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Preface

These lecture notes are written for the course “An Introduction to Partial Differential Equations”
(NWI-WBO046B) at Radboud University, Nijmegen. They provide an introduction to the vast re-
search field of partial differential equations. Further details and many additional topics can be
found in the monographs by L. Evans [4], W. Craig [1]], Y. Pinchover and J. Rubinstein [9], W.A.
Strauss [[10]] and A. Vasy [12]]. To follow the course a solid understanding of analysis, calculus,
linear algebra and ordinary differential equations is required.

We introduce and analyze basic types of partial differential equations. Solution methods, rep-
resentation formulas for solutions and properties of solutions for classical linear equations of sec-
ond order (Laplace, heat and wave equation) are discussed. Moreover, we study nonlinear partial
differential equations of first order via the method of characteristics. We are mainly concerned
with the existence, uniqueness and regularity of solutions. This involves the use of fundamental
solutions, maximum principles and energy methods.

Except for particularly simple cases, partial differential equations cannot be solved explicitly.
In the analysis of partial differential equations, we are therefore mainly concerned with proving
the well-posedness and investigating the qualitative behavior of solutions. Different from ordinary
differential equations, there is no general theory for partial differential equations. Typically, each
particular type of partial differential equation requires an individual theory and specific methods
to study the existence and properties of solutions.
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Chapter 1

Introduction

Fartial differential equations (PDEs) are used to model a wide range of phenomena, in particular,
in physics, engineering, chemistry, biology and finance. For instance, they are fundamental in
the modern understanding of sound, fluid dynamics, elasticity, general relativity and quantum
mechanics. They also play an important role in “pure mathematics”, in particular, in geometry and
analysis.

1.1 Basic definitions

A PDE is an equation for an unknown function u of several variables that involves partial deriva-
tives of u. The order of the highest partial derivative is called the order of the PDE.

Definition 1.1. Let Q c R” be open, n > 2 and k € N. An expression of the form
F(D*u(x), D" 'u(x), ... ,u(x),x) =0,  xeQ, (1.1)
is called a k-th order PDE, where
F:R'xR" x.. . xR'XRxQ—>R

is a given function and u: Q — R is the unknown.
A classical solution of the PDE is a k-times continuously differentiable function u#: Q — R
that satisfies (I.1).

Here, we use the following notation to denote the partial derivatives. Let Q c R", n > 2, be
open, x = (x1,...,x,) € Qand u : Q — R be a scalar function.

o The partial derivatives of u at x, are defined as

0 + he;) —
My = lim MOERE) ZU) e Timit exists),
8)6,' h—0 h
fori = 1,...,n, where ¢; denotes the i-th standard basis vector of R”. Commonly used are

also the notations 3—5 = O0U = Uy,



o The partial derivatives of second order are defined as

u 0 (ou
= — | — if th ist),
P, (x) P ( axj) (x) (if they exist)
fori,j=1,...,n. Commonly used are also the notations %{;}j = Uyy; = 6)26[x/u.

e Multiindex notation: Let @ = (@1, ... ) € Njj be a multiindex. Its order is defined as

n
ol := > @,
i=1

and the corresponding |a|-th order partial derivatives of u are
|

Du(x) = ———-
2 oxy"' - oxy"

(x) = 0% - - % u(x) (if they exist).

Moreover, for k € N we denote by
Dru(x) := (D%u(x) : |a| = k)
the collection of all k-th order partial derivatives of u in x.

As usual, we write D'u(x) as a column vector,

8x1 u(x)
D'u(x) = Du(x) = : = Vu(x) (gradient),
6x,,u(x)
and D%u(x) as a matrix,
O qux) ... 8%, u(x)
D*u(x) = : : (Hessian matrix).
Binxlu(x) . (')inxnu(x)

Depending on the structure of the function F in (1.I) we classify PDEs as follows.

Definition 1.2. e The PDE (I.I) is linear if the function F is linear in u and its derivatives,
i.e. if it is of the form

2 40D u(x) + f(x) = 0.

<k

for given functions a, and f. Moreover, if f = 0, the PDE is called homogeneous and
otherwise inhomogeneous.

e The PDE (I.1) is semilinear if it is linear in the highest order derivatives, i.e. if it is of the
form

Z a0 (X)Du(x) + ag(DF ' u(x), . .., u(x), x) = 0,
la|=k

for given functions a, and ay.



e The PDE (L.I) is quasilinear if it is of the form

Z ao(D*ux), ..., u(x), )Du(x) + ag(D* 'u(x), ..., u(x), x) = 0,
la|=k

for given functions a, and ay.

e The PDE (L)) is fully nonlinear if F is a nonlinear function of the highest order derivatives
Dku.

For linear homogeneous equations the superposition principle holds, i.e. if u and v are both
solutions of the PDE, then the same applies to au + Sv, for all @, € R. More generally, if
ui,...,uy, are solutions, then so is any linear combination of these solutions.

Typically, the difficulty of the analysis of a PDE increases with the degree of nonlinearity.

Instead of scalar equations we can also look at systems of PDEs which arise in many appli-
cations. Here, several unknown functions uy, ..., u,, m > 2, have to be determined that satisfy a
system of m PDEs.

Definition 1.3. An expression of the form (L.1) is called a k-th order system of PDEs if m > 2
and
F:R™ R 5 X R™ X R X Q — R,
where u = (uy,...,u,): Q@ — R™is the unknown. Here, D%u = (D%uy,...,D%u,,) and DFu =
{D% : |a| < k}.
A classical solution of the system of PDEs is a k-times continuously differentiable function
u: Q — R™ that satisfies (I.1).

1.2 Examples

We briefly discuss several examples of PDEs that illustrate the variety of applications in different
fields.
Minimal surface equation
Let Q ¢ R? be open and bounded and u : Q@ — R. Then, the surface area of the graph of u is
given by
Jw) = f 1 + [Vu(x)|? dx.
Q

A classical problem in the Calculus of Variations is the minimal surface problem: Minimize J(u)

subject to prescribed boundary conditions. That is, among all functions u that satisfy u = g on the

boundary 0Q2, where g is given, find the function such that the surface area of its graph is minimal.
One can show that such a minimizer u satisfies the corresponding Euler—Lagrange equation

V- [L] =0 in Q,
V1 + [Vul?

where - denotes the inner product in R?. This minimal surface equation is a quasilinear PDE of
second order.



The minimal surface problem is also known as the Plateau problem, named after the Belgian
physicist J. A. F. Plateau (1801 - 1883). He conducted experiments with soap films by dipping
wire contours in a solution of soapy water.

Reaction-diffusion equations

Reaction-diffusion equations are widely used to model phenomena in chemistry, physics and
biology. They describe the changes in space and time of concentrations of chemical substances or
densities of populations.

Let I ¢ R be an open interval, U c R" be open and Q = [ X U. Moreover, u : Q — Risa
function of time ¢ € I and the spatial position x € U. A reaction-diffusion equation is of the form

o = dAu + f(u) inlXxU,

where Au = A = 37| uy,, denotes the Laplace operator or Laplacian with respect to x and
d > 0 is the diffusion coefficient. The first term on the right hand side of the equation models the
diffusion (particles or individuals move from regions with high concentrations to regions of low
concentrations) and the given function f : R — R describes local reactions. The reaction-diffusion
equation is a semilinear PDE of second order.

More generally, we can consider reaction diffusion systems,

o = DAu + f(u) inl x U,

where u = (uy, ..., uy), D € R™ is a diagonal matrix with positive coefficients and f : R — R”
a given function. Reaction diffusion systems are used to model, e.g. ecological invasions, the
spread of epidemics, tumor growth or reactions between several different chemical substances.

Korteweg de Vries equation

Let I C R be an open interval, U C R be open and Q = I X U. The Korteweg de Vries equation
Opu(t, x) = u(t, Jux(t, X) + ree(t, x) = 0, (t,x)eIxU,

describes shallow water waves in narrow channels and can predict the formation of solitons, i.e.
wave packets that maintain its shape and travel with a constant speed. The Korteweg de Vries
equation is a semilinear PDE of third order.

The history of the Korteweg de Vries equation goes back to observations and experiments by
J. S. Russell in 1834. He discovered the phenomenon of solitons when observing a boat that was
first drawn along a narrow channel and then suddenly stopped. The mass of water which the boat
had put in motion accumulated and rolled forward, forming a rounded, well-defined heap. Russel
followed this heap on his horse for several kilometers and noticed that it seemed to travel along
the channel without changing its form or speed.

Navier-Stokes equations
Let I c R be an open interval. The Navier—Stokes equations
Ou+w-VYu=vAu—-Vp+ f in I xR",
V-u=0,

describe the motion of an incompressible fluid in R”, where v > 0 is the viscosity of the fluid and
f : R" — R" the external force. The fluid is described by its velocity field u : I x R* — R" and

4



pressure p : I XR" — R. The Navier—Stokes equations are a system of semilinear PDEs of second
order.

They play an important role in physical and engineering applications. They are used to model,
e.g. the weather, ocean currents, blood flow in arteries and air flow around a wing, and enormous
computational efforts are invested to solve them numerically.

They are also of great mathematical interest and their analysis is challenging. For the system
in R? (and f = 0) the global existence of smooth solutions is still an open problem. It is one of the
seven Millennium Prize Problems that were stated by the Clay Mathematics Institute in 2000. For
a correct solution to any of the problems an award of one million US dollars is offered.

1.3 Type classification of linear second order PDEs

In this course, we mainly focus on linear, scalar PDEs of second order, i.e. equations of the form

n

Z aij (XU, (X) + Z ai(X)ux (x) + ag(X)u(x) = f(x), xeqQ, (1.2)
i=1

ij=1

that we now further classify. By Schwarz’ theorem, the Hessian matrix is symmetric if u is twice
continuously differentiable and hence, we may assume that

a,-j=aj,- Vi,j:1,...,n.
Then, the coeflicients a;; form a symmetric matrix

an(x) ... ap(x)
AW =| + . |, xeq

an1(x) ... am(x)
A useful type classification of the PDE (1.2) is based on the definiteness properties of A.

Definition 1.4. We call the linear second order PDE (1.2)) elliptic if A(x) is positive or negative
definite, parabolic if A(x) is singular (det A(x) = 0) and hyperbolic if one eigenvalue of A(x) has
a different sign than all the others (where eigenvalues are counted according to their multiplicity).

The following three examples are the archetypes of linear second order PDEs. We will study
them in detail in the following chapters. Each equation requires a different approach and has
essentially different properties.

Example 1.5. e Laplace equation
Au=tty o+ ...+ Uy, =0 in Q,

where Q C R" is open, u : Q — R and A is the Laplace operator or Laplacian.
We have A(x) = Id € R™" and thus, the PDE is elliptic.



o Heat equation
ur—Au=90 nQ=IxU,

where ¢ € I denotes time, x € U space, I C R is an open interval and U C R”" is open.
Moreover, u : I X U — R and Au = A,u is the Laplace operator with respect to x.

0 O

0 - d)’ Id € R™", and thus, the PDE is parabolic.

We obtain a singular matrix A(z, x) = (

e Wave equation
Uy —Au=0 nQ=I7IxU,

where we use the same notation as for the heat equation.

In this case, we have A(t, x) = (1 0

0 —I d)’ and thus, the PDE hyperbolic.

1.4 Strategies for studying PDEs

A classical solution of a k-th order PDE is a k-times continuously differentiable function that
satisfies the PDE pointwise in Q c R". Often, a PDE possesses families of solutions, but the
solution u is uniquely determined if values of u and/or its derivatives are specified on the boundary
0Q of Q. A PDE together with these boundary conditions is called a boundary-value problem.
In applications that involve time we typically consider sets if the form Q = I X U, I = (ty, ;) C
R,U c R" open. In this special case, the values of u and/or its derivatives specified at the initial
time fg are called initial conditions and the values specified on dU boundary conditions.

