t,

−t if u(x) ≤ −t.

Let g ∈ L∞(Ω). Then we write∫
Ω

fng dx =
∫
Ω

(Tt fn)g dx +
∫
Ω

( fn − Tt fn)g dx =
∫
Ω

(Tt f )ng dx +
∫
Ω

( fn − Tt fn)g dx. (6.21)

We now estimate the two terms on the left-hand side separately. For the first term, since Tt f ∈
L∞(Q) and g ∈ L1(Ω), we can apply the previous step to conclude that

lim
n→∞

∫
Ω

(Tt f )ng dx = 0. (6.22)

In order to estimate the second term, note that∣∣∣∣∣ ∫
Ω

( fn − Tt fn)g dx
∣∣∣∣∣ ≤ ∥g∥L∞(Ω) ∥ fn − Tt fn∥L1(Ω). (6.23)

By using Lebesgue Dominated Convergence Theorem, we get that

lim
t→∞
∥ fn − Tt fn∥L1(Ω) = 0. (6.24)

Thus, the desired result follows from (6.21), (6.22), (6.23), and (6.24). □

Remark 6.62. Note that the result holds for any p ∈ [1,+∞]. Moreover, note that the same result
holds for any periodicity cell Q, not necessarily a cube.
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6.6.3 Integral representation formula

We are now in position to prove the desired integral representation result for the sequential relax-
ation of integral functionals on Lp with respect to the weak topology (see the discussion before
Proposition 6.32).

Theorem 6.63. Let p ∈ (1,∞), and Ω ⊂ RN be a bounded open set. Let f : RM → R be a Borel
function such that

| f (z)| ≤ C(|z|p + 1),

for all z ∈ RM, where C > 0. Consider the functional F : Lp(Ω;RM)→ R given by

F(u) B
∫
Ω

f (u(x)) dx.

Then, its sequential lower semi-continuous envelope F : Lp(Ω;RM)→ R with respect to the weak
topology of Lp satisfies

F(u) =
∫
Ω

f c(u(x)) dx,

for all u ∈ Lp(Ω;RM).

Proof. Set

H(u) B
∫
Ω

f c(u) dx,

for u ∈ Lp(Ω;RM). We will prove that H satisfies (i) and (ii) of Proposition 6.11, namely the
liminf and the limsup inequality.

Part 1: Liminf inequality. Since f c ≤ f , we get that

F(v) ≥ H(v),

for all v ∈ Lp(Ω;RM). Thus, if u ∈ Lp(Ω;RM) and (un)n∈N ⊂ Lp(Ω;RM) is such that un converges
to u weakly in Lp, then

lim inf
n→∞

F(un) ≥ lim inf
n→∞

H(un) ≥ H(u),

where in the last step we used the fact that H is lower semicontinuous (this can be proved by using
a similar strategy as that implemented in the proof of Theorem 5.7).

Part 2: Limsup inequality. Let u ∈ Lp(Ω;RM). We need to build a sequence (un)n∈N ⊂ Lp(Ω;RM)
with un ⇀ u such that

lim sup
n→∞

F(un) ≤ H(u).

In order to prove the limsup inequality, we will use the following strategy:
Step 1. We prove that it suffices to consider the case of piecewise constant function u;
Step 2. We construct a sequence of piecewise constant functions converging strongly to u;
Step 3. We construct the recovery sequence for a piecewise constant function.
We now proceed with this strategy.
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Step 1: Reduction to simple functions. We claim that it is sufficient to construct a recovery
sequence for piecewise constant functions.

First of all, we notice that
| f c| ≤ C(|z|p + 1),

for all z ∈ RM. Then, thanks to Proposition 6.39, we get that H is continuous with respect to the
strong topology of Lp.

Let u ∈ Lp(Ω;RM). Let (un)n∈N ⊂ Lp(Ω;RM) be a sequence of piecewise constant functions
converging strongly in Lp to u. Assume that

F(un) = H(un), (6.25)

for all n ∈ N. Then, using the fact that F = lsc(F), and thus it is lower semicontinuous, we get that

F(u) ≤ lim inf
n→∞

F(un) = lim inf
n→∞

H(un) = H(u),

where in the last step we used the fact that H is continuous with respect to the strong topology of
Lp. Thus, we only need to prove that, given u ∈ Lp(Ω;RM) there exists a sequence of piecewise
constant functions converging strongly in Lp to u, and that it is possible to construct a recovery
sequence for every piecewise constant function.

Step 2: Construction of approximating simple functions. Let u ∈ Lp(Ω;RM). We now con-
struct a sequence of piecewise constant functions (un)n∈N ⊂ Lp(Ω;RM) converging strongly in Lp

to u.
Let (vn)n∈N ∈ Lp(Ω;RM)∩Cc(Ω;RM) be the sequence provided by Theorem 3.8. In particular,

vn → u strongly in Lp. Fix n ∈ N \ {0}. Since vn is a continuous function on a compact set, its
image is compact. Fix ε > 0. Using the uniformly continuity of vn, and of f c on the image of vn,
there exists δn > 0 such that

|vn(x) − vn(y)| < ε, | f c(vn(x)) − f c(vn(y))| < ε (6.26)

for all x, y ∈ Ω with |x − y| < δn. Let (Qn
i )i∈In be a grid of cubes of diameter less than δn, where In

is the set of indexes identifying the cubes with non empty intersection with Ω. Note that since Ω
is bounded, In is finite for every n ∈ N. Denote by zn

i the center of the cube Qn
i . Define

un(x) B vn(zn
i ),

for x ∈ Qn
i , and for all i ∈ In. We now claim that un → u as n→ ∞. Indeed, by triangle inequality,

we get that
∥un − u∥Lp ≤ ∥un − vn∥Lp + ∥vn − u∥Lp .

We then just have to estimate the first term on the right-hand side, since the last term vanishes as
n→ ∞. We get that ∫

Ω

|un(x) − vn(x)|p dx =
∑
i∈in

∫
Qn

i ∩Ω

|un(x) − vn(x)|p dx

=
∑
i∈in

∫
Qn

i ∩Ω

|vn(zn
i ) − vn(x)|p dx

≤ εp
∑
i∈in

|Qn
i ∩Ω|

= εp|Ω|,
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where in the last inequality we used the first property in (6.26). This proves that un → u strongly
in Lp.

Step 3: Recovery sequence for simple functions. We are thus left with construction a recovery
sequence for simple functions. The functions we have to consider are constant in the open set
Ω ∩ C, where C ⊂ RN is a open cube. Thus, consider a constant function u in Ω ∩ C, say u ≡ z,
for some z ∈ RM. Fix ε > 0. By using the characterization of f c given by Proposition 6.58, it is
possible to find k ∈ N, λ1, . . . , λk ≥ 0 and z1, . . . , zk ∈ R

M with

k∑
i=1

λi = 1,
k∑

i=1

λizi = z, (6.27)

such that

f c(z) + ε ≥
k∑

i=1

λi f (zi). (6.28)

Define g : C → RM as

g(x) B
k∑

i=1

zi1Ai(x),

where (A)k
i=1 ⊂ C is a measurable partition of C with |Ai| = λi|C|. Extend g to the whole RN in a

C-periodic way, and define un : RN → RM as

un(x) B g(nx).

The Riemann-Lebesgue lemma (see Theorem 6.61), together with (6.27), yields that un converges
to u weakly in Lp(Ω;RM). Moreover, similar computations as those used in the proof of Theorem
6.61, allow to obtain that

lim
n→∞

F(vn) = |Ω|
k∑

i=1

λi f (zi) ≤ |Ω|
[
f c(z) + ε

]
,

where in the last step we used (6.28). We thus conclude by using the arbitrariness of ε > 0. □

Remark 6.64. In the previous proof we employed a lot of interesting techniques. Let’s highlight
them. First of all, it seems that the liminf inequality was deduced easily. Of course, this is be-
cause we already had a candidate for the relaxed functional. Usually, the liminf inequality is used
to guess possible functionals that could be the relaxation, and then use the limsup inequality to
confirm that guess.

The limsup inequality was obtained by approximation. Namely, for each u ∈ Lp(Ω;RM), we
built a sequence {un}n∈N ⊂ Lp(Ω;RM) of simpler objects that approximate u both configuration-
wise (namely weakly in Lp) and in energy (namely limn→∞ H(un) = H(u)). We chose the simpler
objects in such a way that the construction of the recovery sequence for each of those can be done
by hands.

