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Preface

These lecture notes are written for the course “An Introduction to Partial Differential Equations”
(NWI-WB046B) at Radboud University, Nijmegen. They provide an introduction to the vast re-
search field of partial differential equations. Further details and many additional topics can be
found in the monographs by L. Evans [4], W. Craig [1], Y. Pinchover and J. Rubinstein [9], W.A.
Strauss [10] and A. Vasy [12]. To follow the course a solid understanding of analysis, calculus,
linear algebra and ordinary differential equations is required.

We introduce and analyze basic types of partial differential equations. Solution methods, rep-
resentation formulas for solutions and properties of solutions for classical linear equations of sec-
ond order (Laplace, heat and wave equation) are discussed. Moreover, we study nonlinear partial
differential equations of first order via the method of characteristics. We are mainly concerned
with the existence, uniqueness and regularity of solutions. This involves the use of fundamental
solutions, maximum principles and energy methods.

Except for particularly simple cases, partial differential equations cannot be solved explicitly.
In the analysis of partial differential equations, we are therefore mainly concerned with proving
the well-posedness and investigating the qualitative behavior of solutions. Different from ordinary
differential equations, there is no general theory for partial differential equations. Typically, each
particular type of partial differential equation requires an individual theory and specific methods
to study the existence and properties of solutions.
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Chapter 1

Introduction

Partial differential equations (PDEs) are used to model a wide range of phenomena, in particular,
in physics, engineering, chemistry, biology and finance. For instance, they are fundamental in
the modern understanding of sound, fluid dynamics, elasticity, general relativity and quantum
mechanics. They also play an important role in “pure mathematics”, in particular, in geometry and
analysis.

1.1 Basic definitions

A PDE is an equation for an unknown function u of several variables that involves partial deriva-
tives of u. The order of the highest partial derivative is called the order of the PDE.

Definition 1.1. Let Ω ⊂ Rn be open, n ≥ 2 and k ∈ N. An expression of the form

F(Dku(x),Dk−1u(x), . . . , u(x), x) = 0, x ∈ Ω, (1.1)

is called a k-th order PDE, where

F : Rnk
× Rnk−1

× . . . × Rn × R ×Ω→ R

is a given function and u : Ω→ R is the unknown.
A classical solution of the PDE is a k-times continuously differentiable function u : Ω → R

that satisfies (1.1).

Here, we use the following notation to denote the partial derivatives. Let Ω ⊂ Rn, n ≥ 2, be
open, x = (x1, . . . , xn) ∈ Ω and u : Ω→ R be a scalar function.

• The partial derivatives of u at x, are defined as

∂u
∂xi

(x) := lim
h→0

u(x + hei) − u(x)
h

(if the limit exists),

for i = 1, . . . , n, where ei denotes the i-th standard basis vector of Rn. Commonly used are
also the notations ∂u

∂xi
= ∂xiu = uxi .
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• The partial derivatives of second order are defined as

∂2u
∂xi∂x j

(x) :=
∂

∂xi

(
∂u
∂x j

)
(x) (if they exist),

for i, j = 1, . . . , n. Commonly used are also the notations ∂2u
∂xi∂x j

= uxi x j = ∂2
xi x j

u.

• Multiindex notation: Let α = (α1, . . . αn) ∈ Nn
0 be a multiindex. Its order is defined as

|α| :=
n∑

i=1

αi,

and the corresponding |α|-th order partial derivatives of u are

Dαu(x) =
∂|α|u

∂xα1
1 · · · ∂xαn

n
(x) = ∂α1

x1
· · · ∂αn

xn u(x) (if they exist).

Moreover, for k ∈ N we denote by

Dku(x) := {Dαu(x) : |α| = k}

the collection of all k-th order partial derivatives of u in x.

As usual, we write D1u(x) as a column vector,

D1u(x) = Du(x) =


∂x1u(x)

...

∂xnu(x)

 = ∇u(x) (gradient),

and D2u(x) as a matrix,

D2u(x) =


∂2

x1 x1
u(x) . . . ∂2

x1 xn
u(x)

...
. . .

...

∂2
xn x1

u(x) . . . ∂2
xn xn

u(x)

 (Hessian matrix).

Depending on the structure of the function F in (1.1) we classify PDEs as follows.

Definition 1.2. • The PDE (1.1) is linear if the function F is linear in u and its derivatives,
i.e. if it is of the form ∑

|α|≤k

aα(x)Dαu(x) + f (x) = 0,

for given functions aα and f . Moreover, if f ≡ 0, the PDE is called homogeneous and
otherwise inhomogeneous.

• The PDE (1.1) is semilinear if it is linear in the highest order derivatives, i.e. if it is of the
form ∑

|α|=k

aα(x)Dαu(x) + a0(Dk−1u(x), . . . , u(x), x) = 0,

for given functions aα and a0.

2



• The PDE (1.1) is quasilinear if it is of the form∑
|α|=k

aα(Dk−1u(x), . . . , u(x), x)Dαu(x) + a0(Dk−1u(x), . . . , u(x), x) = 0,

for given functions aα and a0.

• The PDE (1.1) is fully nonlinear if F is a nonlinear function of the highest order derivatives
Dku.

For linear homogeneous equations the superposition principle holds, i.e. if u and v are both
solutions of the PDE, then the same applies to αu + βv, for all α, β ∈ R. More generally, if
u1, . . . , um are solutions, then so is any linear combination of these solutions.

Typically, the difficulty of the analysis of a PDE increases with the degree of nonlinearity.

Instead of scalar equations we can also look at systems of PDEs which arise in many appli-
cations. Here, several unknown functions u1, . . . , um, m ≥ 2, have to be determined that satisfy a
system of m PDEs.

Definition 1.3. An expression of the form (1.1) is called a k-th order system of PDEs if m ≥ 2
and

F : Rmnk
× Rmnk−1

× . . . × Rmn × Rm ×Ω→ Rm,

where u = (u1, . . . , um) : Ω → Rm is the unknown. Here, Dαu = (Dαu1, . . . ,Dαum) and Dku =

{Dαu : |α| ≤ k}.
A classical solution of the system of PDEs is a k-times continuously differentiable function

u : Ω→ Rm that satisfies (1.1).

1.2 Examples

We briefly discuss several examples of PDEs that illustrate the variety of applications in different
fields.

Minimal surface equation
Let Ω ⊂ R2 be open and bounded and u : Ω → R. Then, the surface area of the graph of u is

given by

J(u) =

∫
Ω

√
1 + |∇u(x)|2 dx.

A classical problem in the Calculus of Variations is the minimal surface problem: Minimize J(u)
subject to prescribed boundary conditions. That is, among all functions u that satisfy u = g on the
boundary ∂Ω, where g is given, find the function such that the surface area of its graph is minimal.

One can show that such a minimizer u satisfies the corresponding Euler–Lagrange equation

∇ ·

 ∇u√
1 + |∇u|2

 = 0 in Ω,

where · denotes the inner product in R2. This minimal surface equation is a quasilinear PDE of
second order.
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The minimal surface problem is also known as the Plateau problem, named after the Belgian
physicist J. A. F. Plateau (1801 - 1883). He conducted experiments with soap films by dipping
wire contours in a solution of soapy water.

Reaction-diffusion equations
Reaction-diffusion equations are widely used to model phenomena in chemistry, physics and

biology. They describe the changes in space and time of concentrations of chemical substances or
densities of populations.

Let I ⊂ R be an open interval, U ⊂ Rn be open and Ω = I × U. Moreover, u : Ω → R is a
function of time t ∈ I and the spatial position x ∈ U. A reaction-diffusion equation is of the form

∂tu = d∆u + f (u) in I × U,

where ∆u = ∆xu =
∑n

i=1 uxi xi denotes the Laplace operator or Laplacian with respect to x and
d > 0 is the diffusion coefficient. The first term on the right hand side of the equation models the
diffusion (particles or individuals move from regions with high concentrations to regions of low
concentrations) and the given function f : R→ R describes local reactions. The reaction-diffusion
equation is a semilinear PDE of second order.

More generally, we can consider reaction diffusion systems,

∂tu = D∆u + f (u) in I × U,

where u = (u1, . . . , um), D ∈ Rm×m is a diagonal matrix with positive coefficients and f : Rm → Rm

a given function. Reaction diffusion systems are used to model, e.g. ecological invasions, the
spread of epidemics, tumor growth or reactions between several different chemical substances.

Korteweg de Vries equation
Let I ⊂ R be an open interval, U ⊂ R be open and Ω = I ×U. The Korteweg de Vries equation

∂tu(t, x) − u(t, x)ux(t, x) + uxxx(t, x) = 0, (t, x) ∈ I × U,

describes shallow water waves in narrow channels and can predict the formation of solitons, i.e.
wave packets that maintain its shape and travel with a constant speed. The Korteweg de Vries
equation is a semilinear PDE of third order.

The history of the Korteweg de Vries equation goes back to observations and experiments by
J. S. Russell in 1834. He discovered the phenomenon of solitons when observing a boat that was
first drawn along a narrow channel and then suddenly stopped. The mass of water which the boat
had put in motion accumulated and rolled forward, forming a rounded, well-defined heap. Russel
followed this heap on his horse for several kilometers and noticed that it seemed to travel along
the channel without changing its form or speed.

Navier–Stokes equations
Let I ⊂ R be an open interval. The Navier–Stokes equations

∂tu + (u · ∇)u = ν∆u − ∇p + f in I × Rn,

∇ · u = 0,

describe the motion of an incompressible fluid in Rn, where ν > 0 is the viscosity of the fluid and
f : Rn → Rn the external force. The fluid is described by its velocity field u : I × Rn → Rn and
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pressure p : I×Rn → R. The Navier–Stokes equations are a system of semilinear PDEs of second
order.

They play an important role in physical and engineering applications. They are used to model,
e.g. the weather, ocean currents, blood flow in arteries and air flow around a wing, and enormous
computational efforts are invested to solve them numerically.

They are also of great mathematical interest and their analysis is challenging. For the system
in R3 (and f = 0) the global existence of smooth solutions is still an open problem. It is one of the
seven Millennium Prize Problems that were stated by the Clay Mathematics Institute in 2000. For
a correct solution to any of the problems an award of one million US dollars is offered.

1.3 Type classification of linear second order PDEs

In this course, we mainly focus on linear, scalar PDEs of second order, i.e. equations of the form

n∑
i, j=1

ai j(x)uxi x j(x) +

n∑
i=1

ai(x)uxi(x) + a0(x)u(x) = f (x), x ∈ Ω, (1.2)

that we now further classify. By Schwarz’ theorem, the Hessian matrix is symmetric if u is twice
continuously differentiable and hence, we may assume that

ai j = a ji ∀i, j = 1, . . . , n.

Then, the coefficients ai j form a symmetric matrix

A(x) =


a11(x) . . . a1n(x)
...

. . .
...

an1(x) . . . ann(x)

 , x ∈ Ω.

A useful type classification of the PDE (1.2) is based on the definiteness properties of A.

Definition 1.4. We call the linear second order PDE (1.2) elliptic if A(x) is positive or negative
definite, parabolic if A(x) is singular (det A(x) = 0) and hyperbolic if one eigenvalue of A(x) has
a different sign than all the others (where eigenvalues are counted according to their multiplicity).

The following three examples are the archetypes of linear second order PDEs. We will study
them in detail in the following chapters. Each equation requires a different approach and has
essentially different properties.

Example 1.5. • Laplace equation

∆u = ux1 x1 + . . . + uxn xn = 0 in Ω,

where Ω ⊂ Rn is open, u : Ω→ R and ∆ is the Laplace operator or Laplacian.

We have A(x) = Id ∈ Rn×n and thus, the PDE is elliptic.
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• Heat equation
ut − ∆u = 0 in Ω = I × U,

where t ∈ I denotes time, x ∈ U space, I ⊂ R is an open interval and U ⊂ Rn is open.
Moreover, u : I × U → R and ∆u = ∆xu is the Laplace operator with respect to x.

We obtain a singular matrix A(t, x) =

(
0 0
0 −Id

)
, Id ∈ Rn×n, and thus, the PDE is parabolic.

• Wave equation
utt − ∆u = 0 in Ω = I × U,

where we use the same notation as for the heat equation.

In this case, we have A(t, x) =

(
1 0
0 −Id

)
, and thus, the PDE hyperbolic.

1.4 Strategies for studying PDEs

A classical solution of a k-th order PDE is a k-times continuously differentiable function that
satisfies the PDE pointwise in Ω ⊂ Rn. Often, a PDE possesses families of solutions, but the
solution u is uniquely determined if values of u and/or its derivatives are specified on the boundary
∂Ω of Ω. A PDE together with these boundary conditions is called a boundary-value problem.
In applications that involve time we typically consider sets if the form Ω = I × U, I = (t0, t1) ⊂
R,U ⊂ Rn open. In this special case, the values of u and/or its derivatives specified at the initial
time t0 are called initial conditions and the values specified on ∂U boundary conditions.

In the ideal case, we find explicit solutions for a given PDE, but this is only possible in few
particularly simple cases. This classical approach to PDEs that dominated the 19th century was
to develop methods for deriving explicit representation formulas for solutions. If such formulas
cannot be found, we aim at proving the existence and studying qualitative properties of solutions.
In particular, we say that a problem is well-posed if the following properties hold:

• There exists a solution.

• The solution is unique.

• The solution depends continuously on the given data (e.g. parameters, boundary or initial
values).

The continuous dependence on data is particularly important in applications, since the solution
should change only slightly if we vary the data specifying the problem only slightly.

For many PDEs the notion of classical solutions is too restrictive and such solutions do not
exist. However, one can weaken the concept of solutions and consider so-called weak solutions
or distributional solutions which are less regular and satisfy the PDE in a generalized sense. For
instance, PDEs describing the occurrence of shocks (essentially, the appearance of discontinuities
in the derivatives), require this notion. Moreover, even if classical solutions exist, it is often easier
to prove the existence of weak solutions first and then to show that the solutions have a higher
regularity and are, in fact, classical solutions of the problem.
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Different from ordinary differential equations there is no general theory or approach for the
solvability of PDEs, except for very few specific cases. Typically, research in PDEs focuses on
various, particular PDEs that are relevant in applications and on the development of specific meth-
ods for the problem at hand.

In general, the difficulty of the analysis of a PDE increases with the degree of nonlinearity,
with the order k of the PDE, with the number of variables n and with the number of equations m
(i.e. systems of PDEs are typically more difficult to analyze than scalar equations).

In this course we mainly focus on simple prototypes for linear second order PDEs (Laplace,
Poisson, heat and wave equation) and on nonlinear PDEs of first order. Typical questions we
address are the following:

• existence and uniqueness of solutions

• qualitative properties of solutions (e.g. regularity, dependence on data)

• explicit representation formulas for solutions

• limitations of classical solutions

1.5 Further notation

We denote the inner product in Rn by · , the norm by | · | and bT and AT denote the transpose of
a vector b ∈ Rn or a matrix A ∈ Rn×m. Moreover, we denote the open ball with center x ∈ Rn and
radius r > 0 by Br(x) = {y ∈ Rn : |x − y| < r}.

When we write Ω ⊂ Rn, then Ω = Rn or Ω ( Rn. For Ω ⊂ Rn, we denote by Ω its closure and
by ∂Ω its boundary. We introduce the following spaces of continuous functions on Ω

C(Ω) = {u : Ω→ R : u continuous},

C(Ω) = {u ∈ C(Ω) : u can be continuously extended to ∂Ω}.

Analogously, the spaces C(Ω;Rm) and C(Ω;Rm), m ≥ 2, are defined for vector-valued functions
u : Ω→ Rm.

Let now Ω ⊂ Rn be open. For k ∈ N we denote the space of k-times continuously differential-
ble functions by

Ck(Ω) = {u : Ω→ R : u is k-times continuously differentiable},

Ck(Ω) = {u ∈ Ck(Ω) : Dαu can be continuously extended to ∂Ω for |α| ≤ k}.

Analogously, we define the spaces Ck(Ω;Rm) and Ck(Ω;Rm), m ≥ 2, for vector-valued functions
u : Ω→ Rm.
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1.6 Exercises

E1.1 Classification of PDEs
Determine the order and type (linear, semilinear, quasilinear, fully nonlinear) of each of the
following PDEs:

– Klein–Gordon equation

−utt + ∆u = m2u in (0,∞) × Rn, m > 0

– Burger’s equation
ut + uux = 0 in (0,∞) × R

– Monge–Ampére equation
det(D2u) = 0 in Rn

– Airy’s equation
ut + uxxx = 0 in (0,∞) × R

– Eikonal equation
|Du| = 1 in Rn

– Porous medium equation

ut − ∆(um) = 0 in (0,∞) × Rn, m > 1

Here, t > 0 denotes time, x ∈ Rn space, ∆ is the Laplacian w.r.t. x and ∇ the gradient w.r.t x.

E1.2 Minimal Surface Equation
Let Ω ⊂ Rn be open and bounded with smooth boundary ∂Ω. For v ∈ C1(Ω) the n-dimensional
surface area of its graph {(x, v(x)) : x ∈ Ω} ⊂ Rn+1 is given by

J(v) =

∫
Ω

√
1 + |Ov(x)|2 dx.

Moreover, let g : ∂Ω→ R be a given continuous function and suppose that a minimizer u of the
functional J exists within the set

{v : v ∈ C1(Ω), v = g on ∂Ω}

and it satisfies u ∈ C2(Ω). Prove that this minimizer u satisfies∫
Ω

O ·

 Ou(x)√
1 + |Ou(x)|2

ϕ(x) dx = 0

for all functions ϕ ∈ C∞(Ω) with compact support in Ω.
Remark: One can then conclude by the so-called Fundamental Lemma of the Calculus of Vari-
ations that u is a solution of the minimal surface equation

O ·

 Ou√
1 + |Ou|2

 = 0 in Ω.

Hint: Assuming that such a minimizer u exists consider the family of functions u + tϕ, t ∈ R, for
arbitrary ϕ ∈ C∞(Ω) with compact support. Which condition satisfies B(t) := J(u + tϕ)?
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E1.3 D’Alembert’s formula

Consider the one-dimensional wave equation

utt − uxx = 0 in (0,∞) × R. (1.3)

(a) Show that for arbitrary functions φ, ψ ∈ C2(R), the function

u(t, x) = φ(x − t) + ψ(x + t)

is a solution of (1.3).

(b) In addition, let the solution satisfy the following initial conditions

u(0, x) = f (x)

ut(0, x) = g(x)
x ∈ R, (1.4)

where f ∈ C2(R) and g ∈ C1(R) are given. Use the ansatz in (a) to show that the solution
of the problem is given by D’Alembert’s formula

u(t, x) =
1
2

(
f (x + t) + f (x − t) +

∫ x+t

x−t
g(y)dy

)
.
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Chapter 2

The Transport Equation

2.1 Motivation

Assume a chemical is dissolved in a fluid and flows at a constant velocity c > 0 along a horizontal
thin pipe of fixed cross section in the positive x-direction. Let u(t, x) denote the concentration of
the substrate at time t ≥ 0 and position x ∈ R. The total amount of the chemical in the interval
[a, z] ⊂ R is M =

∫ z
a u(t, x)dx. At a later time t + h, the molecules have moved to the right by ch

and therefore,

M =

∫ z

a
u(t, x)dx =

∫ z+ch

a+ch
u(t + h, x)dx.

Assuming that u is smooth, then differentiating with respect to z we obtain

u(t, z) = u(t + h, z + ch).

Finally, differentiating with respect to h and setting h = 0, it follows that

0 = ut(t, z) + cuz(t, z),

which is a one-dimensinal linear transport equation with constant coefficients.

More generally, let Ω = (0,∞)×R3, t > 0 denote time and x ∈ R3 the spatial position. In fluid
dynamics, the continuity equation expresses the law of mass conservation. It is of the form

ρt + ∇ · (ρv) = 0 (0,∞) × R3,
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where ρ : Ω → R3 denotes the density of the fluid, v : Ω → R3 the velocity field and ∇ the
gradient with respect to x.

If we assume that the velocity of the fluid is given and constant v ≡ v̂ ∈ R3, the density ρ

satisfies the linear transport equation with constant coefficients

ρt + v̂ · ∇ρ = 0.

It is one of the simplest PDEs and can be solved explicitly.

2.2 The homogeneous case

We consider the linear transport equation with constant coefficients,

ut(t, x) +

n∑
i=1

biuxi(t, x) = 0, (t, x) ∈ (0,∞) × Rn,

where b = (b1, . . . , bn)T ∈ Rn is a given, fixed vector. Typically, x ∈ Rn denotes a point in space
and t > 0 the time. In compact notation, the equation can be written as

ut + b · ∇u = 0 in (0,∞) × Rn, (2.1)

where ∇u is the gradient of u with respect to x ∈ Rn.

Note that if u is a classical solution of (2.1), then the left hand side of (2.1) is the directional

derivative of u in the direction
(
1
b

)
, and this directional derivative vanishes. In fact, for an arbitrary

point (t, x) ∈ (0,∞) × Rn we define

z(s) := u(t + s, x + sb), s > −t.

The chain rule then implies that

d
ds

z(s) =
d
ds

u(t + s, x + sb) = ut(t + s, x + sb) + ∇u(t + s, x + sb) · b = 0,

where we used (2.1) in the last step. Hence,

z(s) = u(t + s, x + sb) ≡ const. ∀s > −t, (2.2)

i.e. the value u(t, x) is transported along the line

s 7→
(
t
x

)
+ s

(
1
b

)
.

Thus, if u ∈ C1((0,∞)×Rn)∩C((0,∞) × Rn) satisfies in addition to (2.1) the initial condition

u(0, x) = g(x), x ∈ Rn, (2.3)

for a given function g ∈ C1(Rn), then by (2.2) we have

u(t, x) = u(0, x − tb) = g(x − tb), t ≥ 0, x ∈ Rn. (2.4)

The PDE (2.1) together with (2.3) is called an initial value problem.

11



Theorem 2.1. Consider the linear transport equation with constant coefficients (2.1). Then the
following holds:

(i) If u is a classical solution of (2.1), then

u(t + s, x + sb) ≡ const., s > −t,

for all (t, x) ∈ (0,∞) × Rn.

(ii) Let g ∈ C1(Rn) be given. Then the initial value problem (2.1), (2.3) has a unique classical
solution u ∈ C1((0,∞) × Rn) ∩C((0,∞) × Rn), which is given by

u(t, x) = u(0, x − tb) = g(x − tb),

for all (t, x) ∈ (0,∞) × Rn.

Proof. (i) was already shown.
(ii): Uniqueness: If u is a classical solution, it satisfies (2.4), and this determines u uniquely.

Existence: If g is C1(Rn), then u ∈ C1((0,∞) × Rn) ∩C((0,∞) × Rn). Moreover,

ut(t, x) = ∇g(x − tb) · (−b),

∇u(t, x) = ∇g(x − tb),

and hence, ut + b · ∇u = 0. �

Remark 2.2. We were looking for classical solutions of the transport equation, and hence, by (2.4)
we need to require that g ∈ C1(Rn). If g is not of class C1(Rn), a classical solution does not exist.
However, one could still use the formula (2.4) to define a solution which satisfies the PDE in a
weak sense. We will come back to the concept of weak solutions later.

2.3 The inhomogeneous case

More generally, we consider the inhomogeneous initial value problem

ut + b · ∇u = f in (0,∞) × Rn,

u(0, ·) = g on Rn,
(2.5)
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where g ∈ C1(Rn) and f ∈ C1([0,∞) × Rn) are given. As before, the left-hand side of the PDE is

the directional derivative of u in the direction
(
1
b

)
. Hence, for an arbitrary point (t, x) ∈ (0,∞)×Rn

the function
z(s) = u(t + s, x + sb), s > −t,

now satisfies
d
ds

z(s) = ut(t + s, x + sb) + ∇u(t + s, x + sb) · b = f (t + s, x + sb),

where the last equality holds by (2.5). Integrating the equation from −t to 0 and using the initial
condition yields

u(t, x) − g(x − tb) = z(0) − z(−t) =

∫ 0

−t

d
ds

z(s) ds

=

∫ 0

−t
f (t + s, x + sb) ds =

∫ t

0
f (r, x + (r − t)b) dr.

We obtain the following result.

Theorem 2.3. Let b ∈ Rn, f ∈ C1([0,∞) × Rn) and g ∈ C1(Rn). Then the initial value problem
(2.5) has a unique classical solution u ∈ C1((0,∞) × Rn) ∩C((0,∞) × Rn), which is given by

u(t, x) = g(x − tb) +

∫ t

0
f (s, x + (s − t)b) ds, (t, x) ∈ (0,∞) × Rn. (2.6)

Proof. Uniqueness: We have shown that any classical solution u satisfies (2.6), and this determines
u uniquely.
Existence: By assumption, f ∈ C1((0,∞) × Rn) and g ∈ C1(Rn), which implies that u defined by
(2.6) is in the class C1((0,∞) × Rn) ∩ C((0,∞) × Rn). Moreover, u satisfies the initial condition
and we have

ut(t, x) = ∇g(x − tb) · (−b) + f (t, x) −
∫ t

0
b · ∇x f (s, x + (s − t)b)ds,

∇u(t, x) = ∇g(x − tb) +

∫ t

0
∇x f (s, x + (s − t)b)ds.