In the ideal case, we find explicit solutions for a given PDE, but this is only possible in few
particularly simple cases. This classical approach to PDEs that dominated the 19th century was
to develop methods for deriving explicit representation formulas for solutions. If such formulas
cannot be found, we aim at proving the existence and studying qualitative properties of solutions.
In particular, we say that a problem is well-posed if the following properties hold:

e There exists a solution.
e The solution is unique.

e The solution depends continuously on the given data (e.g. parameters, boundary or initial
values).

The continuous dependence on data is particularly important in applications, since the solution
should change only slightly if we vary the data specifying the problem only slightly.

For many PDEs the notion of classical solutions is too restrictive and such solutions do not
exist. However, one can weaken the concept of solutions and consider so-called weak solutions
or distributional solutions which are less regular and satisfy the PDE in a generalized sense. For
instance, PDEs describing the occurrence of shocks (essentially, the appearance of discontinuities
in the derivatives), require this notion. Moreover, even if classical solutions exist, it is often easier
to prove the existence of weak solutions first and then to show that the solutions have a higher
regularity and are, in fact, classical solutions of the problem.



Different from ordinary differential equations there is no general theory or approach for the
solvability of PDEs, except for very few specific cases. Typically, research in PDEs focuses on
various, particular PDEs that are relevant in applications and on the development of specific meth-
ods for the problem at hand.

In general, the difficulty of the analysis of a PDE increases with the degree of nonlinearity,
with the order k of the PDE, with the number of variables n and with the number of equations m
(i.e. systems of PDEs are typically more difficult to analyze than scalar equations).

In this course we mainly focus on simple prototypes for linear second order PDEs (Laplace,
Poisson, heat and wave equation) and on nonlinear PDEs of first order. Typical questions we
address are the following:

e existence and uniqueness of solutions
e qualitative properties of solutions (e.g. regularity, dependence on data)
e explicit representation formulas for solutions

e limitations of classical solutions

1.5 Further notation

We denote the inner product in R” by -, the norm by | - | and b7 and AT denote the transpose of
a vector b € R” or a matrix A € R™. Moreover, we denote the open ball with center x € R” and
radius r > 0by B, (x) ={y e R" : |x—y| < r}.

When we write Q C R”, then Q = R"” or Q C R”. For Q c R”, we denote by Q its closure and
by 0L its boundary. We introduce the following spaces of continuous functions on 2
C(Q) = {u: Q - R : ucontinuous},
C(Q) = {u € C(Q) : u can be continuously extended to Q).

Analogously, the spaces C(2; R™) and C (5; R™), m > 2, are defined for vector-valued functions
u:Q - R

Let now Q C R” be open. For k € N we denote the space of k-times continuously differential-
ble functions by

Ck(Q) ={u: Q — R : uis k-times continuously differentiable},
Ck(ﬁ) ={uce Ck(Q) : D% can be continuously extended to dQ for |a| < k}.

Analogously, we define the spaces CK(Q;R™) and C"(ﬁ; R™), m > 2, for vector-valued functions
u:Q —R™



1.6 Exercises

El.1 Classification of PDEs

Determine the order and type (linear, semilinear, quasilinear, fully nonlinear) of each of the
following PDEs:

Klein—Gordon equation

Uy + Au = m*u in (0,00) xR", m >0

Burger’s equation
Uy + uuy =0 in (0, 00) X R

Monge—Ampére equation
det(tD’u) =0  inR"

Airy’s equation
Up + Uy =0 in (0, 00) X R

Eikonal equation
|Du| =1 inR"

Porous medium equation
u,— AW™) =0 in (0,00) xR", m > 1
Here, t > 0 denotes time, x € R" space, A is the Laplacian w.r.t. x and V the gradient w.r.t x.

E1.2 Minimal Surface Equation

Let Q c R" be open and bounded with s_rnooth boundary Q. Forv € C 1(ﬁ) the n-dimensional
surface area of its graph {(x, v(x)) : x € Q} ¢ R*! is given by

J) = f 1+ |vv(x)|? dx.
Q
Moreover, let g : JQ2 — R be a given continuous function and suppose that a minimizer u of the
functional J exists within the set
{v : veC'(Q), v=gondQ}

and it satisfies u € C2(§). Prove that this minimizer u satisfies

vu(x)
V| ———¢p(x)dx =0
L ( V1+ |Vu(x)|2)
for all functions ¢ € C*(£2) with compact support in Q.

Remark: One can then conclude by the so-called Fundamental Lemma of the Calculus of Vari-
ations that u is a solution of the minimal surface equation

v(L) -0 inQ

V1 +|vu?

Hint: Assuming that such a minimizer u exists consider the family of functions u + tp, t € R, for
arbitrary ¢ € C*(Q) with compact support. Which condition satisfies B(t) := J(u + tp)?



E1.3 D’Alembert’s formula

Consider the one-dimensional wave equation
Uy — Uy = 0 in (0, 00) X R. (1.3)
(a) Show that for arbitrary functions ¢, ¥ € C 2(R), the function

ut,x) =p(x—1t) +Y(x +1)

is a solution of (1.3).

(b) In addition, let the solution satisfy the following initial conditions

u(0,x) = f(x)

eR, (1.4)
u (0, x) = g(x)

where [ € C2(R) and g € C'(R) are given. Use the ansatz in (a) to show that the solution
of the problem is given by D’Alembert’s formula

X+t

e = (4 -0+ [ gtd)

x—t



Chapter 2

The Transport Equation

2.1 Motivation

Assume a chemical is dissolved in a fluid and flows at a constant velocity ¢ > 0 along a horizontal
thin pipe of fixed cross section in the positive x-direction. Let u(¢, x) denote the concentration of
the substrate at time ¢+ > 0 and position x € R. The total amount of the chemical in the interval
[a,z] cRis M = fa < u(t, x)dx. At a later time ¢ + h, the molecules have moved to the right by ch

and therefore,
4 z+ch
M = f u(t, x)dx = f u(t + h, x)dx.
a

a+ch

Assuming that u is smooth, then differentiating with respect to z we obtain
u(t,z) = u(t + h,z + ch).
Finally, differentiating with respect to 4 and setting 2 = 0, it follows that
0 = ut,2) + cut, 2),

which is a one-dimensinal linear transport equation with constant coefficients.

u
=1 =2 =3

More generally, let Q = (0, 00) x R?, t > 0 denote time and x € R? the spatial position. In fluid
dynamics, the continuity equation expresses the law of mass conservation. It is of the form

pr+V-(e)=0  (0,00) xR,

10



where p : Q — R3 denotes the density of the fluid, v : Q — R3 the velocity field and V the
gradient with respect to x.

If we assume that the velocity of the fluid is given and constant v = ¥ € R?, the density p
satisfies the linear transport equation with constant coefficients

It is one of the simplest PDEs and can be solved explicitly.

2.2 The homogeneous case

We consider the linear transport equation with constant coefficients,
n
u(t,x)+ Y by (t,x) =0, () € (0,00) X R,
i=1

where b = (by,...,b,)T € R"is a given, fixed vector. Typically, x € R” denotes a point in space
and ¢ > 0 the time. In compact notation, the equation can be written as

u+b-Vu=0 in (0, 00) x R", (2.1)
where Vu is the gradient of u with respect to x € R".
Note that if u is a classical solution of (2.I), then the left hand side of (2.1)) is the directional
; , and this directional derivative vanishes. In fact, for an arbitrary
point (¢, x) € (0, c0) X R" we define

derivative of u in the direction

z2(8) := u(t + s, x + sb), s> —1.

The chain rule then implies that

d d
—z2(8) = —u(t+ s, x+ sb) = u,(t + s,x+ sb) + Vu(t + s,x+ sb)- b =0,
ds ds
where we used (2.1) in the last step. Hence,
z(s) = u(t + s, x + sb) = const. Vs > —t, 2.2)

i.e. the value u(t, x) is transported along the line

= eb)

Thus, if u € C'((0, co) X R™) N C((0, 00) X R") satisfies in addition to (Z-1) the initial condition
u(0, x) = g(x), xeR", (2.3)

for a given function g € C!(R"), then by (Z.2) we have
u(t, x) = u(0, x — tb) = g(x — tb), t>0,xeR" 2.4)

The PDE (2.1)) together with (2.3) is called an initial value problem.

11



“ A

u is constant along these lines

-
/ / X
/ M u(0,x) is known

Theorem 2.1. Consider the linear transport equation with constant coefficients (2.1). Then the
following holds:

(i) If uis a classical solution of (2.1), then
u(t + s, x + sb) = const., s> -1,
forall (t, x) € (0,00) X R".

(i) Let g € C'(R") be given. Then the initial value problem [2.1)), @.3) has a unique classical
solution u € C'((0, 00) x R™) N C((0, o) x R™), which is given by

u(t, x) = u(0, x — tb) = g(x — tb),
for all (¢, x) € (0,00) X R".

Proof. (i) was already shown.
(ii): Uniqueness: If u is a classical solution, it satisfies (2.4), and this determines u uniquely.
Existence: If g is C'(R"), then u € C!((0, o) x R™) N C((0, c0) x R"). Moreover,
ut(ta x) = Vg(x - tb) : (_b)9
Vu(t, x) = Vg(x — tb),

and hence, u; + b - Vu = 0. O

Remark 2.2. We were looking for classical solutions of the transport equation, and hence, by (2.4))
we need to require that g € C'(R"). If g is not of class C'(R"), a classical solution does not exist.
However, one could still use the formula (2.4) to define a solution which satisfies the PDE in a
weak sense. We will come back to the concept of weak solutions later.

2.3 The inhomogeneous case

More generally, we consider the inhomogeneous initial value problem

u,+b-Vu=f in (0, 0) X R",

u0,)=g  onR" 3)

12



where g € C Y(R") and feC ([0, 00) x R") are given. As before, the left-hand side of the PDE is

the directional derivative of u in the direction ( b)' Hence, for an arbitrary point (¢, x) € (0, co) X R"
the function

z2(8) = u(t + s, x + sb), s> —t,

now satisfies
d
d—z(s) =u(t+ s, x+ sb)+Vu(t+ s,x+ sb) - b = f(t + s, x + sb),
s
where the last equality holds by (2.5). Integrating the equation from —¢ to O and using the initial
condition yields
0

u(t,x) — g(x — tb) = z(0) — z(-1) = f %z(s) ds

0 t
= f [+ s,x+sbyds = f f(r,x+ (r—0b)dr.
—t 0

We obtain the following result.

Theorem 2.3. Let b € R”, f € C'([0,00) x R") and g € C'(R"). Then the initial value problem
(2.5) has a unique classical solution u € C1((0, 00) x R™) N C((0, 00) X RM), which is given by

u(t,x) = g(x —tb) + f f(s,x+ (s —0b)ds, (t,x)€ (0,00)xR". (2.6)
0

Proof. Uniqueness: We have shown that any classical solution u satisfies (2.6)), and this determines
u uniquely.

Existence: By assumption, f € C'((0, ) x R") and g € C'(R"), which implies that u defined by
is in the class C!((0, o) x R") N C((0, c0) x R"). Moreover, u satisfies the initial condition
and we have

uy(t, x) = Vg(x — tb) - (=b) + f(t, x) — f b-V,f(s,x+ (s —1t)b)ds,
0

!
Vu(t, x) = Vg(x — tb) + f Vif(s,x+ (s —t)b)ds.
0
Therefore, u is a solution of the initial value problem (2.5). O

Note that in the proof we used the Leibniz rule: Assume that the functionsa: /1 - R, b: 1 —
Rand f : I X R — R are continuously differentiable. Then,

9 (Po b g
Y [, 5)ds = f(1, ()b (1) — f(t,a(0)a’ (1) + f 5/t 9)ds.
a(t) a(t)

Remark 2.4. e We derived a solution formula for the transport equation by converting it into
a family of ordinary differential equations that we could explicitly solve. This technique to
solve initial value problems for first order PDEs is called the method of characteristics and
will be further discussed later in a more general context.

o To obtain classical solutions we require that f and g are continuously differentiable. How-
ever, the solution formula (2.6)) also makes sense for non-differentiable (or even discontinu-
ous) functions f and g, which would lead to weak solutions. The concept of weak solutions
is, in fact, essential for a satisfying theory for PDEs. We will come back to it later.
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2.4 Exercises

E2.1 Transport equation

Let c € R, b € R" be constant and g € C'(R") be given. Write down an explicit formula for a
solution u of the initial value problem

uy+b-Vu+cu=0 in (0, 0) X R”,
u0,)=g on {t = 0} x R".