Remark 6.65. The only occasion where we used the fact that the set Ω is bounded, is in the
construction of the approximating sequence in Step 2. A similar argument can be used to construct
such a sequence also in the case where the assumption ofΩ being bounded is dropped. We decided
not to consider that case to focus on the technicalities that are more relevant.
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Remark 6.66. It can be shown that the (topological) relaxation of F with respect to the weak L1

topology satisfies the same formula. The only place where we needed p > 1 was in Step 1, where
we used the weak lower semicontinuity of the sequential lower semicontinuous envelope.

As a direct consequence, we have also an integral representation formula for the relaxation
of integral functionals, under suitable growth assumptions on the integrand f that ensures the
required growth assumptions on the functional F.

Corollary 6.67. Let p ∈ (1,∞), and Ω ⊂ RN be a bounded measurable set. Let f : RM → R be a
Borel function, and consider the functional F : Lp(Ω;RM)→ R given by

F(u) B
∫
Ω

f (u(x)) dx.

Assume that f is such that
C|z|p ≤ | f (z)| ≤ C(1 + |z|p),

for all z ∈ RM, where C > 0. Then,

lsc(F)(u) = F(u) =
∫
Ω

f c(u(x)) dx,

for all u ∈ Lp(Ω;RM), where the relaxations are with respect to the weak topology of Lp.

Proof. Note that, under the stated assumptions, the functional F is weakly coercive in Lp. Thus,
applying Corollary 6.33, we get that lsc(F) = F. The integral representation formula follows from
Theorem 6.63. □

Remark 6.68. In Theorem 6.63 we chose to work with a function f that is not allowed to assume
the value +∞. Sometimes this is useful if we want to incorporate a constrain on the values of u
into the integrand f . In case f : RM → R ∪ {+∞}, we still have an integral representation result
for the (sequential) relaxed functional

F(u) =


∫
Ω

[lsc( f )]c(u) dx if F(u) < ∞,

+∞ else.

The proof of this integral representation result is on the same lines as that of Theorem 6.63. Note
that,

lsc[( f )c] ≤ [lsc( f )]c,

but the two might be different. Find an example!

Finally, we state the result for the case of functionals depending on the gradient.

Theorem 6.69. Let p ∈ (1,∞), and Ω ⊂ RN be a bounded open set. Let f : RM → R be a Borel
function, and consider the functional F : W1,p(Ω)→ R given by

F(u) B
∫
Ω

f (∇u(x)) dx.
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Assume that
| f (z)| ≤ C(1 + |z|p),

for all z ∈ RM, where C > 0. Then, its sequential lower semi-continuous envelope F : W1,p(Ω)→
R with respect to the weak topology of W1,p(Ω) satisfies

F(u) =
∫
Ω

f c(∇u(x)) dx,

for all u ∈ W1,p(Ω). Moreover, if

C|z|p ≤ | f (z)| ≤ C(1 + |z|p),

for all z ∈ RM, where C > 0, then

lsc(F)(u) = F(u) =
∫
Ω

f c(∇u(x)) dx,

for all u ∈ W1,p(Ω).

Remark 6.70. Note that the upper bound is needed in order to get the integral representation
formula for F, while the lower bound is needed to ensure coerciveness, and thus to ensure the
equivalence between F and lsc(F).
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Chapter 7

Gamma-convergence

We now consider the following situation: suppose that we have a minimization problem

min{ Fε(x) : x ∈ Xε } (7.1)

where Fε : Xε → (−∞,+∞] is a functional parametrized by a parameter ε that is close to a
parameter ε0 ∈ R. Note that also the domain Xε of the functional Fε is allowed to change. We
would like to understand the behaviour of minimizers xε ∈ Xε for Fε as ε ∼ ε0. Since the
minimization problem (7.1) might not have a solution, we can consider almost minimizers, namely
points xε ∈ Xε such that

lim
ε→ε0
|Fε(xε) − inf

Xε
Fε| → 0.

As for the case of relaxation, we wonder if it is possible to understand the behaviour of almost
minimizers {xε}ε in a variational way. Namely, if we can find a functional F̃ : X → (−∞,+∞]
such that

lim
ε→ε0

inf
Xε

Fε = min
X

F, (7.2)

and such that every cluster point of {xε} (with respect to some topology) is a minimizer of F̃.

Before continuing, note that in this case we also have to choose a proper space X where F̃ is
defined. This is usually not a problem, because in most of the cases it is possible to find a space
X such that Xε ⊂ X for all ε, and thus we can equivalently consider the functionals Gε : X → R
defined as

Gε(x) B
{

Fε(x) if x ∈ Xε,
+∞ else.

Thus, in what follows, we will always assume that we have a single space X where all of our
functionals are defined.

Moreover, we will first consider sequences of parametrized functionals, namely we will study
the behaviour of a sequence {εn}n∈N with εn → ε0 as n → ∞. The relation with the continuous
family of parametrized functionals Fε will be investigated later.

81



7.1 Gamma-convergence in metric spaces

We recall that we are now working on a metric space (X, d). We would like to give a couple of ex-
amples to motivate the definitions that we are going to give. Consider the sequence of functionals
as in the following figure.

Figure 7.1: The functionals Fn all have the same minimum and the minimizers are converging to
the origin.

We see that

min
X

Fn = 0, and lim
n→∞

xn = 0, where Fn(xn) = min
X

Fn.

Thus, we might be tempted to defined our limiting functional F̃ as

F̃(x) B inf
{

lim inf
n→∞

Fn(xn) : xn → x
}
.

The problem with this definition is that we cannot ensure the validity of (7.2). Indeed, consider
the case where

Fn B (−1)n.

In this case, every x ∈ X is a minimizer of Fn for every n ∈ N. Moreover, we have that F̃ ≡ −1.
But (7.2) fails to hold. To impose the convergence of the infima to the minimum of the limiting
functional, we need to make sure that

lim inf
n→∞

inf
Xε

Fn = lim sup
n→∞

inf
Xε

Fn.

Since we do not what what are the minimizers and where they converge (this is precisely why
we are doing all of this!), we are forced to impose such a condition at every point. This fact will
even more clear when we will give the topological characterization of Γ-limit (which is actually
the more general definition of Γ-limit in topological spaces). We now hope that the following
definition does not come as a surprise.
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Definition 7.1. Consider a sequence of functionals (Fn)n∈N, where Fn : X → R. We define the
Γ-lower limit Γ- lim infn→∞ Fn : X → R as(

Γ- lim inf
n→∞

Fn

)
(x) B inf

{
lim inf

n→∞
Fn(xn) : xn → x

}
,

and the Γ-upper limit Γ- lim supn→∞ Fn : X → R as(
Γ- lim sup

n→∞
Fn

)
(x) B inf

{
lim sup

n→∞
Fn(xn) : xn → x

}
,

for every x ∈ X. Moreover, we say that the sequence (Fn)n∈N Γ-converges to F : X → R if

F = Γ- lim inf
n→∞

Fn = Γ- lim sup
n→∞

Fn

In this case we write Fn
Γ−d
−→ F.

Remark 7.2. Note that, in general, the Γ-lower limit and the Γ-upper limit are different. Indeed, if
like in the example in the discussion above, we have Fn B (−1)n, we get that

Γ- lim inf
n→∞

Fn ≡ −1, Γ- lim sup
n→∞

Fn ≡ 1,

which are different at every point.

Remark 7.3 (The choice of the metric). We would like to stress that the definition of Γ-lower limit
and the Γ-upper limit depend on the distance that we consider on the metric space X: different
distances might (and usually do) lead to different Γ-limit inf and sup. The choice of the metric
is of capital importance in the study of the limiting behaviour of almost minimizing sequences of
Fn, since it specifies what we mean by limiting behaviour! Usually, the choice of the topology is
suggested (or even forced) by compactness arguments:

Remark 7.4. The Γ-lower limit is the greatest lower semi-continuous function that is below Fn at
n = ∞. Unfortunately, a similar interpretation of the Γ-upper limit is not available.

We first notice that the notion of relaxation is a particular instance of that of Γ-convergence.

Lemma 7.5. Let F : X → R. Set Fn B F, for all n ∈ N. Then, (Fn)n∈N Γ-converges to lsc(F).

We now prove some basic properties of Γ-liming and Γ-limsup. First of all, a sequential
characterization of the Γ-limit by a liminf and a limsup inequality in the same spirit of that for
the relaxed functional (see Proposition 6.11) is available and it is usually how Γ-limit results are
proved. The proof follows the same line as the proof of Proposition 6.11 and therefore we will not
repeat it in here.

Lemma 7.6. Let (Fn)n∈N be a sequence of functionals, where Fn : X → R for each n ∈ N. Then,

Fn
Γ−d
−→ F if and only if the following two conditions are satisfied:

(i) (Liminf inequality) For every x ∈ X, and (xn)n∈N ⊂ X converging to x, it holds

F(x) ≤ lim inf
n→∞

Fn(xn);
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(ii) (Limsup inequality) For every x ∈ X, there exists (xn)n∈N ⊂ X such that

F(x) ≥ lim sup
n→∞

Fn(xn),

and with xn → x.