Therefore, u is a solution of the initial value problem (2.5). �

Note that in the proof we used the Leibniz rule: Assume that the functions a : I → R, b : I →
R and f : I × R→ R are continuously differentiable. Then,

∂

∂t

∫ b(t)

a(t)
f (t, s)ds = f (t, b(t))b′(t) − f (t, a(t))a′(t) +

∫ b(t)

a(t)

∂

∂t
f (t, s)ds.

Remark 2.4. • We derived a solution formula for the transport equation by converting it into
a family of ordinary differential equations that we could explicitly solve. This technique to
solve initial value problems for first order PDEs is called the method of characteristics and
will be further discussed later in a more general context.

• To obtain classical solutions we require that f and g are continuously differentiable. How-
ever, the solution formula (2.6) also makes sense for non-differentiable (or even discontinu-
ous) functions f and g, which would lead to weak solutions. The concept of weak solutions
is, in fact, essential for a satisfying theory for PDEs. We will come back to it later.
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2.4 Exercises

E2.1 Transport equation

Let c ∈ R, b ∈ Rn be constant and g ∈ C1(Rn) be given. Write down an explicit formula for a
solution u of the initial value problem

ut + b · ∇u + cu = 0 in (0,∞) × Rn,

u(0, ·) = g on {t = 0} × Rn.

Hint: As in the lecture notes, transform the PDE into an ordinary differential equation and solve
this equation with the given initial condition.
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Chapter 3

The Laplace and Poisson Equation

3.1 Preliminaries

Let Ω ⊂ Rn be open. In this chapter we consider the Laplace equation

∆u =

n∑
i=1

uxi xi = 0 in Ω, (3.1)

and the Poisson equation

−∆u = f in Ω, (3.2)

where f : Ω→ R is a given function and u : Ω→ R is the unknown. They have many applications
and typically model steady state phenomena.

Definition 3.1. Let Ω ⊂ Rn be open and u ∈ C2(Ω). If u satisfies the Laplace equation (3.1), then
u is called harmonic in Ω.

Moreover, u is called subharmonic if −∆u ≤ 0 in Ω, and superharmonic if −∆u ≥ 0 in Ω.

Example 3.2. The real and imaginary part of an analytic function are harmonic.
Indeed, let the function f : Ω → C, where Ω ⊂ C is open, be analytic. Then, the real- and

imaginary part of f ,

u(x, y) = Re( f (x + iy)), v(x, y) = Im( f (x + iy)),

considered as functions u, v : Ω → R, Ω ⊂ R2, are C∞(Ω). Moreover, they satisfy the Cauchy-
Riemann differential equations

ux = vy, uy = −vx.

Thus, differentiating these equations, we have

uxx + uyy = vyx − vxy = 0 and vxx + vyy = −uyx + uxy = 0,

which shows that u and v satisfy the Laplace equation (3.1).

Before we analyze properties of solutions of the Laplace and Poisson equation we recall sev-
eral facts from integration theory.
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Definition 3.3. Let Ω ⊂ Rn be open and bounded.

• We say that Ω has a Ck-boundary, if for every x ∈ ∂Ω there exists r > 0 and a function
ϕ ∈ Ck(Rn−1) such that (possibly after reordering the coordinates) we have

Ω ∩ Br(x) = {y ∈ Br(x) : yn > ϕ(y1, . . . , yn−1)}.

• If ∂Ω is of class C1, we can define the unit outer normal field ν : ∂Ω → Rn, where ν(x),
|ν(x)| = 1, is the outward pointing unit normal vector at x ∈ ∂Ω.

The normal derivative of a function u ∈ C1(Ω) is defined as

∂u
∂ν

(x) = ν(x) · ∇u(x), x ∈ ∂Ω.

Below are examples of domains that do not possess a C1-boundary. The outward pointing unit
normal vector in x cannot be defined.

We recall the Gauß-Green theorem and some direct consequences, a proof can be found in [5].

Theorem 3.4. Let Ω ⊂ Rn be open and bounded with C1-boundary ∂Ω. Then, for all u ∈ C1(Ω)
we have ∫

Ω

uxi(x)dx =

∫
∂Ω

u(x)νi(x)dS (x), i = 1, . . . , n.
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Theorem 3.5. Let Ω ⊂ Rn be open and bounded with C1-boundary ∂Ω. Then, the following
properties hold:

• Integration by parts: For all u,w ∈ C1(Ω) we have∫
Ω

uxiw = −

∫
Ω

uwxi +

∫
∂Ω

uwνidS , i = 1, . . . , n.

• Green’s formulas: For all u,w ∈ C2(Ω) we have∫
Ω

∆u =

∫
∂Ω

∂νudS ,∫
Ω

∇u · ∇w = −

∫
Ω

u∆w +

∫
∂Ω

u∂νwdS ,∫
Ω

(u∆w − w∆u) =

∫
∂Ω

(u∂νw − w∂νu)dS .

Proof. See Problem E3.1. �

3.2 Motivation

Let Ω ⊂ Rn be open and bounded and suppose that u : Ω→ R denotes the density or concentration
of some quantity in equilibrium. Then, for an arbitrary open subset V ⊂ Ω with C1-boundary the
amount

∫
V u of the quantity contained in V does not change over time, i.e. the total flux through

the boundary ∂V vanishes, ∫
∂V

F · ν dS = 0,

where F : Ω→ Rn is the flux function. Therefore, by Theorem 3.4 we have∫
V

div F =

∫
∂V

F · ν dS = 0.

In many applications the flux function is proportional to the gradient of u but points in the
opposite direction, i.e.

F(x) = −d∇u(x), x ∈ Ω,

for some constant d > 0. For instance, if u denotes the concentration of a chemical substance,
then particles move from regions of high concentrations to regions of low concentrations and this
relation represents Fick’s law of diffusion. Hence, we obtain

div F = −d div(∇u) = −d∆u,

and thus,

−

∫
V

d∆u = 0.

If u ∈ C2(Ω), the integrand is continuous and since V ⊂ Ω was arbitrary it follows that −d∆u = 0
in Ω (see Problem E3.2). Therefore, u is a solution of the Laplace equation

∆u = 0 in Ω.
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In many cases a physical system has an additional source Q. The flux through the boundary
∂V then equals the amount generated by the source Q in V , i.e.∫

∂V
F · ν dS =

∫
V

Q.

By the same arguments as above we conclude that

−d∆u = Q in Ω,

and hence, u satisfies the Poisson equation

−∆u = f in Ω,

where f =
Q
d .

The Poisson equation is used to model, e.g. the steady-state temperature in a solid (u is the
temperature, f the heat source), the static deflection of a thin membrane in R2 (u is the deflection,
f the pressure), electrostatics (u is the electrostatic potential, f the charge per unit volume) or
Newtonian gravity (u is the gravitational potential, f the mass density).

3.3 Properties of harmonic functions

We first derive important properties of harmonic functions that have remarkable consequences for
classical solutions of the Laplace and Poisson equation.

3.3.1 Mean value formulas

Let Ω ⊂ Rn be open. Moreover, let x ∈ Ω and r > 0 be such that Br(x) ⊂ Ω. For a function
u ∈ C(Ω) we define the integral averages of u over balls Br(x) and spheres ∂Br(x),?

Br(x)
u(y) dy :=

1
|Br(x)|

∫
Br(x)

u(y) dy,?
∂Br(x)

u(y) dS (y) :=
1

|∂Br(x)|

∫
∂Br(x)

u(y) dS (y),

where |Br(x)| =
∫

Br(x) 1dy denotes the volume of Br(x) and |∂Br(x)| =
∫
∂Br(x) 1dS (y) the surface

area of the sphere ∂Br(x).
We will show that harmonic functions satisfy the mean-value property

u(x) =

?
Br(x)

u(y) dy =

?
∂Br(x)

u(y) dS (y) (3.3)

for all x ∈ Ω and r > 0 such that Br(x) ⊂ Ω.

Recall that if f ∈ C(Br(x)) then using polar coordinates we have∫
Br(x)

f (y) dy =

∫ r

0

∫
∂Bρ(x)

f (y) dS (y) dρ,
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and by the transformation formula it follows that∫
∂Br(x)

f (y) dS (y) = rn−1
∫
∂B1(0)

f (x + rz) dS (z).

In particular, this implies that

|∂Br(x)| = rn−1|∂B1(0)| and |Br(x)| =
r
n
|∂Br(x)| =

rn

n
|∂B1(0)|. (3.4)

Further details on polar coordinates and the transformation formula can be found in Appendix A.3
and Appendix A.4.

We will use these properties to prove the mean-value-property.

Theorem 3.6 (Mean value formulas). Let Ω ⊂ Rn be open.

(a) If u is harmonic in Ω then u satisfies the mean-value property (3.3).

(b) If u is subharmonic in Ω then u satisfies the inequalities

u(x) ≤
?

Br(x)
u(y) dy, (3.5)

u(x) ≤
?
∂Br(x)

u(y) dS (y), (3.6)

for all x ∈ Ω and r > 0 such that Br(x) ⊂ Ω.
If u is superharmonic in Ω then u satisfies these inequalities with a reversed sign, i.e. with
“≥” instead of “≤”.

Proof. First, we observe that (a) immediately follows from (b). Indeed, if u is harmonic, then u
is subharmonic and superharmonic. Therefore, the inequalities hold with “≥” and “≤” and thus,
equality must hold. This proves (3.3).

Moreover, assume that the inequalities hold for subharmonic functions and u is superharmonic.
Then, −u is subharmonic and thus, the inequalities for u hold with “≥”. Therefore, it suffices to
prove (b) for subharmonic functions.

To this end let u be subharmonic, x ∈ Ω and r > 0 such that Br(x) ⊂ Ω. We consider the
function

ϕ(ρ) =

?
∂Bρ(x)

u(y) dS (y), 0 < ρ ≤ r,

and prove that

ϕ′(ρ) ≥ 0, lim
ρ→0

ϕ(ρ) = u(x). (3.7)

Then,
u(x) = lim

ρ̃→0
ϕ(ρ̃) ≤ ϕ(ρ) ∀0 < ρ ≤ r,

which is Inequality (3.6) for ρ = r. To show Inequality (3.5) we multiply the inequality u(x) ≤ ϕ(ρ)
by |∂Bρ(x)| and integrate from 0 to r,

|Br(x)|u(x) =

∫ r

0
|∂Bρ(x)|u(x)dρ ≤

∫ r

0

∫
∂Bρ(x)

u(y)dS (y)dρ =

∫
Br(x)

u(y)dy.
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Dividing by |Br(x)| we obtain Inequality (3.5). Hence, it remains to prove (3.7).
We rewrite ϕ using the transformation formula and (3.4) as

ϕ(ρ) =

?
∂Bρ(x)

u(y)dS (y) =

?
∂B1(0)

u(x + ρz) dS (z).

Differentiation now implies that

ϕ′(ρ) =

?
∂B1(0)

∇u(x + ρz) · z dS (z) =

?
∂Bρ(x)

∇u(y) ·
y − x
ρ

dS (y)

=

?
∂Bρ(x)

∂u
∂ν

(y) dS (y) =
1

|∂Bρ(x)|

∫
∂Bρ(x)

∂u
∂ν

(y) dS (y),

where we interchanged differentiation and integration and used that ν(y) =
y−x
ρ is the outer unit

normal vector on ∂Bρ(x) at y.

Finally, we apply Green’s formula (Theorem 3.5) and obtain

ϕ′(ρ) =
1

|∂Bρ(x)|

∫
Bρ(x)

∆u(y) dy ≥ 0,

since u is subharmonic in Ω, which proves the first property in (3.7). To complete the proof we
observe that

|ϕ(r) − u(x)| ≤
?
∂Br(x)

|u(y) − u(x)| dS (y) ≤ sup
y∈∂Br(x)

|u(y) − u(x)| → 0 as r → 0,

since u is continuous on Br(x). �

For harmonic functions the converse statement also holds, i.e. the mean value property implies
that the function is harmonic.

Theorem 3.7. Let Ω ⊂ Rn be open. If u ∈ C2(Ω) satisfies

u(x) =

?
∂Br(x)

u(y) dS (y)

for all x ∈ Ω and r > 0 such that Br(x) ⊂ Ω, then u is harmonic in Ω.

Proof. See Problem E3.7. �
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3.3.2 Maximum principles and uniqueness for boundary value problems

An important consequence of the mean value property are the following maximum principles.

Theorem 3.8. Let Ω ⊂ Rn be open and bounded and u ∈ C2(Ω) ∩ C(Ω) be subharmonic in Ω.
Then, the following properties hold:

(a) Maximum principle:
max
x∈Ω

u(x) = max
x∈∂Ω

u(x)

(b) Strong maximum principle: If Ω is also connected and if there exists x0 ∈ Ω such that

u(x0) = max
x∈Ω

u(x),

then u is constant in Ω.

Proof. Since Ω is bounded, the sets Ω and ∂Ω are compact. Thus, since u is continuous, it attains
its maximum on these sets.

We observe that (a) is a consequence of (b). In fact, applying (b) on every connected compo-
nent of Ω we conclude that

max
x∈Ω

u(x) ≤ max
x∈∂Ω

u(x).

However, since ∂Ω ⊂ Ω it obviously holds that

max
x∈∂Ω

u(x) ≤ max
x∈Ω

u(x),

which implies (a).
To show (b) let x0 ∈ Ω be such that

M = u(x0) = max
x∈Ω

u(x)

and let A := {x ∈ Ω : u(x) = M}. Then, A ⊂ Ω is closed since it is the preimage of {M} under the
continuous mapping u, A = u−1({M}). On the other hand, if x ∈ A then there exists r > 0 such that
Br(x) ⊂ Ω. By Theorem 3.6 we conclude that

M = u(x) ≤
?

Br(x)
u(y)dy ≤ M,

where we used that u(y) ≤ M in Ω in the last inequality. This enforces that u ≡ M on Br(x) and
proves that the set A is also open. Consequently, A = Ω since Ω is open and connected, which
shows (b). �

We remark that a similar statement holds for superharmonic functions if the maxima are re-
placed minima. For harmonic functions we immediately obtain the following maximum principle.

Corollary 3.9 (Maximum principle for harmonic functions). Let Ω ⊂ Rn be open and bounded
and u ∈ C2(Ω) ∩C(Ω) be harmonic on Ω. Then,

min
y∈∂Ω

u(y) ≤ u(x) ≤ max
y∈∂Ω

u(y) ∀x ∈ Ω.

Moreover, if Ω is also connected then either strict inequalities hold or the function u is constant.
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Proof. We observe that the functions u and −u are both subharmonic. The statements are therefore
direct consequences of Theorem 3.8. �

An important application of the maximum principle is the uniqueness of solutions of the
Dirichlet problem for the Poisson equation

−∆u = f in Ω, (3.8)

u = g on ∂Ω, (3.9)

where Ω ⊂ Rn is open and bounded, and g ∈ C(∂Ω) and f ∈ C(Ω) are given functions. The
conditions in Equation (3.9) are called Dirichlet boundary conditions.

A classical solution of the boundary value problem is a function u ∈ C2(Ω)∩C(Ω) that satisfies
(3.8), (3.9).

Theorem 3.10 (Uniqueness of solutions). Let Ω ⊂ Rn be open and bounded, f ∈ C(Ω) and
g ∈ C(∂Ω). Then, there exists at most one classical solution u ∈ C2(Ω) ∩ C(Ω) of the boundary
value problem (3.8)–(3.9).

Proof. Assume that u and v are two solutions of the boundary value problem, then their difference
w = u − v satisfies

−∆w = 0 in Ω,

w = 0 on ∂Ω.

Hence, by Corollary 3.9 we conclude that

0 = min
y∈∂Ω

w(y) ≤ w(x) ≤ max
y∈∂Ω

w(y) = 0 ∀x ∈ Ω,

which implies that w ≡ 0 in Ω. �

3.4 Fundamental solution

We aim at deriving explicit representation formulas for the solution of the Poisson equation. To this
end, we first consider the Laplace equation in Ω = Rn and construct a simple radially symmetric
solution that we then use to build more complicated solutions.

To find explicit, special solutions of a PDE it is often useful to exploit symmetry properties of
the equation. In fact, the Laplace operator is invariant under rotations (see Problem E3.4). This
motivates to look for radially symmetric solutions of the Laplace equation (3.1) in Ω = Rn, i.e.
solutions of the form

u(x) = v(r), r = |x|,

with a suitable function v : [0,∞)→ R. We observe that

rxi(x) =
xi

|x|
=

xi

r
, x , 0, i = 1, . . . , n,

and hence, for the partial derivatives of u we obtain

uxi(x) = v′(r)
xi

r
, uxi xi(x) = v′′(r)

x2
i

r2 + v′(r)
1

r
−

x2
i

r3

 .
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This implies that

∆u(x) = v′′(r) +

(
n
r
−

1
r

)
v′(r) = v′′(r) +

n − 1
r

v′(r),

i.e. in this special case the PDE ∆u = 0 for x , 0 is equivalent to the ODE

v′′(r) +
n − 1

r
v′(r) = 0, r > 0.

If v′ , 0 then
d
dr

(ln |v′(r)|) =
v′′(r)
v′(r)

=
1 − n

r

and thus,
ln |v′(r)| = (1 − n) ln r + d = ln r1−n + d,

for some constant d ∈ R. Consequently,

|v′(r)| =
ed

rn−1 ,

and we conclude that

v(r) =

b ln r + c if n = 2,
b

(2−n)rn−2 + c if n ≥ 3,
r > 0,

for some constants b, c ∈ R.
For the particular choice of the constants

b = −
1

|∂B1(0)|
= −

1
ωn
, c = 0,

where ωn is the surface area of the unit sphere in Rn, we obtain the so-called fundamental solution
of the Laplace equation. The reason for choosing these particular constants will become apparent
in the sequel.

Definition 3.11. The function Φ : Rn \ {0} → R,

Φ(x) = Φ̂(|x|) =

− 1
2π ln |x|, n = 2,

1
(n−2)ωn

1
|x|n−2 , n ≥ 3,

(3.10)

is called the fundamental solution of the Laplace equation.

By construction, ∆Φ = 0 in Rn \ {0}, but note that Φ has a singularity at the origin. Moreover,
for x , 0 the partial derivatives of Φ are

Φxi(x) = −
1
ωn

xi

|x|n
, Φxi x j(x) = −

1
ωn

(
δi j

|x|n
− n

xix j

|x|n+2

)
, (3.11)

i, j = 1, . . . , n, where δi j = 1 if i = j and δi j = 0 if i , j. Hence, while Φ and Φxi are integrable in
a neighborhood of x = 0, Φxi x j is not integrable at the singularity x = 0 (see Problem E3.10). It is
precisely this property that will allow us to construct solutions of the Dirichlet problem (3.8)-(3.9).
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Remark 3.12. Recall that the function x 7→ |x|−s is integrable over a ball Br(0), r > 0, in Rn if
s < n (see Problem E3.10).

The function x 7→ Φ(x) is harmonic for x , 0, and similarly, by shifting the origin, for any
y ∈ Rn the function x 7→ Φ(x − y) is harmonic for x , y. Moreover, taking a function f : Rn → R,
then x 7→ f (y)Φ(x − y) is harmonic for every y ∈ Rn, x , y, and thus, the same applies to the sum
of finitely many such expressions. This might suggest that the convolution

u(x) =

∫
Rn

Φ(x − y) f (y) dy

is a solution of the Laplace equation (3.1). However, this is wrong since ∆Φ is not integrable near
the singularity at x = y, and thus, interchanging differentiation and integration is not possible. In
fact, the function u is not harmonic, but yields a solution of the Poisson equation ∆u = f in Ω = Rn

(see [4]).

We will consider the Poisson equation in bounded domains and use the fundamental solution
Φ in (3.10) to construct a representation formula for the solution of the Dirichlet problem.

3.5 Green’s function and representation formula

We now derive a representation formula for solutions of the boundary value problem (3.8)-(3.9)

−∆u = f in Ω,

u = g on ∂Ω,

where Ω ⊂ Rn is open and bounded with C1 boundary ∂Ω, and f : Ω → R and g : ∂Ω → R are
continuous.

First, we prove an integral representation formula for arbitrary functions u ∈ C2(Ω) that allows
to express u in terms of ∆u, u|∂Ω and ∂νu|∂Ω.

Proposition 3.13. Let Ω ⊂ Rn be open and bounded with C1-boundary ∂Ω and Φ be the funda-
mental solution in (3.10). Then, for any u ∈ C2(Ω) we have

u(x) =

∫
∂Ω

(
Φ(y − x)

∂u
∂ν

(y) − u(y)
∂Φ

∂νy
(y − x)

)
dS (y) −

∫
Ω

Φ(y − x)∆u(y) dy,

for all x ∈ Ω, where ∂Φ
∂νy

= ν · ∇yΦ denotes the normal derivative with respect to y on ∂Ω.

Proof. Let x ∈ Ω and ε > 0 be such that Bε(x) ⊂ Ω. Moreover, let Vε = Ω \ Bε(x) and νε denote
the outer normal field of Vε. Then we have ∂Vε = ∂Ω∪̇∂Bε(x) and

νε(y) = ν(y), y ∈ ∂Ω, νε(y) =
x − y
ε

, y ∈ ∂Bε(x).
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Applying Green’s formula (Theorem 3.5) to u and Φ(· − x) on Vε we obtain∫
Vε

u(y)∆Φ(y − x) − Φ(y − x)∆u(y) dy

=

∫
∂Vε

u(y)
∂Φ

∂νε
(y − x) − Φ(y − x)

∂u
∂νε

(y) dS (y)

=

∫
∂Ω

u(y)
∂Φ

∂ν
(y − x) − Φ(y − x)

∂u
∂ν

(y) dS (y) (3.12)

+

∫
∂Bε(x)

u(y)
x − y
ε
· ∇Φ(y − x) dS (y)︸                                        ︷︷                                        ︸

=:Iε

−

∫
∂Bε(x)

Φ(y − x)
∂u
∂νε

(y) dS (y)︸                               ︷︷                               ︸
=:Jε

.

Note that for y ∈ ∂Bε(x) we have

Φ(y − x) =

− 1
2π ln(ε), n = 2,

1
(n−2)ωn

ε2−n, n ≥ 3,

and consequently,

|Jε| ≤ ωnε
n−1 sup

y∈∂Bε(x)

{∣∣∣∣∣ ∂u
∂νε

(y)
∣∣∣∣∣ |Φ(y − x)|

}
≤ sup

y∈∂Bε(x)

{∣∣∣∣∣ ∂u
∂νε

(y)
∣∣∣∣∣} max{ε, ε| ln(ε)|} → 0 as ε→ 0.

Here, we used that |∇u| is bounded since u ∈ C2(Ω).
To determine Iε we use (3.11) and observe that

x − y
ε
· ∇Φ(y − x) =

1
ωn

(y − x) · (y − x)
ε|y − x|n

=
1

ωnεn−1 =
1

|∂Bε(x)|
∀y ∈ ∂Bε(x).

Since u is continuous in x, this implies that

Iε =

?
∂Bε(x)

u(y) dS (y) → u(x) as ε→ 0
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(see Problem E3.2). Finally, we show that∫
Vε

Φ(y − x)∆u(y)dy →
∫

Ω

Φ(y − x)∆u(y)dy as ε→ 0.

Indeed, ∫
Bε(x)
|Φ(y − x)∆u(y)| dy ≤ sup

y∈Bε(x)
{|∆u(y)|}

∫ ε

0

∫
∂Bε(x)

|Φ̂(r)|dS (y)dr

≤

 c
∫ ε

0 r|ln(r)|dr, n = 2
c
∫ ε

0 rdr, n ≥ 3
≤

 cε2|ln(ε)|dr, n = 2
c ε2 , n ≥ 3

→ 0 as ε→ 0,

where we used that |∆u| is bounded, since u ∈ C2(Ω).
Combining this estimate with the estimates for Iε and Jε the proposition follows by taking the

limit ε→ 0 in (3.12). �

An immediate consequence is the smoothness of harmonic functions.

Theorem 3.14. Let Ω ⊂ Rn be open and u be harmonic on Ω. Then, u satisfies u ∈ C∞(Ω).

Proof. Let x0 ∈ Ω and r > 0 be such that Br(x0) ⊂ Ω. Applying the representation formula in
Proposition 3.13 to u and Br(x0) we obtain

u(x) =

∫
∂Br(x0)

(Φ(y − x)∂νu(y) − u(y)∂νΦ(y − x)) dS (y) ∀x ∈ Br(x0).

The integrand and all its partial derivatives with respect to x are continuous for x , y and ∂Br(x0)
is compact. Therefore, we can differentiate the right hand side and interchange differentiation and
integration. It follows that the right hand side is arbitrarily often continuously differentiable with
respect to x which proves the statement. �

The representation formula in Proposition 3.13 determines u(x), x ∈ Ω, if ∆u in Ω and u, ∂u
∂ν

on ∂Ω are known. If we apply the formula to solve the Dirichlet problem (3.8)-(3.9), then the first
two quantities are specified, but the normal derivative ∂u

∂ν on ∂Ω is not known.
To eliminate this term, for fixed x ∈ Ω, we introduce the corrector function wx. The corrector

function wx is the solution (if it exists!) of the boundary value problem

∆wx(y) = 0, y ∈ Ω, (3.13)

wx(y) = Φ(y − x), y ∈ ∂Ω.