Hint: As in the lecture notes, transform the PDE into an ordinary differential equation and solve
this equation with the given initial condition.
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Chapter 3

The Laplace and Poisson Equation

3.1 Preliminaries

Let Q c R” be open. In this chapter we consider the Laplace equation

n

Au = Z Uy, =0 inQ 3.1

i=1
and the Poisson equation
-Au=f in Q, 3.2)

where f: Q — R is a given function and u: Q — R is the unknown. They have many applications
and typically model steady state phenomena.

Definition 3.1. Let Q c R” be open and u € C*(Q). If u satisfies the Laplace equation (3.1)), then
u is called harmonic in Q.
Moreover, u is called subharmonic if —Au < 0 in Q, and superharmonic if —Au > 0 in Q.

Example 3.2. The real and imaginary part of an analytic function are harmonic.
Indeed, let the function f : Q — C, where Q cC C is open, be analytic. Then, the real- and
imaginary part of f,

u(x,y) = Re(f(x + iy)), v(x, y) = Im(f(x + iy)),

considered as functions u,v : Q — R, Q ¢ R?, are C*(Q). Moreover, they satisfy the Cauchy-
Riemann differential equations
Uy = vy, Uy = —Vy.

Thus, differentiating these equations, we have
Upy + Uy = Vyy = Vyy =0 and Vix + Vyy = —ltyy + Uy, = 0,
which shows that u and v satisfy the Laplace equation (3.1

Before we analyze properties of solutions of the Laplace and Poisson equation we recall sev-
eral facts from integration theory.

15



Definition 3.3. Let Q c R" be open and bounded.

e We say that Q has a C*-boundary, if for every x € dQ there exists » > 0 and a function
¢ € CK(R™ ) such that (possibly after reordering the coordinates) we have

QN B(x)={y€B(x) : yu>¢oy1,....,yn-D}

e If 0Q is of class C', we can define the unit outer normal field v : 4Q — R”, where v(x),
[v(x)| = 1, is the outward pointing unit normal vector at x € 9€Q.

The normal derivative of a function u € C! (5) is defined as

%(x) = v(x) - Vu(x), x € 0Q.
av

B.(x)

0Q2

Below are examples of domains that do not possess a C'-boundary. The outward pointing unit
normal vector in x cannot be defined.

— X
Q

We recall the Gauf3-Green theorem and some direct consequences, a proof can be found in [5].

Theorem 3.4. Let Q C R" be open and bounded with C'-boundary 8Q. Then, for all u € C'(Q)
we have

fuxi(x)dx = f u(x)vi(x)ds (x), i=1,...,n
Q oQ

16



Theorem 3.5. Let Q C R” be open and bounded with C'-boundary 0. Then, the following
properties hold:

o Integration by parts: For all u,w € C'(Q) we have

fuxiw:—fuwx[+f uwv;ds, i=1,...,n.
Q Q 0

o Green’s formulas: For all u,w € Cz(ﬁ) we have

fAu=f oyuds,

Q oQ
fVu'Vw=—quw+f ud,wds,
Q Q o0Q

f(qu — wAu) = f (udyw — wo,u)ds.
Q oQ

Proof. See Problem E3.1. O

3.2 Motivation

Let Q c R" be open and bounded and suppose that u: QQ — R denotes the density or concentration
of some quantity in equilibrium. Then, for an arbitrary open subset V ¢ Q with C'-boundary the
amount fv u of the quantity contained in V does not change over time, i.e. the total flux through

the boundary 0V vanishes,
f F-vdS =0,
v

where F: Q — R” is the flux function. Therefore, by Theorem 3.4 we have

fdivF:f F-vdS =0.
v av

In many applications the flux function is proportional to the gradient of u but points in the
opposite direction, i.e.
F(x) = —-dVu(x), x € Q,

for some constant d > 0. For instance, if u denotes the concentration of a chemical substance,
then particles move from regions of high concentrations to regions of low concentrations and this
relation represents Fick’s law of diffusion. Hence, we obtain

div F = —d div(Vu) = —dAu,

—fa’AuzO.
1%

If u € C*(Q), the integrand is continuous and since V ¢ Q was arbitrary it follows that —dAu = 0
in Q (see Problem E3.2). Therefore, u is a solution of the Laplace equation

and thus,

Au=0 in Q.

17



In many cases a physical system has an additional source Q. The flux through the boundary
0V then equals the amount generated by the source Q in V, i.e.

fF-vdS=fQ.
)% \%4

By the same arguments as above we conclude that
—dAu = Q in Q,
and hence, u satisfies the Poisson equation
-Au=f in Q,

where f = %.

The Poisson equation is used to model, e.g. the steady-state temperature in a solid (u is the
temperature, f the heat source), the static deflection of a thin membrane in R2 (u is the deflection,
f the pressure), electrostatics (u is the electrostatic potential, f the charge per unit volume) or
Newtonian gravity (u is the gravitational potential, f the mass density).

3.3 Properties of harmonic functions

We first derive important properties of harmonic functions that have remarkable consequences for
classical solutions of the Laplace and Poisson equation.

3.3.1 Mean value formulas

Let Q c R" be open. Moreover, let x € Q and r > 0 be such that B,(x) ¢ Q. For a function
u € C(Q) we define the integral averages of u over balls B,(x) and spheres dB,(x),

1
d = d s
Ji,m D= 5 1 S O
1
dS = dS s
JgB,(x) u)ds o) 0B, ()| Jos,x) “0)d50)

where |B,(x)| = fB ) 1dy denotes the volume of B,(x) and [0B,(x)| = faB ) 1dS (y) the surface
area of the sphere 0B, (x).
We will show that harmonic functions satisfy the mean-value property

u(x) = f u(y) dy = f u(y) dS () (33)
B,(x) 0B(x)

for all x € Q and r > 0 such that B,(x) c Q.

Recall that if f € C(B,(x)) then using polar coordinates we have

f(y)dy=ff F»dS(y)dp,
By(x) 0 JoB,(x)

18



and by the transformation formula it follows that

ﬂwmwﬂﬂf For+ r2)dS @)

OB (x) 0B1(0)

In particular, this implies that
_ r r
0B-(x)l = "~ 10B1(0)]  and  |B.(x)] = ;|6Br(x)| = ;|aBl(0)|- (3.4

Further details on polar coordinates and the transformation formula can be found in Appendix [A.3]

and Appendix
We will use these properties to prove the mean-value-property.

Theorem 3.6 (Mean value formulas). Let Q C R" be open.
(a) If u is harmonic in Q then u satisfies the mean-value property (3.3).

(b) If u is subharmonic in Q then u satisfies the inequalities

u(x) < f u(y) dy, (3.5)
B,(x)

u(x) < f u(y)dS (), (3.6)
0B, (x)

forall x € Q and r > 0 such that B,(x) C Q.
If u is superharmonic in Q then u satisfies these inequalities with a reversed sign, i.e. with
“>” instead of “<”.

Proof. First, we observe that (a) immediately follows from (b). Indeed, if u is harmonic, then u
is subharmonic and superharmonic. Therefore, the inequalities hold with “>" and “<” and thus,
equality must hold. This proves (3.3).

Moreover, assume that the inequalities hold for subharmonic functions and u is superharmonic.
Then, —u is subharmonic and thus, the inequalities for u hold with “>". Therefore, it suffices to
prove (b) for subharmonic functions.

To this end let u be subharmonic, x € Q and r > O such that T(x) c Q. We consider the
function

plp) = f u(y)ds(y),  O0<ps<r,
0B, (x)
and prove that
¢'(p) 2 0, 1131_13(1) @(p) = u(x). (3.7

Then,
u(x) = 1ing) () < ¢(p) YO<p<r,
p—

which is Inequality (3.6) for p = r. To show Inequality (3.5])) we multiply the inequality u(x) < ¢(p)
by |0B,(x)| and integrate from O to r,

B0 = [ oB,cond < [ [ unasoido = [ atay
0 0 JoB,x B,(»)
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Dividing by |B,(x)| we obtain Inequality (3.5). Hence, it remains to prove (3.7).
We rewrite ¢ using the transformation formula and (3.4) as

o(p) = J[ u(y)dsS (y) = JC u(x + pz)dS (2).
AB,(x) 8B, (0)
Differentiation now implies that
’ y—x
d0=1 Vuxrpnzas@=f  vun-Ease)
dB1(0) P

9B, (%)

ou ou

= —(dS(y) = — ) dS (),
Jng(x) v 0B, ()| JaB,x) OV

where we interchanged differentiation and integration and used that v(y) = yﬁ%x is the outer unit
normal vector on dB,(x) at y.

Finally, we apply Green’s formula (Theorem [3.5]) and obtain

¢'(p) =

Au(y)dy = 0,
0B, (0| JB,(x)

since u is subharmonic in Q, which proves the first property in (3.7). To complete the proof we
observe that

Iso(r)—u(x)lsf () — uCdS ) < sup () — u()] — 0 asr— 0,
0B, (x) yeIB,(x)

since u is continuous on B,(x). O

For harmonic functions the converse statement also holds, i.e. the mean value property implies
that the function is harmonic.

Theorem 3.7. Let Q c R” be open. If u € C*(Q) satisfies
w= £ undso)
0B, (x)

for all x € Q and r > 0 such that B,(x) C Q, then u is harmonic in Q.

Proof. See Problem E3.7. m|
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3.3.2 Maximum principles and uniqueness for boundary value problems

An important consequence of the mean value property are the following maximum principles.

Theorem 3.8. Ler Q C R” be open and bounded and u € C*(Q) N C (ﬁ) be subharmonic in Q.
Then, the following properties hold:

(a) Maximum principle:

max u(x) = max u(x)
xeQ) XEOQ

(b) Strong maximum principle: If Q is also connected and if there exists xy € Q such that

u(xo) = max u(x),
xeQ

then u is constant in Q.

Proof. Since Q is bounded, the sets Q and 9 are compact. Thus, since u is continuous, it attains
its maximum on these sets.
We observe that (a) is a consequence of (b). In fact, applying (b) on every connected compo-
nent of ) we conclude that
max u(x) < max u(x).
xeQ XE€0Q

However, since 9Q C Q it obviously holds that

max u(x) < max u(x),
€0 xeQ

which implies (a).
To show (b) let xo € Q be such that

M = u(xpg) = max u(x)
xeQ

andlet A :={x € Q : u(x) = M}. Then, A C Q is closed since it is the preimage of {M} under the
continuous mapping u, A = u~!({M}). On the other hand, if x € A then there exists r > 0 such that
B,(x) c Q. By Theorem we conclude that

M = u(x) < JC u(y)dy < M,
B (x)

where we used that u(y) < M in Q in the last inequality. This enforces that u = M on B,(x) and
proves that the set A is also open. Consequently, A = Q since  is open and connected, which
shows (b). O

We remark that a similar statement holds for superharmonic functions if the maxima are re-
placed minima. For harmonic functions we immediately obtain the following maximum principle.