Remark 7.7. As for the case of the relaxed functional, the limsup inequality combined with the
liminf inequality gives the existence of the so called recovery sequence: for every x ∈ X there
exists (xn)n∈N ⊂ X such that

lim
n→∞

Fn(xn) = F(x),

and with xn → x.

A topological characterization holds for the notion of Γ-lower and upper limit. The proof is
similar to that of Proposition 6.20.

Proposition 7.8. Let (Fn)n∈N be a sequence of functionals, where Fn : X → R for each n ∈ N.
Then,

Γ- lim inf
n→∞

(x) = sup
r>0

lim inf
n→∞

inf
y∈Br(x)

Fn(y) = lim
r→0

lim inf
n→∞

inf
y∈Br(x)

Fn(y), (7.3)

and

Γ- lim sup
n→∞

(x) = sup
r>0

lim sup
n→∞

inf
y∈Br(x)

Fn(y) = lim
r→0

lim sup
n→∞

inf
y∈Br(x)

Fn(y), (7.4)

for all x ∈ X.

Remark 7.9. This topological version is the definition of Γ-lower and upper limit in general topo-
logical space, with supU∈N(x) in place of supr>0, whereN(x) is the family of neighborhoods of the
point x.

In a similar spirit as Proposition 7.8, we give another characterization of Γ-liminf and Γ-limsup
that will be useful in the following. The idea is to force the minimization in (7.3) and (7.4) to be in
small balls centered at the point x by adding a perturbation that is small around x, and very large
outside of a ball centered at x.

Theorem 7.10. Let (Fn)n∈N be a sequence of functionals Fn : X → [0,+∞]. Let Φ : X → [0,+∞)
be a continuous function such that

(i) Φ(0) = 0;

(ii) Φ(t) > 0 for all t > 0;

(iii) lim inft→∞Φ(t) > 0.

Then,

Γ- lim inf
n→∞

Fn(x) = sup
λ>0

lim inf
n→∞

inf
y∈X

[Fn(y) + λΦ(d(y, x))] = lim
λ→∞

lim inf
n→∞

inf
y∈X

[Fn(y) + λΦ(d(y, x))],

and

Γ- lim sup
n→∞

Fn(x) = sup
λ>0

lim sup
n→∞

inf
y∈X

[Fn(y) + λΦ(d(y, x))] = lim
λ→∞

lim sup
n→∞

inf
y∈X

[Fn(y) + λΦ(d(y, x))],

for all x ∈ X.
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Remark 7.11. In particular, we get that

lsc(F)(x) = sup
λ>0

inf
y∈X

[F(y) + λΦ(d(y, x))],

for all x ∈ X.
First of all, by using the topological characterization provided in Proposition 7.8, it is possible

to see that the lower and upper Γ-limit are lower semicontinuous.

Lemma 7.12. Let (Fn)n∈N be a sequence of functionals. Then, Γ- lim infn→∞ fn and Γ- lim supn→∞ Fn

are lower semicontinuous.

We now show that, in order to compute the the Γ-liminf and the Γ-limsup, we can assume,
without loss of generality, the functionals to be lower semicontinuous.

Proposition 7.13. Let (Fn)n∈N be a sequence of functionals, where Fn : X → R for each n ∈ N.
Then,

Γ- lim inf
n→∞

Fn(x) = Γ- lim inf
n→∞

lsc(Fn)(x), Γ- lim sup
n→∞

Fn(x) = Γ- lim sup
n→∞

lsc(Fn)(x).

for all x ∈ X.

Proof. We prove that
Γ- lim inf

n→∞
Fn = Γ- lim inf

n→∞
lsc(Fn).

The case of the Γ-limsup follows by using similar computations. Since lsc(Fn) ≤ Fn, we have that

Γ- lim inf
n→∞

lsc(Fn) ≤ Γ- lim inf
n→∞

Fn.

In order to prove the opposite inequality, let x ∈ X, and take (xn)n∈N ⊂ X with xn → x such that

lim
n→∞

lsc(Fn)(xn) = Γ- lim inf
n→∞

lsc(Fn)(x).

The existence of such a sequence follows by using the definition of the Γ-liminf by using the same
argument employed in Lemma 6.6. For each n ∈ N, we know that

lsc(Fn)(xn) = inf
{

lim inf
k→∞

Fn(yk) : yk → xn

}
.

Thus, there exists (yn
i )i∈N ⊂ X with yn

i → xn as i→ ∞ such that

lim
i→∞

Fn(yn
i ) = lsc(Fn)(xn).

Therefore, for each n ∈ N, we can find a point zn ∈ X such that

d(zn, xn) <
1
n
, |Fn(zn) − lsc(Fn)(xn)| <

1
n
.

Then, zn → x. Therefore, by definition of the Γ-lower limit, we get(
Γ- lim inf

n→∞
Fn

)
(x) ≤ lim inf

n→∞
Fn(zn)

≤ lim inf
n→∞

[ lsc(Fn)(xn) + |Fn(zn) − lsc(Fn)(xn)| ]

=

(
Γ- lim inf

n→∞
lsc(Fn =

)
(x),

thus obtaining the desired inequality. □
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We conclude this section by stating a result ensuring that, up to a subsequence, a sequence of
functionals over a nice space admits a subsequence that Γ-converges to a limit.

Theorem 7.14. Let (Fn)n∈N be a sequence of functionals on a separable metric space X. Then,
there exists a subsequence (Fnk )k∈N that Γ converges to F, for some functional F : X → R.

7.2 Comparison with pointwise and uniform limit

In order to understand a bit better the notion of Γ-limit we now compare it with the better known
notions of pointwise and uniform limit. The Γ-limit and the pointwise limit, if they exist, are,
in general different, as the example in Figure 7.1 shows. Nevertheless, they always satisfy the
following inequality.

Lemma 7.15. Let (Fn)n∈N be a sequence of functionals. Then,

Γ- lim inf
n→∞

Fn ≤ lim inf
n→∞

Fn, Γ- lim sup
n→∞

Fn ≤ lim sup
n→∞

Fn.

In particular, if (Fn)n∈N converges pointwise to F, then

Γ- lim inf
n→∞

Fn ≤ Γ- lim sup
n→∞

Fn ≤ F.

Proof. It follows directly from the definition of Γ-lower limit and Γ-upper limit by taking the
constant sequence xn = x for all n ∈ N. □

Remark 7.16. The Γ-limit and the pointwise limit of a sequence of functionals (Fn)n∈N might both
exist and be different at every point! Indeed, given an enumeration of the rationals (qn)n∈N of R,
consider the functionals

Fn(x) B
{

0 if x = qn,

1 else.

Then, by the density of Q in R, we get that (Fn)n∈N Γ-converges to F ≡ 0, but converges pointwise
to G ≡ 1.

Remark 7.17. There are situations in which the pointwise limit does not exists, but the Γ-limit does.
Indeed, consider the case where Fn(x) B sin(nx). Then, (Fn)n∈N does not converge pointwise to
anything, but Γ-converges to F ≡ −1. This example shows that the notion of Γ-convergence can
be used to treat situations in which high oscillations take places, and that cannot be handled by the
notion of pointwise limit.

We now investigate three cases in which it is possible to state a better relation between the Γ-
limit and the pointwise limit:the case of monotone sequences, the case of a sequence converging
uniformly, and the case of convex functionals. We start by investigating the case of monotone
sequences. First of all, note that a monotone sequence admits a pointwise limit. We will see
that there is an essential difference between increasing and decreasing sequences. We start by
investigating the former case.

Proposition 7.18. Let (Fn)n∈N be a decreasing sequence of functionals. Then,

Γ- lim
n→∞

Fn = lsc(F),

where F is the pointwise limit of (Fn)n∈N.
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Proof. For each x ∈ X we have that

lsc(F)(x) = inf
{

lim inf
n→∞

F(xn) : xn → x
}

≤ inf
{

lim inf
n→∞

Fn(xn) : xn → x
}

= Γ- lim inf
n→∞

Fn(x)

≤ Γ- lim sup
n→∞

Fn(x)

≤ F(x),

where in the second step we used the fact that F ≤ Fn for all n ∈ N, while in last step we
used Lemma 7.15. Therefore, the Γ-lower limit and the Γ-upper limit are lower semicontinuous
functionals (see Lemma 7.12) in between lsc(F) and F. Since lsc(F) is the greatest lower semicon-
tinuous functional majorized by F, we get that all of the inequalities above are actually equalities.
Therefore, the Γ-limit exists, and is equal to lsc(F)(x). □

Remark 7.19. The above result states that, in order to compute the Γ-limit of a decreasing sequence
of functionals, you first take the pointwise limit, and then you relax it.