Using Green’s formula (Theorem 3.5) and the fact that ∆wx = 0 we obtain

−

∫
Ω

wx(y)∆u(y) dy =

∫
∂Ω

u(y)
∂wx

∂ν
(y) − wx(y)

∂u
∂ν

(y) dS (y)

=

∫
∂Ω

u(y)
∂wx

∂ν
(y) − Φ(y − x)

∂u
∂ν

(y) dS (y),

which implies that

0 =

∫
Ω

wx(y)∆u(y) dy +

∫
∂Ω

u(y)
∂wx

∂ν
(y) − Φ(y − x)

∂u
∂ν

(y) dS (y). (3.14)
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Adding this equation to the representation formula in Proposition 3.13 we can eliminate the term
involving the normal derivative ∂νu. Hence, we obtain a representation formula for solutions of
the Dirichlet problem for Poisson’s equation. This motivates the definition of Green’s function.

Definition 3.15. Let Ω ⊂ Rn be open and bounded with C1-boundary. Then, the function G
defined by

G(x, y) = Φ(y − x) − wx(y), x, y ∈ Ω, x , y,

where Φ is the fundamental solution and wx ∈ C2(Ω) the solution of (3.13), is called Green’s
function for Ω.

Adding the representation formula in Proposition 3.13 and the equation (3.14) we obtain

u(x) = −

∫
∂Ω

u(y)
∂G
∂ν

(x, y) dS (y) −
∫

Ω

G(x, y)∆u(y) dy, x ∈ Ω.

This formula holds for arbitrary functions u ∈ C2(Ω). In particular, if u is a classical solution of
the Dirichlet problem (and if Green’s function exists), it yields the desired representation formula.

Theorem 3.16. Let Ω ⊂ Rn be open and bounded with C1-boundary ∂Ω and assume that Green’s
function G for Ω exists. Moreover, let f ∈ C(Ω) and g ∈ C(∂Ω). Then, a classical solution
u ∈ C2(Ω) of the Dirichlet problem (3.8)-(3.9) satisfies

u(x) = −

∫
∂Ω

g(y)
∂G
∂ν

(x, y) dS (y) +

∫
Ω

f (y)G(x, y) dy ∀x ∈ Ω.

Proof. The representation formula immediately follows from Proposition 3.13 and the above com-
putations. �

Remark 3.17. One can show that Green’s function G is symmetric, i.e.,

G(y, x) = G(x, y) ∀x, y ∈ Ω, x , y

(see Problem E3.15).

The explicit construction of Green’s function for a given Ω can be difficult, or may not even be
possible. It requires to solve the auxiliary Dirichlet problem (3.13), and this can be complicated, or
even impossible. However, Green’s function can be computed for geometrically simple domains
Ω which we will illustrate for the ball Br(0) ⊂ Rn.

3.6 Green’s function and existence result for the ball

Consider the Dirichlet problem (3.8)-(3.9) for Ω = Br(0). To determine Green’s function for a
given x ∈ Br(0) we need to find the solution wx of the auxiliary problem

∆wx = 0 in Br(0),

wx = Φ(· − x) on ∂Br(0).
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The idea is to use the fundamental solution Φ(· − x), which is harmonic in Rn \ {x}, and to
reflect the singularity outside of the sphere. Since Φ is radially symmetric, we make the following
ansatz

wx(y) = Φ

(
|y − x|
|y − x∗|

(y − x∗)
)
, y ∈ ∂Br(0),

and aim to find a suitable x∗ < Br(0) such that |y−x|
|y−x∗ | is independent of y ∈ ∂Br(0). This can be

achieved by inversion on the sphere,

x 7→ x∗ =
r2

|x|2
x, x ∈ Br(0) \ {0}.

In fact, then we have

|y − x|2

|y − x∗|2
=

r2 − 2x · y + |x|2

r2 − 2 r2

|x|2 x · y + r4

|x|2

=
|x|2

r2 , y ∈ ∂Br(0).

This leads to wx(y) = Φ
(
|x|
r (y − x∗)

)
, y ∈ ∂Br(0), and extending wx to all y , x yields

wx(y) = Φ

(
|x|
r

(y − x∗)
)

=

Φ
(
|x|
r y − r

|x| x
)
, y , x, x , 0,

Φ̂(r), x = 0.

Certainly, wx ∈ C2(Br(0)), wx is harmonic on Br(0) and by construction, it satisfies

wx(y) = Φ̂

(
|x|
r
|y − x∗|

)
= Φ̂(|y − x|) = Φ(y − x), y ∈ ∂Br(0).

Thus, wx is the desired corrector function, and we obtain Green’s function for the ball,

G(x, y) = Φ(y − x) −

Φ
(
|x|
r y − r

|x| x
)
, x , 0, x , y,

Φ̂(r), x = 0.

We remark that in this case the symmetry of G can be directly verified.

To obtain an explicit representation formula for the solution of Dirichlet’s problem we compute

Gyi(x, y) = Φyi(y − x) − Φyi

(
|x|
r

y −
r
|x|

x
)
|x|
r

= −
1
ωn

yi − xi

|y − x|n
+

1
ωn

|x|2

r2 yi − xi

|y − x̃|n
=

1
ωn

yi

(
|x|2

r2 − 1
)

|y − x|n
.
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Since ν(y) =
y
r this implies that for y ∈ ∂Br(0),

∂G
∂ν

(x, y) = ν(y) · ∇G(x, y) =
1
ωn

|x|2 − r2

r|x − y|n
.

Hence, we expect that a solution of the Dirichlet problem (3.8)-(3.9) for Ω = Br(0) is given by the
representation formula

u(x) =
r2 − |x|2

rωn

∫
∂Br(0)

g(y)
|x − y|n

dS (y) +

∫
Br(0)

f (y)G(x, y) dy.

In the spacial case that f ≡ 0 we obtain the Poisson formula,

u(x) =
r2 − |x|2

rωn

∫
∂Br(0)

g(y)
|x − y|n

dS (y), (3.15)

for solutions of the Dirichlet problem for Laplace’s equation in Ω = Br(0),

∆u = 0 in Br(0),

u = g on ∂Br(0).

So far, we have shown that classical solutions u ∈ C2(Br(0)) of the Dirichlet problem for
Laplace’s equation on the ball Br(0) satisfy Poisson’s formula. Finally, we show that the represen-
tation formula actually provides a solution if g ∈ C(∂Br(0)).

Theorem 3.18 (Existence for the ball). Suppose that g ∈ C(∂Br(0)), then Poisson’s formula
(3.15) defines the unique classical solution u ∈ C2(Br(0)) ∩ C(Br(0)) of the Dirichlet problem
for Laplace’s equation in Ω = Br(0). Moreover, u ∈ C∞(Br(0)).

Proof. Poisson’s formula is a special case of Green’s representation formula in Theorem 3.16 for
Ω = Br(0) and f = 0, namely

u(x) = −

∫
∂Br(0)

g(y)ν(y) · ∇G(x, y)dS (y).

The integrand and all its partial derivatives with respect to x are continuous on Br(0) × ∂Br(0).
Since ∂Br(0) is compact, the derivatives of u can be obtained by interchanging differentiation and
integration and therefore, the integral defines a function in C∞(Br(x)).

Next, we show that u is harmonic on Br(0). In fact, Green’s function G is harmonic with respect
to the second variable and symmetric for x , y (cf. Remark 3.17). Hence, it is also harmonic with
respect to the first variable, ∆xG(x, y) = 0 = ∆yG(x, y), for all (x, y) ∈ Br(0)×∂Br(0). We conclude
that

∆u(x) = −

∫
∂Br(0)

g(y)ν(y) · ∇∆xG(x, y)dS (y) = 0, x ∈ Br(0).

To conclude the proof it remains to show that u ∈ C(Br(0)) and u|∂Br(0) = g. This follows
from the continuity of g, an ε-δ-argument and by estimating the integrals involved (see Problem
E3.16). �

Another region with a simple geometry for which we can construct a Green’s function is the
half space

Ω = {x = (x1, . . . , xn) ∈ Rn : xn > 0}

(see Problem E.3.18).
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3.7 Energy methods

So far, we used the mean value property and explicit representation formulas to derive the exis-
tence, uniqueness and properties of solutions of the Laplace and Poisson equation. Now, we apply
a different approach, so-called energy methods that are based on L2-norms of solutions and its
derivatives. These methods foreshadow techniques that are used to study weak solutions of PDEs.

Definition 3.19. Let Ω ⊂ Rn be open and u ∈ C(Ω;Rm),m ∈ N. For 1 ≤ p < ∞ we defined the
Lp-norm of u by

‖u‖Lp(Ω) :=
(∫

Ω

|u|pp

) 1
p

,

where |y|p := (|y1|
p + · · · + |ym|

p)
1
p for a vector y = (y1, . . . , ym) ∈ Rm.

Moreover, we call a function u ∈ C(Ω;Rm) integrable if ‖u‖L1(Ω) < ∞.

3.7.1 Uniqueness

In Theorem 3.10 we already proved uniqueness for solutions of the Dirichlet problem (3.8)-(3.9)
based on the maximum principle. We now present an alternative proof using energy methods.

Theorem 3.20. Let Ω ⊂ Rn be open and bounded with C1-boundary ∂Ω. Then, for every f ∈ C(Ω)
and g ∈ C(∂Ω) there exists at most one solution u ∈ C2(Ω) of the boundary value problem (3.8)-
(3.9),

−∆u = f in Ω,

u = g on ∂Ω.

Proof. Suppose that v is another solution. Then, the difference w = u − v satisfies ∆w = 0 in Ω

and w|∂Ω = 0. Hence, multiplying the PDE by w and integrating over Ω it follows that

0 = −

∫
Ω

w∆w =

∫
Ω

|∇w|2 = ‖∇w‖2L2(Ω),

where we used integration by parts. Since ∇w is continuous, we conclude that ∇w ≡ 0 in Ω (see
Problem E3.2). Therefore, w must be constant, and since w|∂Ω = 0, this implies that w ≡ 0, i.e.
u ≡ v. �

3.7.2 Dirichlet’s principle

The Poisson equation describes, e.g. steady state deflections of a thin membrane or steady state
distributions of a chemical substrate. It is therefore natural that the solution of the Dirichlet prob-
lem (3.8)-(3.9) corresponds to a minimum of some energy functional. In fact, we will see that the
solution can be characterized as a minimizer of an appropriate functional.

Let Ω ⊂ Rn be open and bounded with C1-boundary ∂Ω. For given f ∈ C(Ω) and g ∈ C(∂Ω)
consider the energy functional

J(w) :=
∫

Ω

(
1
2
|∇w|2 − w f

)
,
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for w belonging to the admissible set

A =
{
w ∈ C2(Ω) : w = g on ∂Ω

}
.

Theorem 3.21 (Dirichlet principle). Let Ω ⊂ Rn be open and bounded with C1-boundary ∂Ω,
f ∈ C(Ω) and g ∈ C(∂Ω).

Assume that u ∈ C2(Ω) is a solution of the boundary value problem (3.8)-(3.9),

−∆u = f in Ω,

u = g on ∂Ω,

then

J(u) = min
w∈A

J(w). (3.16)

Conversely, if u ∈ A satisfies (3.16), then u is a solution of the Dirichlet problem (3.8)-(3.9).

Proof. (i) Let u ∈ C2(Ω) be a solution of (3.8)-(3.9). Then, u ∈ A. Moreover, if w ∈ A, then
multiplying the PDE by (u − w) and integrating over Ω we obtain

0 =

∫
Ω

(−∆u − f )(u − w) =

∫
Ω

(
|∇u|2 − ∇u · ∇w − f u + f w

)
.

Note that no boundary term occurs since u,w ∈ A, which implies that (u − w)|∂Ω = 0. By the
Cauchy–Schwarz inequality it follows that

|∇u · ∇w| ≤ |∇u||∇w| ≤
1
2
|∇u|2 +

1
2
|∇w|2,

where we used the inequality a2 + b2 − 2ab = (a− b)2 ≥ 0 ∀a, b ∈ R in the second step. Using this
estimate in the equality above leads to

0 ≥
∫

Ω

(
1
2
|∇u|2 − u f

)
−

∫
Ω

(
1
2
|∇w|2 − w f

)
,

i.e. J(w) ≥ J(u) for all w ∈ A.
(ii) Conversely, let u ∈ A satisfy (3.16). For arbitrary v ∈ C∞c (Ω), where

C∞c (Ω) = {u ∈ C∞(Ω) : supp(u) is compact in Ω},

consider the function
j(s) := J(u + sv), s ∈ R.

Then, since u + sv ∈ A, j : R → R is well-defined and has a minimum in s = 0. Moreover, j is
continuously differentiable and

j′(s) =

∫
Ω

((∇u + s∇v) · ∇v − f v) ,

since Ω is bounded and the integrand of J and its partial derivatives with respect to s are continuous
for s ∈ R, x ∈ Ω. Therefore,

0 = j′(0) =

∫
Ω

(
∇u · ∇v − v f

)
=

∫
Ω

(−∆u − f )v,

where we used integration by parts in the last step. Since v ∈ C∞c (Ω) was arbitrary and (−∆u− f ) ∈
C(Ω), it follows that −∆u = f in Ω by the Fundamental Lemma of the Calculus of Variations (see
Lemma 3.22). The boundary conditions (3.9) are satisfied, since u ∈ A. �
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If the data f and g or the boundary ∂Ω are less regular, it is not guaranteed thatA , ∅ or that
J attains a minimum inA. It is therefore desirable to enlarge the admissible setA by considering
less regular classes of functions in order to ensure the existence of a minimizer. This minimizer is
a natural candidate for a weak solution of Poisson’s equation.

Lemma 3.22 (Fundamental Lemma of the Calculus of Variations). Let Ω ⊂ Rn be open and
bounded. If a function u ∈ C(Ω) satisfies∫

Ω

u(x)η(x)dx = 0 ∀η ∈ C∞c (Ω),

then u ≡ 0 in Ω.

Proof. By contradiction, we assume that u . 0 in Ω. Then, there exists x0 ∈ Ω such that u(x0) , 0.
Since u is continuous, there exists δ > 0 such that Bδ(x0) ⊂ Ω and

u(x) >
1
2

u(x0) > 0 or u(x) <
1
2

u(x0) < 0 ∀x ∈ Bδ(x0).

We now choose a function ψ ∈ C∞c (Ω) with

supp(ψ) ⊂ Bδ(x0), ψ(x0) > 0, ψ ≥ 0 in Bδ(x0).

It then follows that ∫
Ω

u(x)ψ(x)dx =

∫
Bδ(x0)

u(x)ψ(x)dx , 0,

which is a contraction. �

Lemma 3.22 can be shown for a larger class of functions. In particular, the assumption that u
is continuous can be weakened, but the proof is more involved (see [2]).

3.8 Exercises

E3.1 Consequences of the Gauss–Green Theorem

Let Ω ⊂ Rn be open and bounded with C1-boundary ∂Ω and let ν : ∂Ω→ Rn denote the outward
pointing unit normal vector field of ∂Ω. We recall the Gauss–Green Theorem: If u ∈ C1(Ω) then∫

Ω

uxi =

∫
∂Ω

uνi dS , i = 1, . . . , n.

Prove the following integration formulas:

(a) Integration by parts
Let u, v ∈ C1(Ω). Then,∫

Ω

uxiv = −

∫
Ω

uvxi +

∫
∂Ω

uvνidS , i = 1, . . . , n.
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(b) Green’s formulas
Let u, v ∈ C2(Ω). Then,

(i)
∫

Ω

∆u =

∫
∂Ω

∂u
∂ν

dS ,

(ii)
∫

Ω

∇u · ∇v = −

∫
Ω

u ∆v +

∫
∂Ω

u
∂v
∂ν

dS ,

(iii)
∫

Ω

(u∆v − v∆u) =

∫
∂Ω

(
u
∂v
∂ν
− v

∂u
∂ν

)
dS .

E3.2 Averages

Let Ω ⊂ Rn be open and u ∈ C(Ω). Moreover, let x ∈ Ω and r > 0 be such that Br(x) ⊂ Ω.

(a) Show that

lim
r→0

1
|Br(x)|

∫
Br(x)

u(y)dy = u(x) ∀x ∈ Ω.

(b) Prove that ∫
Br(x)

u(y)dy = 0 ∀Br(x) ⊂ Ω

implies that u ≡ 0 in Ω.

E3.3 Harmonic functions

Let V ⊂ R2 \ {0} and W ⊂ R3 \ {0} be open. Which of the following functions are harmonic,
subharmonic, or superharmonic?

(i) u : V → R, u(x, y) = ln
√

x2 + y2,

(ii) v : W → R, v(x, y, z) = ln
√

x2 + y2 + z2,

(iii) w : W → R, w(x, y, z) = 1√
x2+y2+z2

.

E3.4 Invariance of the Laplacian

Let u : Rn → R be an harmonic function and A ∈ Rn×n be an orthogonal matrix (i.e. AAT = Id).
Show that v : Rn → R, v(x) = u(Ax), is also an harmonic function.

Remark: Note that this implies that the Laplacian is invariant under rotations.

E3.5 Neumann problem for the Poisson equation Let Ω ⊂ Rn be open and bounded with C1-
boundary ∂Ω. Consider the Poisson equation with Neumann boundary conditions

−∆u = f in Ω,

∂u
∂ν

= g on ∂Ω,

where f ∈ C(Ω) and g ∈ C(∂Ω) are given.

Show that if a classical solution u ∈ C2(Ω) of the problem exists then g and f must satisfy∫
Ω

f (x)dx +

∫
∂Ω

g(x)dS (x) = 0.
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E3.6 Averages

Let Ω ⊂ Rn be open and u ∈ C(Ω). Show that the following statements are equivalent:

1
|Br(x)|

∫
Br(x)

u(y)dy = u(x) ∀x ∈ Ω, r > 0 s.t. Br(x) ⊂ Ω

1
|∂Br(x)|

∫
∂Br(x)

u(y)dS (y) = u(x) ∀x ∈ Ω, r > 0 s.t. Br(x) ⊂ Ω

E3.7 Converse of the mean value property

Prove the converse of the mean-value property (see Theorem 3.6):

Let Ω ⊂ Rn be open and u ∈ C2(Ω) satisfy

u(x) =
1

|∂Br(x)|

∫
∂Br(x)

u(y)dS (y) ∀x ∈ Ω s.t. Br(x) ⊂ Ω.

Then, u is harmonic on Ω.

E3.8 Mean value formulas

Let n ≥ 3 and u ∈ C2(Ω) be a solution of the boundary value problem

−∆u = f in Br(0),

u = g on ∂Br(0).

Modify the proof of the mean value formulas to show that

u(0) =
1

|∂Br(0)|

∫
∂Br(0)

g(x) dS (x) +
1

(n − 2)|∂B1(0)|

∫
Br(0)

(
1
|x|n−2 −

1
rn−2

)
f (x) dx.

Hint: Consider the function ϕ used in the proof of Theorem 3.6 and first show that

?
∂Br(0)

g(x) dS (x) −
?
∂Bε(0)

u(x) dS (x) = −
1

|∂B1(0)|

∫ r

ε

1
ρn−1

∫
Bρ(0)

f (x) dxdρ.

Then, use integration by parts to evaluate the integral on the right and side and take the limit
ε→ 0.

E3.9 Subharmonic functions

Let Ω ⊂ Rn be open and u ∈ C3(Ω). Prove that v = |∇u|2 is subharmonic if u is harmonic.

E3.10 Fundamental solution.

(a) Let r > 0 and consider the ball Br(0) ⊂ Rn. Show that the integral∫
Br(0)

1
|x|s

dx

is finite if and only if s < n.
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(b) Derive the following estimates for the derivatives for the fundamental solution Φ : Rn \

{0} → R of the Laplace equation,

|DΦ(x)| ≤
c
|x|n−1 , |D2Φ(x)| ≤

c
|x|n

,

for some constant c > 0.

(c) Is the fundamental solution Φ integrable near the singularity, i.e. is the integral
∫

Br(0) Φ

finite? What about the partial derivatives of first order and the Laplacian of Φ?

E3.11 Bound for the derivatives

Let Ω ⊂ Rn be open and u be harmonic on Ω. Show that

|uxi(x̄)| ≤
n
r

sup
y∈∂Br(x̄)

|u(y)|

for every x̄ ∈ Ω and r > 0 such that Br(x̄) ⊂ Ω.

Hint: Use the mean-value property.

E3.12 Maxima and minima

Let Ω ⊂ Rn be open and bounded and u ∈ C2(Ω) ∩C(Ω). Prove that:

(a) If x ∈ Ω is a local maximum of u then ∆u(x) ≤ 0.

(b) Let u be a solution of the boundary value problem

∆u = u3 − u in Ω,

u =
1
2

on ∂Ω.

Show that −1 ≤ u ≤ 1 throughout Ω.

E3.13 Maximum principle I

Let Ω ⊂ Rn be open and bounded and suppose that u ∈ C2(Ω) ∩ C(Ω) and v ∈ C2(Ω) ∩ C(Ω)
are solutions of the following system of semilinear equations

∆u = −u2 − v2 − 2uv in Ω,

∆v = −v2 in Ω,

u|∂Ω = v|∂Ω = c on ∂Ω,

where the constant c > 0.

(a) Show that the solutions u and v are non-negative, i.e. u, v ≥ 0 in Ω.

(b) Consider their difference w = u − v prove that u and v satisfy u ≥ v in Ω.

E3.14 Maximum principle II
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Use separation of variables to find a nonzero solution for the Dirichlet problem in the strip,

∆u = 0 in Ω,

u = 0 on ∂Ω,

where Ω = {(x, y) ∈ R2 : 0 < y < π}. What does this example tell us about the maximum
principle?

Hint: Assume that the solution is of the form u(x, y) = X(x)Y(y) and solve the resulting ODEs
for X and Y.

E3.15 Symmetry of Green’s function

Let Ω ⊂ Rn be open and bounded with C1-boundary ∂Ω. Prove that if G is a Green’s function
on Ω, then

G(y, x) = G(x, y),

for all x, y ∈ Ω, x , y.

You only need to prove the statement for n ≥ 3, the case n = 2 can be shown similarly.

Hint: For fixed x, y ∈ Ω, x , y, consider

v(z) = G(x, z), w(z) = G(y, z), z ∈ Ω,

and show that w(x) = v(y).

E3.16 Existence result for the ball (Theorem 3.18)

Let g ∈ C(∂Br(0)). Show that the function u given by Poisson’s formula,

u(x) =
r2 − |x|2

rωn

∫
∂Br(0)

g(y)
|y − x|n

dS (y),

satisfies u|∂Br(0) = g.

Hint: First, conclude using the representation formula in Theorem 3.13 that

r2 − |x|2

rωn

∫
∂Br(0)

1
|y − x|n

dS (y) = 1.

Then, use Poisson’s formula to show that

lim
x→x̂
|u(x) − g(x̂)| = 0,

if x̂ ∈ ∂Br(0).

E3.17 Green’s function for the half space

Let Φ be the fundamental solution of the Laplace equation. For the half space

Ω = {x = (x1, x2, . . . , xn) : xn > 0}

let x∗ := (x1, x2, . . . ,−xn) be the reflection of x on the plane ∂Ω.
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(i) Show that G(x, y) = Φ(y − x) − wx(y) is the Green’s function for the Laplace equation on
Ω, where wx(y) = Φ(y − x∗).

(ii) Find an integral representation for a solution u ∈ C2(Ω) of

∆u = 0 in Ω,

u = g on ∂Ω.

For this problem you can use results shown in the lecture notes for bounded domains
without justifying their validity in unbounded domains.

E3.18 Harnack’s inequality
Use Poisson’s formula for the ball to prove that

rn−2 r − |x|
(r + |x|)n−1 u(0) ≤ u(x) ≤ rn−2 r + |x|

(r − |x|)n−1 u(0),

whenever u is positive, continuous in Br(0), and harmonic in Br(0).

E3.19 Energy estimates

(a) Let Ω ⊂ Rn be open and u, v : Ω→ R be functions such that u2 and v2 are integrable over
Ω. Show that for arbitrary ε > 0 the following inequality holds:

‖uv‖L1(Ω) ≤
1
2

(
1
ε
‖u‖2L2(Ω) + ε‖v‖2L2(Ω)

)
.

(b) Let Ω ⊂ Rn be open and bounded with C1-boundary ∂Ω and f ∈ C(Ω). Moreover, suppose
that u ∈ C2(Ω) is a solution of the boundary value problem

−∆u + λu = f in Ω,

u = 0 on ∂Ω,

with some constant λ > 0. Use the inequality in (a) to show the estimate

‖ |Ou| ‖2L2(Ω) +
λ

2
‖u‖2L2(Ω) ≤

1
2λ
‖ f ‖2L2(Ω).

E3.20 Maximum principle III
Let R > 0 and w ∈ C2(BR(0)) ∩C(BR(0)) be such that f := ∆w is bounded on BR(0). Show that

w ≤ R2 sup( f−)/(2d) + max
∂BR(0)

(w+),

where a+ = max{a, 0} and a− = max{−a, 0}. Also prove that

|w| ≤ R2 sup | f |/(2d) + max
∂BR(0)

|w|.

Hint: Observe that the function v(x) = R2 − |x|2 satisfies ∆v = −2d and consider u = ±w −
v sup( f∓)/(2d).
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Chapter 4

The Heat Equation

In this chapter, we consider the heat equation

ut(t, x) − ∆u(t, x) = 0, (t, x) ∈ Ω, (4.1)

and the inhomogeneous heat equation

ut(t, x) − ∆u(t, x) = f (t, x), (t, x) ∈ Ω, (4.2)

where Ω = (0,∞) × U and U ⊂ Rn, n ≥ 1, is open. Moreover, f : [0,∞) × U → R is given and
u : [0,∞) × U → R is the unknown. Here, t > 0 denotes time, x ∈ U a point in space and ∆ = ∆x

is the Laplacian with respect to the space variable x.