Corollary 3.9 (Maximum principle for harmonic functions). Let Q C R" be open and bounded
and u € C*(Q) N C(Q) be harmonic on Q. Then,

min u(y) < u(x) < maxu Vxe Q.
min 0 < u(x) max »
Moreover, if Q is also connected then either strict inequalities hold or the function u is constant.
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Proof. We observe that the functions u# and —u are both subharmonic. The statements are therefore
direct consequences of Theorem [3.8] i

An important application of the maximum principle is the uniqueness of solutions of the
Dirichlet problem for the Poisson equation

—Au=f in Q, (3.8)
u=g on 0Q), 3.9
where QO c R" is open and bounded, and g € C(0QQ) and f € C(Q) are given functions. The

conditions in Equation (3.9) are called Dirichlet boundary conditions. _
A classical solution of the boundary value problem is a function u € C*(Q)NC(Q) that satisfies

(ERIN(ERY2

Theorem 3.10 (Uniqueness of solutions). Let Q C R" be open and bounded, f € C(Q) and
g € C(0Q). Then, there exists at most one classical solution u € CX(Q) N CQ) of the boundary

value problem (3.8)-(3.9).

Proof. Assume that u# and v are two solutions of the boundary value problem, then their difference
w = u — v satisfies

-Aw =0 in Q,
w=0 on 0Q2.

Hence, by Corollary 3.9 we conclude that

0 = minw(y) < w(x) <maxw(y) =0 Vx e Q,
yeoQ yeoQ
which implies that w = 0 in Q. O

3.4 Fundamental solution

We aim at deriving explicit representation formulas for the solution of the Poisson equation. To this
end, we first consider the Laplace equation in Q = R" and construct a simple radially symmetric
solution that we then use to build more complicated solutions.

To find explicit, special solutions of a PDE it is often useful to exploit symmetry properties of
the equation. In fact, the Laplace operator is invariant under rotations (see Problem E3.4). This
motivates to look for radially symmetric solutions of the Laplace equation (3.1) in Q = R”, i.e.
solutions of the form

u(x) = v(r), r=|xl,

with a suitable function v : [0, c0) — R. We observe that

Xi Xi

ry(x) = , x #0, i=1,...,n,

I 7

and hence, for the partial derivatives of u we obtain

. x2 xz
— (N 7 i ’ i
Mxi('x) =V (l‘) ’ ux,'x,'(-x) =V (r)_Z + Vv (r) (— — —3) .
r r roor
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This implies that
n —_—

1 vi(r),

Au(x) = v"'(F) + (E - 1) V() = v (r) +
r r

r

i.e. in this special case the PDE Au = 0 for x # 0 is equivalent to the ODE

n—

1
V7' (r) + Vi(r) =0, r> 0.

r

If v/ # 0 then

d , V() _1-n
Vo = o = =

and thus,
Iy =0-nm)nr+d=Inr""+d,

for some constant d € R. Consequently,

e?

/ —
Vol =~

and we conclude that

blnr+c ifn=2,
v(r) = b ) r>0,
W +c ifn> 3,
for some constants b, c € R.
For the particular choice of the constants
1 1
=— =—-—, c=0,

10B1(0)]  wy

where w, is the surface area of the unit sphere in R”, we obtain the so-called fundamental solution
of the Laplace equation. The reason for choosing these particular constants will become apparent
in the sequel.

Definition 3.11. The function ®: R" \ {0} — R,

1
. —5=1In x|, n=2,
D(x) = D(|xl) = { o

(n_z)wn |X|’172 ’

(3.10)

is called the fundamental solution of the Laplace equation.

By construction, A® = 0 in R” \ {0}, but note that ® has a singularity at the origin. Moreover,
for x # O the partial derivatives of ® are

1 x 1 5,']‘_ xixj) 3.11)

D,.(x) = ———, O (x)=——|—
x,(x) wp |1 x‘x_/(x) Wy, (lxln n|x|n+2
i,j=1,...,n,where 6;; = 1ifi = jand ¢;; = 0 if i # j. Hence, while ® and ®,, are integrable in
a neighborhood of x = 0, ®,,,; is not integrable at the singularity x = 0 (see Problem E3.10). It is
precisely this property that will allow us to construct solutions of the Dirichlet problem (3.8)-(3.9).
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Remark 3.12. Recall that the function x — |x|™° is integrable over a ball B,(0),r > 0, in R" if
s < n (see Problem E3.10).

The function x — ®(x) is harmonic for x # 0, and similarly, by shifting the origin, for any
y € R" the function x — ®(x — y) is harmonic for x # y. Moreover, taking a function f : R" — R,
then x — f(y)®(x — y) is harmonic for every y € R", x # y, and thus, the same applies to the sum
of finitely many such expressions. This might suggest that the convolution

w0 = [ o071y

is a solution of the Laplace equation (3.1)). However, this is wrong since A® is not integrable near
the singularity at x = y, and thus, interchanging differentiation and integration is not possible. In
fact, the function u is not harmonic, but yields a solution of the Poisson equation Au = fin Q = R"
(see [4]).

We will consider the Poisson equation in bounded domains and use the fundamental solution
® in (3.10) to construct a representation formula for the solution of the Dirichlet problem.

3.5 Green’s function and representation formula
We now derive a representation formula for solutions of the boundary value problem (3.8)-(3.9)
Au=f inQ,
u=g on 09,

where Q C R” is open and bounded with C! boundary 9, and f : Q — Rand g : Q — R are
continuous.

First, we prove an integral representation formula for arbitrary functions u € C? (Q) that allows
to express u in terms of Au, ulso and 9,ulso.

Proposition 3.13. Let Q C R" be open and bounded with C'-boundary 9Q and ® be the funda-
mental solution in (3.10). Then, for any u € C*(Q) we have

0 oo
u(x) = f (<D(y - X)a—u(y) —u(y)—0 - X)) ds(y) - f O(y — x)Au(y) dy,
Q. v avy Q

for all x € Q, where g%‘) = v - V,® denotes the normal derivative with respect to y on 9Q.
'y

Proof. Let x € Q and € > 0 be such that B.(x) C Q. Moreover, let V, = Q \ B.(x) and v* denote
the outer normal field of V.. Then we have 9V, = 0QUIB.(x) and

V() = v(y), y € oQ, v8<y>:¥, y € OB.(x).
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Applying Green’s formula (Theorem [3.5) to u and ®(- — x) on V,, we obtain

fv U(HAD(y — 2) — Dy — X)Au(y) dy

oo P
=f )50 = 0 = Oy = ) () dS ()
v, 1% ov

oD 0
_ f u) 2= ) = B = )2 0) S )
00 v v

+f u(y) =2 - VO(y - 1) dS () -
0B (x) €

0Bg(x)

0
Oy = 5= (0)dS ).

=1 =g

Note that for y € dB¢(x) we have

—%r In(e), n=2,

Oy —x) = { 1 2—
(n_z)wng n’ n 2 3’

and consequently,

el < wpe™! sup {
VOB, (x)

< sup {
YEOB,(x)
Here, we used that |Vu| is bounded since u € Cz(ﬁ).

To determine I, we use (3.11) and observe that

1o-9-6-0_ 1 _ 1
Wp gly — x| - wng”_l - |0B:(x)|

ou
(ﬁ@‘ Dy x>|}

x —_—
L voy-x=
&
Since u is continuous in x, this implies that

I. = JC u(y)dS (y) — u(x) ase —> 0
0B.(x)

25
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Yy € 0B.(x).
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(see Problem E3.2). Finally, we show that
f Oy — x)Au(y)dy — f(I)(y - x)Au(y)dy as &—0.
Ve Q
Indeed,

f OO — DAL dy < sup (AuG)) f f D(PIdS )
Be(x) 0 JOB(x)

YEBg(x)
— 0 as € >0,

& _ 2 _
< cfog riin(r)dr, n=2 < celln(e)ldr, n=2
cfordr, n>3 s, n>3

where we used that |Aul is bounded, since u € C2(Q).
Combining this estimate with the estimates for /, and J, the proposition follows by taking the
limit € — 0 in (3.12). m|

An immediate consequence is the smoothness of harmonic functions.
Theorem 3.14. Let QO C R" be open and u be harmonic on Q. Then, u satisfies u € C*(Q).

Proof. Let xp € Q and r > 0 be such that B,(x9) C €. Applying the representation formula in
Proposition to u and B,(xg) we obtain

u(x) = fa @O D) U0~ D)) Vx€ B

The integrand and all its partial derivatives with respect to x are continuous for x # y and dB,(xp)
is compact. Therefore, we can differentiate the right hand side and interchange differentiation and
integration. It follows that the right hand side is arbitrarily often continuously differentiable with
respect to x which proves the statement. O

The representation formula in Proposition m determines u(x), x € Q, if Au in Q and u, g—ﬁ
on 0Q are known. If we apply the formula to solve the Dirichlet problem (3.8)-(3.9), then the first
two quantities are specified, but the normal derivative % on dQ is not known.

To eliminate this term, for fixed x € Q, we introduce the corrector function w*. The corrector
function w* is the solution (if it exists!) of the boundary value problem

Aw*(y) = 0, yEQ, (3.13)
w'(y) = Oy - x), y € 0Q.
Using Green’s formula (Theorem [3.5]) and the fact that Aw* = 0 we obtain

ow* o
- f W () Au(y) dy = f u(y) (;” ) = W () () dS (¥)
Q oQ 4 v

ow* ou

=f uy) 7 0) = Oy = )= () dS (),
90 % ov

which implies that

ow*

o
0= f WEO)AUG) dy + f w5 0) = = 050 S ) (3.14)
Q oQ 4 4
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Adding this equation to the representation formula in Proposition [3.13] we can eliminate the term
involving the normal derivative d,u. Hence, we obtain a representation formula for solutions of
the Dirichlet problem for Poisson’s equation. This motivates the definition of Green’s function.

Definition 3.15. Let Q c R” be open and bounded with C!-boundary. Then, the function G
defined by
Gx,y) =0y -x)-w'(), xyeQx#y,

where @ is the fundamental solution and w* € C%(Q) the solution of (3.13), is called Green’s
function for Q.

Adding the representation formula in Proposition [3.13]and the equation (3.14) we obtain
0G
wx)=— | u@)——x»NdSQy) - [ Glx,nAuy)dy,  xeQ.
s O Q
This formula holds for arbitrary functions u € C 2(Q). In particular, if u is a classical solution of

the Dirichlet problem (and if Green’s function exists), it yields the desired representation formula.

Theorem 3.16. Let Q C R”" be open and bounded with C'-boundary dQ and assume that Green’s
Junction G for Q exists. Moreover, let f € C(Q) and g € C(0Q). Then, a classical solution
u € CX(Q) of the Dirichlet problem (3.8)-(3.9) satisfies

oG
w == [ smGienasm+ [ focwnay e
Q. 14 Q

Proof. The representation formula immediately follows from Proposition|3.13|and the above com-
putations. O

Remark 3.17. One can show that Green’s function G is symmetric, i.e.,
G(,x) =G(x,y) Vx,yeQux#y

(see Problem E3.15).

The explicit construction of Green’s function for a given Q can be difficult, or may not even be
possible. It requires to solve the auxiliary Dirichlet problem (3.13)), and this can be complicated, or
even impossible. However, Green’s function can be computed for geometrically simple domains
Q which we will illustrate for the ball B,(0) c R".