We would like to stress that if we first take the relaxation, and then the pointwise limit we get,
in general, a different functional. Indeed,

inf
n∈N

lsc (Fn) , lsc
(
inf
n∈N

Fn

)
= lsc(F).

From the technical point of view, the difference between the two objects is due to the fact that we
cannot interchange a supremum and an infimum. Consider, for instance, the case fn : (−1, 1)→ R
defined as

fn(x) B


1 if x ≤ 0,
1 − nx if 0 ≤ x ≤ 1

n ,

0 else.

Then, each fn is continuous, and fn → f pointwise, where

f (x) B
{

1 if x ≤ 0,
0 else.

On the other hand, f is not lower semicontinuous. In particular, lsc( f )(0) < f (0).

We now study what happens for increasing sequences of functionals.

Proposition 7.20. Let (Fn)n∈N be an increasing sequence of functionals. Then,(
Γ- lim

n→∞
Fn

)
(x) = lim

n→∞
lsc(Fn)(x) = sup

n∈N
lsc(Fn)(x),

for all x ∈ X.

Proof. First of all, thanks to Proposition 7.13, we have that

Γ- lim
n→∞

Fn = Γ- lim
n→∞

lsc(Fn).

87



Let
G B sup

n∈N
lsc(Fn).

By Lemma 7.15, we have that
Γ- lim inf

n→∞
lsc(Fn) ≤ G.

We now prove the opposite inequality. Fix x ∈ X and let t < G(x). Note that G is lower semi-
continuous, since it is the supremum of lower semicontinuous functionals (see Proposition 6.14).
Therefore, by (ii) of Proposition 6.21 we have that there exists r > 0 such that G(y) > t for all
y ∈ B(x, r). In particular, this means that for all y ∈ B(x, r) there exists n̄(y) ∈ N such that

lsc(Fn)(y) > t,

for all n ≥ n̄(y). By using the topological characterization given in Proposition 7.8, this yields that

Γ- lim inf
n→∞

lsc(Fn)(x) = sup
r>0

lim inf
n→∞

inf
y∈Br(x)

lsc(Fn)(y) ≥ t.

Since t < G(x) is arbitrary, we conclude that Γ- lim infn→∞ Fn ≥ G. □

Remark 7.21. In particular, if in the above proposition all of the Fn’s are lower semicontinuous,
then the Γ-limit equals the pointwise limit.

Remark 7.22. If the lower semicontinuity of the Fn’s does not hold, we cannot claim that

Γ- lim
n→∞

Fn = lsc
(
sup
n∈N

Fn

)
,

since, in general,

sup
n∈N

lsc(Fn) , lsc
(
sup
n∈N

Fn

)
.

Consider, for instance, the case fn : (0, 1)→ R defined as

fn(x) B
{

0 if x = qk, k ≥ n,
1 else,

where (qn)n∈N is an enumeration of Q ∩ (0, 1). Then, it is possible to see that (Fn)n∈N converges
pointwise to F ≡ 1. On the other hand, by using Proposition 7.20, we get that (Fn)n∈N Γ-converges
to G ≡ 0.

Remark 7.23. The metric that is used to compute the Γ-limit of monotone sequences of functional
is seen when we take the relaxation.

In case of a very strong pointwise converge, namely the uniform convergence, the Γ-limit and
the uniform limit agree. The proof follows easily from the definition of uniform convergence and
that of Γ-limit.

Lemma 7.24. Let (Fn)n∈N be a sequence of functionals converging to some F : X → R uniformly.
Then, (

Γ- lim
n→∞

Fn

)
(x) = lsc(F)(x),

for all x ∈ X.
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Finally, there is a particular class of functionals, namely convex functionals, for which the
pointwise limit, even for sequences that are not monotonically nor uniformly converging, coincides
with the Γ-limit. We need though a bit of more structure for the space X in order to talk about
convexity, since we need convex combinations of elements of X.

Proposition 7.25. Let (X, ∥ · ∥) be a normed vector space. Let (Fn)n∈N be a sequence of convex
functionals and assume that they are equibounded in a neighbourhood of every point x ∈ X, namely
for each x ∈ X there exists R > 0 and C > 0 such that, for all y ∈ B(x,R), it holds

|Fn(y)| ≤ C.

Then, (Fn)n∈N Γ-converges to F : X → R if and only if (Fn)n∈N converges pointwise to F.

Proof. Step 1. First of all note that the proof of Proposition 6.48 works also in a general normed
space X, not necessarily RN . In particular, thanks to the uniformity of the constants C and R in the
condition of equiboundness, this implies that for every x ∈ X there exist R > 0 and K > 0 such
that

|Fn(x) − Fn(y)| ≤ K∥x − y∥, (7.5)

for all y ∈ B(x,R), and all n ∈ N.
Step 1. Let (xn)n∈N ⊂ X be such that xn → x. We claim that

lim inf
n→∞

Fn(x) ≤ Γ- lim inf
n→∞

Fn(x), (7.6)

and that
lim sup

n→∞
Fn(x) ≤ Γ- lim sup

n→∞
Fn(x). (7.7)

We prove (7.6). Note that (7.7) follows by using similar computations. We can assume, without
loss of generality, that ∥xn − x∥ < R for all n ∈ N. Thus,

lim inf
n→∞

Fn(x) = lim inf
n→∞

[ Fn(xn) + Fn(x) − Fn(xn) ]

≤ lim inf
n→∞

[ Fn(xn) + |Fn(x) − Fn(xn)| ]

= lim inf
n→∞

Fn(xn),

where in the last step we used (7.5) together with the fact that ∥xn − x∥ → 0 as n → ∞. We then
obtain (7.6) by using the definition of Γ- lim infn→∞ Fn(x).

Step 3. By using Lemma 7.15, together with (7.6) and (7.7), we get that

Γ- lim inf
n→∞

Fn ≤ lim inf
n→∞

Fn ≤ Γ- lim inf
n→∞

Fn ≤ Γ- lim sup
n→∞

Fn ≤ lim sup
n→∞

Fn ≤ Γ- lim sup
n→∞

Fn.

This shows that, in this case, pointwise convergence is equivalent to Γ-convergence. □
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7.3 Γ-limit of sums of functionals

We now investigate when the operation of Γ-limit and the sum of functionals commute. The proofs
of these results follow directly from Definition 7.1, properties of liminf and limsup, and Lemma
7.15.

Lemma 7.26. Let (Fn)n∈N, (Gn)n∈N be two sequences of functionals. Then,

Γ- lim inf
n→∞

(Fn +Gn) ≥ Γ- lim inf
n→∞

Fn + Γ- lim inf
n→∞

Gn,

and
Γ- lim sup

n→∞
(Fn +Gn) ≥ Γ- lim sup

n→∞
Fn + Γ- lim inf

n→∞
Gn,

provided that everything is well defined.

Remark 7.27. Note that the above inequalities can be strict, even if (Fn)n∈N and (Gn)n∈N are Γ-
converging. Consider for instance Fn(x) B sin(nx), and Gn(x) B − sin(nx). Then

0 ≡ Γ- lim(Fn +Gn) > −1 − 1 = Γ- lim Fn + Γ- lim Gn.

Remark 7.28. Note that by combining the first lower bound given by Lemma 7.26 together with
the fact that

Γ- lim sup
n→∞

(Fn +Gn) ≤ Γ- lim sup
n→∞

Fn + Γ- lim sup
n→∞

Gn,

we get

Γ- lim inf
n→∞

Fn + Γ- lim inf
n→∞

Gn ≤ Γ- lim inf
n→∞

(Fn +Gn)

≤ Γ- lim sup
n→∞

(Fn +Gn) ≤ Γ- lim sup
n→∞

Fn + Γ- lim sup
n→∞

Gn.

The reason why upper bounds are not usually useful in the study of Γ-limits is because usually the
Γ-limit is guessed by first bounding from below the sequence of functionals and then confirming
that guess by proving the limsup inequality.

In order to have equality we need stronger assumptions. We present two situations in which
we can ensure the commutative property of Γ-limits and sums.

Proposition 7.29. Let (Fn)n∈N, (Gn)n∈N be two sequences of functionals. Assume that the Gn’s are
everywhere finite on X and converges uniformly to G : X → R. Then,

Γ- lim inf
n→∞

(Fn +Gn) = Γ- lim inf
n→∞

Fn +G,

and
Γ- lim sup

n→∞
(Fn +Gn) = Γ- lim sup

n→∞
Fn +G.