4.1 Motivation

Typically, the heat equation (or diffusion equation) describes the time evolution of some quantity
such as heat or a chemical concentration. Let U ⊂ Rn be open and V ⊂ U be an arbitrary open and
bounded subset with C1-boundary. Moreover, we assume that u(t, x) is the density of a physical
quantity at time t ≥ 0 at the point x ∈ U. Then, the rate of change of the physical quantity within
V equals the negative flux through the boundary ∂V , i.e.

d
dt

∫
V

u(t, x) dx = −

∫
∂V

F(t, x) · ν(x) dS (x),

where F : [0,∞) × U → Rn is the flux function. By the Gauß-Green theorem (Theorem 3.4), it
follows that ∫

∂V
F(t, x) · ν(x) dS (x) =

∫
V

div F(t, x) dx,

which implies that ∫
V

ut = −

∫
V

div F.

In many cases, the flux function F is proportional to the (spatial) gradient of u, but points in the
opposite direction (since particles flow from regions of high to regions of low concentration),

F = −a∇u,
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for some constant a > 0. Consequently, we have∫
V

ut =

∫
V

a∆u,

and since V ⊂ U was arbitrary it follows that

ut − a∆u = 0 in (0,∞) × U,

if u ∈ C2((0,∞) × U) (see Problem E3.2). If the constant a = 1 we obtain the heat equation.
If, in addition, the physical quantity is generated by a source Q in U, then we obtain the

inhomogeneous heat equation

ut − a∆u = Q in (0,∞) × U

(cf. the derivation of Laplace’s equation).

4.2 Fundamental solution

As we noticed in the case of the Laplace equation, an important step in studying a PDE is often to
find a specific special solution (called fundamental solution) of the equation that allows to derive
representation formulas for solutions or to construct more general solutions.

To construct a fundamental solution we consider the homogeneous heat equation (4.1) in Ω =

(0,∞) × Rn and exploit particular properties of the partial differential operator. If u is a solution,
then for every λ ∈ R the function uλ(t, x) = (λ2t, λx) also solves the heat equation (see Problem
E.4.1). Together with the rotational invariance of the Laplace operator, this scaling invariance
suggests to look for solutions of the form u(t, x) = v

(
|x|
√

t

)
. Although this ansatz would lead to the

solution, it turns out to be quicker to seek for solutions of the form

u(t, x) = tαv
(
|x|
√

t

)
= tαv

(
r
√

t

)
, (4.3)

for some α ∈ R and a suitable function v : [0,∞) → R, where r = |x|. We compute the partial
derivatives,

ut(t, x) = αtα−1v
(

r
√

t

)
− tα−1 r

2
√

t
v′

(
r
√

t

)
,

uxi(t, x) = tα
xi

r
√

t
v′

(
r
√

t

)
, i = 1, . . . , n,

uxi xi(t, x) = tα−1 x2
i

r2 v′′
(

r
√

t

)
+

tα
√

t
v′

(
r
√

t

) 1
r
−

x2
i

r3

 , i = 1, . . . , n,

and hence, inserting the ansatz (4.3) into the heat equation leads to

0 = ut(t, x) − ∆u(t, x)

= tα−1
(
αv

(
r
√

t

)
− v′

(
r
√

t

) (
r

2
√

t
+

(n − 1)t

r
√

t

)
− v′′

(
r
√

t

))
.
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Denoting s = r√
t

and dividing the equation by tα−1 we obtain

αv(s) −
(

s
2

+
n − 1

s

)
v′(s) − v′′(s) = 0.

Moreover, choosing α = − n
2 we can rewrite this ODE as(

sn−1v′(s)
)′

+
1
2

(
snv(s)

)′
= 0,

and consequently,
1
2

snv(s) + sn−1v′(s) = c,

for some c ∈ R. If we assume that v(s) → 0, v′(s) → 0 sufficiently fast as s → ∞, then c = 0. We
obtain

v′(s) = −
s
2

v(s),

which implies that

v(s) = be−
s2
4 ,

for some constant b ∈ R. Recalling that α = − n
2 and the ansatz (4.3), it follows that

u(t, x) =
b

t
n
2

e−
|x|2
4t , t > 0, x ∈ Rn.

For the particular choice of the constant b = 1
(4π)

n
2

, the function u(t, ·) is the density of the

n-dimensional normal distribution N(0, 2tId), and we obtain the fundamental solution of the heat
equation.

Definition 4.1. The function Φ : (R \ {0}) × Rn → R, defined by

Φ(t, x) =


1

(4πt)
n
2

e−
|x|2
4t , t > 0, x ∈ Rn,

0, t < 0, x ∈ Rn,
(4.4)

is called the fundamental solution of the heat equation (or heat kernel).

Lemma 4.2. The fundamental solution (4.4) satisfies Φ(t, ·) > 0 and∫
Rn

Φ(t, x) dx = 1 for all t > 0.

Proof. The first statement is clear. To show the second one we observe that∫
Rn

Φ(t, x) dx =
1

(4πt)
n
2

∫
Rn

e−
|x|2
4t dx

=
1

(2π)
n
2

∫
Rn

e−
|z|2
2 dz =

n∏
i=1

1
√

2π

∫ ∞

−∞

e−
z2
i
2 dzi︸                 ︷︷                 ︸

=1

= 1, �

see Example A.7.
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Lemma 4.3. Let Φ be the fundamental solution in (4.4). For every compact interval [t1, t2] ⊂
(0,∞) and α ∈ Nn+1

0 there exists an integrable function Fα with

|Dα
(t,x)Φ(t, x)| ≤ Fα(x) for all (t, x) ∈ [t1, t2] × Rn.

Proof. See Problem E4.2. �

Below, the one-dimensional heat kernel is plotted for different time instances.

4.3 Initial value problems

We now use the fundamental solution to construct solutions of initial value problems for the heat
equation in (0,∞) × Rn.

4.3.1 Homogeneous case

Consider the initial value problem

ut − ∆u = 0 in (0,∞) × Rn,

u(0, ·) = g on Rn,
(4.5)

where the given function g ∈ C(Rn) is bounded, i.e.

‖g‖L∞ := sup
x∈Rn
|g(x)| < ∞.

Definition 4.4. A function u ∈ C((0,∞) × Rn) ∩ C1,2((0,∞) × Rn) that satisfies (4.5) is called a
classical solution, where

C1,2((0,∞) × Rn) :=
{
v ∈ C1((0,∞) × Rn)) : D2

xv exists and

D2
xv ∈ C((0,∞) × Rn;Rn×n)

}
.
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Note that Φ solves the heat equation away from the singularity in t = 0, and so does the
function (t, x) 7→ Φ(t, x − y) for every fixed y ∈ Rn. This motivates that the convolution

u(t, x) =

∫
Rn

Φ(t, x − y)g(y) dy (4.6)

is a solution of the heat equation as well. In fact, we will show that (4.6) indeed yields a classical
solution of the initial value problem (4.5). Since we are integrating over the whole space Rn we
need to be more careful when justifying that we can interchange differentiation and integration.

Theorem 4.5. Let g ∈ C(Rn) be a bounded function. Then, the function u defined by (4.6) satisfies
u ∈ C∞((0,∞) × Rn) ∩C((0,∞) × Rn). Moreover, u is a classical solution of (4.5) and

‖u(t, ·)‖L∞ ≤ ‖g‖L∞ ∀t ≥ 0.

Proof. Since g is bounded, it follows from the properties of the fundamental solution that the
integrand h(t, x, y) := Φ(t, x − y)g(y), (t, x, y) ∈ (0,∞) × Rn × Rn satisfies:

• For every fixed y, the function h(·, ·, y) is in C∞((0,∞) × Rn).

• For every fixed (t, x) the function h(t, x, ·) is integrable on Rn.

• For every compact set I × K ⊂ (0,∞) × Rn and α ∈ Nn+1
0 we have

|Dα
(t,x)h(t, x, y)| ≤ ‖g‖L∞ sup

x∈K
Fα(x − y) =: Gα(y), (t, x, y) ∈ I × K × Rn,

by Lemma 4.3, and the function Gα is integrable.

Hence, by Theorems A.6 and A.5 (see also [5], Theorem 2 §11), we conclude that u ∈ C∞((0,∞)×
Rn), and the derivatives can be computed by differentiation under the integral sign. Therefore, we
obtain

ut(t, x) − ∆u(t, x) =

∫
Rn

(Φt − ∆Φ)(t, x − y)︸                  ︷︷                  ︸
=0

g(y) dy = 0,

which shows that u satisfies the heat equation.
It remains to show that u fulfills the initial data, u(0, ·) = g, i.e. for x̂ ∈ Rn we have

u(t, x)→ g(x̂) as (t, x)→ (0, x̂).

Let x̂ ∈ Rn and ε > 0. Since g is continuous, there exists δ > 0 such that

|g(y) − g(x̂)| < ε ∀|y − x̂| < 2δ. (4.7)
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Therefore, if x ∈ Rn with |x − x̂| < δ, then by Lemma 4.2 we have

|u(t, x) − g(x̂)| =
∣∣∣∣∣∫
Rn

Φ(t, x − y)(g(y) − g(x̂)) dy
∣∣∣∣∣

≤

∫
Bδ(x)

Φ(t, x − y)|g(y) − g(x̂)| dy︸                                   ︷︷                                   ︸
=:I

+

∫
Rn\Bδ(x)

Φ(t, x − y)|g(y) − g(x̂)| dy︸                                       ︷︷                                       ︸
=:J

.

By (4.7) and since Bδ(x) ⊂ B2δ(x̂), it follows that

I ≤ ε
∫
Rn

Φ(t, x − y) dy = ε.

For the second integral we obtain

J ≤ 2‖g‖L∞
∫
Rn\Bδ(x)

Φ(t, x − y) dy ≤
c

t
n
2

∫
Rn\Bδ(x)

e−
|x−y|2

4t dy

=
cωn

t
n
2

∫ ∞

δ
rn−1e−

r2
4t dr = cωn

∫ ∞

δ√
t

sn−1e−
s2
4 ds→ 0 as t → 0,

for some c > 0, where we used the change of variables s = r√
t

in the last step. The convergence

then follows since sn−1e−
s2
4 is integrable over Rn. Consequently, |u(t, x) − g(x̂)| ≤ 2ε for all

x ∈ Bδ(x̂) and t > 0 sufficiently small, which shows that u(0, ·) = g.
The last statement of the theorem is a direct consequence of Lemma 4.2. Indeed, we observe

that
|u(t, x)| ≤ ‖g‖L∞

∫
Rn

Φ(t, x − y) dy = ‖g‖L∞ ∀x ∈ Rn.

�

Remark 4.6. In view of Theorem 4.5, the fundamental solution Φ formally satisfies the initial
value problem

Φt − ∆Φ = 0 in (0,∞) × Rn,

Φ(0, ·) = δ0 on Rn,
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where δ0 is the Dirac measure on Rn centered at x = 0. The Dirac measure (or Dirac distribution)
is not a function in the usual sense. Formally, it has the properties∫

Rn
δ0(x)dx = 1,

∫
Rn
δ0(x)ϕ(x)dx = ϕ(0) ∀ϕ ∈ C∞(Rn),

but a rigorous definition requires the theory of distributions.

Remark 4.7 (Infinite speed of progapation). Let g be as in Theorem 4.5. Moreover, we assume
that g ≥ 0 and g . 0. Then, the solution of (4.5) satisfies

u(t, x) =
1

(4πt)
n
2

∫
Rn

e−
|x−y|2

4t g(y) dy > 0 ∀t > 0, x ∈ Rn.

Due to this observation we say that the heat equation forces an infinite speed of propagation
of disturbances. In the context of heat conduction, that means that if the initial temperature is
nonnegative and positive somewhere in Rn, then at any later time (no matter how short the time
interval) the temperature is strictly positive everywhere. This is a characteristic property of the heat
equation. As we will later see, the wave equation in contrast supports a finite speed of propagation.

Furthermore, we observe that the heat equation has an immediate smoothing effect. Even if
the initial data g is only continuous, the solution is infinitely times continuously differentiable for
all (t, x) ∈ (0,∞) × Rn.

4.3.2 Inhomogeneous case

We now consider the inhomogeneous initial value problem

ut − ∆u = f in (0,∞) × Rn,

u(0, ·) = 0 on Rn,
(4.8)

where, for simplicity, we assume that f ∈ C1,2
c ((0,∞) × Rn), i.e. f ∈ C1,2((0,∞) × Rn) and

supp( f ) ⊂ (0,∞) × Rn is compact.
Note that by Theorem 4.5, for fixed s > 0 the function

u(t, x; s) :=
∫
Rn

Φ(t − s, x − y) f (s, y) dy, t > s, x ∈ Rn,

solves the initial value problem

ut( · , · ; s) − ∆u( · , · ; s) = 0 in (s,∞) × Rn,

u(s, · ; s) = f (s, · ) on Rn.
(4.9)

This is a homogeneous initial value problem of the form (4.5) with starting time t = s and initial
data g = f (s, · ). To build a solution of the inhomogeneous problem (4.8) we apply Duhamel’s
principle. Namely, integrating u(t, x; s) from s = 0 to s = t leads to

u(t, x) =

∫ t

0
u(x, t; s) ds =

∫ t

0

∫
Rn

Φ(t − s, x − y) f (s, y) dy ds, (4.10)
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for t > 0, x ∈ Rn. The formal computation

(ut − ∆u)(t, x) = u(t, x; t)︸  ︷︷  ︸
= f (t,x)

+

∫ t

0

(
ut(t, x; s) − ∆xu(t, x; s)︸                       ︷︷                       ︸

=0

)
ds = f (t, x)

indicates that the formula (4.10) indeed yields a solution. Due to the singularity of Φ in t = 0,
however, this formal calculation requires rigorous justification.

Theorem 4.8. Let f ∈ C1,2
c ((0,∞) × Rn). Then, the function u defined by (4.10) satisfies u ∈

C1,2((0,∞) × Rn) ∩C((0,∞) × Rn), ut − ∆u = f in (0,∞) × Rn and for every x̂ ∈ Rn

u(t, x)→ 0 as (t, x)→ (0, x̂),

i.e. u is a classical solution of the initial value problem (4.8).

Proof. First, we apply a change of variables and rewrite u as

u(t, x) =

∫ t

0

∫
Rn

Φ(s, y) f (t − s, x − y) dy ds.

Since f has compact support, we can extend f by zero to a function f ∈ C1,2
c (Rn+1). Similarly as

in the proof of Theorem 4.5, we can conclude that for any τ > 0 the function

ũ(t, x) =

∫ τ

0

∫
Rn

Φ(s, y) f (t − s, x − y) dy ds

is in C1,2((0,∞)×Rn) and its derivatives can be obtained by differentiation under the integral sign.
Moreover, we observe that f (t − s, ·) = 0 if |t − s| < δ for sufficiently small δ > 0, which implies
that u(t, ·) = ũ(t, ·) for |t − τ| < δ. Consequently, for 0 < ε < t we obtain

ut(t, x) − ∆u(t, x) =

∫ t

0

∫
Rn

Φ(s, y)( ft − ∆ f )(t − s, x − y) dy ds

=

∫ ε

0

∫
Rn

Φ(s, y)( ft − ∆ f )(t − s, x − y) dy ds

+

∫ t

ε

∫
Rn

Φ(s, y)(− fs − ∆y f )(t − s, x − y) dy ds =: Iε + Jε.

For the first integral we have

|Iε| ≤ ε‖ ft − ∆ f ‖L∞ max
0<s<ε

∫
Rn

Φ(s, y) dy = ε‖ ft − ∆ f ‖L∞ → 0 as ε→ 0.

To estimate the second integral we apply integration by parts and use that f has compact support,

Jε =

∫ t

ε

∫
Rn

(Φs − ∆Φ)(s, y)︸             ︷︷             ︸
=0

f (t − s, x − y) dy ds

−

∫
Rn

(
(Φ(t, y) f (0, x − y)︸      ︷︷      ︸

=0

−Φ(ε, y) f (t − ε, x − y)
)

dy

=

∫
Rn

Φ(ε, y) f (t − ε, x − y)
)

dy→ f (t, x) as ε→ 0.

45



The last limit follows from Theorem 4.5 and the assumption f ∈ C1,2
c ((0,∞) × Rn) (see Problem

E4.4).
Finally, we observe that

|u(t, x)| ≤ t‖ f ‖L∞ max
0<s<t

∫
Rn

Φ(s, y)dy ≤ t‖ f ‖L∞ → 0 as t → 0,

which shows that u satisfies the initial data.
�

Adding the solutions of (4.5) and (4.8) we obtain a solution for general inhomogeneous initial
value problems.

Corollary 4.9. Let g ∈ C(Rn) be bounded and f ∈ C1,2
c ((0,∞) × Rn). Then

u(t, x) =

∫
Rn

Φ(t, x − y)g(y) dy +

∫ t

0

∫
Rn

Φ(t − s, x − y) f (s, y) dy ds

is a classical solution of the initial value problem

ut − ∆u = f in (0,∞) × Rn,

u(0, ·) = g on Rn.

Proof. This immediately follows from Theorem 4.5 and Theorem 4.4. �

4.4 Maximum principles

In this section we prove maximum principles for classical solutions of the heat equation. First, we
consider bounded, open sets U ⊂ Rn and subsequently the case U = Rn. For T > 0 we define the
parabolic cylinder

UT := (0,T ] × U,

and the parabolic boundary

ΓT := UT \ UT = ([0,T ] × ∂U) ∪ ({0} × U).

Theorem 4.10. Let U ⊂ Rn be open and bounded and u ∈ C1,2(UT )∩C(UT ). Then, the following
statements hold:
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(i) Weak maximum principle: Assume that u satisfies ut − ∆u ≤ 0 in UT . Then,

max
(t,x)∈UT

u(t, x) = max
(t,x)∈ΓT

u(t, x).

(ii) Strong maximum principle: Assume that u satisfies the heat equation, i.e. ut − ∆u = 0 in
UT . If U is also connected and if there exists a point (t0, x0) ∈ UT with

u(t0, x0) = max
(t,x)∈UT

u(t, x),

then u is constant on Ut0 .

Remark 4.11. Similar statements hold replacing u by −u and the maxima by minima.

Note that if u is a solution of the heat equation and if u attains a maximum (or minimum) at an
interior point (x0, t0) ∈ UT , then u is constant at all earlier times t ≤ t0 provided that the boundary
and initial conditions are constant. However, the solution may change for t > t0 if the boundary
conditions alter at a later time t > t0.

Proof. We only prove the weak maximum principle (i). The proof of the strong maximum requires
a mean value formula for solutions of the heat equation (see, e.g. [4]).

Let L denote the differential operator Lu := ut − ∆u. First, suppose that Lu < 0 in UT . We
assume that u assumes a maximum in a point (t0, x0) ∈ (0,T ) × U. Then, ut(t0, x0) = 0 and the
Hessian matrix D2u(t0, x0) is negative semidefinite. In particular, we have uxi xi(t0, x0) ≤ 0 for
i = 1, . . . , n, and therefore Lu(t0, x0) = (ut − ∆u)(t0, x0) ≥ 0 which contradicts our assumption.
Hence, we conclude that

max
(t,x)∈UT

u(t, x) = max
(t,x)∈∂UT

u(t, x).

Next, we show that the same holds true if Lu ≤ 0 in UT . To this end consider the perturbed
function uε(t, x) = u(t, x) + εex1 for ε > 0. We observe that

Luε(t, x) = Lu(t, x) − εex1 < 0, (t, x) ∈ UT .

As we have shown above, this implies that

max
(t,x)∈UT

uε(t, x) = max
(t,x)∈∂UT

uε(t, x).

Taking the limit ε→ 0 yields the result for u.
It remains to show that u cannot attain a maximum in a point (T, x0) with x0 ∈ U. As before,

we first assume that Lu < 0 in UT . Suppose that u assumes a maximum in (T, x0), x0 ∈ Ω. Then,
D2u(T, x0) is negative semidefinite and thus −∆u(T, x0) ≥ 0. We conclude that

0 > (ut − ∆u)(T, x0) ≥ ut(T, x0).

However, ut(T, x0) < 0 is a contradiction to the original assumption that u(T, x0) is a maximum.
Finally, the general case Lu ≤ 0 follows by considering the perturbed function uε(t, x) =

u(t, x) + εe−t for ε > 0. We obtain

Luε(t, x) = Lu(t, x) − εe−t < 0, (t, x) ∈ UT ,

and hence uε cannot attain a maximum on {T } × U. Taking the limit ε → 0 the result for u
follows. �
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In order to derive maximum principles for the unbounded domain U = Rn we need an addi-
tional growth condition for the solutions.

Theorem 4.12. Let u ∈ C1,2((0,T ]×Rn)∩C([0,T ]×Rn) be a classical solution of the initial value
problem (4.5),

ut − ∆u = 0 in (0,T ] × Rn,

u(0, ·) = g on Rn,

where g ∈ C(Rn) is bounded, and assume that u satisfies the growth estimate

u(t, x) ≤ Aea|x|2 for all (t, x) ∈ [0,T ] × Rn,

for some constants a, A > 0. Then,

sup
(t,x)∈[0,T ]×Rn

u(t, x) = sup
x∈Rn

g(x).

Proof. First, we assume that 4aT < 1. Then, there exists ε > 0 such that

4a(T + ε) < 1. (4.11)

For fixed y ∈ Rn and δ > 0 we consider the function

uδ(t, x) := u(t, x) −
δ

(T + ε − t)
n
2

e
|x−y|2

4(T+ε−t) .

Note that we can rewrite uδ as

uδ(t, x) = u(t, x) − δ(4π)
n
2 Φ(T + ε − t, i(x − y)),

if we consider the fundamental solution Φ on (0,∞) × Cn. It is easy to verify that the function
(t, x) 7→ Φ(T + ε − t, i(x − y)) satisfies the heat equation on (0,T ] × Rn. Consequently, we have

(uδ)t − ∆uδ = 0 on (0,T ] × Rn,

i.e. uδ solves the heat equation.
Let U = Br(y), for any r > 0. Then, Theorem 4.10 implies that

max
(t,x)∈UT

uδ(t, x) = max
(t,x)∈ΓT

uδ(t, x).
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For arbitrary x ∈ U by the definition of uδ we have that

uδ(0, x) ≤ u(0, x) = g(x),

i.e. uδ ≤ g on the set {0} × U. On the set [0,T ] × ∂Br(y) we have

uδ(t, x) = u(t, x) −
δ

(T + ε − t)
n
2

e
r2

4(T+ε−t) ≤ Aea(|y|+r)2
−

δ

(T + ε)
n
2

e
r2

4(T+ε) .

Due to (4.11) it follows that 1
4(T+ε) = a + γ for some γ > 0, and thus

uδ(t, x) ≤ Aea(|y|+r)2
− δ(4(a + γ))

n
2 e(a+γ)r2

≤ sup
x∈Rn

g(x)

if we choose r large enough. Thus, we conclude that

uδ(t, x) ≤ sup
y∈Rn

g(y) for all (t, x) ∈ [0,T ] × Rn,

and taking the limit δ→ 0, the same remains true for u.
Finally, if 4aT > 1 we apply the result iteratively on subsequent time intervals of length 1

8a . �

4.5 Uniqueness

A direct consequence of the weak maximum principle is the uniqueness of solutions. However, a
uniqueness result in Rn does not hold without additional growth assumptions on the solutions such
as in Theorem 4.12. In fact, one can show that there exist infinitely many solutions of the initial
value problem

ut − ∆u = 0 in (0,T ] × Rn,

u(0, ·) = 0 on Rn,

e.g. see [6], Chapter 7. Each of the solutions grows very rapidly, except for the trivial solution
u ≡ 0, which is the only physical solution.

Theorem 4.13. (i) Let U ⊂ Rn be open, bounded and connected. The initial-boundary value
problem

ut − ∆u = f in UT ,

u = g on ΓT ,

where f and g are continuous functions, has at most one classical solution u ∈ C1,2(UT ) ∩
C(UT ).

(ii) The initial value problem

ut − ∆u = f in (0,T ] × Rn,

u(0, ·) = g on Rn,

where f and g are continuous functions, has at most one classical solution u ∈ C1,2((0,T ]×
Rn) ∩C([0,T ] × Rn) satisfying the growth condition

|u(t, x)| ≤ Aea|x|2 , (t, x) ∈ [0,T ] × Rn,

for some constants a, A > 0.
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Proof. (i) Let u and v be two classical solutions of the initial-boundary value problem. Then, their
difference w = u − v satisfies

wt − ∆w = 0 in UT , w = 0 on ΓT .

The weak maximum principle in Theorem 4.10 applied to w and −w implies that w ≤ 0 and w ≥ 0
in UT and consequently, w ≡ 0.

(ii) The statement can be shown similarly, see Problem E4.8. �

4.6 Energy methods

As for the Laplace and Poisson equation, we now provide an alternative uniqueness proof for
solutions of initial-boundary value problems for the heat equation that is based on energy methods.

Let U ⊂ Rn be open and bounded. We consider the heat equation

ut − ∆u = f in UT ,

u(0, ·) = g on U,
(4.12)

with either homogeneous Dirichlet boundary conditions

u = 0 on [0,T ] × ∂U, (4.13)

or homogeneous Neumann boundary conditions

∂u
∂ν

= 0 on [0,T ] × ∂U, (4.14)

where ∂u
∂ν denotes the normal derivative of u.