3.6 Green’s function and existence result for the ball

Consider the Dirichlet problem (3.8)-(3.9) for Q = B,.(0). To determine Green’s function for a
given x € B,(0) we need to find the solution w* of the auxiliary problem

Aw* =0 in B,(0),
wh = ®(-—x) on 0B,(0).
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The idea is to use the fundamental solution ®(- — x), which is harmonic in R” \ {x}, and to
reflect the singularity outside of the sphere. Since @ is radially symmetric, we make the following

ansatz
x _ |y - 'x| *
w(y) =0 ———0-x)], y € 0B,(0),
ly — x|
and aim to find a suitable x* ¢ B,(0) such that
achieved by inversion on the sphere,

||y}__;|| is independent of y € dB,(0). This can be

2
X x =-—x,  xeB0)\ {0}
|x[?

X'=—_X
|x|?
In fact, then we have
oo P-2cy+l? P < 9B
|_*|2_2 2 A - 20 Y +(0).
y —x r _ZWX')HLW r

This leads to w*(y) = © (@(y - x*)) , ¥y € 0B,(0), and extending w* to all y # x yields

Wy, _
o -ofHy— ) (25 22 nre
r D(r), x=0.
Certainly, w* € C2(B,(0)), w* is harmonic on B,(0) and by construction, it satisfies
~ (x| . A
wi(y) = @ (7|y = X[ = Oy - x) = Py — x), y € 0B,(0).
Thus, w* is the desired corrector function, and we obtain Green’s function for the ball,

(D(@y—ix), x#0,x £y,

[x]

G(x,)’):q)(}’_x)_{(i)(r) x:O

We remark that in this case the symmetry of G can be directly verified.

To obtain an explicit representation formula for the solution of Dirichlet’s problem we compute

|x] ro\ Il
Gy,'(xvy) = q)y,-(y - .X') -® A=Y~ 5X| —
r | x| r

2 (B2
Lyi-x 1 By - x; ly’(r2 1)

Wy ly=xI"  w, ly—%" w, |y —x
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Since v(y) = ¥ this implies that for y € 8B,(0),

oG 1 |x]2 =2
5, B =) - V6xy) = — " —

wp rlx =y

Hence, we expect that a solution of the Dirichlet problem (3.8)-(3.9) for Q = B,(0) is given by the
representation formula

2 2
wy =0 [ B asgr [ g6y,
0 B, (0)

rwy B,0) |x — "

In the spacial case that f = 0 we obtain the Poisson formula,
2 _ 12
u(x) = =1 f ) (3.15)
rwn  Jog,o) 1x = yI"
for solutions of the Dirichlet problem for Laplace’s equation in Q = B,(0),
Au=0 in B,(0),
u=g on dB,(0).

So far, we have shown that classical solutions u € C?(B,(0)) of the Dirichlet problem for
Laplace’s equation on the ball B,(0) satisfy Poisson’s formula. Finally, we show that the represen-
tation formula actually provides a solution if g € C(dB,(0)).

Theorem 3.18 (Existence for the ball). Suppose that g € C(0B,(0)), then Poisson’s formula
(3-15) defines the unique classical solution u € C*(B.(0)) N C(B,(0)) of the Dirichlet problem
for Laplace’s equation in Q = B,(0). Moreover, u € C*(B,(0)).

Proof. Poisson’s formula is a special case of Green’s representation formula in Theorem [3.16| for
Q = B,(0) and f = 0, namely

u(x) = — f ZOMO) - VG(x, 1)dS ).
0B,(0)

The integrand and all its partial derivatives with respect to x are continuous on B,(0) X dB,(0).
Since 0B,(0) is compact, the derivatives of u can be obtained by interchanging differentiation and
integration and therefore, the integral defines a function in C*(B,(x)).

Next, we show that u is harmonic on B,(0). In fact, Green’s function G is harmonic with respect
to the second variable and symmetric for x # y (cf. Remark [3.17). Hence, it is also harmonic with
respect to the first variable, A,G(x,y) = 0 = A,G(x, y), for all (x,y) € B,(0)xdB,(0). We conclude
that

Au(x) = - f cOMO) - VAG(,)dS») = 0, x € B(O).
0B,(0)

To conclude the proof it remains to show that u € C(B-(0)) and ulsp, ) = g. This follows
from the continuity of g, an e-d-argument and by estimating the integrals involved (see Problem
E3.16). O

Another region with a simple geometry for which we can construct a Green’s function is the
half space
Q={x=(x,...,x) €R": x, >0}

(see Problem E.3.18).
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3.7 Energy methods

So far, we used the mean value property and explicit representation formulas to derive the exis-
tence, uniqueness and properties of solutions of the Laplace and Poisson equation. Now, we apply
a different approach, so-called energy methods that are based on L?>-norms of solutions and its
derivatives. These methods foreshadow techniques that are used to study weak solutions of PDEs.

Definition 3.19. Let QO c R” be open and u € C(Q;R™),m € N. For 1 < p < oo we defined the

LP-norm of u by
1
p
llullzr@) = ( f |u|§3) :
Q

where |yl, := (Iy|P +--- + |ym|p)% for a vector y = (y1,...,ym) € R™.
Moreover, we call a function u € C(Q; R™) integrable if [|u||;1q) < .

3.7.1 Uniqueness

In Theorem [3.10] we already proved uniqueness for solutions of the Dirichlet problem (3.8)-(3.9)
based on the maximum principle. We now present an alternative proof using energy methods.

Theorem 3.20. Let Q C R” be open and bounded with C' -boundary 0Q. Then, for every f € C(2)
and g € C(0Q) there exists at most one solution u € C*(Q) of the boundary value problem (3.8)-

B9,
—Au=f in Q,
u=g on 0Q).

Proof. Suppose that v is another solution. Then, the difference w = u — v satisfies Aw = 0 in Q
and wlso = 0. Hence, multiplying the PDE by w and integrating over € it follows that

O=—fwAw=f|Vw|2=||Vw||2 ,
Q Q L2

where we used integration by parts. Since Vw is continuous, we conclude that Vw = 0 in Q (see
Problem E3.2). Therefore, w must be constant, and since w|go = 0, this implies that w = 0, i.e.
u=v. O

3.7.2 Dirichlet’s principle

The Poisson equation describes, e.g. steady state deflections of a thin membrane or steady state
distributions of a chemical substrate. It is therefore natural that the solution of the Dirichlet prob-
lem (3.8)-(3.9) corresponds to a minimum of some energy functional. In fact, we will see that the
solution can be characterized as a minimizer of an appropriate functional.

Let Q c R” be open and bounded with C ! -boundary 9Q. For given f € C(Q) and g € C(9Q)

consider the energy functional
1 2
J(w) = —|Vw|* —wf],
al\2
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for w belonging to the admissible set
A={weCHQ) : w=_gondQ).

Theorem 3.21 (Dirichlet principle). Let Q c R” be open and bounded with C'-boundary 09,
f € CQ) and g € C(OQ).
Assume that u € C*(Q) is a solution of the boundary value problem (3.8)-(3-9),

-Au=f in Q,
u=g on 09,
then
J(u) = gvrg&rq} J(w). (3.16)

Conversely, if u € A satisfies (3.16), then u is a solution of the Dirichlet problem (3.8)-(3.9).
Proof. (i) Let u € C*(Q) be a solution of (3.8)-(3.9). Then, u € A. Moreover, if w € A, then
multiplying the PDE by (u — w) and integrating over {2 we obtain

0:f(—Au—f)(u—w):f(qulz—Vu-Vw—fu+fw).
Q Q

Note that no boundary term occurs since u, w € A, which implies that (u — w)|so = 0. By the
Cauchy—Schwarz inequality it follows that

1 1
Vi - Vw| < |Vul||[Vw| < 5|Vu|2 + §|Vw|2,

where we used the inequality a® + b*> — 2ab = (a — b)* > 0 Va, b € R in the second step. Using this
estimate in the equality above leads to

OZL(%Wulz—uf)—L(%lez—Wf),

ie. J(w) > J(u) for all w € A.
(i) Conversely, let u € A satisfy (3.16). For arbitrary v € CZ(Q2), where

C2(Q) ={u € C™(Q) : supp(u) is compact in Q},

consider the function
Jj(s) = J(u + sv), s eR.

Then, since u + sv € A, j: R = R is well-defined and has a minimum in s = 0. Moreover, j is
continuously differentiable and

J(s) = f ((Vu+ sVv)-Vv— fv),
Q

since Q is bounded and the integrand of J and its partial derivatives with respect to s are continuous
for s € R, x € Q. Therefore,

0= (0= f (Vi Vo - vf) = f (~Au— fyr,
Q Q

where we used integration by parts in the last step. Since v € C°(2) was arbitrary and (—Au—f) €
C(Q), it follows that —Au = f in Q by the Fundamental Lemma of the Calculus of Variations (see
Lemma[3.22). The boundary conditions (3.9) are satisfied, since u € A. m
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If the data f and g or the boundary 9Q are less regular, it is not guaranteed that A # 0 or that
J attains a minimum in (A. It is therefore desirable to enlarge the admissible set A by considering
less regular classes of functions in order to ensure the existence of a minimizer. This minimizer is
a natural candidate for a weak solution of Poisson’s equation.

Lemma 3.22 (Fundamental Lemma of the Calculus of Variations). Ler Q C R" be open and
bounded. If a function u € C(Q) satisfies

[ womeodx =0 wec@,
Q

then u = 0in Q.

Proof. By contradiction, we assume that u # 0 in Q. Then, there exists xo € Q such that u(xy) # 0.
Since u is continuous, there exists ¢ > 0 such that Bs(xp) € Q and

1 1
u(x) > EM(XO) >0 or u(x) < EM(XO) <0 Vx € Bs(xp).
We now choose a function ¢ € C7°(€) with

supp(¥) C Bs(xo), Y(xo) > 0, ¥ =0 in Bs(xo).

It then follows that
f u(xXW(x)dx = f u(x)W(x)dx + 0,
Q

Bs(xo)

which is a contraction. a

Lemma can be shown for a larger class of functions. In particular, the assumption that u
is continuous can be weakened, but the proof is more involved (see [2]).

3.8 Exercises

E3.1 Consequences of the Gauss—Green Theorem

Let Q ¢ R” be open and bounded with C!-boundary 0 and let v: 0Q — R” denote the outward
pointing unit normal vector field of Q. We recall the Gauss—Green Theorem: If u € C'(Q) then

fux,.:f uv; ds, i=1,...,n.
Q Q

Prove the following integration formulas:

(a) Integration by parts
Letu,ve Cl(ﬁ). Then,

fux,.v:—fuvxi+f uvvids, i=1,...,n.
Q Q 0
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(b) Green’s formulas
Letu,ve Cz(ﬁ). Then,

6] fAu— —dS
o0 0
(ii) fVu Vv =-— quv+f u—dS

Av —vA — =V .
(111) f(u v —VvAu) = fm(u y v v) ds
E3.2 Averages

Let Q c R” be open and u € C(Q2). Moreover, let x € Q and r > 0 be such that B,(x) C Q.

(a) Show that

lim u(y)dy = u(x) Vx e Q.
r—0 |B,»(X)| B,(x) e

(b) Prove that
f u(y)ydy =0 VB,(x) C Q
B.(x)

implies that # = 0 in Q.

E3.3 Harmonic functions
Let V c R?\ {0} and W c R3\ {0} be open. Which of the following functions are harmonic,
subharmonic, or superharmonic?
1) u: V-oR, ulxy) =Inx?+y2
(i) vi W - R, v(x,y,2) =1n x2 +y2 + 22,

sy _ 1
(lll) w:W-—o R, w(x, y, Z) = \/ﬁ
E3.4 Invariance of the Laplacian

Let u : R" — R be an harmonic function and A € R™" be an orthogonal matrix (i.e. AAT = Id).
Show that v : R” — R, v(x) = u(Ax), is also an harmonic function.

Remark: Note that this implies that the Laplacian is invariant under rotations.

E3.5 Neumann problem for the Poisson equation Let Q c R” be open and bounded with C!-
boundary 9. Consider the Poisson equation with Neumann boundary conditions

-Au=f in Q,
ou
— = 0Q,
av & on

where [ € C(ﬁ) and g € C(0Q) are given.