Remark 7.30. Note that in the above result, it is crucial that the functionals are finite everywhere.
This, in particular, prevents to use the above result to treat cases where a constraint is inserted into
the functional as a +∞ penalization. A particular case of Proposition 7.29 is when Gn ≡ G for
some G : X → R.
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Figure 7.2: An example of a sequence of functionals for which minimizers are escaping at infinity.

Proposition 7.31. Let (Fn)n∈N, (Gn)n∈N be two sequences of functionals. Assume that there exist
F,G : X → R such that

(i) Fn
Γ−d
−→ F, and Fn → F pointwise;

(ii) Gn
Γ−d
−→ G, and Gn → G pointwise.

Then
Fn +Gn

Γ−d
−→ F +G, Fn +Gn → F +G pointwise,

if everything is well defined.

7.4 Convergence of minima and (local) minimizers

The convergence of minima and minimizers of Γ-converging sequences is more delicate than in the
case of the relaxation. The reason is that, since we have a sequence of functionals, the minimizers
can escape at infinity, and we might have a gap in the value of minima. Consider, for instance, the
functionals in Figure 7.2. Then, it holds that

Fn
Γ−d
−→ F ≡ 1,

but
min

X
Fn ≡ 0, while min

X
F = 1.

Moreover, we see that there is no cluster point for the sequence of minimizers for Fn, and none of
the minimizer for F is the limit of any sequence of minimizers for Fn. The goal of this section is
to find sufficient conditions that prevent from this situation to happen.

First of all, from Definition 7.1, we easily obtain that the sequences of infima of Fn and the
infima of the Γ-lower limit and Γ-upper limit are always related as follows.
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Lemma 7.32. Let (Fn)n∈N be a sequence of functionals. Then,

inf
X

(
Γ- lim inf

n→∞
Fn

)
≥ lim inf

n→∞
inf
X

Fn, inf
X

(
Γ- lim sup

n→∞
Fn

)
≥ lim sup

n→∞
inf
X

Fn.

We start with investigating the convergence of minima. A way to avoid the issue with mini-
mizers escaping at infinity, is to require explicitly all of them to stay in a compact set.

Theorem 7.33. Let (Fn)n∈N be a sequence of functionals. Assume that there exists a compact set
K ⊂ X such that

inf
X

Fn = inf
K

Fn, (7.8)

for all n ∈ N. Then, the minimization problem

min
X

(
Γ- lim inf

n→∞
Fn

)
has a solution, and it holds that

min
X

(
Γ- lim inf

n→∞
Fn

)
= lim inf

n→∞
inf
X

Fn. (7.9)

Moreover, if (Fn)n∈N Γ-converges to some functional F, then the minimization problem

min
X

(
Γ- lim

n→∞
Fn

)
has a solution, and it holds that

min
X

(
Γ- lim

n→∞
Fn

)
= lim

n→∞
inf
X

Fn. (7.10)

Proof. By using Proposition 7.13 and Theorem 6.10 we can assume, without loss of generality,
that each Fn is lower semicontinuous. Let (Fnk )k∈N be a subsequence such that

lim inf
n→∞

inf
X

Fn = lim
k→∞

inf
X

Fnk . (7.11)

Step 1. For each n ∈ N, since Fn lower semicontinuity of and coercive (thanks to (7.8)) by
Theorem 5.2 we get that the minimization problem

min
X

Fn

admits a solution. In particular, for each k ∈ N there exists xnk ∈ K such that

Fnk (xnk ) = min
X

Fnk .

By using the compactness of K, it is possible to extract a subsequence (xnki
)i∈N such that xnki

→ x
as i→ ∞, for some x ∈ K. By using Lemma 7.32, we get

lim inf
n→∞

inf
X

Fn ≤ inf
X

(
Γ- lim inf

n→∞
Fn

)
≤

(
Γ- lim inf

n→∞
Fn

)
(x)

≤ lim inf
i→∞

Fnki
(xnki

) = lim inf
i→∞

inf
X

Fnki

= lim inf
n→∞

inf
X

Fn,
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where last equality follows from (7.11), while in the third inequality we used the definition of
Γ-liminf together with the fact that

lim inf
n→∞

Fn(xn) ≤ lim inf
i→∞

Fnki
(xnki

),

where xn B xnki
if n = nki , and xn B x else. This yields that x is a minimum point for

Γ- lim infn→∞ Fn and the validity of (7.9).

Step 2. Assume that (Fn)n∈N Γ-converges to some functional F. Then, from Step 1 we get that
the minimization problem

min
X

(
Γ- lim

n→∞
Fn

)
admits a solution, and that

min
X

(
Γ- lim

n→∞
Fn

)
= lim inf

n→∞
inf
X

Fn.

To prove that the liminf on the right-hand side is a limit, we observe that

lim inf
n→∞

inf
X

Fn = min
X

(
Γ- lim

n→∞
Fn

)
≥ lim sup

n→∞
inf
X

Fn,

where the last inequality follows from Lemma 7.32. This proves (7.10). □

Remark 7.34. In general, it is not true that

min
X

(
Γ- lim sup

n→∞
Fn

)
= lim sup

n→∞
inf
X

Fn.

Indeed, for each n ∈ N, consider the functionals Fn : [−1, 1]→ R defined as

Fn(x) B


(−1)n if x ∈ [−1, 0),

(−1)n+1 if x ∈ [0, 1].

Then, we get that
Γ- lim inf

n→∞
Fn = −1, Γ- lim sup

n→∞
Fn = 1.

Therefore, for all n ∈ N, we get that

inf
[−1,1]

Fn = −1, inf
[−1,1]

Γ- lim sup
n→∞

Fn = 1.

Therefore, there cannot be a similar formula connecting the minimum of the Γ-upper limit and the
sequence of infima of Fn.

We now consider the more delicate case of convergence of minimizers. As for the convergence
of infima, we need to make sure that minimizers (if they exist) do not escape at infinity. This will
ensure that cluster points of minimizing sequences will be minimizers of the limiting functional.

We wonder if every minimizer of the limiting functional can be approximated by a sequence
of minimizers for Fn. The answer is simply no, as it can easily seen by considering the functions
Fn : R→ R given by

Fn(x) B
x2

n
.
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Then, for each n ∈ N, the only minimizer of Fn is x = 0. On the other hand, (Fn)n∈N Γ-converges
to F ≡ 0 (since it converges to F uniformly on every compact set). But if we take x , 0, we cannot
approximate it by any sequence (xn)n∈N, where each xn is a minimizer of Fn.

In order to get the desired approximation property of every minimizer of the limiting func-
tional, we need to introduce the notion of quasi-minimizers.

Definition 7.35. Let (Fn)n∈N be a sequence of functionals. We say that (xn)n∈N ⊂ X is a sequence
of quasi-minimizers for (Fn)n∈N if there exists (εn)n∈N ⊂ (0, 1] with εn → 0 as n→ ∞ such that

Fn(xn) ≤
[

inf
X

Fn + εn

]
∨ −

1
εn

for all n ∈ N.

Remark 7.36. The apparently strange definition above is to take also in consideration the case
where infX Fn = −∞. In case infX Fn > −∞, the condition for a quasi-minimizer writes as

Fn(xn) ≤ inf
X

Fn + εn,

for all n ∈ N.

We are now in position to prove the result concerning the limiting behaviour of quasi-minimizers.
We will focus on the case where the sequence has a Γ-limit. More delicate results in the case where
the Γ-limit does not exists hold for the Γ-lower and upper limit.

Theorem 7.37. Let (Fn)n∈N be a sequence of functionals. Assume that there exists a compact set
K ⊂ X such that

inf
X

Fn = inf
K

Fn,

for all n ∈ N, and that (Fn)n∈N Γ converges to F. If (xn)n∈N is a sequence of quasi-minimizers for
(F)n∈N, then every of its cluster points is a minimum for F. Moreover, every minimizer of F is the
limit of a sequence of quasi-minimizers for (Fn)n∈N.

Proof. By using Proposition 7.13 and Theorem 6.10, we can assume, without loss of generality,
that each Fn is lower semicontinuous.

Step 1. The proof that every cluster point of a quasi-minimizing sequence (xn)n∈N for (Fn)n∈N

is a minimizer for F uses a similar argument to that employed in the proof of Theorem 7.33.