Theorem 4.14. Let U ⊂ Rn be open and bounded with C1-boundary ∂U. Suppose that f ∈ C(UT )
and g ∈ C(U). Then, every solution u ∈ C1,2(UT ) of the initial-boundary value problem (4.12)-
(4.13) or (4.12)-(4.14) satisfies the energy estimate

‖u(t, ·)‖2L2(U) + 2‖∇u‖2L2(Ut)
≤ et

(
‖g‖2L2(U) + ‖ f ‖2L2(UT )

)
,

for all t ∈ (0,T ].

For the proof of the energy estimate we need Gronwall’s lemma.

Lemma 4.15 (Gronwall’s inequality). Let v : [0,T ]→ [0,∞) be an integrable function that satis-
fies

v(t) ≤ a + b
∫ t

0
v(s) ds ∀t ∈ [0,T ], (4.15)

for some constants a, b ≥ 0. Then, we have

v(t) ≤ aebt ≤ a(1 + btebt) ∀t ∈ [0,T ].
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Proof. Consider the function h(t) := b
∫ t

0 v(s)ds. Then, (4.15) is equivalent to

w(t) := v(t) − h(t) ≤ a ∀t ∈ [0,T ].

We observe that
h′(t) = bv(t) = bw(t) + bh(t),

which is a linear ODE with constant coefficients. Its solution satisfies the variation of constants
formula,

h(t) = h(0)ebt +

∫ t

0
eb(t−s)bw(s)ds ≤ ab

∫ t

0
eb(t−s)ds = a(ebt − 1),

where we used that h(0) = 0 and w(t) ≤ a. Therefore, it follows that

v(t) ≤ a + h(t) ≤ a + a(ebt − 1) = aebt,

which proves the lemma. �

We now provide the proof of Theorem 4.14.

Proof of Theorem 4.14. Let t ∈ (0,T ]. We multiply the heat equation (4.12) by 2u and integrate
over Ut = (0, t] × U,∫ t

0

∫
U

2u(s, x)us(s, x) − 2u(s, x)∆u(s, x) dx ds =

∫ t

0

∫
U

2u(s, x) f (s, x) dx ds.

Observing that 2uus = (u2)s it follows that∫ t

0

∫
U

2u(s, x)us(s, x) dx ds =

∫
U

u2(t, x) dx −
∫

U
u2(0, x) dx =

∫
U

u2(t, x) dx −
∫

U
g2(x) dx.

Furthermore, using integration by parts (see Theorem 3.5) we obtain

‖u(t, ·)‖2L2(U) − ‖g‖
2
L2(U) −

∫ t

0

∫
∂U

2u(s, x)
∂u
∂ν

(s, x)︸             ︷︷             ︸
=0 by (4.13) or (4.14)

dS (x) ds +

∫ t

0

∫
U

2∇u(s, x) · ∇u(s, x) dx ds

=

∫ t

0

∫
U

2u(s, x) f (s, x) dx ds.

Using the estimate 2u f ≤ u2 + f 2 and rearranging the terms, we finally obtain

‖u(t, ·)‖2L2(U) + 2‖∇u‖2L2(Ut)
≤ ‖g‖2L2(U) + ‖ f ‖2L2(UT ) +

∫ t

0
‖u(s, ·)‖2L2(U) ds.

By Lemma 4.15 applied to v(t) = ‖u(t, ·)‖2
L2(U) + 2‖∇u‖2

L2(Ut)
, it follows that

‖u(t, ·)‖2L2(U) + 2‖∇u‖2L2(Ut)
≤ et

(
‖g‖2L2(U) + ‖ f ‖2L2(UT )

)
for all t ∈ [0,T ]. �

An immediate consequence is the uniqueness of initial-boundary value problems.
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Corollary 4.16. Let U ⊂ Rn be open and bounded. Moreover, let f and g be as in Theorem 4.14
and h ∈ C([0,T ] × ∂U). Then, the initial-boundary value problem

ut − ∆u = f in UT ,

u = h on [0,T ] × ∂U,

u(0, ·) = g on U

has at most one classical solution u ∈ C1,2(UT ).

Proof. Let u and v be two solutions. Then, their difference w = u− v satisfies the initial-boundary
value problem (4.12)–(4.13) with g ≡ 0 and f ≡ 0. Thus, the energy estimate in Theorem 4.14
implies that

‖w(s, ·)‖L2(U) = 0 ∀s ∈ (0,T ],

and consequently, w ≡ 0 in UT . �

4.7 Exercises

E4.1 Scalings

Suppose that u ∈ C∞((0,∞) × Rn) solves the heat equation

ut − ∆u = 0 in (0,∞) × Rn.

(a) Show that for every λ ∈ R the function uλ(t, x) := u(λ2t, λx), (t, x) ∈ (0,∞) × Rn, also
solves the heat equation.

(b) Show that the function v(t, x) := x · ∇u(t, x) + 2t ut(t, x), (t, x) ∈ (0,∞)×Rn, solves the heat
equation as well.

Hint: You can deduce it from (a), or verify it by direct computation.

E4.2 Derivatives of the fundamental solution

Show that, for every compact interval [t0, t1] ⊂ (0,∞) and any α ∈ Nn+1
0 , there exists an inte-

grable function Fα with

|Dα
(t,x)Φ(t, x)| ≤ Fα(x) ∀(t, x) ∈ [t0, t1] × Rn.

Hint: First show that for all t ∈ [t0, t1] we have

|Dα
x Φ(t, x)| ≤ C(t0)(1 + |x||α|)e−

|x|2
4t1 ,

for some constant C(t0) > 0 depending on t0. Then, show that the right hand side is integrable
onRn. The integrable bounds for |Dα

(t,x)Φ| can be deduced from the bounds for the x-derivatives.

E4.3 Fourier’s method and superposition principle
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Can you find an explicit solution of the following problem? Consider the one-dimensional heat
equation

ut(t, x) = uxx(t, x) (t, x) ∈ (0,∞) × (0, 1),

u(t, 0) = u(t, 1) = 0 t ≥ 0,

u(0, x) = f (x) x ∈ [0, 1],

where f (x) =
∑n

k=1 ck sin(kπx) and c1, . . . , cn ∈ R.

Hint: First consider and solve the auxiliary problems

∂

∂t
uk(t, x) =

∂2

∂x2 uk(t, x),

uk(t, 0) = uk(t, 1) = 0,

uk(0, x) = sin(kπx).

To this end use the method of separation of variables, i.e. assume that the solution is of the form
uk(t, x) = gk(x)hk(t) and solve the resulting ODEs for gk and hk.

E4.4 Inhomogeneous heat equation
Let τ > 0, f ∈ C1,2

c ((0,∞) × Rn) and Φ be the fundamental solution of the heat equation.

(a) Show that the function

ũ(t, x) =

∫ τ

0

∫
Rn

Φ(s, y) f (t − s, x − y)dyds

satisfies ũ ∈ C1,2((0,∞) × Rn) and

ũt(t, x) − ∆ũ(t, x) =

∫ τ

0

∫
Rn

Φ(s, y)( ft − ∆ f )(t − s, x − y)dyds.

(b) Show that ∫
Rn

Φ(ε, y) f (t − ε, x − y)dy→ f (t, x) as ε→ 0.

Remark: These properties are used in the proof of Theorem 4.8.

E4.5 Heat equation on the half line
Let f ∈ C1,2

c ((0,∞) × (0,∞)) and consider the initial-boundary value problem

ut(t, x) = uxx(t, x) + f (t, x), t > 0, x > 0,

u(t, 0) = 0, t > 0, (4.16)

u(0, x) = 0, x > 0.

(a) Show that for every solution v of the initial value problem

vt(t, x) = vxx(t, x) + f (t, x), t > 0, x ∈ R,

v(0, x) = 0, x ∈ R,

the function u = v + ṽ is a solution of (4.16), where ṽ is the function obtained by odd
reflection of v, i.e. ṽ(t, x) = −v(t,−x).
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(b) Use (a) to show that the solution of (4.16) can be written as

u(t, x) =

∫ t

0

∫ ∞

0
f (s, y)

(
Φ(t − s, x − y) − Φ(t − s, x + y)

)
dyds,

where Φ is the fundamental solution of the heat equation.

E4.6 Product Ansatz for the heat equation
Let u j ∈ C2((0,∞) × R) for j = 1, 2, . . . , n. Assume that u j solves the one-dimensional heat
equation (u j)t − (u j)xx = 0. Show that

u(t, x1, x2, . . . , xn) :=
n∏

j=1

u j(t, x j), x ∈ Rn, t > 0,

is a solution for the heat equation in Rn.

E4.7 Periodic temperature fluctuations

(a) Find λ ∈ C and ξ ∈ Rn such that

u(t, x) := ei(λt+ξ·x), x ∈ Rn, t > 0,

is a (bounded) solution for the heat equation.

(b) Let Rn
+ = {x ∈ Rn | x1 > 0} be the upper half space and let λ > 0. Use the ansatz

u(t, x) := ei(λt+ξ1 x1), x ∈ Rn
+, t > 0,

to find a bounded solution for the boundary value problem

vt(t, x) − ∆xv(t, x) = 0, x ∈ Rn
+, t > 0,

v(t, 0, x2, . . . , xn) = cos(λt), x2, . . . , xn ∈ R,

where v =Re(u) is the real part of u, and ξ1 ∈ C is to be determined.

(c) What is the behavior of the temperature distribution v in the set

Rd = {x ∈ Rn | x1 = d},

for d > 0? In which distance d from the boundary R0 of Rn
+ did the amplitude decrease to

half of the amplitude on the boundary?

E4.8 Uniqueness in Rn

Let f ∈ C1,2((0,T ] × Rn) ∩C([0,T ] × Rn) and g ∈ C(Rn). Show that the initial value problem

ut − ∆u = f in (0,T ] × Rn,

u(0, ·) = g on Rn,

has at most one classical solution satisfying the growth condition

|u(t, x)| ≤ Aea|x|2 , (t, x) ∈ [0,T ] × Rn,

for some constants a, A > 0.
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E4.9 Comparison principle

Let U ⊂ Rn be open and bounded with C1-boundary ∂U.Assume that u1, u2 ∈ C1,2(UT )∩C(UT )
are solutions of the (semilinear) initial-boundary value problems

∂tui(t, x) − ∆ui(t, x) = f (t, x, ui(t, x)), (t, x) ∈ UT ,

ui(t, x) = gi(t, x), (t, x) ∈ ΓT ,

where fi ∈ C(UT × R) and gi ∈ C(ΓT ), i = 1, 2. Show that if

f (t, x, u1) ≤ f (t, x, u2) in UT × R,

g1(t, x) ≤ g2(t, x) on ΓT ,

then, the solutions satisfy u1 ≤ u2 in UT .

E4.10 Maximum principle

Let U ⊂ Rn be open and bounded and assume that u ∈ C1,2(UT ). Consider the partial differential
operator

Lu := ut − ∆u + b · ∇u + cu on UT ,

with b ∈ Rn and c ∈ C(UT ). Show that if Lu ≤ 0 and c ≥ 0 on UT then

max
UT

u ≤ max
ΓT

u+,

where u+ = max{u, 0} is the positive part of u.

Hint: Use ideas applied in the proof of the maximum principle for the heat equation. First,
consider the case that Lu > 0, and then extend the result for the case Lu ≥ 0.

E4.11 Energy methods

Let U ⊂ Rn be open and bounded with C1-boundary, where f ∈ C(UT ) and g ∈ C(U). Use the
energy method to prove uniqueness of classical solutions u ∈ C1,2((0,∞) × U) of the following
initial-boundary value problem,

ut(t, x) − ∆u(t, x) + c2u(t, x) = f (t, x), t > 0, x ∈ U,

u(0, x) = g(x), x ∈ U,

au(t, x) +
∂u
∂ν

(t, x) = 0, t > 0, x ∈ ∂U,

where c ∈ R, a > 0 and ∂u
∂ν denotes the normal derivative of u.

Hint: Let u, v be two solutions and consider their difference w = u − v. Multiply the resulting
PDE for w by w and integrate over U.
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Chapter 5

The Wave Equation

In this chapter we analyze the wave equation

utt − ∆u = 0 in (0,∞) × Rn, (5.1)

and the inhomogeneous wave equation

utt − ∆u = f in (0,∞) × Rn, (5.2)

where f : [0,∞) × Rn → R is given and u : [0,∞) × Rn → R is the unknown. As for the heat
equation, ∆u = ∆xu is the Laplacian with respect to the spatial variable x ∈ Rn and t ≥ 0 denotes
time.

5.1 Motivation

The wave equation is a simplified model for a vibrating string (n = 1), a membrane (n = 2) or an
elastic solid (n = 3). In these cases, the solution u(t, x) denotes the displacement in a point x ∈ Rn

at time t > 0.
Let V ⊂ Rn be an arbitrary open set with C1-boundary ∂V . If the mass density is taken to be

unity, the acceleration within V is given by

d2

dt2

∫
V

u(t, x) dx =

∫
V

utt(t, x) dx,

and the net contact force is
−

∫
∂V

F(t, x) · ν(x) dS (x),

where F is the force acting through the boundary ∂V on V . By Newton’s law the net force equals
mass times acceleration and hence,∫

V
utt(t, x) dx = −

∫
∂V

F(t, x) · ν(x) dS (x).

The Gauß–Green Theorem (Theorem 3.4) now implies that∫
V

utt(t, x) dx = −

∫
V

div F(t, x) dx.
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For elastic bodies, the force F is a function of the displacement gradient ∇u, and for small dis-
placements the linearization

F(t, x) ≈ −a∇u(t, x),

for some constant a > 0, is often appropriate. Hence, we obtain the integral equation∫
V

utt(t, x) dx =

∫
V

a∆u(t, x) dx.

If the function u ∈ C2((0,∞) × V), it is a solution of the wave equation,

utt − a∆u = 0 in (0,∞) × Rn,

since V was arbitrary (see Problem E3.2). If there is an additional volume force Q acting, we
would obtain the inhomogeneous wave equation

utt − a∆u = Q in (0,∞) × Rn.

In both cases, rescaling of the time variable leads to (5.1) and (5.2).

The physical interpretation of the wave equation suggests that we specify two initial condi-
tions, the initial displacement u(0, ·) and the initial velocity ut(0, ·). First, we analyze the initial
value problem for the homogeneous wave equation,

utt − ∆u = 0 in (0,∞) × Rn,

u(0, ·) = u0, ut(0, ·) = u1 on Rn,
(5.3)

where u0 ∈ C2(Rn) and u1 ∈ C1(Rn).

Definition 5.1. A function u ∈ C2([0,∞) × Rn) that satisfies (5.3) is called a classical solution of
the initial value problem for the homogeneous wave equation.

5.2 D’Alembert’s formula (1D)

In this section, we consider the one-dimensional case, i.e. n = 1. Let u be a classical solution of
the IVP (5.3). Note that we can write the wave equation as follows,

0 = utt − uxx = (∂t − ∂x)(∂t + ∂x)u.

Thus, if we define v := ut +ux, then v satisfies the initial value problem for the linear homogeneous
transport equation,

vt(t, x) − vx(t, x) = 0, (t, x) ∈ (0,∞) × R,

v(0, x) = u1(x) + u′0(x), x ∈ R.

By Theorem 2.1, the unique solution is given by

v(t, x) = u1(x + t) + u′0(x + t),
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and hence, u satisfies the initial value problem for the inhomogeneous transport equation

ut(t, x) + ux(t, x) = v(t, x) = u1(x + t) + u′0(x + t), (t, x) ∈ (0,∞) × R,

u(0, x) = u0(x), x ∈ R.

By Theorem 2.3, the unique solution of this initial value problem is

u(t, x) = u0(x − t) +

∫ t

0
u1(x + (s − t) + s) + u′0(x + (s − t) + s)ds

= u0(x − t) +
1
2

(u0(x + t) − u0(x − t)) +

∫ t

0
u1(x + 2s − t)ds.

Finally, the substitution y = x + 2s − t yields D’Alembert’s formula

u(t, x) =
1
2

(u0(x − t) + u0(x + t)) +
1
2

∫ x+t

x−t
u1(y)dy. (5.4)

Remark 5.2. Another way to solve the wave equation is via the characteristic coordinates

ξ = x + t, η = x − t.

Then, the wave equation takes the form
uξη = 0,

and hence, the solutions of this equation are of the form

u(t, x) = φ(ξ) + ψ(η) = φ(x + t) + ψ(x − t).

Using the initial conditions then leads to d’Alembert’s formula (see Problem E1.3).
Conversely, (5.4) can be rewritten in the form u(t, x) = φ(x + t) + ψ(x − t) with suitable

functions φ, ψ ∈ C2(R), and it is easy to see that functions of this form satisfy the wave equation.
This general form shows the simple geometry of the wave equation. The solution is a combination
of two waves, φ(x + t) is a wave traveling to the right with speed 1 and ψ(x− t) is a wave traveling
to the left with speed 1.

Theorem 5.3. Let u0 ∈ C2(R) and u1 ∈ C1(R). Then, d’Alembert’s formula (5.4) defines the
unique classical solution u ∈ C2([0,∞) × R) of the initial value problem for the wave equation
(5.3) in the case n = 1.

Proof. The regularity of u, u ∈ C2([0,∞)×Rn), follows immediately from the regularity of u0 and
u1. That the function u defined by d’Alembert’s formula satisfies the wave equation and attains
the initial values in (5.3) can be verified by direct calculation.

Furthermore, the above derivation shows that any classical solution u of the initial value prob-
lem (5.3) satisfies (5.4), and this formula defines u uniquely. �

Remark 5.4. • We observe that the smoothness of the solution of the wave equation depends
on the smoothness of the initial conditions. This is essentially different from the heat and
Laplace equation, whose solutions are infinitely times continuously differentiable.
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• While the heat equation forces an infinite speed of propagation of disturbances, the wave
equation has a finite speed of propagation of information. In fact, let x ∈ R and t > 0. Then,
u(t, x) is uniquely determined by the values of u1 in the interval [x− t, x+ t] and by the values
of u0 at the endpoints of this interval. This domain of dependence forms a backwards cone
in space-time.

Conversely, if y ∈ R, the values u0(y) and u1(y) influence the value of the solution u(t, x) for
those values of x and t such that y − t ≤ x ≤ y + t. In particular, if x0 ∈ R, r > 0 and u0 and
u1 vanish in the interval |x − x0| ≤ r then u(t, x) = 0 for all t and x such that |x − x0| ≤ r − t.
This domain of dependence forms a forwards cone in space-time.

5.3 Spherical means

We aim to find solution formulas for the wave equation in higher space dimensions n ≥ 2. This can
be done by studying spherical means of the solution, i.e. averages over certain spheres. Namely,
let u be a solution of the initial value problem (5.3), then for x ∈ Rn, t > 0 and r > 0 we define

U(x; t, r) :=
?
∂Br(x)

u(t, y) dS (y).

It turns out that these averages as functions of t and r satisfy a PDE that, for odd space dimensions,
can be converted into a one-dimensional wave equation. Using d’Alembert formula to solve the
one-dimensional wave equation and transforming back to the original variables then leads to a
solution formula for the wave equation in higher odd dimensions.

Using the transformation formula, we can rewrite the spherical means as

U(x; t, r) =

?
∂Br(0)

u(t, x + z) dS (z) =
1
ωn

∫
∂B1(0)

u(t, x + rz) dS (z),

and by setting
U(x; t, r) := U(x; t,−r)

we get an extension for all r ∈ R. Note that whenever the function u is of class Ck, k ∈ N, then
for x ∈ Rn, the extended spherical means U(x; ·) are of class Ck as well with respect to t and r.
Similarly, we define the (extended) spherical means for the initial data u0 and u1 by

U0(x; r) :=
1
ωn

∫
∂B1(0)

u0(x + ry) dS (y),

U1(x; r) :=
1
ωn

∫
∂B1(0)

u1(x + ry) dS (y),

59



r ∈ R. We remark that the solution u can be recovered from the spherical means U by taking the
limit r → 0,

u(t, x) = lim
r→0

U(x; t, r) = U(x; t, 0).

As in the proof of Theorem 3.6 (mean value formulas), we conclude that for r > 0

Ur(x; t, r) =
1

|∂Br(x)|

∫
Br(x)

∆u(t, y) dy =
1

|∂Br(0)|

∫
Br(0)

∆xu(t, x + y) dy.

Since |∂Br(0)| =
(

r
ρ

)n−1
|∂Bρ(0)|, the right hand side can be expressed in terms of U, namely,

Ur(x; t, r) =

∫ r

0

(
r
ρ

)1−n

|∂Bρ(0)|

∫
∂Bρ(0)

∆xu(t, x + y) dS (y) dρ

= r1−n∆x

∫ r

0
ρn−1U(x; t, ρ) dρ.

Multiplying this equation by rn−1 and taking the derivative with respect to r we obtain

∂r(rn−1Ur) = rn−1∆xU.

Thus, for r > 0 the spherical means satisfy Darboux’s equation

Urr +
n − 1

r
Ur = ∆xU.

On the other hand, u is a solution of the wave equation utt − ∆u = 0, and hence, we obtain

∆xU(x; t, r) = ∆x
1

|∂Br(0)|

∫
∂Br(0)

u(t, x + y) dS (y)

=
1

|∂Br(0)|

∫
∂Br(0)

∆xu(t, x + y) dS (y)

=
1

|∂Br(0)|

∫
∂Br(0)

utt(t, x + y) dS (y) = Utt(x; t, r).

That is, U satisfies the initial value problem

Utt(x; t, r) − Urr(x; t, r) −
n − 1

r
Ur(x; t, r) = 0 in (0,∞) × (0,∞),

U(x; 0, ·) = U0(x, ·), Ut(x; 0, ·) = U1(x, ·) on (0,∞).

By definition, our extension of U is an even function in r and hence,

Ur(x; t,−r) = −Ur(x; t, r),

Urr(x; t,−r) = Urr(x; t, r).

Therefore, the PDE for U holds for all r , 0, and we obtain the following result.
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Theorem 5.5. Let u be a classical solution of the initial value problem (5.3). Then for all x ∈ Rn

the spherical means U(x; ·, ·) satisfy the Euler–Poisson–Darboux equation

Utt(x; t, r) − Urr(x; t, r) −
n − 1

r
Ur(x; t, r) = 0, t ∈ (0,∞), r ∈ R,

and the initial data

U(x; 0, r) = U0(x; r), Ut(x; 0, r) = U1(x; r), r ∈ R.

Proof. That the spherical means satisfy the Euler–Poisson–Darboux equation was shown above.
Moreover, we note that for x ∈ Rn and t ≥ 0 the function h(r) := U(x; t, r) satisfies h ∈ C2(R).
Since h is even, the derivative h′ is odd, and hence, h′(0) = 0. By L’Hospital’s rule we conclude
that the limit

lim
r→0

h′(r)
r

exists and therefore, the Euler–Poisson–Darboux equation can be considered for all r ∈ R. �

5.4 Kirchhoff’s formula (3D)

For spatial dimension n = 3 the Euler–Poisson–Darboux equation is of the form

Utt(x; t, r) − Urr(x; t, r) −
2
r

Ur(x; t, r) = 0, t ∈ (0,∞), r ∈ R. (5.5)

We can transform this PDE into a one-dimensional wave equation which can be solved using
d’Alembert’s formula.

Theorem 5.6. Let u be a classical solution of the initial value problem (5.3) in space dimension
three, i.e. n = 3. Then, for all x ∈ R3 the function

Ũ(x; t, r) := rU(x; t, r), t > 0, r ∈ R,

where U denotes the spherical mean, is a classical solution of the initial value problem for the
one-dimensional wave equation

Ũtt(x; t, r) − Ũrr(x; t, r) = 0, t ∈ (0,∞), r ∈ R, (5.6)

Ũ(x; 0, r) = rU0(x; r), Ũt(x; 0, r) = rU1(x; r), r ∈ R.

Moreover, if u0 ∈ C3(R3) and u1 ∈ C2(R3), then u is given by Kirchhoff’s formula

u(t, x) = Ũr(x; t, 0) =
1

4πt2

∫
∂Bt(x)

(u0(y) + ∇u0(y) · (y − x) + tu1(y)) dS (y), (5.7)

t ≥ 0, x ∈ R3.

Proof. Differentiating Ũ we observe that

Ũtt = rUtt, Ũr = rUr + U, Ũrr = 2Ur + rUrr.
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Since U satisfies the Euler–Poisson–Darboux equation (5.5), we conclude that

Ũtt − Ũrr = r
(
Utt −

2
r

Ur − Urr

)
= 0 in (0,∞) × R.

Furthermore, we observe that Ũ ∈ C2([0,∞) × R). That Ũ satisfies the stated initial conditions
directly follows from the definition of Ũ and the initial conditions for U. Hence, Ũ is a classical
solution of the initial value problem (5.6) and by applying d’Alembert’s formula we obtain

Ũ(x; t, r) =
1
2

((r − t)U0(x; r − t) + (r + t)U0(x; , r + t)) +
1
2

∫ r+t

r−t
yU1(x; y) dy.

Moreover, taking the derivative with respect to r and evaluating it in r = 0 it follows that

Ũr(x; t, 0) = 0Ur(x; t, 0) + U(x; t, 0) = u(t, x)

and thus,

u(t, x) = Ũr(x; t, 0)

=
1
2

(
U0(x;−t) + U0(x; t) − t(U′0(x;−t) − U′0(x; t)) + t(U1(x; t) + U1(x;−t))

)
.