Show that if a classical solution u € C2(Q) of the problem exists then g and f must satisfy

f f()dx + f g(x)dS (x) =0
Q Q.
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E3.6 Averages

Let Q c R” be open and u € C(Q). Show that the following statements are equivalent:

1
|B(x)]
1
10B-(X)| Jo,(x)

f u(y)dy = u(x) YxeQ,r>0st B(x) CcQ
By (x)

u(y)ds (y) = u(x) VxeQ,r>0s.t B(x) cQ

E3.7 Converse of the mean value property
Prove the converse of the mean-value property (see Theorem [3.6):

Let Q c R” be open and u € C*(Q) satisfy

u(x) u(y)ds (y) Vx e Qs.t. B.(x) Cc Q.

0B, (0| Jas, o
Then, u is harmonic on Q.

E3.8 Mean value formulas

Let n > 3 and u € C%(Q) be a solution of the boundary value problem

—Au = f in B,(0),
u=g ondB(0).

Modify the proof of the mean value formulas to show that

1 1 1
1080 Jas, 0 (n —2)10B,(0)| L,(O) (le"‘2 2

Hint: Consider the function ¢ used in the proof of Theorem @ and first show that

u(0) g(x)dS (x) + ) f(x)dx.

JE 8(x)dS (x) - u(x)dS (x) = f(x)dxdp.
9B,(0) 9BL(0)

1 fr 1
10810 Jo ot U0

Then, use integration by parts to evaluate the integral on the right and side and take the limit
e— 0.

E3.9 Subharmonic functions

Let Q c R” be open and u € C3(Q). Prove that v = [Vu|? is subharmonic if u is harmonic.

E3.10 Fundamental solution.

(a) Letr > 0 and consider the ball B,(0) c R". Show that the integral

1
f —dx
B,(0) 1XI*

is finite if and only if s < n.
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(b) Derive the following estimates for the derivatives for the fundamental solution @ : R" \
{0} — R of the Laplace equation,

IDO(x)| < ID2D(x)| < ﬁ
x}’l

|x|n—1 ’

for some constant ¢ > 0.

(c) Is the fundamental solution @ integrable near the singularity, i.e. is the integral fB © ()
finite? What about the partial derivatives of first order and the Laplacian of ®?

E3.11 Bound for the derivatives
Let Q c R”" be open and u be harmonic on Q. Show that

_ n
|y, (O] < = sup  |u(y)|
T yedB,(%)

for every X € Q and r > 0 such that B,(x) C Q.
Hint: Use the mean-value property.

E3.12 Maxima and minima
Let Q c R” be open and bounded and u € C2(Q)n C(ﬁ). Prove that:

(a) If x € Qs a local maximum of u then Au(x) < 0.

(b) Let u be a solution of the boundary value problem

Au=u’—u in Q,
1
I/t=§ on 0Q.

Show that —1 < u < 1 throughout Q.

E3.13 Maximum principle I

Let Q@ ¢ R” be open and bounded and suppose that u € C 2QncC (ﬁ) andv e C2(Q)NnC (ﬁ)
are solutions of the following system of semilinear equations

Au = —u* —v* = 2uy in Q,
Av = = in Q,
ulpo = vlgo = ¢ on 04,

where the constant ¢ > 0.

(a) Show that the solutions u# and v are non-negative, i.e. u,v > 0 in Q.

(b) Consider their difference w = u — v prove that u and v satisfy u > v in Q.

E3.14 Maximum principle IT
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E3.15

E3.16

E3.17

Use separation of variables to find a nonzero solution for the Dirichlet problem in the strip,

Au=0 in Q,
u=0 on 0Q,
where Q = {(x,y) € R2 : 0 < y < m}. What does this example tell us about the maximum
principle?
Hint: Assume that the solution is of the form u(x,y) = X(x)Y(y) and solve the resulting ODEs
for X andY.
Symmetry of Green’s function

Let Q c R” be open and bounded with C'-boundary dQ. Prove that if G is a Green’s function
on Q, then

Gy, x) = Gx,y),
forall x,y € Q, x # y.
You only need to prove the statement for n > 3, the case n = 2 can be shown similarly.

Hint: For fixed x,y € Q, x # y, consider
v(z) = G(x,2), w(z) = G(y,2), z€Q,
and show that w(x) = v(y).

Existence result for the ball (Theorem 3.18)
Let g € C(0B,(0)). Show that the function u given by Poisson’s formula,

)
u(e) = =1 fa 80y,

rwy B,0) [y — "

satisfies ulsp, ) = &-

Hint: First, conclude using the representation formula in Theoremm that

2 2
- 1
re— x| f AS(y) = 1.
rwnp  Jap,o) Iy — X"

Then, use Poisson’s formula to show that

lim [u(x) — g(%)| = 0,
if £ € OB,(0).

Green’s function for the half space

Let @ be the fundamental solution of the Laplace equation. For the half space
Q={x=x1,x2,...,%,) : x, >0}

let x* := (x1, x2, ..., —X,) be the reflection of x on the plane 9.
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(i) Show that G(x,y) = ®(y — x) — w*(y) is the Green’s function for the Laplace equation on
Q, where w*(y) = ©(y — x¥).

(i1) Find an integral representation for a solution u € C2(§) of

Au=0 in Q,
u=g on JQ.

For this problem you can use results shown in the lecture notes for bounded domains
without justifying their validity in unbounded domains.

E3.18 Harnack’s inequality

Use Poisson’s formula for the ball to prove that

o - | x| o It |x]|
—(r paypv] u(0) < ulx) < r" —(r P u(0),

whenever u is positive, continuous in B,(0), and harmonic in B,(0).

E3.19 Energy estimates

(a) Let Q c R" be open and u,v : Q — R be functions such that u? and v? are integrable over
Q. Show that for arbitrary € > 0 the following inequality holds:

11
bl < 5 (;uuniz@) + suvuiz(g)) :
(b) LetQ c R" be open and bounded with C !_boundary 9Q and f € C (Q). Moreover, suppose
that u € C%(Q) is a solution of the boundary value problem

-Au+Adu=f in Q,
u=0 on 0Q,

with some constant A4 > (. Use the inequality in (a) to show the estimate

> 1

2 2
Lz(Q) - 2/l”f”L2(Q)

” |Vl/l| ||L2(Q)

A
+ S llull

E3.20 Maximum principle ITI
Let R > 0 and w € C%(Bg(0)) N C(Bg(0)) be such that f := Aw is bounded on Bg(0). Show that

w < R sup(f_)/(2d) + max (),

where a; = max{a, 0} and a_ = max{—a, 0}. Also prove that

<R’ 2d) + )
[wl sup | f1/(2d) algl%)IWI

Hint: Observe that the function v(x) = R? — |x]? satisfies Av = =2d and consider u = +w —

vsup(fz)/(2d).
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Chapter 4

The Heat Equation

In this chapter, we consider the heat equation
u(t, x) — Au(t, x) = 0, (t,x) € Q, “4.1)
and the inhomogeneous heat equation
u(t, x) — Au(t, x) = f(t, x), (t,x) € Q, 4.2)

where Q = (0,00) X U and U c R", n > 1, is open. Moreover, f: [0,00) X U — R is given and
u: [0,00) X U — R is the unknown. Here, # > 0 denotes time, x € U a point in space and A = A,
is the Laplacian with respect to the space variable x.

4.1 Motivation

Typically, the heat equation (or diffusion equation) describes the time evolution of some quantity
such as heat or a chemical concentration. Let U C R" be open and V C U be an arbitrary open and
bounded subset with C'-boundary. Moreover, we assume that u(t, x) is the density of a physical
quantity at time 7 > 0 at the point x € U. Then, the rate of change of the physical quantity within
V equals the negative flux through the boundary 9V, i.e.

i f u(t,x)ydx = — f F(t, x)-v(x)dS (x),
dt Jy av

where F: [0,00) x U — R” is the flux function. By the GauB-Green theorem (Theorem [3.4), it
follows that

f F(t,x) - v(x)dS (x) = f div F(¢t, x) dx,
ov Vv

fut:—fdiVF.
Vv Vv

In many cases, the flux function F is proportional to the (spatial) gradient of u, but points in the
opposite direction (since particles flow from regions of high to regions of low concentration),

which implies that

F =—-aVu,

38



for some constant a > 0. Consequently, we have

fu,:faAu,
14 1%

and since V C U was arbitrary it follows that
us—alu =0 in (0, 00) X U,

if u € C%((0, ) x U) (see Problem E3.2). If the constant @ = 1 we obtain the heat equation.
If, in addition, the physical quantity is generated by a source Q in U, then we obtain the
inhomogeneous heat equation

Uy —alu = Q in (0,00) X U

(cf. the derivation of Laplace’s equation).

4.2 Fundamental solution

As we noticed in the case of the Laplace equation, an important step in studying a PDE is often to
find a specific special solution (called fundamental solution) of the equation that allows to derive
representation formulas for solutions or to construct more general solutions.

To construct a fundamental solution we consider the homogeneous heat equation @.I) in Q =
(0, 00) x R™ and exploit particular properties of the partial differential operator. If u is a solution,
then for every A € R the function u,(¢, x) = (221, Ax) also solves the heat equation (see Problem
E.4.1). Together with the rotational invariance of the Laplace operator, this scaling invariance

suggests to look for solutions of the form u(t, x) = v( '\)}) Although this ansatz would lead to the

solution, it turns out to be quicker to seek for solutions of the form

XY _ o (7
u(t, x)—tv(\/;) tv(\/z), “4.3)

for some @ € R and a suitable function v: [0,00) — R, where r = |x|. We compute the partial
derivatives,

u,(t, x) = ata_lv(%ﬁ) - t“_lzL\ﬁv’ (%t)’
1y (1, %) = 17 \[(%) i=1,....n,
r

2 a 2
_ - 1 r 3 ’ r 1 'xi .
Mx,x,(f )C) t rzv (\/;)-FVIV (%)[;_r_?’)’ l—l,...,n,

and hence, inserting the ansatz (4.3) into the heat equation leads to

0 = u,(t, x) — Au(t, x)
el S )
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I

Denoting s = 7 and dividing the equation by #*~! we obtain

av(s) — (% . ; 1)v’(s) —v"(s) = 0.

Moreover, choosing & = —5 we can rewrite this ODE as
n—1_7 ’ 1 n ’
(s y (s)) + 3 (s"v(s)) =0,

and consequently,
1

Es"v(s) +5 W (s) =c,

c=0.We

for some ¢ € R. If we assume that v(s) — 0,V(s) — 0 sufficiently fast as s — oo, then
obtain i
vi(s) = _EV(S)’

which implies that
2
v(s) = be 7,

for some constant b € R. Recalling that @ = —45 and the ansatz (#.3)), it follows that

u(t,x) = —e 4, t>0,xeR".
12
For the particular choice of the constant b = ﬁ, the function u(t, -) is the density of the
/S

n-dimensional normal distribution N(0, 2¢Id), and we obtain the fundamental solution of the heat

equation.
Definition 4.1. The function ®: (R \ {0}) X R” — R, defined by
1 kP
e 4, t>0,xeR",
D(t, x) = 4 (4n1)2 “4.4)
0, t<0,xeR",

is called the fundamental solution of the heat equation (or heat kernel).

Lemma 4.2. The fundamental solution (4.4) satisfies ®(t,-) > 0 and
f O, x)dx =1 forallt> 0.

Proof. The first statement is clear. To show the second one we observe that

1 2
fq)(t,x)dxz ,,fe“*ltdx
n (4rnt)2 Jrn
1 f kP ol f‘” _g
e 7 dz= e — e 2dz=1,
Rz l_l V27T —0

(2n)? i=1

=1

see Example
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Lemma 4.3. Let @ be the fundamental solution in (4.4). For every compact interval [t,t:] C
(0,00) and a € Ng“ there exists an integrable function F, with

IDZ’X)Q)(I, xX)| < Fo(x) forall (t,x) € [t1, 5] x R™.

Proof. See Problem E4.2. O

Below, the one-dimensional heat kernel is plotted for different time instances.