Step 2. Let x ∈ X be a minimizer of F. Assume by contradiction that there is no sequence
of quasi-minimizers for (Fn)n∈N having x as a cluster point. Then it is possible to find δ > 0, and
n1 ∈ N such that

F(x) > inf
X

Fn + δ,

for all n ≥ n1. By using the topological characterization of the Γ-limit (see Proposition 7.8), we
get that there exists n2 ∈ N (without loss of generality, we can assume n2 ≥ n1), and r0 such that

inf
B(x,r)

Fn ≥ inf
X

Fn + δ, (7.12)

for all n ≥ n2. Now, let (xn)n∈N ⊂ X be a recovery sequence for F(x), namely

lim
n→∞

Fn(xn) = F(x).
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Let n ∈ N be such that xn ∈ B(x, r) for all n ≥ n. By using (7.12) we get

lim
n→∞

inf
X

Fn + δ ≤ lim
n→∞

Fn(xn) = F(x) = min
X

F = lim
n→∞

inf
X

Fn,

where in the last equality we used the result of Theorem 7.33. This gives the desired contradiction.
□

Remark 7.38. In the previous result the metric of the space X plays the crucial role of relating the
notion of compactness to that of Γ-limits.

The condition that there exists a compact set K ⊂ X such that

inf
X

Fn = inf
K

Fn

for all n ∈ N, is usually hard to check. Usually ones uses a stronger condition, but with the
advantage of being easier to check.

Corollary 7.39. Let (Fn)n∈N be a sequence of equi-coercive functionals. Then, all of the results of
Theorem 7.33 and Theorem 7.37 hold.

The above result, together with Theorem 7.10, allows us to give a characterization of the
Γ-limit in terms of convergence of minimum problems. We first need to recall the notion of equi-
coerciveness for a sequence of functionals.

Definition 7.40. We say that a sequence of functionals (Fn)n∈N is equi-coercive if there exists a
lower semi-continuous coercive functional Ψ : X → R such that Fn ≥ Ψ for all n ∈ N.

Theorem 7.41. Let (Fn)n∈N be a sequence of equi-coercive functionals Fn : X → [0,+∞]. Let
Φ : X → [0,+∞] be a continuous function satisfying the assumption in Theorem 7.10. Let (λ j) j∈N

be an increasing sequence of real numbers going to +∞. Assume that the sequence of functionals

y 7→ Fn(y) + λ1Φ(d(y, x))

is equicoercive for all x ∈ X. Then, the followings are equivalent:

(i) (Fn)n∈N Γ-converges to a lower semicontinuous functional F : X → [0,+∞];

(ii) It holds that

lim
n→∞

inf
y∈X

[
Fn(y) + λ jΦ(d(y, x))

]
= inf

y∈X

[
F(y) + λ jΦ(d(y, x))

]
,

for every j ∈ N and every x ∈ X.

Proof. Step 1. We prove that (i) implies (ii). Then, for every j ∈ N and x ∈ X, the functional

y 7→ λ jΦ(d(y, x))

is continuous and everywhere finite. Therefore, from Proposition 7.29 we get that

Fn + λ jΦ(d(·, x))
Γ
→ F + λ jΦ(d(·, x)).
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By assumption, we get that, for each j ∈ N, the sequence of functional

y 7→ Fn(y) + λ jΦ(d(y, x))

is equicoercive. Thus, from Corollary 7.39 we get the desired convergence of minima.

Step 2. We prove that (i) implies (ii). Fix x ∈ X. Thanks to Theorem 7.10, we get that

Γ- lim inf
n→∞

Fn(x) = Γ- lim sup
n→∞

Fn(x) = lim
j→∞

lim
n→∞

inf
y∈X

(F(y) + λ jΦ(d(y, x)))

= lim
j→∞

inf
y∈X

(F(y) + λ jΦ(d(y, x)))

= F(x),

where in the last step we used Remark 7.11. □

Finally, we consider the case of the approximation of local minimizers. This is very important
because in a lot of situations, the (physical) system that you (observe) are interested in is locked in
a local minimum of your functional.

Theorem 7.42. Let (Fn)n∈N be an equi-coercive sequence of lower semicontinuous functional Γ-
converging to F. Let x ∈ X be an isolated local minimizer of F. Then, there exists a sequence
(xn)n∈N ⊂ X, where each xn is a local minimizer of Fn, such that xn → x as n→ ∞.

Proof. Note that the fact that x is an isolated local minimizer of F implies that F(x) < +∞. Let
r > 0 such that

F(x) = min{F(y) : d(y, x) ≤ r}.

For each n ∈ N, consider the constrained minimization problem

min{Fn(y) : d(y, x) ≤ r}. (7.13)

We claim that there exists n ∈ N depending on r > 0, such that for all n ≥ n, there exists a solution
xn to (7.13) satisfying

d(xn, x) < r. (7.14)

Namely, xn is a local minimizer of Fn, since

Fn(xn) = min{Fn(y) : d(y, xn) ≤ r − d(xn, x).

This allows us to conclude. Indeed, assume that the claim is true, and consider a subsequence
(rn)n∈N ⊂ (0, 1) be such that rn → 0 as n → ∞. Then, for each n ∈ N, thanks to (7.14), there
exists a local minimizer xn of Fn with d(xn, x) < rn. Thus, (xn)n∈N is the required sequence of local
minimizers converging to x.

Let us prove the claim. Assume by contradiction that this is not the case. Then, for each n ∈ N,
we would have that

min{Fn(y) : d(y, x) ≤ r} = min{Fn(y) : d(y, x) = r} < min{Fn(y) : d(y, x) ≤ r/2}. (7.15)

By using the sequential characterization of the Γ-limit, there exists a sequence (yn)n∈N with yn → x
such that Fn(yn)→ F(x). In particular, for n large yn ∈ Br(x), and

Fn(yn) ≤ F(x) + 1 < +∞.
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Thus, there exists n ∈ N such that
sup
n≥n

Fn(xn) < +∞.

Since the sequence (Fn)n∈N is equi-coercive, it is possible to find a subsequence (xnk )k∈N with
xnk → z ∈ X. We claim that z = x, and thus the contradiction, since d(xnk , x) = r for all k ∈ N.
Assume that z , x. Then

F(z) ≤ lim inf
k→∞

Fnk (xnk ) ≤ lim sup
k→∞

inf
Br/2

(x)Fnk ≤ F(x),

where in the last step we used (7.15). This contradicts the isolated local minimality of x. Thus, we
get that z = x and we conclude the proof. □

Remark 7.43. Note that, in general, it is not true that an isolated local minimizer can be approxi-
mated by isolated local minimizers. Indeed, consider the case where

Fn(x) B


1
n if x ∈ [−1/n, 1/n],

|x| else.

Then, the sequence (Fn)n∈N Γ converges to F : R → R, where F(x) B |x|, but the isolated local
minimizer (actually, the only global minimizer) x = 0 of F cannot be approximated by isolated
local minimizers of Fn.

Moreover, if x ∈ X is a local minimizer, not isolated, in general, it is not the limit of local
minimizers of Fn. This is the same situation as for global minimizers. We would need to consider
the notion of quasi-local minimizer.

7.5 Γ-convergence and weak topologies

We now consider the notion of Γ-convergence for weak topologies. As mentioned previously, in a
general topological space (X, τ), it is possible to define the notion of Γ-inferior limit and Γ-superior
limit by using the same idea behind the indentitys of Proposition 7.8.

Definition 7.44. Given a sequence of functionals (Fn)n∈N, we define

F−(x) B sup
U∈N(x)

lim inf
n→∞

inf
U

Fn,

and
F+(x) B sup

U∈N(x)
lim sup

n→∞
inf
U

Fn,

whereN(x) is the family of neighborhoods of the point x in the topology τ. Moreover we say that
the sequence (Fn)n∈N Γ-converges to a functional F with respect to the topology τ, if F = F− = F+.

These definitions are not very useful when one has to compute the Γ-limit. That is why it would
be nice to be able to use the sequential characterization of the Γ-limit provided by Lemma 7.6. In
general, the objects obtained by the topological definition and by the sequential definition do no
coincide. A condition ensuring that they are the same is to ask the topological space X to satisfy
the first axiom of contability. Unfortunately, weak topologies does not satisfy this assumption.
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Nevertheless, there are conditions ensuring that they are the same (cfr. Section 6.3). We present
here the statement for a Banach space X whose dual space X′ is separable. Note that this leaves
out the case of X = L1.

Theorem 7.45. Let X be a Banach space such that X′ is separable. Let (Fn)n∈N be a sequence of
functionals Fn : X → R such that there exists Ψ : X → R with

lim
∥x∥→∞

Ψ(x) = +∞

such that Fn ≥ Ψ for all n ∈ N. Let d : X × X → [0,∞) be any distance that induces the weak
topology on bounded sets. Namely

xn ⇀ x if and only if (xn)n∈N is bounded and lim
n→∞

d(xn, x) = 0.