To differentiate the last term we used the Leibniz rule. Since U0 and U1 are even in r, it follows
that

u(t, x) = U0(x; t) + tU′0(x; t) + tU1(x; t).

Finally, we observe that

U′0(x; t) =
1

|∂B1(0)|

∫
∂B1(0)

∇u0(x + ty) · y dS (y)

=
1

|∂Bt(x)|

∫
∂Bt(x)

∇u0(z) ·
z − x

t
dS (z),

and since |∂Bt(x)| = 4πt2, we obtain Kirchhoff’s formula

u(t, x) =
1

4πt2

∫
∂Bt(x)

(u0(y) + ∇u0(y) · (y − x) + tu1(y)) dS (y). �

Remark 5.7. This method can be generalized for arbitrary odd space dimensions. In fact, for
n = 2k + 1, k ∈ N, the Euler–Poisson–Darboux equation in Theorem 5.5 can be reduced to the
wave equation in one space dimension via the function

Ũ(x; t, r) :=
(

1
r ∂r

)k−1
(r2k−1U(x; t, r)).

For details, see e.g. [4].

We have shown that every classical solution of (5.3) satisfies Kirchhoff’s formula. We now
prove the existence of classical solutions of the initial value problem by verifying that Kirchhoff’s
formula indeed provides a classical solution.
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Theorem 5.8. Let n = 2k + 1, k ∈ N, and u0 ∈ Ck+2(Rn), u1 ∈ Ck+1(Rn). Then the initial value
problem for the wave equation (5.3) has a unique classical solution u ∈ C2([0,∞) × Rn).

For n = 3 it is given by Kirchhoff’s formula (5.7). Moreover, u(t, x), t > 0 and x ∈ R3, only
depends on the initial data on ∂Bt(x).

Proof. We only prove the theorem for n = 3, for the general case we refer to [4].
We show that Kirchhoff’s formula provides a classical solution. We can rewrite the formula as

u(t, x) =
1

|∂B1(0)|

∫
∂B1(0)

u0(x + ty) + t∇u0(x + ty) · y + tu1(x + ty) dS (y)

=
1

|∂B1(0)|

∫
∂B1(0)

d
dt

(tu0(x + ty)) + tu1(x + ty) dS (y).
(5.8)

Due to the regularity of the initial data, the integrand is twice continuously differentiable with
respect to t, x and y and ∂B1(0) is compact. Therefore, we can interchange differentiation and
integration and the right hand side is in C2([0,∞) × Rn).

Let us consider the case u0 ≡ 0 first. Then, (5.7) can be written as

u(t, x) =
t

|∂B1(0)|

∫
∂B1(0)

u1(x + ty) dS (y) = tU1(x; t).

One the one hand, this implies that

∆u(t, x) =
t

|∂Bt(0)|

∫
∂Bt(0)

∆u1(x + y) dy.

On the other hand, differentiating with respect to t we obtain

ut = (tU1)t = U1 + t(U1)t, utt = (tU1)tt = 2(U1)t + t(U1)tt.

As previously observed for the spherical means (see the proof of Theorem 3.6 and the derivation
of the Euler-Poisson-Darboux equation), it follows that

(U1)t(x; t) =
1

|∂Bt(0)|

∫
Bt(0)

∆u1(x + y) dy.

Moreover, note that |∂Bt(0)| = t2|∂B1(0)| which implies that d
dt

1
|∂Bt(0)| = − 2

t|∂Bt(0)| . Consequently,
we have

(U1)tt(x; t) = −
2
t

(U1)t(x; t) +
1

|∂Bt(0)|

∫
∂Bt(0)

∆u1(x + y) dS (y),

and we conclude that

utt = 2(U1)t + t(U1)tt =
t

|∂Bt(0)|

∫
∂Bt(0)

∆u1(x + y) dS (y) = ∆u(t, x).

For the general case that u0 . 0 we note that also the term involving u0 in Kirchhoff’s formula
satisfies the wave equation. Indeed, if we replace u1 by u0 in the arguments above, it follows that
the function

v(t, x) =
1

|∂B1(0)|

∫
∂B1(0)

tu0(x + ty) dS (y) = tU0(x; t)
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solves the wave equation as well. Moreover, v is three times continuously differentiable and there-
fore, vt also satisfies the wave equation. Finally, we observe that

vt(t, x) =
1

|∂B1(0)|

∫
∂B1(0)

d
dt

(tu0(x + ty)) dS (y)

which is the first term in the formula (5.8).
It remains to show that the function u given by (5.7) satisfies the initial conditions. To this end

we observe that by (5.8), u(0, x) = u0(x) and

ut(0, x) = (U1 + t(U1)t)(0, x) = u1(x).

The statement concerning the dependence of the solution on the initial data directly follows
from Kirchhoff’s formula (5.7). �

Remark 5.9. If we compare Kirchhoff’s formula with d’Alembert’s formula we observe that the
latter does not involve derivatives of the initial data. Hence, the solution of the wave equation at
t > 0 for n > 1 may be less regular than the initial data.

5.5 Poisson’s formula (2D)

For even dimensions a reduction of the Euler–Poisson–Darboux equation to a one-dimensional
wave equation is not possible. Instead, we consider the initial value problem for n = 2 as a problem
in three space dimensions. More precisely, assuming that u ∈ C2([0,∞)×R2) is a solution of (5.3)
for n = 2 let

ū(t, x, x3) := u(t, x), (t, x, x3) ∈ [0,∞) × R2 × R.

Then, ū satisfies the initial value problem

ūtt − ∆ū = 0 in (0,∞) × R3,

ū(0, ·) = ū0, ūt(0, ·) = ū1 on R3,

where ū0(x, x3) := u0(x) and ū1(x, x3) := u0(x), x ∈ R2, x3 ∈ R. We can now apply Kirchhoff’s
formula (5.7) and obtain

u(t, x) =
1

4πt2

∫
∂B3

t (x)
(ū0(y) + ∇ū0(y) · (y − x) + tū1(y)) dS (y).

We observe that the integrand does not depend on the third space variable which allows us to
simplify the formula.

To distinguish dimensions we denote by Bk
r(x) a ball in Rk with radius r > 0 around x. Let

w : R3 → R be a continuous function that is independent of y3. Then, using the parametrization

(y1, y2,±γ(y1, y2)) with γ(y1, y2) =

√
r2 − y2

1 − y2
2 for the sphere ∂B3

r (0), it follows that∫
∂B3

r (0)
w(y) dS (y, y3) = 2

∫
B2

r (0)
w(y)

√
1 + |∇γ(y)|2 dy

= 2
∫

B2
r (0)

r√
r2 − |y|2

w(y) dy.
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Thus, for initial data ū0 and ū1 Kirchhoff’s formula yields Poisson’s formula

u(t, x) =
1

4πt2

∫
∂B3

t (x)
(ū0(y) + ∇ū0(y) · (y − x) + tū1(y)) dS (y)

=
1

2πt

∫
B2

t (x)

u0(y) + ∇u0(y) · (y − x) + tu1(y)√
t2 − |y − x|2

dy, (5.9)

for the solution of the initial value problem (5.3) for n = 2.

This approach to first consider and solve the problem in space dimension n = 3 is called the
method of descent.

Remark 5.10. The method of descent can be applied to derive a solution formula for the wave
equation in even space dimensions n = 2k, k ∈ N. Knowing the solution u for odd space dimen-
sions one considers ū(t, x, xn+1) = u(t, x) which is a solution of the (n + 1)-dimensional wave
equation.

We now show that Poission’s formula provides a classical solution of the initial value problem
(5.3) for n = 2, if the initial data is sufficiently regular.

Theorem 5.11. Let n = 2k, k ∈ N, and u0 ∈ Ck+2(Rn), u1 ∈ Ck+1(Rn). Then, the initial value
problem for the wave equation (5.3) has a classical solution u ∈ C2([0,∞) × Rn).

For n = 2 it is given by Poisson’s formula (5.9). Moreover, u(t, x), t > 0, x ∈ R2, only depends
on the initial data in Bt(x).

Proof. We only prove the theorem for n = 2. A proof of the general case can be found in [4].
Poisson’s formula is Kirchhoff’s formula for initial data that are independent of the third space

variable x3. Therefore, by Theorem 5.8 it provides a classical solution for the initial value problem
(5.3) for n = 2.

The statement concerning the dependence of solutions on the initial data directly follows from
Poisson’s formula (5.9). �

The set of points in [0,∞) × Rn that determine the value u(t, x), t > 0, x ∈ Rn, is called the
domain of dependence and forms a cone. If we change the initial conditions outside of this region,
the value u(t, x) will not change. Similarly, for x0 ∈ R

n the domain of influence consists of all
points in [0,∞) × Rn that are influenced by the values of the initial data in x0. This set forms an
inverted cone.

Remark 5.12. The existence theorems (Theorems 5.8 and 5.11) and D’Alembert’s formula in
dimension one reveal two important properties of the wave equation.

• In dimensions n ≥ 2 the solution can be less regular than the initial data. This is caused
by a focusing effect, i.e. irregularities in u0 may focus at a later time and cause u to be less
regular. This is essentially different from solutions of the heat equation that are C∞ for t > 0
if the initial data is bounded and continuous.

• The wave equation exhibits a finite speed of propagation, i.e. the value of the solution u(t, x)
depends only on the values of u0 and u1 within the set Bt(x). In contrast, the solution of the
heat equation depends on the initial data u0 in the whole space Rn.
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Huygen’s principle: In dimension n = 3 Kirchhoff’s formula shows that the initial data in a
given point x ∈ R3 only affect the solution on the boundary ∂C = {(t, y) : t > 0, |y − x| = t} of the
cone C = {(t, y) : t > 0, |y − x| < t}. That is, a disturbance in the point x propagates along a sharp
wave front.

On the other hand, in dimension n = 2 Poission’s formula shows that the initial data in a given
point x ∈ Rn affect the solution in the whole set C. That is, a disturbance in the point x continues
to have an effect even after the leading edge of the wavefront has passed.

5.6 Inhomogeneous initial value problems

We now consider the initial value problem for the inhomogeneous wave equation. First, we derive
a solution for vanishing initial data,

utt − ∆u = f in (0,∞) × Rn,

u(0, ·) = 0 ut(0, ·) = 0 on Rn,
(5.10)

where f : [0,∞) × Rn → R is given.
As previously done for the heat equation we apply Duhamel’s principle. To this end we define

u(t, x) =

∫ t

0
û(t, x; s) ds, (5.11)

where û(t, ·, ·), s ≥ 0, is the solution of the homogeneous initial value problem

ûtt(·, ·; s) − ∆û(·, ·; s) = 0 in (s,∞) × Rn,

û(s, ·; s) = 0, ût(s, ·; s) = f (s, ·) on Rn.
(5.12)

The solution û(t, ·, ·) is given by Theorems 5.8 and 5.11.

For a ∈ R we denote by bac the greatest integer less than or equal to a.

Theorem 5.13. Let n ≥ 1 and f ∈ Cb
n
2 c+1([0,∞) × Rn). Then u defined by (5.11) is a classical

solution of the initial value problem (5.10).
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Proof. By Theorems 5.8 and 5.11 it follows that for s ≥ 0 the solution û(·, ·; s) of the initial value
problem (5.12) exists and is in C2([s,∞) × Rn). Consequently, the function u defined by (5.11)
satisfies u ∈ C2([0,∞) × Rn). Furthermore, computing the partial derivatives we observe that

ut(t, x) =

∫ t

0
ût(t, x; s) ds + û(t, x; t) =

∫ t

0
ût(t, x; s) ds,

utt(t, x) =

∫ t

0
ûtt(t, x; s) ds + ût(t, x; t) =

∫ t

0
ûtt(t, x; s) ds + f (t, x),

∆u(t, x) =

∫ t

0
∆û(t, x; s) ds.

Therefore, since û(·, ·; s) satisfies the wave equation, it follows that

utt(t, x) − ∆u(t, x) =

∫ t

0
ûtt(t, x; s) − ∆û(t, x; s) ds + f (t, x) = f (t, x).

Moreover, we observe that u(0, x) = 0 and ut(0, x) = 0 for x ∈ Rn, which shows that the initial
conditions are satisfied. �

An explicit representation formula for the inhomogeneous wave equation in space dimensions
n = 1, 2, 3 can be derived from (5.11) (see Exercises). Finally, we obtain a solution of the inho-
mogeneous wave equation with non-zero initial values by adding the solution of the homogeneous
problem to the solution (5.11).

Corollary 5.14. Let u0 ∈ Cb
n
2 c+2(Rn), u1 ∈ Cb

n
2 c+1(Rn) and f ∈ Cb

n
2 c+1([0,∞) × Rn). Then, there

exists a classical solution of the inhomogeneous initial value problem

utt − ∆u = f in (0,∞) × Rn,

u(0, ·) = u0, ut(0, ·) = u1 on Rn.

Proof. The solution is obtained by adding the solutions of the initial value problems (5.11) and
(5.3). �

5.7 Energy methods

The explicit solution formulas for the wave equation show that with increasing space dimension
n higher and higher regularity assumptions are required for the initial data u0 and u1 in order to
obtain a classical solution. Energy “norms” are an alternative to measure the size and regularity
of solutions. In this section we use energy methods to prove the uniqueness and to examine the
domain of dependence of solutions.

We derive an energy inequality for solutions of the initial value problem

utt − ∆u = f in (0,∞) × Rn,

u(0, ·) = u0, ut(0, ·) = u1 on Rn.
(5.13)

To this end for a given point (t̂, x̂) ∈ (0,∞) × Rn we define the backwards wave cone (domain
of dependence) by

C(t̂, x̂) =
{
(s, x) : 0 ≤ s ≤ t̂, |x − x̂| ≤ t̂ − s

}
,
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and for t ∈ (0, t̂) the cone sections by

C(t; t̂, x̂) =
{
(s, x) : 0 ≤ s ≤ t, |x − x̂| ≤ t̂ − s

}
.

Theorem 5.15. Let u0 ∈ C2(Rn), u1 ∈ C1(Rn) and f ∈ C([0,∞)×Rn). Then, any classical solution
u ∈ C2([0,∞) × Rn) of (5.13) satisfies for all (t̂, x̂) ∈ (0,∞) × Rn and ε > 0 the energy estimate

‖ut(t, ·)‖2L2(Bt̂−t(x̂)) + ‖∇u(t, ·)‖2L2(Bt̂−t(x̂))

≤ eεt
(
‖u1‖

2
L2(Bt̂(x̂)) + ‖∇u0‖

2
L2(Bt̂(x̂)) +

1
ε
‖ f ‖2L2(C(t̂,x̂))

)
,

where t ∈ (0, t̂). If f ≡ 0, then ε = 0 is allowed.

Proof. Let t̂ > 0, x̂ ∈ Rn and ε > 0. To shorten notations we write Bt = Bt̂−t(x̂). Defining the
energy

e(t) =

∫
Bt

(
u2

t (t, ·) + |∇u(t, ·)|2
)
, t > 0,

we observe that

e′(t) =

∫
Bt

(2ut(t, ·)utt(t, ·) + 2∇ut(t, ·) · ∇u(t, ·)) −
∫
∂Bt

(
u2

t (t, ·) + |∇u(t, ·)|2
)

dS ,

since
∫

Bt
g(y)dy =

∫ t̂−t
0

∫
∂Bρ(x̂) g(y)dS (y)dρ for a continuous function g. Using integration by parts

it follows that ∫
Bt

(2ututt + 2∇ut · ∇u) =

∫
Bt

2ut(utt − ∆u) +

∫
∂Bt

2ut∇u · ν dS

=

∫
Bt

2ut f +

∫
∂Bt

2ut∇u · ν dS ,

where we used that u is a solution of the inhomogeneous wave equation (5.13). We further estimate
the right hand side using the inequalities 2ab ≤ a2 + b2 and 2ab ≤ εa2 + b2

ε , a, b ∈ R,∫
Bt

2ut f +

∫
∂Bt

2ut∇u · ν dS ≤ ε‖ut‖
2
L2(Bt)

+
1
ε
‖ f ‖2L2(Bt)

+

∫
∂Bt

(
u2

t + |∇u|2
)

dS .
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Consequently, this estimate implies that

e′(t) ≤ ε‖ut(t, ·)‖2L2(Bt)
+

1
ε
‖ f (t, ·)‖2L2(Bt)

≤ εe(t) +
1
ε
‖ f ‖2L2(Bt)

,

and integrating the inequality from 0 to t we obtain

e(t) ≤ e(0) +
1
ε
‖ f ‖2L2(C(t;t̂,x̂)) + ε

∫ t

0
e(s)ds.

Finally, the energy inequality follows by Gronwall’s lemma applied to the function e. �

An immediate consequence of the energy estimate in Theorem 5.15 is the uniqueness of solu-
tions.

Corollary 5.16. Let u0, u1 and f be as in Theorem 5.15. Then, there exists at most one classical
solution of the initial value problem (5.13).

Proof. Let u and v be two classical solution. Their difference w = u − v satisfies the initial value
problem (5.13) with u0 = u1 = f ≡ 0. Hence, the energy inequality in Theorem 5.15 implies that
wt ≡ ∇w ≡ 0 in C(t̂, x̂) for all t̂ > 0 and x̂ ∈ Rn . Since w(0, ·) ≡ 0, we conclude that w ≡ 0. �

The energy estimate in Theorem 5.15 also provides an alternative proof for the finite speed of
propagation for solutions of the homogeneous wave equation.

Corollary 5.17. Let u0 ∈ C2(Rn), u1 ∈ C1(Rn) and u be a classical solution of the homogeneous
initial value problem (5.3).

If t̂ > 0, x̂ ∈ Rn and u0 ≡ u1 ≡ 0 on Bt̂(x̂), then u ≡ 0 within the cone C(t̂, x̂).

Proof. By the energy inequality for f ≡ 0 and u0 ≡ u1 ≡ 0 in Theorem 5.15 it follows that e(t) = 0
for all 0 ≤ t ≤ t̂. Hence, we conclude that ut ≡ ∇u ≡ 0 on C(t̂, x̂), which implies that u ≡ 0 on
C(t̂, x̂) as u(0, ·) ≡ 0. �

We notice that any disturbance originating outside of Bt̂(x̂) has no effect on the solution within
the cone C(t̂, x̂), and consequently, has a finite speed of propagation. We had already observed
this property based on the representation formulas for solutions in dimensions n = 1, 2, 3. Energy
methods provide a much simpler proof and do not require the knowledge of explicit solution
formulas.

5.8 Exercises

E5.1 An initial value problem

Find the solution of the initial value problem

uxx − 3uxt − 4utt = 0 in (0,∞) × R,

u(0, x) = x2, ut(0, x) = ex, x ∈ R.

Hint: Factor the partial differential operator as done in the lecture for the one-dimensional
wave equation.
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E5.2 Spherical waves

A spherical wave is a solution of the three-dimensional wave equation of the form u(t, r), where
r = |x| is the distance to the origin. In spherical coordinates the wave equation takes the form

utt = urr +
2
r

ur in (0,∞) × (0,∞).

(a) Use the change of variables v = ru and show that v satisfies vtt = vrr. Note that you can
consider the equation for t > 0 and r ∈ R.

(b) Find a solution of the spherical wave equation with the initial conditions u(0, r) = u0(r),
ut(0, r) = u1(r), assuming that u0 and u1 are even functions of r. To this end, first use
d’Alembert’s formula to solve the wave equation for v.

E5.3 Equipartition of the energy

Let u ∈ C2([0,∞) × R) solve the one-dimensional wave equation

utt − uxx = 0 in (0,∞) × R,

u(0, ·) = u0 on {0} × R,

ut(0, ·) = u1 on {0} × R.

Suppose that u0 ∈ C2(R), u1 ∈ C1(R) have compact support. The kinetic energy is

k(t) =
1
2

∫ ∞

−∞

u2
t (t, x) dx

and the potential energy is

p(t) =
1
2

∫ ∞

−∞

u2
x(t, x) dx.

Prove the following:

(a) k(t) + p(t) is constant, that is, the total energy is conserved.

(b) k(t) = p(t) for all large enough times t.

Hint: By d’Alembert’s formula

ut(t, x) = φ′(x + t) − ψ′(x − t),

ux(t, x) = φ′(x + t) + ψ′(x − t),

where φ′ = 1
2 (u′0 + u1) and ψ′ = 1

2 (u′0 − u1).

E5.4 Wave equation in 1D

Consider the initial value problem

utt − uxx = 0 in (0,∞) × R, (5.14)

u = u0, ut = u1 on {0} × R,

where u0 ∈ C2(R) and u1 ∈ C1(R).
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(a) Verify that the function given by d’Alembert’s formula is a classical solution of the initial
value problem (5.14).

(b) Consider the inhomogeneous initial value problem

utt − uxx = f in (0,∞) × R, (5.15)

u = 0, ut = 0 on {0} × R,

where f ∈ C2([0,∞) × R).
A solution can be found by Duhamel’s principle: Show that the unique solution of the
initial-value problem (5.15) is given by

u(t, x) =

∫ t

0
û(t, x; s)ds,

where û solves

ûtt(t, x; s) − ûxx(t, x; s) = 0, t > s, x ∈ R,

û(s, x; s) = 0, ût(s, x; s) = f (s, x), x ∈ R,

for s > 0.

E5.5 Duhamel’s principle (n = 3)

Use Duhamel’s principle together with Kirchhoff’s formula to get an explicit formula for the
solution for the equation

utt − ∆u = f in (0,∞) × R3,

u(0, ·) = 0, ut(0, ·) = 0 on R3,

To obtain a classical solution, which regularity do you need to require for f ?

E5.6 Propagation of singularities

Use d’Alembert’s formula to express the solution of the initial value problem for the wave
equation

utt − uxx = 0 in (0,∞) × R,

u(0, ·) = u0, ut(0, ·) = u1 on R,

where

(a) u1(x) = 0 and

u0(x) =

1 if − 1 ≤ x ≤ 1,
0 else.

(b) u0(x) = 0 and

u1(x) =

1 if − 1 ≤ x ≤ 1,
0 else.
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Plot u(t0, x) for t0 = 0, 1
2 , 1, 2, x ∈ R.

In case (a), where are the discontinuities of u in space-time (t, x) ∈ (0,∞) × R?

In case (b), is u discontinuous? Is the derivative ux discontinuous, and if so, where?

Remark: Note that the function u is not a classical solution of the initial value problem.

E5.7 Wave equation in R3

Let u be a solution of the initial value problem

utt − ∆u = 0 in (0,∞) × R3,

u(0, ·) = u0, ut(0, ·) = u1 on R3.

We assume that the support of the functions u0 ∈ C3(R) and u1 ∈ C2(R) is compact. Use
Kirchhoff’s formula to show that u satisfies

|u(t, x)| ≤
c
t
, for all x ∈ R3, t > 0,

for some constant c > 0.

E5.8 Energy and momentum density

For a solution u(t, x) of the one-dimensional wave equation utt = uxx, the energy density is
defined as e = 1

2 (u2
t + u2

x) and the momentum density as p = utux. Assume that u ∈ C3((0,∞) ×
R).

(a) Show that ∂e
∂t =

∂p
∂x and ∂p

∂t = ∂e
∂x .

(b) Show that both, e(t, x) and p(t, x) also satisfy the wave equation.

E5.9 Separation of variables

Consider the initial-boundary value problem for the wave equation in a bounded one-dimensional
interval,

utt(t, x) − uxx(t, x) = 0 t > 0, x ∈ (0, 2π),

u(t, 0) = u(t, 2π) = 0 t ≥ 0,

u(0, x) = u0(x), ut(0, x) = u1(x) x ∈ (0, 2π),

where u0 =
∑n

k=1
ak√
π

sin( kx
2 ) and u1

∑n
k=1

bk√
π

sin( kx
2 ) or some constants ak, bk ∈ R.

Show that the general solution can be written as

u(t, x) =

n∑
k=1

ak cos
(kt

2
)

+ bk
sin( kt

2 )
k
2

 1
√
π

sin
(kx

2
)
.

To this end use the method of separation of variables, i.e. assume that the solution is of the
form u(t, x) = g(x)h(t) and solve the resulting ODEs for g and h.
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E5.10 Wave equation in bounded domains

Let U ⊂ Rn be open and bounded with C1 boundary ∂U. For T > 0 we define

UT := U × (0,T ], ΓT := UT \ UT .

Consider the initial boundary value problem

utt − ∆u = f in UT ,

u = g on ΓT ,

ut = h on {t = 0} × U,

(5.16)

where the functions f , g and h are twice continuously differentiable. Use energy methods to
prove that there exists at most one classical solution u ∈ C2(UT ) of (5.16).

Hint: For w ∈ C2(UT ) consider the energy

e(t) :=
∫

U
w2

t (t, x)︸  ︷︷  ︸
Ekin

+ |∇w(t, x)|2︸      ︷︷      ︸
Epot

dx, t ∈ [0,T ].

E5.11 Damped vibrating string

Let u describe the displacement from equilibrium of a flexible, elastic, infinite string. If signifi-
cant air resistance r > 0 is present, the vibrating string is modeled by a wave equation with an
additional term proportional to the speed ut,

utt − uxx + rut = 0 in (0,∞) × R.

Let u denote a solution of the damped wave equation and assume that there exists R > 0 such
that u vanishes for |x| ≥ R. Show that the energy

e(t) =

∫ ∞

−∞

u2
t (t, x) + u2

x(t, x)dx

is preserved if r = 0 and decreases in time if r > 0.