IS

w

4.3 Initial value problems

We now use the fundamental solution to construct solutions of initial value problems for the heat
equation in (0, c0) X R™.
4.3.1 Homogeneous case

Consider the initial value problem

u;—Au=0 in (0, o0) X R",

u0,)=g  onR" 4-3)

where the given function g € C(R") is bounded, i.e.

ligllze := sup [g(x)| < oo.

xeR?

Definition 4.4. A function u € C((0, o) X R") N C?((0, o0) x R") that satisfies [#.3)) is called a
classical solution, where

C"2((0,00) x R") := {v € C'((0,00) x R™)) : D% exists and
D%v € C((0, 00) x R"; R™™).
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Note that @ solves the heat equation away from the singularity in ¢+ = 0, and so does the
function (¢, x) — @(¢, x — y) for every fixed y € R”. This motivates that the convolution

u(t, x) = fR (1,1~ g dy 4.6)

is a solution of the heat equation as well. In fact, we will show that (4.6) indeed yields a classical
solution of the initial value problem (.5)). Since we are integrating over the whole space R" we
need to be more careful when justifying that we can interchange differentiation and integration.

Theorem 4.5. Let g € C(R") be a bounded function. Then, the function u defined by satisfies
u € C%((0, 00) x R™) N C((0, 00) X R™). Moreover, u is a classical solution of {.3) and

llu(t, llz= < gl ¥r=0.

Proof. Since g is bounded, it follows from the properties of the fundamental solution that the
integrand A(t, x,y) := O(t, x — ¥)g(¥), (¢, x,¥) € (0, 00) X R" X R” satisfies:

e For every fixed y, the function A(:, -, y) is in C*((0, o0) X R").
o For every fixed (¢, x) the function A(t, x, -) is integrable on R".

e For every compact set / X K C (0,00) X R* and a € N’S“ we have

1D oh(t, x, )] < llgllz sup Fo(x = y) =: Ga(y), (t,x,y) € [ X K xR",
xeK

by Lemma4.3] and the function G, is integrable.

Hence, by Theorems and[A.5|(see also [5]], Theorem 2 §11), we conclude that u € C*((0, 00) X
R™), and the derivatives can be computed by differentiation under the integral sign. Therefore, we
obtain

ui(t, x) — Aut, x) = jl;n (D, — AD)(1, x — y) g(y) dy = 0,
=0

which shows that u satisfies the heat equation.
It remains to show that u fulfills the initial data, u(0, -) = g, i.e. for * € R"” we have

u(t,x) — g(x) as (1,x) = (0,%).
Let X € R" and € > 0. Since g is continuous, there exists ¢ > 0 such that

lg) —g®DI <& Vy—1il <26 4.7
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N\
B éx)
2
Therefore, if x € R” with |x — %] < ¢, then by Lemma[.2] we have
lu(t, x) — g(X)| = ‘f O, x - y)(g(y) — g(x)) d)"
Rn

< f O(1, x — y)lg(y) — g(X) dy + f O(1, x = y)lg(y) — g(H)l dy .
Bs(x) R™\B5(x)

=1 =J

By and since Bs(x) C Bys(X), it follows that

Isz O(t,x—y)dy = &.

For the second integral we obtain

-y
132||g||u>°f (D(t,x—y)dyginf 5 g
R™\Bj(x) 12 JR"\Bs(x)

(o] 00
Cwy 1 2 2
= — f P le 4tdr=ca)nf s leTds >0 ast— 0,
12 B i\[

t

V
§2 . .
then follows since 5" 'e™ ¢ is integrable over R”. Consequently, |u(t,x) — g(X)| < 2¢ for all
x € Bs(X) and ¢ > 0 sufficiently small, which shows that #(0, -) = g.
The last statement of the theorem is a direct consequence of Lemma Indeed, we observe
that

for some ¢ > 0, where we used the change of variables s = <= in the last step. The convergence

1

lu(z, )] < [Igllz f O, x-y)dy=llgli=  YxeR"
o

Remark 4.6. In view of Theorem the fundamental solution @ formally satisfies the initial
value problem

O, -AD=0 in (0, 00) X R",
@0, ) =0do on R",
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where 0y is the Dirac measure on R” centered at x = 0. The Dirac measure (or Dirac distribution)
is not a function in the usual sense. Formally, it has the properties

f So(x)dx =1, f So(p(x)dx = ¢(0) Ve € CT([RY),
n Rﬂ

but a rigorous definition requires the theory of distributions.

Remark 4.7 (Infinite speed of progapation). Let g be as in Theorem @.5] Moreover, we assume
that g > 0 and g # 0. Then, the solution of (4.5) satisfies

-2
u(t, x) = f T g()dy>0  Vi>0, xeR"
Rn

(4rt)?

Due to this observation we say that the heat equation forces an infinite speed of propagation
of disturbances. In the context of heat conduction, that means that if the initial temperature is
nonnegative and positive somewhere in R", then at any later time (no matter how short the time
interval) the temperature is strictly positive everywhere. This is a characteristic property of the heat
equation. As we will later see, the wave equation in contrast supports a finite speed of propagation.

Furthermore, we observe that the heat equation has an immediate smoothing effect. Even if
the initial data g is only continuous, the solution is infinitely times continuously differentiable for
all (¢, x) € (0, c0) X R".

4.3.2 Inhomogeneous case
We now consider the inhomogeneous initial value problem

u,—Au=f in (0, 0) X R",

u©0,)=0 on R", “8)

where, for simplicity, we assume that f € Cg,’z((O, 00) X R"), ie. f € CY*((0, ) x R") and
supp(f) C (0, o) x R" is compact.
Note that by Theorem .5 for fixed s > 0 the function

u(t, x; 5) := f O — 5,x = y) f(s,y) dy, t>s, xeR",
Rn

solves the initial value problem

u(-,-58) —Au(-, -;5)=0 in (s, 00) X R,

4.9)
u(s,-;s) = f(s,-) on R".

This is a homogeneous initial value problem of the form (4.5)) with starting time 7 = s and initial
data g = f(s,-). To build a solution of the inhomogeneous problem (4.8) we apply Duhamel’s
principle. Namely, integrating u(t, x; s) from s = 0 to s = ¢ leads to

t t
u(t,x) = f u(x,t;8)ds = f f Ot - s, x—y)f(s,y)dyds, (4.10)
0 0 Jr»
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for t > 0, x € R". The formal computation

(uy — Auw)(t, x) = u(t, x;1) + f (us(t, x5 8) — Ayu(t, x; 8) ) ds = f(t, x)
.V 0 0
= (%) -

indicates that the formula (4.10) indeed yields a solution. Due to the singularity of ® in z = 0,
however, this formal calculation requires rigorous justification.

Theorem 4.8. Let f € C1?((0,00) X R"). Then, the function u defined by @10) satisfies u €
C'2((0, 00) X R") N C((0, 00) X R"), u; — Au = f in (0, 00) X R" and for every % € R"

u(t,x) - 0 as (t,x) — (0,%),
i.e. uis a classical solution of the initial value problem (4.3).

Proof. First, we apply a change of variables and rewrite u as

u(t,x):ffd)(s,y)f(t—s,x—y)dyds.
0 n

Since f has compact support, we can extend f by zero to a function f € Ci’Z(R"“). Similarly as
in the proof of Theorem .5 we can conclude that for any 7 > 0 the function

L"t(t,x)zfrf O(s, ) f(t—s,x—y)dyds
O n

is in C12((0, 00) x R™) and its derivatives can be obtained by differentiation under the integral sign.
Moreover, we observe that f(r — s,-) = 0 if |t — s| < ¢ for sufficiently small § > 0, which implies
that u(¢, -) = @(¢, -) for |t — 7| < 6. Consequently, for 0 < £ < ¢ we obtain

u (1, x) — Au(t, x) = f f O(s, V)(f; —Af)t—s,x—y)dyds
0 JR7
= [ [ e ane=sx-yvds

f
+ffCI)(s,y)(—fs—Ayf)(t—s,x—y)dyds::Ig+Jg.

For the first integral we have

11 elly = Aflle guax [ (s, dy =il = Aflln =0 asz =0

£

To estimate the second integral we apply integration by parts and use that f has compact support,

Jo= f (@, — AD)(s,y) (i — 5.x— y)dyds
e Ry, _/_/

- (((D(t,}’)f((),x_)’)—(D(&Y)f(f_&x_y))dy
R” :"0

= f DOe, ) f(t—e,x—y)dy — f(t,x) ase — 0.
Rn
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The last limit follows from Theorem and the assumption f € Cg’z((O, 00) X R™) (see Problem
E4.4).
Finally, we observe that

lu(t, Ol < 1| fllz= maXf (s, y)dy < llfllp= = 0 ast— 0,
O<s<t Jpn

which shows that u satisfies the initial data.
O

Adding the solutions of (4.5]) and (#.8) we obtain a solution for general inhomogeneous initial
value problems.

Corollary 4.9. Let g € C(R") be bounded and f € Ccl.’z((O, 00) X R™). Then

t
u(t, x) = f (1, x - y)g(y) dy + f f Ot = 5, x = y)f(s,y)dyds
R"l 0 n
is a classical solution of the initial value problem

u,—Au=f in (0, 00) X R",
u0,)=g onR”".

Proof. This immediately follows from Theorem 4.5|and Theorem §.4] i

4.4 Maximum principles

In this section we prove maximum principles for classical solutions of the heat equation. First, we
consider bounded, open sets U C R" and subsequently the case U = R". For T > 0 we define the
parabolic cylinder

Ur:=0,TIxU,

and the parabolic boundary

7 :=Ur \ Ur = ([0, T] x dU) U ({0} x U).

t=T

T

t=0

Theorem 4.10. Let U C R”" be open and bounded and u € C*(Ur) N C (Ur). Then, the following
statements hold:

46



(i) Weak maximum principle: Assume that u satisfies u; — Au < 0 in Ur. Then,

max_u(t,x) = max u(t, x).
(t,x)eUr (t,x)el'r

(ii) Strong maximum principle: Assume that u satisfies the heat equation, i.e. u; — Au = 0 in
Ur. If U is also connected and if there exists a point (ty, xo) € U with

u(to, xo) = max_u(t, x),
(t,x)eUr

then u is constant on Uy,

Remark 4.11. Similar statements hold replacing u by —u and the maxima by minima.

Note that if u is a solution of the heat equation and if « attains a maximum (or minimum) at an
interior point (xg, o) € Ur, then u is constant at all earlier times t < ty provided that the boundary
and initial conditions are constant. However, the solution may change for ¢ > ¢ if the boundary
conditions alter at a later time ¢ > ¢.

Proof. We only prove the weak maximum principle (i). The proof of the strong maximum requires
a mean value formula for solutions of the heat equation (see, e.g. [4])).

Let L denote the differential operator Lu := u, — Au. First, suppose that Lu < 0 in Ur. We
assume that # assumes a maximum in a point (fy, xo) € (0,7) X U. Then, u,(ty, xo) = 0 and the
Hessian matrix D?u(to, xo) is negative semidefinite. In particular, we have u, (f, x0) < O for
i = 1,...,n, and therefore Lu(ty, xo) = (4, — Au)(tg, xo) = 0 which contradicts our assumption.
Hence, we conclude that

max u(t,x) = max u(t,x).
(t,x)eUr (t,x)edUr

Next, we show that the same holds true if Lu < 0 in U7. To this end consider the perturbed
function u.(t, x) = u(t, x) + ge*! for € > 0. We observe that

Lug(t, x) = Lu(t,x) — ge™ <0, (t,x) € Ur.
As we have shown above, this implies that

max ug(t,x) = max ug(t,x).
(t,x)eUr (t,x)edUr

Taking the limit £ — 0 yields the result for u.

It remains to show that u cannot attain a maximum in a point (7, xg) with xog € U. As before,
we first assume that Lu < 0 in Ur. Suppose that # assumes a maximum in (7', xg), xo € €. Then,
D?u(T, xp) is negative semidefinite and thus —Au(7, x¢) > 0. We conclude that

0> (u; — Au)(T, xo) = u,(T, xp).