Then, by considering the weak topology on X, it holds that

Γ- lim inf
n→∞

Fn(x) = F−(x), Γ- lim sup
n→∞

Fn(x) = F+(x),

where the left-hand sides are computed with respect to the distance d. In particular, (Fn)n∈N

Γ-converges to F with respect to the weak topology if and only if the followings hold:

(i) (Liminf inequality) For every x ∈ X, and (xn)n∈N ⊂ X with xn ⇀ x, it holds

F(x) ≤ lim inf
n→∞

Fn(xn);

(ii) (Limsup inequality) For every x ∈ X, there exists (xn)n∈N ⊂ X such that

F(x) ≥ lim sup
n→∞

Fn(xn),

and with xn ⇀ x.

Under the previous assumptions also the Urysohn properties and compactness hold. Namely,
the followings hold.

Proposition 7.46. Let X be a Banach space such that X′ is separable, and let (Fn)n∈N be a sequence
of functionals FnX → R. Then (Fn)n∈N Γ converges to F if and only if every subsequence (Fnk )k∈N

has a further subsequence Γ converging to F.

Theorem 7.47. Let X be a Banach space such that X′ is separable, and let (Fn)n∈N be a sequence
of functionals Fn : X → R. Then, there exists a subsequence (Fnk )k∈N such that Fnk Γ converges
to F, for some functional F : X → R.

7.6 Integral representation of Γ-limits of integral functionals on Lp

In this section we consider a sequence of integral functionals Fn : Lp(Ω;RM) → R ∪ {+∞}, for
p ∈ (1,+∞), and study what kind of Γ-limits we can expect. Namely, write

Fn(u) B
∫
Ω

fn(u(x)) dx,
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for some Borel function fn : RM → R. Is is true that if (Fn)n∈N Γ-converges with respect to the
weak topology of Lp, to some functional F : Lp(Ω;RM) → R ∪ {+∞}, then also F is an integral
functional? That is, there exists some Borel function f : RM → R such that

F(u) =
∫
Ω

f (u(x)) dx,

for all u ∈ Lp(Ω;RM)? And if so, is it possible to characterize the limiting energy density f by
using the sequence ( fn)n∈N? These are respectively known as integral representation of the Γ-limit,
and representation formula for the limiting density.

First, we need to introduce a technical tool that is interesting in itself, namely the L-Yosida
approximation of a function: the greatest Lipschitz function with Lipschitz constant L that is
majorized the given function.

Definition 7.48. Let (X, d) be a metric space, L > 0, and let f : X → R∪{∞}. Define the L-Yosida
transform of f fL : X → R as

fL(x) B inf
y∈X

[ f (y) + L d(x, y)] .

The Yosida approximation enjoys some properties whose easy proof is left to the reader.

Proposition 7.49. Let (X, d) be a metric space. Let f : X → R∪{∞} be lower semicontinuous and
bounded from below, namely such that there exists C > −∞ such that f (x) ≥ C for each x ∈ X.
Then, it holds that:

(i) fL is Lipschitz with Lipschitz constant L;

(ii) fL is increasing and fL ≤ f for each L > 0;

(iii) fL converges to f as L→ ∞.

Moreover, if f is convex, then fL is convex for all L > 0.

Remark 7.50. The previous result is false if the assumption of lower semicontinuity of f is
dropped, as it can be easily seen by considering the function

f (x) B
{

0 if x < 0,
1 if x ≥ 0.

In that case fL(0) = 0 for all L > 0, and thus it cannot converge to f (0) = 1.

We are now in position to prove the main result of this section.

Theorem 7.51. Let p ∈ (1,∞), and let fn : RM → R be Borel functions such that

sup
n∈N

fn(0) < +∞,

and such that there exists c > 0 for which

fn(ξ) ≥ c(|ξ|p − 1) (7.16)
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for all ξ ∈ RM. Consider the functionals Fn : Lp(Ω;RM)→ R ∪ {+∞} defined as

Fn(u) B
∫
Ω

fn(u(x)) dx,

where Ω ⊂ RN is a measurable set. Then, the sequence (Fn)n∈N Γ-converges to some functional
F : Lp(Ω;RM) → R ∪ {+∞} with respect to the weak topology of Lp if and only if the sequence
( f c

n )n∈N Γ-converges to some f : RM → R and in that case we have

F(u) =
∫
Ω

f (u(x)) dx,

for all u ∈ Lp(Ω;RM).

Proof. First of all, note that Proposition 7.13 tells us that the Γ-limit of the sequence (Fn)n∈N

with respect to the weak topology of Lp is the same as that of (lsc(F)n)n∈N. Moreover, thanks to
Theorem 6.63 we have that

lsc(Fn)(u) =
∫
Ω

f c
n (u(x)) dx.

Note that we can apply that result thanks to the uniform bound from below (7.16) of the fn’s.
Step 1. Assume that the sequence ( f c

n )n∈N Γ-converges to some f : RM → R. We need to
prove that (Fn)n∈N Γ-converges with respect to the weak topology of Lp to the functional F :
Lp(Ω;RM)→ R ∪ {+∞} defined as

F(u) B
∫
Ω

f (u(x)) dx.

Thanks to the uniform growth (7.16) of the fn’s, we will use the sequential characterization pro-
vided by Theorem 7.45.

Step 1.1 We start by proving the liminf inequality. Let u ∈ Lp(Ω;RM) and let (un)n∈N ⊂

Lp(Ω;RM) such that un ⇀ u weakly in Lp. We claim that

F(u) ≤ lim inf
n→∞

lsc(Fn)(un).

Since each f c
n is convex, it is easy to see that also the function f is convex. This implies that the

functional F is lower semicontinuous with respect to the weak topology of Lp (see Theorem ??).
Therefore,

F(u) ≤ lim inf
n→∞

F(un). (7.17)

The idea is to substitute, on the right-hand side, lsc(Fn) in place of F. This is not possible in
general, since there is no uniform convergence of f c

n to f that allows us to control the error

|F(un) − lsc(Fn)(un)|

uniformly in n ∈ N. The idea is the following: let

Fk(u) B
∫
Ω

Tk( f )(u) dx, Fk
n(u) B

∫
Ω

Tk( f c
n )(u) dx,

where Tk( f c
n ) and Tk( f ) denotes the k-Yosida transform of f c

n and of f respectively. Once we
establish this inequality, we obtain (7.17) by pass to the limit for k → ∞.

First of all, we note that:
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(i) For every k > 0, there exists R > 0 such that Tk( f c
n ) is linear outside of B(0,R), with slope

k;

(ii) Tk( f c
n ) and Tk( f ) is convex are convex;

(iii) Tk( f c
n ) converges pointwise to Tk( f ) as n→ ∞.

Indeed, (i) is a consequence of the uniform bound from below on the fn’s (and, in turn, on the
f c
n ’s); (ii) follows from Proposition 7.49, since both f c

n and f are convex. Finally, (iii) follow by
using the definition of the k-Yosida transform and by using the convergence of infima given by
Theorem 7.41, with Φ the identity map, together with the uniform growth condition on the fn’s
(and, in turn, on the f c

n ’s) which ensures the equicoerciveness of the maps

y 7→ f c
n (y) + kd(y, x),

for all x ∈ RM. Thus, from (i), (ii), and (iii) we obtain that Tk( f c
n ) converges uniformly to Tk f . In

particular, this means that, for each ε > 0, there exists k > 0 such that, for all k ≥ k it holds that

|Tk( f c
n )(ξ) − Tk( f c)(ξ)| ≤ ε, (7.18)

for all ξ ∈ RM. Thus, for all k > k, it holds that

lim inf
n→∞

Fk
n(un) = lim inf

n→∞

∫
Ω

Tk( f c
n )(un) dx

= lim inf
n→∞

[ ∫
Ω

Tk( f c)(un) dx +
∫
Ω

[
Tk( f c

n )(un) − Tk( f c)(un)
]

dx
]

≥ lim inf
n→∞

∫
Ω

Tk( f c)(un) dx − ε

≥

∫
Ω

Tk( f c)(u) dx − ε,

where in the previous to last step we used (7.18), while last inequality is due to the lower semi-
continuity of the functional

u 7→
∫
Ω

Tk( f c)(u) dx,

since Tk( f c) is convex. Thus, by taking the limit as k → ∞ on both sides of the above inequality,
thanks to Proposition 7.49, and the Monotone Convergence Theorem, we get

F(u) − ε ≤ lim inf
n→∞

F(un)

Thus, from the arbitrariness of ε > 0, we obtain (7.17).