E5.12 Maximum principle

Recall the maximum principle for the heat equation (Theorem 4.10). Construct a counterexam-
ple to show that such a result does not hold for the wave equation.
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Chapter 6

Nonlinear First Order PDEs

We analyze general nonlinear PDEs of first order,

F(∇u(x), u(x), x) = 0, x ∈ Ω, (6.1)

u(x) = g(x), x ∈ Γ, (6.2)

where Ω ⊂ Rn is open and Γ ⊂ ∂Ω is a C1-hypersurface in Rn (see Appendix B). Moreover, the
functions F ∈ C1(Rn × R ×Ω) and g ∈ C1(Γ) are given, and u : Ω→ R is the unknown.

To solve the boundary value problem, we apply the method of characteristics, that transforms
the PDE (6.1) into an appropriate system of ODEs. The idea is that for a given x ∈ Ω we aim to
find a curve that connects x with a point γ ∈ Γ and along which we can calculate u.

We had applied this method to solve the linear transport equation in Chapter 2 and generalize
it now for nonlinear equations.

6.1 The method of characteristics

Let Ω ⊂ R2 be open and Γ ⊂ ∂Ω be a regular C1 curve in R2. We consider the linear boundary
value problem

a(x, y) · ∇u(x, y) + b(x, y)u(x, y) = f (x, y), (x, y) ∈ Ω, (6.3)

u(x, y) = g(x, y), (x, y) ∈ Γ, (6.4)
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where a ∈ C1(Ω;R2), b ∈ C1(Ω), f ∈ C1(Ω) and g ∈ C1(Γ). The PDE (6.3) can be written asux

uy

−1

 ·
 a1

a2
−bu + f

 = 0 in Ω.

If u ∈ C1(Ω) is a solution, the graph of u is a two-dimensional surface in R3, and since

ux

uy

−1

 is

normal to the surface, the vector

 a1(x, y)
a2(x, y)

−b(x, y)u(x, y) + f (x, y)

, (x, y) ∈ Ω, lies in the tangent plane to

the graph of u in (x, y, u(x, y)), see the figure below.

Consequently, the system of first order ODEs,

x′(s) = a1(x(s), y(s)),

y′(s) = a2(x(s), y(s)), s > 0,

z′(s) = −b(x(s), y(s))z(s) + f (x(s), y(s)),

(6.5)

where z(s) = u(x(s), y(s)), define spatial curves lying on the graph of the solution u. These are
the characteristic equations and the solutions of these ODEs are called characteristic curves.
We require that the initial data lies on Γ, and since each curve emanates from a different point
γ = (γ1, γ2) ∈ Γ we indicate this dependency by writing xγ, yγ, zγ, and hence, the initial conditions
are

xγ(0) = γ1, yγ(0) = γ2, zγ(0) = g(γ), γ ∈ Γ.

The idea of the method of characteristics is that solving the system of ODEs (6.5), we can
reconstruct the solution u(x, y) of the original PDE for

(x, y) ∈ {(xγ(t), yγ(t)) : γ ∈ Γ, t ∈ [0,T )} =: W,

for some T > 0. This is suitable, if W is a “large set”, i.e. an open neighborhood of Γ in Ω.

Certainly, a necessary condition is that the vector a(γ) is not tangential to Γ in γ, i.e.

a(γ) < TγΓ, γ ∈ Γ,

where TγΓ denotes the tangent space of Γ in γ.
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We notice that the first two equations in (6.5) are independent of the last equation, and the
last equation is a linear ODE for z that we can explicitly solve if x and y are known. This will be
different for quasi-linear and fully non-linear PDEs.

Example 6.1. Let Ω = { (x, y) ∈ R2 : x > 0, y > 0 } and Γ = { (x, y) ∈ R2 : x > 0, y = 0 } ⊂ ∂Ω.
We consider the boundary value problem

xuy(x, y) − yux(x, y) = u(x, y), (x, y) ∈ Ω,

u(x, 0) = g(x), x > 0.

Hence, using the previous notation we have a =

(
−y
x

)
, b = −1 and f = 0, and the system of

characteristic equations is

x′(s) = −y(s),

y′(s) = x(s),

z′(s) = z(s),

with the initial conditions

x(0) = x0 > 0, y(0) = 0, z(0) = g(x0).

We observe that x′′ = −x, y′′ = −y and (x2 + y2)′ = 0. Therefore, the solutions are

x(s) = x0 cos s,

y(s) = x0 sin s,

z(s) = g(x0)es.
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We observe that all vectors that are tangential to the curve Γ are of the form v =

(
c
0

)
, c ∈ R \ {0}.

Moreover, if γ = (x0, 0) ∈ Γ then a(γ) =

(
0
x0

)
. Hence, a(γ) is not tangential to Γ and the condition

a(γ) < TγΓ for all γ ∈ Γ is satisfied.
For a given (x, y) ∈ Ω there exist s ≥ 0, x0 > 0 such that (x(s), y(s)) = (x0 cos s, x0 sin s).

Indeed, x0 =
√

x2 + y2 and s = arctan x
y . Hence, we obtain

u(x, y) = u(x(s), y(s)) = z(s) = g(x0)es = g
(√

x2 + y2
)
earctan( y

x ).

6.2 Quasilinear equations

Before we consider general nonlinear equations we analyze boundary value problems for quasi-
linear equations,

a(x, u(x)) · ∇u(x) = b(x, u(x)), x ∈ Ω, (6.6)

u(x) = g(x), x ∈ Γ, (6.7)

where Ω ⊂ Rn is open, Γ ⊂ ∂Ω is a C1-hypersurface in Rn, a ∈ C1(Ω × R;Rn), b ∈ C1(Ω × R) and
g ∈ C1(Γ).

As we observed for linear problems, we can rewrite the PDE (6.6) as(
a(x, u(x))
b(x, u(x))

)
·

(
∇u(x)
−1

)
= 0, x ∈ Ω.

If u ∈ C1(Ω), then the graph of u is a hypersurface in Rn+1. Moreover, since
(
∇u(x)
−1

)
, x ∈ Ω, is

normal to the graph of u in (x, u(x)), we observe that u is a solution of (6.6) if and only if the vector(
a(x, u(x))
b(x, u(x))

)
is in the tangent space of the graph of u in (x, u(x)), for all x ∈ Ω. This motivates the

following definitions.

Definition 6.2. The characteristic equations for the quasilinear PDE (6.6) are

x′(s) = a(x(s), z(s)),

z′(s) = b(x(s), z(s)),
(6.8)

with the initial conditions

x(0) = γ, z(0) = g(γ), γ ∈ Γ.

Moreover, the boundary data (6.7) is non-characteristic if

a(γ, g(γ)) < TγΓ ∀γ ∈ Γ.

The solutions of the characteristic equations are curves that lie on the graph of the solution u
of (6.6). In particular, z(s) = u(x(s)), determines the values of the solution along the curve x(s).
Different from linear and semilinear equations, the system of ODEs for x is not decoupled from
the ODE for z.
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Example 6.3. Let Ω = {(x, y) ∈ R2 : y > 0} and Γ = {(x, y) ∈ R2 : y = 0} = ∂Ω. We consider
the semilinear boundary value problem

ux(x, y) + uy(x, y) = u2(x, y) (x, y) ∈ Ω,

u(x, 0) = g(x) x ∈ R.

Hence, we have a =

(
1
1

)
and b = z2, and the system of characteristic equations is

x′(s) = 1,

y′(s) = 1,

z′(s) = z2(s),

with the initial conditions

x(0) = x0 ∈ R, y(0) = 0, z(0) = g(x0).

We obtain x(s) = x0 + s and y(s) = s, for s ≥ 0. The last equation implies that dz
z2 = ds and hence,

− 1
z = s − 1

z(0) , which leads to

z(s) =
1

−s + 1
z(0)

=
z(0)

1 − sz(0)
=

g(x0)
1 − sg(x0)

, s ≥ 0,

as long as the denominator is nonzero.

We observe that the vectors that are tangential to Γ are of the form
(
c
0

)
, c , 0. Since a2 = 1 , 0,

the boundary data is non-charateristic. For given (x, y) ∈ Ω there exist s ≥ 0 and x0 ∈ R such that
(x, y) = (x(s), y(s)) = (x0 + s, s). Namely, x0 = x − y and s = y, and hence we obtain

u(x, y) = u(x(s), y(s)) = z(s) =
g(x0)

1 − sg(x0)
=

g(x − y)
1 − yg(x − y)

,

if 1 − yg(x − y) , 0.

The system of characteristic equations and ODE theory can be used to prove the local existence
and uniqueness of solutions for the boundary value problem (6.6)–(6.7).

Theorem 6.4. If the boundary data is non-characteristic, then there exists a neighborhood U of Γ

in Ω such that there exists a unique solution u ∈ C1(U) of the boundary value problem (6.6)–(6.7)
in U.

Proof. The theorem is a special case of the general result for nonlinear equations (Theorem 6.12).
The proof is given in the following section. �

6.3 Fully nonlinear equations

We now consider boundary value problems for fully nonlinear equations (6.1)–(6.2),

F(∇u(x), u(x), x) = 0, x ∈ Ω,

u(x) = g(x), x ∈ Γ,
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where Ω ⊂ Rn is open and Γ ⊂ ∂Ω is a C1-hypersurface. Moreover, we assume that F ∈ C1(Rn ×

R ×Ω) and g ∈ C1(Γ).

From now on, we will use the notation

(p, z, x) 7→ F(p, z, x), p ∈ Rn, z ∈ R, x ∈ Ω,

i.e. p substitutes the gradient of u and z substitutes u.

6.3.1 Characteristic equations

We search for suitable characteristics. Suppose that u ∈ C2(Ω) is a solution of (6.1) and x : I → Ω

is a curve in Ω, where I ⊂ R is an interval. Let

z(s) := u(x(s)), (6.9)

p(s) := ∇u(x(s)), (6.10)

s ∈ I. We aim to derive a system of ODEs for x, z and p that allows to compute the solution u.
Differentiating pi = uxi(x) we obtain

p′i(s) =

n∑
j=1

uxi x j(x(s))x′j(s), i = 1, . . . , n. (6.11)

To eliminate the second order derivatives of u we differentiate the PDE (6.1) with respect to xi,

n∑
j=1

Fp j(∇u, u, ·)ux j xi + Fz(∇u, u, ·)uxi + Fxi(∇u, u, ·) = 0. (6.12)

Consequently, we set

x′j(s) = Fp j(p(s), z(s), x(s)), j = 1, . . . , n, (6.13)

and inserting x = x(s) and (6.9)–(6.10) in (6.12) we obtain

n∑
j=1

Fp j(p(s), z(s), x(s))uxi x j(x(s)) + Fz(p(s), z(s), x(s))pi(s)

+ Fxi(p(s), z(s), x(s)) = 0.

Finally, using this relation and (6.13) in the ODE (6.11) it follows that

p′i(s) = −Fxi(p(s), z(s), x(s)) − Fz(p(s), z(s), x(s))pi(s).

Moreover, by (6.9) and (6.10) together with (6.13) we obtain

z′(s) =

n∑
j=1

ux j(x(s))x′j(s) =

n∑
j=1

p j(s)Fp j(p(s), z(s), x(s)).
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Hence, for the PDE (6.1) we obtain the system of characteristic equations

x′(s) = ∇pF(p(s), z(s), x(s)), (6.14)

z′(s) = ∇pF(p(s), z(s), x(s)) · p(s), (6.15)

p′(s) = −∇xF(p(s), z(s), x(s)) − Fz(p(s), z(s), x(s))p(s). (6.16)

This systems consists of 2n+1 first order ODEs. The functions p, z and x are called characteristics.
The curve x is the projection of the full characterstics (p, z, x) onto the set Ω ⊂ Rn and is therefore
sometimes called the projected characteristic.

The following theorem summarizes our observations.

Theorem 6.5. Let Ω ⊂ Rn be open and u ∈ C2(Ω) be a solution of (6.1) in Ω. If x is a solution of
(6.14), where z = u ◦ x and p = ∇u ◦ x, then z solves (6.15) and p solves (6.16) for those s such
that x(s) ∈ Ω.

Remark 6.6. • In order to solve the system of characteristic equations (6.14)–(6.16) we still
need to specify suitable initial values.

• If u is a C2-solution of (6.1), then (6.14)–(6.16) is an explicit system of ODEs for x, z = u◦ x
and p = ∇u◦x. The key step in the derivation was to set x′ = ∇pF such that the second order
derivatives of u dropped out. This avoids introducing ODEs for the derivatives of second
and higher order of u.

• In case of quasi-linear equations, the ODE for p is not required and the characteristic equa-
tions reduce to a system of ODEs for x and z.

Example 6.7. Let Ω = {(x, y) ∈ R2 : x > 0} and Γ = {(x, y) ∈ R2 : x = 0} = ∂Ω. We consider
the fully nonlinear boundary value problem

ux(x, y)uy(x, y) = u(x, y) (x, y) ∈ Ω,

u(0, y) = y2, y ∈ R.

Thus, F(p, z, x) = p1 p2 − z, and the system of characteristic equations (6.14)–(6.16) is

x′(s) = p2(s),

y′(s) = p1(s),

z′(s) = 2p1(s)p2(s),

p′1(s) = p1(s),

p′2(s) = p2(s).

The solutions of the first two equations are

p1(s) = p1(0)es, p2(s) = p2(0)es,

and inserting these functions in the system of ODEs we obtain

x(s) = p2(0)(es − 1),

y(s) = y0 + p1(0)(es − 1),

z(s) = y2
0 + p1(0)p2(0)(e2s − 1),
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where we used the initial values x(0) = 0, y(0) = y0 ∈ R and z(0) = y2
0.

We still need to determine suitable initial values for p. Since u(x, y) = y2 on Γ, we have
p2(0) = uy(0, y) = 2y0. Furthermore, the PDE uxuy = u implies that p1(0)p2(0) = z(0) = y2

0, and
consequently, p1(0) =

y0
2 .

Finally, for a given (x, y) ∈ Ω, x , 4y, there exist s ≥ 0 and y0 ∈ R such that

(x, y) = (x(s), y(s)) =

(
2y0(es − 1),

y0

2
(es + 1)

)
.

In fact, we find

y0 =
4y − x

4
, es =

x + 4y
4y − x

,

and therefore, the solution of the boundary value problem is given by

u(x, y) = u(x(s), y(s)) = z(s) = (y0)2e2s =
(x + 4y)2

16
.

This example illustrates that we need to specify suitable initial data for the system of charac-
teristics (6.14)–(6.16), which we will do in the next subsection.

6.3.2 Boundary data

From now on we make the simplifying assumption that

Γ ⊂ {x ∈ Rn : xn = 0} (6.17)

and Γ ⊂ Rn−1 is open. We will comment on the general case in Section 6.3.4.

We look for suitable initial conditions

p(0) = p0, z(0) = z0, x(0) = x0,

for the system of characteristic equations (6.14)–(6.16) that allow to construct a solution of the
boundary value problem (6.1)–(6.2). Since x(0) = x0 ∈ Γ, a necessary condition is that

z0 = z(0) = u(x(0)) = u(x0) = g(x0). (6.18)

To determine p(0) = p0 we note that u(x1, . . . , xn−1, 0) = g(x1, . . . , xn−1) near x0, and differentiat-
ing with respect to xi we obtain

pi(0) = uxi(x0) = gxi(x0), i = 1, . . . , n − 1.

In addition, the PDE (6.1) should hold and hence, we obtain the following n equations that deter-
mine p0 = ((p0)1, . . . , (p0)n),

(p0)i = gxi(x0), i = 1, . . . , n − 1,

F(p0, z0, x0) = 0.
(6.19)

Definition 6.8. The conditions (6.18)–(6.19) are called compatibility conditions, and a triple
(p0, z0, x0) ∈ R2n+1 satisfying (6.18)–(6.19) is called admissible.
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We remark that z0 is uniquely determined by g and the choice of x0 ∈ Γ, but a vector p0
fulfilling (6.19) may not exist or may not be unique.

Now suppose that (p0, z0, x0) is an admissible triple. Then x(0) = x0, z(0) = z0 and p(0) = p0
are possible initial values for the system of characteristics (6.14)–(6.16). We need to solve this
system also for nearby initial values y ∈ Γ, and consequently, must ensure that the compatibility
conditions remain valid. Hence, we also want to solve (6.14)–(6.16) with initial values

p(0) = q(y), z(0) = g(y), x(0) = y,

where y ∈ Γ is close to x0 and q = (q1, . . . , qn) is a function such that

q(x0) = p0 (6.20)

and (q(y), g(y), y) is admissible, i.e.

qi(y) = gxi(y), i = 1, . . . , n − 1,

F(q(y), g(y), y) = 0.
(6.21)

Lemma 6.9. Let F ∈ C2(Rn × R ×Ω) and (p0, z0, x0) be an admissible triple. If

Fpn(p0, z0, x0) , 0, (6.22)

then there exists a unique C2-solution q of (6.21) for all y ∈ Γ near x0.

Proof. Consider the function G : Rn × Rn → Rn, where

Gi(p, y) = pi − gxi(y), i = 1, . . . , n − 1,

Gn(p, y) = F(p, g(y), y).

Since (p0, z0, x0) is an admissible triple, G(p0, x0) = 0. Moreover, we obtain

DpG(p0, x0) =



1 0 . . . 0
0 1 0 . . . 0
...

. . .
...

0 . . . 0 1 0
Fp1(p0, z0, x0) . . . . . . . . . Fpn(p0, z0, x0)


,

and consequently, det DpG(p0, x0) = Fpn(p0, z0, x0) , 0 by assumption (6.22). The Implicit
Function Theorem now implies that the equation

G(p, y) = 0

is uniquely solvable for y near x0, i.e. there exists a function q such that p = q(y). Moreover, q is
twice continuously differentiable if F ∈ C2C2(Rn × R ×Ω). �

Definition 6.10. An admissible triple (p0, z0, x0) that satisfies (6.22) is called non-characteristic.
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6.3.3 Local solution

We want to solve the system of characteristic equations (6.14)–(6.16) for non-characteristic initial
data (p0, z0, x0), where x0 ∈ Γ ⊂ {x ∈ Rn : xn = 0}, and values y ∈ Γ close to x0. By Lemma 6.9,
there exists a function q such that p0 = q(x0) and (q(y), g(y), y) is admissible for all y ∈ Γ close to
x0. Let y = (y1, . . . , yn−1) ∈ Γ (to simplify notations we omit here the zero in y = (y1, . . . , yn−1, 0))
and let

p(s) = p(y, s) = p(y1, . . . , yn−1, s),

z(s) = z(y, s) = z(y1, . . . , yn−1, s),

x(s) = x(y, s) = x(y1, . . . , yn−1, s),

(6.23)

denote the solutions of the characteristic equations with initial data

p(0) = q(y), z(0) = g(y), x(0) = y. (6.24)

Lemma 6.11 (Local invertibility). Let (p0, z0, x0) be admissible, F ∈ C3(Rn × R × Ω) and let
Fpn(p0, z0, x0) , 0. Then, there exists an open interval I containing 0, a neighborhood W of x0 in
Γ ⊂ Rn−1 and a neighborhood V of x0 in Rn such that for x ∈ V there is a unique (y, s) ∈ W × I
with

x = x(y, s).

Moreover, the map x 7→ (y, s) is C2(V; W × I).

Proof. By Lemma 6.9 and since F ∈ C3(Rn ×R×Ω), the function q is C2 and the solutions p, z, x
of the characteristic equations in (6.23) as well. We observe that

x(x0, 0) = x0,

and hence, the claim follows from the Inverse Function Theorem if det Dx(x0, 0) , 0. By (6.23)
and (6.24) we have

x(y, 0) = y,

and thus, we conclude that

∂x j

∂yi
(x0, 0) =

δi j j = 1, . . . , n − 1,
0 j = n,
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for i = 1, . . . , n − 1. The characteristic equations (6.14) furthermore imply that

∂x j

∂s
(x0, 0) = Fp j(p0, z0, x0).

Therefore, we obtain

Dx(x0, 0) =


1 · · · 0 Fp1(p0, z0, x0)
...

. . .
...

...

0 · · · 1
...

0 . . . 0 Fpn(p0, z0, x0)

 ,
and consequently,

det Dx(x0, 0) = Fpn(p0, z0, x0) , 0. �

By Lemma 6.11, for every x ∈ V there exist unique solution y = y(x) and s = s(x) of the
equation

x = x(y, s).

Finally, we define

u(x) := z(y(x), s(x)),

p(x) := p(y(x), s(x)),
(6.25)

for x ∈ V and show that u is indeed a (local) solution of the PDE (6.1).

Theorem 6.12. Let F ∈ C3(Rn × R × Ω), g ∈ C2(Γ) and (p0, z0, x0) be admissible. Moreover, we
assume that Fpn(p0, z0, x0) , 0. Then, u defined in (6.25) is a C2-function and the unique solution
of the initial value problem

F(∇u(x), u(x), x) = 0, x ∈ V,

u(x) = g(x), x ∈ Γ,

with ∇u(x0) = p0.

Proof. Let I and W be as in Lemma 6.11, y ∈ W and let

p(s) = p(y, s), z(s) = z(y, s), x(s) = x(y, s)

denote the solutions of the characteristic equations (6.23) with initial data (6.24).
Step 1. First, we show that F vanishes along the characteristic curves, i.e.

f (y, s) := F(p(y, s), z(y, s), x(y, s)) = 0, s ∈ I. (6.26)

Indeed,
f (y, 0) = F(p(y, 0), z(y, 0), x(y, 0))

(6.24)
= F(q(y), g(y), y)

(6.21)
= 0,
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and

∂ f
∂s

= ∇pF(p, z, x) · p′ + Fz(p, z, x)z′ + ∇xF(p, z, x) · x′

(6.14)−(6.16)
= ∇pF(p, z, x) · (−∇xF(p, z, x) − Fz(p, z, x)p)

+ Fz(p, z, x)p · Fp(p, z, x) + ∇xF(p, z, x) · ∇pF(p, z, x) = 0,

which implies (6.26)
Step 2. By (6.25) and Lemma 6.11 we conclude that

F(p(x), u(x), x) = 0, x ∈ V,

and therefore, it remains to show that p(x) = ∇u(x), x ∈ V . To this end we first prove that

∂z
∂s

(y, s) = p(y, s) ·
∂x
∂s

(y, s), (6.27)

∂z
∂yi

(y, s) = p(y, s) ·
∂x
∂yi

(y, s), i = 1, . . . , n − 1, (6.28)

for y ∈ W and s ∈ I. The first condition follows immediately from the system of characteristics,
more precisely, from (6.15) and (6.14). To show the second equation let

ri(s) :=
∂z
∂yi

(y, s) − p(y, s) ·
∂x
∂yi

(y, s), i = 1, . . . , n − 1.

Then, ri(0) = gxi(y) − qi(y) = 0 by the compatibility conditions (6.20)–(6.21). Moreover, differen-
tiating ri we obtain

r′i =
∂

∂yi

∂z
∂s
−
∂p
∂s
·
∂x
∂yi
− p ·

∂

∂yi

∂x
∂s

(6.27)
=

∂p
∂yi
·
∂x
∂s
−
∂p
∂s
·
∂x
∂yi

(6.14),(6.16)
=

∂p
∂yi
· ∇pF(p, z, x) − (−∇xF(p, z, x) − pFz(p, z, x)) ·

∂x
∂yi

=
∂

∂yi
F(p, z, x) − Fz(p, z, x)

∂z
∂yi

+ Fz(p, z, x)p ·
∂x
∂yi

Step 1
= −Fz(p, z, x)

(
∂z
∂yi
− p ·

∂x
∂yi

)
= −Fz(p, z, x)ri.

Consequently, ri satisfies a linear homogeneous ODE with initial data ri(0) = 0, and we conclude
that ri ≡ 0 in I.

Step 3. We now show that p(x) = ∇u(x), x ∈ V , using the formulas (6.27) and (6.28). Indeed,
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for j = 1, . . . , n, we obtain

∂u
∂x j

(6.25)
=

n−1∑
i=1

∂z
∂yi

∂yi

∂x j
+
∂z
∂s

∂s
∂x j

(6.27),(6.28)
=

n−1∑
i=1

(
p ·

∂x
∂yi

)
∂yi

∂x j
+

(
p ·

∂x
∂s

)
∂s
∂x j

= p ·

n−1∑
i=1

∂x
∂y j

∂yi

∂x j
+
∂x
∂s

∂s
∂x j

 =

n∑
k=1

pk
∂xk

∂x j︸︷︷︸
=δk j

= p j.

Step 4. Uniqueness. Two different solutions u and v with ∇u(x0) = p0 would lead via the
relation

z(y, s) = u(x(y, s)), z̃(y, s) = v(x(y, s)),

to two different solutions of the initial value problem for the characteristic equations which is
impossible by Lemma 6.11. In fact, for every x ∈ V there exists a unique y ∈ W and s ∈ I such
that x(y, s) = x. �

Remark 6.13. In the quasilinear case, the compatibility conditions are a system of n linear alreg-
braic equations, and the non-characteristic condition ensures that there exists a unique solution.

For fully nonlinear equations the compatibility conditions are a system of nonlinear equations
and the non-characteristic condition is not sufficient to ensure that a solution exists.

6.3.4 Straightening the boundary

Theorems 6.4 and 6.12 can be extended for more general domains Ω ⊂ Rn. Let Ω ⊂ Rn be open
and bounded and ∂Ω be of class C1, i.e. for every x0 ∈ ∂Ω there is an r > 0 and a C1-function
ϕ : Rn−1 → R such that (possibly after relabeling and reorienting the coordinate axes)

Ω ∩ Br(x0) = {x ∈ Br(x0) : xn > ϕ(x1, . . . , xn−1)}.

Via a change of coordinates near x0 we can flatten out the boundary ∂Ω near x0.

In fact, let x0 ∈ ∂Ω and consider r and ϕ as above. We define

Φi(x) := xi, for i = 1, . . . , n − 1,

Φn(x) := xn − ϕ(x1, . . . , xn−1),
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and write y = Φ(x). Similarly, we define

Ψi(y) := yi, for i = 1, . . . , n − 1,

Ψn(y) := yn + ϕ(y1, . . . , yn−1),

and write x = Ψ(y). Then, Ψ = Φ−1 and the mapping x→ Φ(x) = y straightens out ∂Ω near x0.
We reformulate the initial value problem (6.1)–(6.2) accordingly. Suppose that u : Ω→ R is a

solution and define V := Φ(Ω) and v(y) := u(Ψ(y)) for y ∈ V . Then,

u(x) = v(Φ(x)), x ∈ Ω,

and
∇u(x) = ∇v( Φ(x)︸︷︷︸

=y

)DΦ(x).

Consequently, we obtain

0 = F(∇u(x), u(x), x) = F(∇v(y)DΦ(Ψ(y)), v(Ψ(y)),Ψ(y)),

and this equation is of the form

G(∇v(y), v(y), y) = 0, y ∈ V.

Moreover, with h(y) := g(Ψ(y)), in the new coordinates the initial value problem (6.1)–(6.2) takes
the form

G(∇v, v, ·) = 0 in V,

v = h on Φ(Γ).

This system is of the same form as the original one, but with a “flat” boundary near x0. This shows
that our simplifying assumption (6.17), Γ ⊂ {x ∈ Rn : xn = 0}, is not restrictive, and the theory
can be extended to more general C1-hypersurfaces Γ.

6.4 Exercises

E6.1 Solvability of first order PDEs

(a) Let Ω ⊂ Rn be open and let u ∈ C1(Ω) be a solution of the quasilinear PDE

a(x, u(x)) · ∇u(x) = 0, x ∈ Ω, (6.29)

where a ∈ C1(Ω × R;Rn).
Show that the solution u is constant along every characteristic curve.

(b) Assume that Ω is open and bounded with C1-boundary ∂Ω and a(x, u(x)) = a(x), i.e.
the equation (6.29) is linear. Moreover, suppose that the trajectories of the characteristic
curves are as in the figure below,
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i.e. a vanishes only in one point x0 ∈ Ω, a(x) , 0 in Ω \ {x0} and a(x) ·ν(x) < 0 for x ∈ ∂Ω.
Does there exist a solution u ∈ C1(Ω) of the boundary value problem

a(x) · ∇u(x) = 0, x ∈ Ω, (6.30)

u(x) = g(x), x ∈ ∂Ω ?

(c) Now, assume that the trajectories look as follows:

Can then a solution u ∈ C1(Ω) of the boundary value problem (6.30) exist?

E6.2 Semilinear equation

Consider the semilinear boundary value problem

x2ux(x, y) − y2uy(x, y) = u2(x, y), (x, y) ∈ R2,

u = 1 on Γ,

where Γ = {(x, y) ∈ R2 | x > 0, y = 2x}.
Verify that the boundary value problem is locally solvable and use the method of characteristics
to find an explicit solution.

E6.3 Method of characteristics

Use the method of characteristics to find a solution of the following boundary value problems
(the shape of the boundary and the boundary values are determined by the second equation):

(a)

(y + u(x, y))ux(x, y) + yuy(x, y) = x − y

u(x, 1) = 1 + x
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(b)

uux + uy = 1

u(x, x) =
1
2

x

(c)

xux(x, y, z) + 2yuy(x, y, z) + uz(x, y, z) = 3u(x, y, z)

u(x, y, 0) = g(x, y)

Are the PDEs linear, semilinear or quasilinear? Do there exist unique local solutions of the
boundary value problems? Do the solutions exist globally?

E6.4 Quasilinear equation

Consider the initial value problem

2u(x, y)ux(x, y) − yuy(x, y) = 2x,

u(1 + s2, s) = 1 − s2, s ∈ R.

Argue that there exists a unique solution in a sufficiently small neighborhood of {(1 + s2, s)|s ∈
R} ⊂ R2 and compute the solution explicitly.

E6.5 Burger’s equation

Consider the inviscid Burgers’ equation

∂u
∂t

+ u
∂u
∂x

= 0 in (0,∞) × R,

u(0, ·) = gε in R,

where the initial data gε ∈ C∞(R), ε > 0, is smooth and such that

gε(x) =


1 x ≤ 0,
1 − x [ε, 1 − ε],
0 x ≥ 1.

(a) Check whether the initial data is non-characteristic and solve the characteristic equations.
Hint: Recall Problem 1, Sheet 12.

(b) Sketch the characteristic curves in the x-t–plane. For simplicity restrict yourself to the
limiting case ε→ 0. Pay special attention to what happens at the lines {x = 1} and {t = 1}.

(c) Use part (b) to deduce a formula for the solution for times 0 ≤ t < 1 in the limit ε → 0.
Which peculiarity occurs when t approaches 1?

E6.6 Fully nonlinear equation
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Use the method of characteristics to solve the initial value problem

u +
1
2

(ux)2 + uy = 0 in R × (−∞, 0),

u(x, 0) = −x2, x ∈ R,

where x ∈ R, y ≤ 0. Verify that the boundary data is non-characteristic and use the compatibility
conditions.

E6.7 Conservation laws

Consider in Ω = (0,∞) × Rn the equation

G(Du, ut, u, x, t) = ut + div F(u) = ut + F′(u) · ∇u = 0

with the initial condition
u = g on Γ = {0} × Rn.

(a) Show that the non-characteristic condition is satisfied on Γ.

(b) Compute the system of characteristics and show that the projected characteristic is a
straight line along with the solution is constant.

(c) Derive an implicit formula for the solution u.

E6.8 Fully nonlinear equation

Consider the initial value problem

utux = 0 in (0,∞) × R,

u(0, x) = 1, x ∈ R,
(6.31)

where t ∈ (0,∞).

(a) Does the local existence theorem apply? Explicitly check the non-characteristic and com-
patibility conditions.

(b) Find all solutions of the initial value problem (6.31).
Hint: Prove by contradiction that ux ≡ 0. To this end consider a shift of the initial surface
Γ = {0} × R and solve the corresponding characteristic equations.

E6.9 Eikonal equation

The eikonal equation arises in problems of wave propagation and provides the foundation of
geometrical optics. In R2 it takes the form

u2
x + u2

y = n2 in R2,

where level sets of the solution correspond to wave fronts and n is the refraction index of the
medium.

Find the solution of the eikonal equation for a medium with constant refraction index n = n0 ∈ R

and initial condition u(x, 2x) = 1.
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Appendix A

Integration Theory in Rn

In this appendix we summarize basic facts from integration theory that are used throughout the
course. For further details and proofs we refer to [3] and [5].

If we write U ⊂ Rn then either U = Rn or U ( Rn. Similarly, if U,V ⊂ Rn, we write U ⊂ V if

U = V or U ( V. We denote by
◦

U the interior of U, by U the closure of U and by ∂U the boundary
of U.

A.1 Riemann integrability

We call D an n-dimensional rectangle parallel to the coordinate axis if it is a compact subset of
the form

D =
{
x ∈ Rn : a j ≤ x j ≤ b j, j = 1, . . . , n

}
,

where a j ≤ b j, a j, b j ∈ R. The n-dimensional volume of D is

|D| =
n∏

j=1

(b j − a j).

Note that |D| = 0 if there exists j such that a j = b j.
A partition of D is a finite collection D = {Di : i ∈ I}, I an index set, of n-dimensional

rectangles Di such that

D =
⋃
i∈I

Di, Di ∩ D j = ∅ or |Di ∩ D j| = 0 if i , j.

Throughout this section we assume that D is an n-dimensional rectangle and f : D → R is a
bounded function.

Definition A.1. For every partition D = {Di : i ∈ I} of D we define the lower sum and upper
sum of f by

S ( f ,D) =
∑
i∈I

sup
x∈Di

f (x)|Di|, S ( f ,D) = inf
i∈I

sup
x∈Di

f (x)|Di|.

The function f is (Riemann-)integrable over D if

sup
D partition of D

S ( f ,D) = inf
D partition of D

S ( f ,D).
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The common value is called the integral of f over D and denoted by∫
D

f (x)dx.

We recall a special case of Fubini’s Theorem that allows to interchange the order of integration.

Theorem A.2. Let f : Rn+m → R be a continuous function with compact support. Then, for every
y ∈ Rn, the integral

∫
Rm f (y, z)dz is well-defined and Riemann integrable on Rn, and for every

z ∈ Rm, the integral
∫
Rn f (y, z)dy is well-defined and Riemann integrable on Rm. Moreover, we

have ∫
Rn+m

f (x)dx =

∫
Rm

∫
Rn

f (y, z)dydz =

∫
Rn

∫
Rm

f (y, z)dzdy.

For A ⊂ Rn we denote by χA the characteristic function of A, i.e. χA(x) = 1 if x ∈ A and
χA(x) = 0 if x < A.

Definition A.3. A bounded subset A ⊂ D is called (Jordan-)measurable if χA is integrable over
D. Then its (Jordan-)volume is given by

|A| :=
∫

D
χA(x)dx =

∫
A

dx.

We call a function f : D→ R (Riemann-)integrable over A if fχA is integrable and write∫
A

f (x)dx :=
∫

D
f (x)χA(x)dx.

Definition A.4. Let U ⊂ Rn be open. We call a function f : U → R absolutely (Riemann-)
integrable in U if for every x ∈ U there exists a rectangle D ⊂ U such that x ∈

◦

D and f is
(Riemann-) integrable over D, and

sup
K∈J(U)

∫
K
| f (x)|dx < ∞,

where J(U) denotes the set of compact and Jordan measurable subsets of U.

The following theorem provides a criterion for the absolute integrability of a continuous func-
tion over an open set.

Theorem A.5. Let U ⊂ Rn be open and f : U → R be continuous. Suppose that (K j) j∈N is a

family of subset such that K j is compact and Jordan measurable, K j ⊂
◦

K j+1 for all j ∈ N and⋃
j∈N K j = U. Then the following statements are equivalent:

(i) The function f is absolutely Riemann integrable over U.

(ii)
(∫

K j
| f (x)|dx

)
j∈N

is a bounded sequence in R.

If one of the statements holds then
(∫

K j
| f (x)|dx

)
j∈N

is monotonically nondecreasing and

lim
j→∞

∫
K j

f (x)dx


j∈N

=

∫
U

f (x)dx.
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A.2 Interchanging differentiation and integration

Theorem A.6. Let U ⊂ Rn and V ⊂ Rm be open and f : U × V → R be a function with the
following properties.

(a) For every x ∈ U, the function t 7→ f (x, t) is absolutely Riemann integrable over V.

(b) The total derivative D1 f with respect to the variable x ∈ U exists and, for every x ∈ U, the
mapping t 7→ D1 f (x, t) is absolutely Riemann integrable over V (here, integrability is meant
component-wise).

(c) There exists a function g : V → [0,∞) that is bounded on V and absolutely Riemann
integrable over V, such that ‖D1 f (x, t)‖ ≤ g(t) for all (x, t) ∈ U × V.

Then the function F : U → R, defined by F(x) =
∫

V f (x, t)dt, is differentiable and

D1F(x) =

∫
V

D1 f (x, t)dt, x ∈ U.

Example A.7. The function f (x) = e−|x|
2

is continuous on R2. Let r > 0. Using polar coordinates
we observe that ∫

Br(0)
=

∫ π

−π

∫ r

0
re−r2

drdϕ = π(1 − e−r2
) ≤ π.

Let K ⊂ R2 be a compact, Jordan measurable set. Then, there exists r > 0 such that K ⊂ Br(0).
Moreover, since f is positive, we have∫

K
f (x)dx ≤

∫
Br(0)

f (x)dx ≤ π,

which shows that f is absolutely integrable over R2.
By Theorem A.2 we conclude that(∫ r

−r
e−s2

ds
)2

=

(∫ r

−r
e−x2

1dx1

) (∫ r

−r
e−x2

2dx2

)
=

∫
Cr

e−(x2
1+x2

2)dx,

where Cr = [−r, r] × [−r, r]. We observe that Br(0) ⊂ Cr ⊂ Br
√

2(0) and therefore,

π(1 − e−r2
) ≤

∫
Cr

f (x)dx ≤ π(1 − e−2r2
).

Finally, by Theorem A.5 we conclude that(∫
R

e−s2
ds

)2

= lim
r→∞

∫
Cr

f (x)dx = π,

which shows that ∫
R

e−s2
ds =

√
π.
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A.3 Change of variables

Let U and V be open subsets of Rn. Recall that a function Ψ : V → U is a C1-diffeomorphism if it
is bijective and if Ψ and Ψ−1 are continuously differentiable.

Theorem A.8. Let U and V be open subsets of Rn and Ψ : V → U be a C1-diffeomorphism. Let
f : U → R be a bounded function with compact support. Then f is integrable over U if and only
if the function y 7→ ( f ◦ Ψ)(y)|detDΨ(y)| is integrable over V. In this case we have∫

Ψ(V)
f (x)dx =

∫
U

f (x)dx =

∫
V

( f ◦ Ψ)(y)|detDΨ(y)|dy.

An important special case of this theorem are polar and spherical coordinates.

Polar coordinates

Let U = R2 \ ([0,∞) × {0}) and V = [0,∞) × (0, 2π). Then Ψ2 : V → U, defined by

Ψ2(r, φ) = (r cos φ, r sin φ), (r, φ) ∈ V,

is a C1-diffeomorphism. We observe that

detDΨ2(r, φ) = det
(
cos φ −r sin φ
sin φ r cos φ

)
= r > 0.

Hence, for a continuous function f with compact support in U we obtain∫
R2

f (x)dx =

∫
V

( f ◦ Ψ2)(y)|detDΨ2(y)|dy =

∫ ∞

0
r
∫ π

−π
f (r cos φ, r sin φ)dφ dr

=

∫ π

−π

∫ ∞

0
r f (r cos φ, r sin φ)dr dφ.

Spherical coordinates

Let U = R3 \ {x ∈ R3 : x1 > 0, x2 = 0} and V = [0,∞) × (0, 2π) × (0, π). Then Ψ3 : V → U,
defined by

Ψ3(r, φ, θ) = (r cos φ sin θ, r sin φ sin θ, r cos θ), (r, φ, θ) ∈ V,

is a C1-diffeomorphism. To shorten notations we write Ψ3 = Ψ̃ ◦ ψ, where

ψ(r, φ, θ) = (r sin θ, φ, r cos θ) = (ρ, φ, z),

Ψ̃(ρ, φ, z) = (Ψ2(ρ, φ), z).

The chain rule then implies that DΨ3 = DΨ̃ ◦ Dψ and consequently,

|detDΨ3(r, φ, θ)| = |detDΨ̃(ρ, φ, z)| · |detDψ(r, φ, θ)| = ρr = r2 sin θ.

We can generalize this to arbitrary dimensions n ∈ N. Let U = Rn \ {x ∈ R3 : x1 ≥ 0, x2 = 0}
and V = (0,∞) × (0, 2π) × (0, π)n−2. Then Ψn : V → U, defined by

Ψn(r, φ, θ1, . . . , θn−2) = x, (A.1)
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where

x1 = r cos φ sin θ1 sin θ2 sin θ3 · · · sin θn−2,

x2 = r sin φ sin θ1 sin θ2 sin θ3 · · · sin θn−2,

x3 = r cos θ1 sin θ2 sin θ3 · · · sin θn−2,

x4 = r cos θ2 sin θ3 · · · sin θn−2,

...

xn−1 = r cos θn−3 sin θn−2,

xn = r cos θn−2,

is a C1-diffeomorphism. Moreover, by induction one can show that

|detDΨn(r, φ, θ1, . . . , θn−2)| = rn−1 sin θ1(sin θ2)2 · · · (sin θn−2)n−2. (A.2)

A.4 Surface integrals

We shortly discuss integration over k-dimensional surfaces in Rn. Recall that the Gram determi-
nant G(v1, . . . , vk) of m vectors v1, . . . , vk ∈ R

n is defined as

G(v1, . . . , vk) = det


v1 · v1 · · · v1 · vk
...

...

vk · v1 · · · vk · vk

 ,
where · denotes the inner product in Rn. Moreover, the volume of a parallelepiped spanned by
v1, . . . , vk equals

√
G(v1, . . . , vk).

Let now U ⊂ Rm be open and ϕ ∈ C1(U;Rn) be an immersion, i.e.

rank(Dϕ(x)) = m ∀x ∈ U.

This condition is equivalent to the linear independence of the vectors D1ϕ(x), . . . ,Dmϕ(x) and
hence, these vectors span an m-dimensional subspace in Rn. Therefore, M := ϕ(U) is called an
m-dimensional surface in Rn.

The area of S is given by

|M| =
∫

U

√
G(Dϕ(x))dx.

The intuition is that the surface consists of infinitely many spanned parallelepipeds spanned by
the vectors D1ϕ(x), . . . ,Dmϕ(x) and we integrate over all of them to determine the area. For a
continuous function f : Rn → R the integral of f over M is defined as∫

M
f (x)dS (x) :=

∫
U

f (ϕ(x))
√

G(Dϕ(x))dx.

Formally, one often writes dS (x) =
√

G(Dϕ(x))dx, and dS (x) is called the m-dimensional surface
element.
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Spheres and balls

As an example, we calculate the volume of the unit ball B1(0) in Rn and the surface area of the
unit sphere ∂B1(0) in Rn. We first observe that if m = n and A := (v1, . . . , vn) for given vectors
v1, . . . , vn ∈ R

n, then
G(v1, . . . , vn) = det(A2) = (det(A))2.

We can parametrize the unit sphere in Rn using (A.1), ϕ := Ψn
∣∣∣
r=1 : (0, 2π) × (0, π)n−2 → Rn,

y = (φ, θ1, . . . , θn−2) 7→ Ψn(1, φ, θ1, . . . , θn−2).

First, we observe that (A.1) implies that

∂rΨn · ∂rΨn = 1, ∂rΨn · ∂φΨn = 0 = ∂rΨn · ∂θiΨn = 1, i = 1, . . . , n − 2,

and hence, it follows that

G(DΨn)
∣∣∣
r=1 = det


1 0 · · · 0
0
... Dϕ
0

 = det(Dϕ) = G(Dϕ).

Consequently, using (A.2) we obtain

dS (y) =
√

G(Dϕ(y))dy =
√

G(DΨn)
∣∣∣
r=1 =

√
(detDΨn)2

∣∣∣
r=1 = |detDΨn|

∣∣∣
r=1

= sin θ1(sin θ2)2 · · · (sin θn−2)n−2dφdθ1 . . . dθn−2.

We can now compute the surface area of the unit ball,

|∂B1(0)| =
∫
∂B1(0)

dS (y) =

∫ π

0
· · ·

∫ π

0

∫ 2π

0
sin θ1(sin θ2)2 · · · (sin θn−2)n−2dφdθ1 . . . dθn−2 = ωn,

and one can show that

ωn = n
π

n
2

Γ
(

n
2 + 1

) ,
where Γ denotes the Gamma-function.

As a consequence, we can calculate the volume of the unit ball. To this end we observe that
◦

B1(0) = Ψn((0, 1) × (0, 2π) × (0, π)n−2) =: Ψn(U) and hence, the change of variables formula
implies that

|B1(0)| =
◦

B1(0) =

∫
◦

B1(0)
dx =

∫
U
|detDΨn(x)|dx

=

∫ 1

0

∫ π

0
· · ·

∫ π

0

∫ 2π

0
rn−1 sin θ1(sin θ2)2 · · · (sin θn−2)n−2dφdθ1 . . . dθn−2

=

∫ 1

0
rn−1

∫
∂B1(0)

dS (y)dr =
rn

n
ωn

∣∣∣1
0 =

ωn

n
.

96



Finally, we aim to integrate continuous functions over general balls Br(x) and spheres ∂Br(x)
for some x ∈ Rn and r > 0. For the sphere ∂Br(x) we use the parametrization

y = (φ, θ1, . . . , θn−2) 7→ x + rΨn(1, φ, θ1, . . . .θn−2)

Analogously as above, we obtain

dS (y) = |detDΨn|
∣∣∣
r = rn−1 sin θ1(sin θ2)2 · · · (sin θn−2)n−2dφdθ1 . . . dθn−2,

and we conclude that∫
∂Br(x)

u(y)dS (y)

=

∫ π

0
· · ·

∫ π

0

∫ 2π

0
u(x + rΨn(1, φ, θ1, . . . , θn−2))rn−1 sin θ1(sin θ2)2 · · · (sin θn−2)n−2dφdθ1 . . . dθn−2

=

∫
∂B1(0)

u(x + ry)dS (y).

Similarly, for a general ball we write
◦

Br(x) = x + Ψn
(
(0, r) × (0, 2π) × (0, π)n−2

)
=: Ψ(U),

where Ψ(r, φ, θ1, . . . , θn−2) = x + Ψn(r, φ, θ1, . . . , θn−2). Hence, we obtain∫
Br(x)

u(x)dx =

∫
U

u(Ψ(r, φ, θ1, . . . , θn−2))|detDΨ|dsdφdθ1 . . . dθn−2

=

∫ r

0
sn−1

∫
∂B1(0)

u(x + sy)dS (y)ds =

∫ r

0

∫
∂Bs(x)

u(y)dS (y)ds.

If we now choose u ≡ 1, we obtain the surface area of spheres and the volume of balls in Rn

with radius r > 0,

|∂Br(x)| = rn−1|∂B1(0)| = rn−1ωn,

|Br(x)| =
∫ r

0
sn−1ωnds =

rnωn

n
.

A.5 Integral theorems and integral formulas

In this section we recall Gauß’ divergence theorem and several of its consequences that are fre-
quently used throughout the course.

Theorem A.9. Let U ⊂ Rn be open and bounded with C1-boundary ∂U and lying on one side of
∂U. Moreover, let ν : ∂U → Rn be the outer unit normal vector and F ∈ C1(U;R). Then we have∫

U
divF(x)dx =

∫
∂U

F(x) · νdS (x),

where · denotes the inner product.

97



Applying the divergence theorem to a function F of the form F = (0, . . . , 0, u, 0 . . . , 0) where
the i-th component of F is given by a function u ∈ C1(U;R) we obtain the Gauß-Green theorem∫

U
uxi(x)dx =

∫
∂U

u(x)νi(x)dS (x).

Moreover, applying this formula with u replaced by the product uv of two functions u, v ∈ C1(U;R)
we obtain the integration by parts formula∫

U
uxi(x)v(x)dx = −

∫
U

u(x)vxi(x)dx +

∫
∂U

u(x)v(x)νi(x)dS (x).
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Appendix B

Submanifolds and tangent spaces

In this section we recall the notions of submanifolds in Rn, hypersurfaces and tangent spaces that
are used in Chapter 6. For further details and proofs we refer to [3] and [5].

Definition B.1. Let ∅ , V ⊂ Rn be a subset, k ∈ N ∪ {∞} and 0 ≤ d ≤ n. Then V is a Ck

submanifold in Rn of dimension d, if for every x ∈ V there exists an open neighborhood U of x
in Rn such that V ∩ U is the graph of a Ck mapping ϕ : W → Rn−d, where W ⊂ Rd is open, i.e.

V ∩ U =
{
(w, ϕ(w)) ∈ Rn : w ∈ W

}
.

If d = 1 we call V a Ck curve, if d = 2, we call it a Ck surface, and if d = n − 1 then we call
V a Ck hypersurface in Rn.

Definition B.2. Let ∅ , W ⊂ Rd be open, d ≤ n and k ∈ N∪{∞}. Then a Ck mapping, ψ : D→ Rn,
k ∈ N, is called Ck immersion if

rankDψ(w) = k ∀w ∈ W.

The following theorem provides a characterization of submanifolds in Rn.

Theorem B.3. A subset ∅ , V ⊂ Rn is a Ck submanifold in Rn of dimension d if and only if for
every v ∈ V there exists a relatively open neighborhood U ⊂ V of v, an open subset W ⊂ Rd

and a Ck immersion ψ : W → Rd such that ψ : D → U is a homeomorphism. In this case,
ψ−1 : ψ(D)→ D is called a local chart of V.

Next, we recall the notion of tangent space. Let I ⊂ R be an interval and γ : I → Rn be a
differentiable mapping. Then, γ is called a differentiable curve in Rn and the vector γ′(t) ∈ Rn is
the tangent vector of γ at the point γ(t), t ∈ I.

Definition B.4. Let V be a C1 submanifold of Rn of dimension d and v ∈ V . A vector w ∈ Rn

is called tangential vector of V in v if there exists a differentiable curve γ : I → Rn, I ⊂ R, and
t0 ∈ I such that

γ(I) ⊂ V ∀t ∈ I, γ(t0) = v, γ′(t0) = w.

The set of all tangential vectors of V at a point v ∈ V is the tangent space TvV of V at v.
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