Step 1.2 We now prove the limsup inequality. We first use a similar argument as that imple-
mented in Step 2 of the proof of Theorem 6.63 to show that it suffices to construct a recovery
sequence for a piecewise constant function. Let u ∈ Lp(Ω;RM), and let (uk)k∈N be a sequence of
piecewise constant functions that converges strongly to u in Lp. Assume that

[Γ- lim sup
n→∞

Fn](uk) = F(uk),
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for all k ∈ N. Then,

Γ- lim sup
n→∞

Fn(u) ≤ lim inf
k→∞

[Γ- lim sup
n→∞

Fn](uk) = lim inf
k→∞

F(uk) = F(u),

where the last equality follows from the continuity of F with respect to the strong convergence
of Lp. This proves that, if we know how to obtain the limsup inequality for piecewise constant
functions, we know how to conclude its validity for all functions in Lp(Ω;RM).

Thus, consider a piecewise constant function u. In particular, thanks to Step 2 of the proof of
Theorem 6.63, we can write

u(x) =
k∑

j=1

ξ j
1A j(x),

where each A j ⊂ Ω is an open set, and they are pairwise disjoint. Since ( f c
n )n∈N is Γ-converging

to f , thanks to Lemma 7.6, for each j = 1, . . . , k, there exists a sequence (ξ j
n)n∈N with ξ j

n → ξ j as
n→ ∞, such that

lim
n→∞

f c
n (ξ j

n) = f (ξ j).

Define, for each n ∈ N, the function vn ∈ Lp(Ω;RM) as

vn(x) B
k∑

j=1

ξ j1A j(x).

Then, vn → u strongly in Lp(A;RM), and

lim
n→∞

lsc(Fn)(vn) = F(u).

This proves the Γ-limsup inequality.

Step 2. Assume that Fn Γ-converges to some functional F : Lp(Ω;RM) → R ∪ {+∞} with
respect to the weak topology of Lp. We need to show that there exists a Borel function f : RM → R

such that
F(u) =

∫
Ω

f (u(x)) dx,

for all u ∈ Lp(Ω;RM).
To do that, we consider the sequence ( f c

n )n∈N. Thanks to Theorem 7.14 it is possible to extract a
subsequence ( f c

nk
)k∈N which Γ-converges to some Borel function f : RM → R, possibly depending

on the chosen subsequence. Thanks to Step 1, we get that

F(u) =
∫
Ω

f (u(x)) dx, (7.19)

for all u ∈ Lp(Ω;RM). If we now take another subsequence ( f c
ni

)i∈N that is Γ-converging to some
Borel function g : RM → R, we get that

F(u) =
∫
Ω

g(u(x)) dx, (7.20)
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for all u ∈ Lp(Ω;RM). Thus, from (7.19) and (7.20) we get that f = g. This implies that the whole
sequence ( f c

n )n∈N Γ-converges to some Borel function f : RM → R, and that

F(u) =
∫
Ω

f (u(x)) dx

for all u ∈ Lp(Ω;RM). This concludes the proof. □

A special case of the above result is when the sequence of integrands (Fn)n∈N is locally equi-
bounded. In that case, the Γ converges reduces to pointwise converges.

Corollary 7.52. Let p ∈ (1,∞), and let fn : RM → R be Borel functions such that

sup
n∈N

fn(0) < +∞,

and such that there exists c > 0 for which

fn(ξ) ≥ c(|ξ|p − 1),

for all ξ ∈ RM. Moreover, assume that for each compact set K ⊂ Ω there exists MK > 0 such that

fn(ξ) ≤ M

for all ξ ∈ K. Consider the functionals Fn : Lp(Ω;RM)→ R ∪ {+∞} defined as

Fn(u) B
∫
Ω

fn(u(x)) dx,

where Ω ⊂ RN is a measurable set. Then Fn Γ-converges to some functional F : Lp(Ω;RM) →
R ∪ {+∞} with respect to the weak topology of Lp if and only if the sequence ( f c

n )n∈N converges
pointwise to some f : RM → R and in that case we have

F(u) =
∫
Ω

f (u(x)) dx,

for all u ∈ Lp(Ω;RM).

Remark 7.53. The above theorem can be extended to the case where

Fn(u) B
∫
Ω

fn(x, u(x)) dx,

for some Charathéodory function fn : RM → R. In that case, the convergence is of f c
n (x, ·) to

f (x, ·), for a.e. x ∈ Ω.
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7.7 Integral representation of Γ-limits of integral functionals on W1,p(Ω)

In this section we want to perform similar investigations as those carried out in the previous sec-
tion, but for integral functionals defined on W1,p(Ω). For such functionals, the proofs are extremely
more involved, and therefore we will not report them in here. The interested reader in the proof of
the two results can consult [6] and [3] respectively.

The Γ-limit will be with respect to the strong convergence of Lp for p ∈ (1,+∞). The rea-
son being that usually the bounds on the functionals ensure only compactness in that topology.
Moreover, for functionals depending on the gradient, usually also a uniform upper bound on the
integrands is necessary. For this reason, we introduce the following class. First of all, we deal
with the issue of integral representation of the Γ limit.

Theorem 7.54. Let Ω ⊂ RN be an open bounded set. Let 1 < p < +∞ and consider Borel
functions fn : Ω × RM × RN×M → [0,∞) such that there exists c > 0 for which

1
c
|ξ|p ≤ fn(x, z, ξ) ≤ c|ξ|p

for almost all x ∈ Ω, and for all z ∈ RM and ξ ∈ RN×M. Consider the functionals Fn :
W1,p(Ω;RM)→ [0,+∞] defined as

Fn(u) B
∫
Ω

fn(x, u(x),Du(x)) dx.

Then, if Fn Γ-converges to some F : Lp(Ω;RM)→ [0,+∞] with respect to the Lp topology, then

F(u) =


∫
Ω

f (x, u(x),Du(x)) dx if u ∈ W1,p(Ω;RM),

+∞ else in Lp(Ω;RM),

where f : Ω × RM × RN×M → [0,∞) is a Borel function.

For integral functionals the pointwise convergence of hte integrands yields the Γ convergence
in Lp of the functionals, but the opposite is not true in general. We will see a counterexample to
this in the next section.

Theorem 7.55. Let Ω ⊂ RN be an open bounded set. Let 1 < p < +∞ and consider Borel
functions fn : Ω × RM × RN×M → R such that there exists c > 0 for which

1
c
(
|ξ|p − 1

)
≤ fn(x, z, ξ) ≤ c

(
|ξ|p + 1

)
for almost all x ∈ Ω, and for all z ∈ RM and ξ ∈ RN×M. Consider the functionals Fn :
W1,p(Ω;RM)→ [0,+∞] defined as

Fn(u) B
∫
Ω

fn(x, u(x),Du(x)) dx.
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Assume that there exists a Borel function f : Ω × RM × RN×M → [0,∞) such that for all z ∈ RM

and ξ ∈ RN×M it holds that fn(·, z, ξ) converge pointwise almost everywhere inΩ to f (·, z, ξ). Then,
the functionals Fn : W1,p(Ω;RM)→ [0,+∞] defined as

Fn(u) B
∫
Ω

fn(x, u(x),Du(x)) dx

Γ converge with respect to the Lp topology to the functional F : Lp(Ω;RM)→ [0,+∞] defined as

F(u) B
∫
Ω

f (x, u(x),Du(x)),

if u ∈ W1,p(Ω;RM), and +∞ else.

Remark 7.56. Note that the opposite is not true in general!

In the one dimensional scalar case, it is possible to completely characterize the Γ convergence
of the functionals in terms of converges of the integrands, in the same spirit as Theorem 7.51. In
order to state the result, we need a notion from convex analysis.

Definition 7.57. Let g : R→ R be a function. We define the conjugate g∗ : R→ R of g by

g∗(z) B sup{zt − g(t) : t ∈ R}.

Theorem 7.58. Let (a, b) ⊂ R, and 1 < p < +∞. Consider a sequence of Borel functions
fn : (a, b) × R→ R satisfying

1
c
(
|ξ|p − 1

)
≤ fn(x, ξ) ≤ c

(
|ξ|p + 1

)
,

and let f (a, b) × R → R be a Borel function. For each n ∈ N each open subinterval I ⊂ (a, b),
defined the functionals

Fn(u; I) B
∫

I
fn(x, u′(x)) dx,

and
F(u; I) B

∫
I

f (x, u′(x)) dx.

Then, the followings are equivalent:

(i) For each open subinterval I ⊂ (a, b) the functionals Fn(·; I) Γ-converge to the function F(·; I)
with respect to the strong topology of Lp;

(ii) For all z ∈ R, the function f ∗(·, z) is the limit in the weak∗ topology of L∞ of the sequence
( f ∗n (·, z))n∈N.
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