However, u,(T, xp) < 0 is a contradiction to the original assumption that u(7, xp) is a maximum.
Finally, the general case Lu < O follows by considering the perturbed function uc(¢, x) =
u(t, x) + ge' for £ > 0. We obtain

Lug(t,x) = Lu(t,x) —ge™" <0, (t,x) € Ur,
and hence u,; cannot attain a maximum on {7} X U. Taking the limit & — 0 the result for u

follows. o
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In order to derive maximum principles for the unbounded domain U = R" we need an addi-
tional growth condition for the solutions.

Theorem 4.12. Let u € C12((0, T1xR")NC([0, T1xR") be a classical solution of the initial value

problem @.5)),

u—Au=0 in (0,T] xR",
u©,)=g onR",

where g € C(R") is bounded, and assume that u satisfies the growth estimate
u(t, x) < Aet forall (t,x) € [0,T] xR",
for some constants a, A > 0. Then,

sup u(t, x) = sup g(x).
(1,x)€[0,TIxR" xeR"

Proof. First, we assume that 4aT < 1. Then, there exists £ > 0 such that
4a(T +¢) < 1. (4.11)

For fixed y € R" and 6 > 0 we consider the function

o -y
us(t, x) := u(t,x) - —————— 3T+,
(T+e-1)2

Note that we can rewrite us as
us(t, x) = u(t, x) — 542 (T + £ — 1, i(x — y)),

if we consider the fundamental solution @ on (0, c0) X C". It is easy to verify that the function
(t,x) —» O(T + € — t,i(x — y)) satisfies the heat equation on (0, T] X R". Consequently, we have

(us)r —Aus =0 on (0,7] xR",

i.e. us solves the heat equation.
Let U = B,(y), for any r > 0. Then, Theorem implies that

max us(t,x) = max us(z, x).
(t,0)eUr (t,x)el'r

t=T

t=0 K
B/(y)
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For arbitrary x € U by the definition of us we have that
us(0, x) < u(0, x) = g(x),
i.e. us < g on the set {0} x U. On the set [0, T] X dB,(y) we have

o 2 )2 0 2
us(t, x) = u(t, x) — ————eTwn < A"V pars
(T+e-1)2 (T +e)2

Due to (@.11)) it follows that ﬁﬁ = a + vy for some y > 0, and thus

us(t, x) < Ae"OH _ 5(d(a + ) 2@ < sup g(x)

xeR"

if we choose r large enough. Thus, we conclude that

us(t, x) < sup g(y) for all (¢, x) € [0, T] x R",
yeR"

and taking the limit 6 — 0, the same remains true for u.
Finally, if 4aT > 1 we apply the result iteratively on subsequent time intervals of length 81_(1 O

4.5 Uniqueness

A direct consequence of the weak maximum principle is the uniqueness of solutions. However, a
uniqueness result in R” does not hold without additional growth assumptions on the solutions such
as in Theorem In fact, one can show that there exist infinitely many solutions of the initial
value problem

u;—Au=0 in (0, T] x R",
u0,)=0 on R”,

e.g. see [6], Chapter 7. Each of the solutions grows very rapidly, except for the trivial solution
u = 0, which is the only physical solution.

Theorem 4.13. (i) Let U C R" be open, bounded and connected. The initial-boundary value
problem

u—Au=f inUr,
u=g onlr,

where f and g are continuous functions, has at most one classical solution u € CY*(Ur) N
C(Ur).

(ii) The initial value problem

u,—Au=f in (0,T] xR",
u©,)=g onR",

where f and g are continuous functions, has at most one classical solution u € C'*((0, T] x
R™ N C([0, T] x R™) satisfying the growth condition

ut, x)| < Ae™™ . (1,x) € [0, T] x R,

for some constants a, A > 0.
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Proof. (i) Let u and v be two classical solutions of the initial-boundary value problem. Then, their
difference w = u — v satisfies

w,—Aw =0 1inUrp, w=0 only.

The weak maximum principle in Theorem@.10[applied to w and —w implies that w < 0 and w > 0
in Uy and consequently, w = 0.
(i1) The statement can be shown similarly, see Problem E4.8. O

4.6 Energy methods

As for the Laplace and Poisson equation, we now provide an alternative uniqueness proof for
solutions of initial-boundary value problems for the heat equation that is based on energy methods.

Let U c R" be open and bounded. We consider the heat equation

M[_Al/tzf in UT’

4.12)
u@©,)=g on U,

with either homogeneous Dirichlet boundary conditions

u=20 on [0, T] x U, (4.13)
or homogeneous Neumann boundary conditions

0

M0 on[0,T]xaU, (4.14)

ov
where % denotes the normal derivative of u.

Theorem 4.14. Let U C R" be open and bounded with C Yboundary dU. Suppose that f € C(Ur)
and g € C(U). Then, every solution u € C">(Ur) of the initial-boundary value problem @I12)-

@13) or @.12)-@.14) satisfies the energy estimate

2 2 2 2
”M(t, .)”Lz(U) + 2”VM”L2(U,) S e[ (”g||L2(U) + ”f”LZ(UT)) 5

forallte (0,T].
For the proof of the energy estimate we need Gronwall’s lemma.

Lemma 4.15 (Gronwall’s inequality). Let v: [0,T] — [0, o0) be an integrable function that satis-

fies
v(it) <a+ bf v(s)ds Yt e [0,T], 4.15)
0

for some constants a,b > 0. Then, we have

v(t) < ae” <a(l +bte”)  Vtre[0,T].
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Proof. Consider the function A(z) := b fot v(s)ds. Then, [@.13)) is equivalent to
w(t) :=v(t) —h(t) <a Yt e[0,T].

We observe that
(1) = bv(t) = bw(t) + bh(t),

which is a linear ODE with constant coefficients. Its solution satisfies the variation of constants
formula,

h(r) = h(0)e”" + j; t Lbw(s)ds < ab j; t s = a(e - 1),
where we used that 2(0) = 0 and w(f) < a. Therefore, it follows that
v(it) <a+h(t) <a+ a(ebt -1 = ae”,
which proves the lemma. O

We now provide the proof of Theorem §.14]

Proof of TheoremH.14] Let t € (0,T]. We multiply the heat equation (@.12)) by 2u and integrate
over U; = (0,1] x U,

t t
f f 2u(s, x)ug(s, x) — 2u(s, x)Au(s, x) dxds = f f 2u(s, x)f(s, x)dxds.
0 Ju 0o Ju
Observing that 2uu; = (u?), it follows that

fqu(s,x)us(s,x)dxds=fuz(t,x)dx—fuz(O,x)dx=fuz(t,x)dx—fgz(x)dx.
0 Ju U U U U

Furthermore, using integration by parts (see Theorem 3.5) we obtain

1 Ou 1
2 2
et 25y = 182 0 _fo f(;u 2u(s, x)a(s, Xx) a’S(x)cls+~f0 LZVM(S, x) - Vu(s, x)dxds

=0 by @I3) or @I9)
!
:ff2u(s,x)f(s,x)dxds.
o Ju

Using the estimate 2uf < u? + f2 and rearranging the terms, we finally obtain
g ging y

!
nua;MﬁRU>+2nvmﬁ%w)snm&RU)+uﬂﬁRUﬂ-+JEnuu;n&%U)d&

By Lemmam applied o v(1) = [lu(t, 7, ;) + 20IVull?, ;. it follows that

ety M gy + 200Vl < € (el ) + 112 gr,)
forall t € [0, T]. O

An immediate consequence is the uniqueness of initial-boundary value problems.
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Corollary 4.16. Let U c R" be open and bounded. Moreover, let f and g be as in Theorem{.14|
and h € C([0,T] x dU). Then, the initial-boundary value problem

u—Au=f inUr,
u=nh on[0,T] x dU,
u@©,)=g onU
has at most one classical solution u € C¥2(Ur).

Proof. Let u and v be two solutions. Then, their difference w = u — v satisfies the initial-boundary
value problem #I2)—@.13) with ¢ = 0 and f = 0. Thus, the energy estimate in Theorem {4.14]
implies that

(s M2y =0 Vs e(.T),

and consequently, w = 0 in Ur. O

4.7 Exercises

E4.1 Scalings
Suppose that u € C*((0, c0) X R") solves the heat equation

u,—Au=0 in (0, 00) x R",

(a) Show that for every 4 € R the function u,(t, x) := u(2%t, Ax), (t, x) € (0,0) x R", also
solves the heat equation.

(b) Show that the function v(t, x) := x- Vu(z, x) + 2t u,(t, x), (¢, x) € (0, 00) X R", solves the heat
equation as well.

Hint: You can deduce it from (a), or verify it by direct computation.

E4.2 Derivatives of the fundamental solution

Show that, for every compact interval [#g,#;] C (0, c0) and any a € Ng”, there exists an inte-
grable function F, with

DG @ Xl < Folx)  Y(t,%) € [19,11] X R

Hint: First show that for all t € [y, t1] we have

P
ID2D(t, x)| < C(to)(1 + |x[1™he 31,

for some constant C(tg) > 0 depending on ty. Then, show that the right hand side is integrable
onR". The integrable bounds for IDZ x)(DI can be deduced from the bounds for the x-derivatives.

E4.3 Fourier’s method and superposition principle
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Can you find an explicit solution of the following problem? Consider the one-dimensional heat

equation
u(t, x) = (2, X) (t,x) € (0,00) x (0, 1),
u(t,0) =u(t,1)=0 t>0,
u(0,x) = f(x) x €[0,1],

where f(x) = 27, cxsin(knx) and ¢y, ..., ¢, € R.

Hint: First consider and solve the auxiliary problems

0 2
_l/lk(t, )C) = @Mk(t, )C),

ot
ur(t,0) = wi(t,1) = 0,

ui(0, x) = sin(kmx).

To this end use the method of separation of variables, i.e. assume that the solution is of the form
u(t, x) = gr(x)hi(t) and solve the resulting ODEs for g and hy.

E4.4 Inhomogeneous heat equation
Lett>0,feC 5’2((0, o0) X R™) and ® be the fundamental solution of the heat equation.

(a) Show that the function
a(t,x) = j: Lﬂ O(s,y)f(t — s, x —y)dyds
satisfies @ € C'((0, 00) x R") and
i (t, x) — Ai(t, x) = fO‘T fR;n DO, y)(fy = Af)(t— s, x —y)dyds.
(b) Show that
Ln DO, y)f(t —&,x—y)dy — f(t,x) ase — 0.

Remark: These properties are used in the proof of Theorem

E4.5 Heat equation on the half line
Let f € Ci’z((O, 00) X (0, 00)) and consider the initial-boundary value problem

u(t, x) = ux(t, x) + f(t, x), t>0, x>0,
u(,0) =0, t>0, (4.16)
u(0,x) =0, x> 0.

(a) Show that for every solution v of the initial value problem

Vt(t’ x) = Vxx(t, -x) + f(t$ x)’ t > O$ X € R9
v(0,x) =0, x €R,

the function u = v + ¥ is a solution of (4.16), where ¥ is the function obtained by odd
reflection of v, i.e. ¥(¢, x) = —v(t, —x).
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(b) Use (a) to show that the solution of (#.16) can be written as

t 00
ut, x) = f f (s, (@@ = 5,x = y) = Ot = 5, x + y))dyds,
0 Jo
where @ is the fundamental solution of the heat equation.

E4.6 Product Ansatz for the heat equation

Letu; € C?((0,00) X R) for j = 1,2,...,n. Assume that u j solves the one-dimensional heat
equation (u;); — (u;)xx = 0. Show that

N

u(t, X1, X0, ..., %) 1= uj(t, xj), xeR"t>0,
j=1

is a solution for the heat equation in R".

E4.7 Periodic temperature fluctuations

(a) Find A € C and ¢ € R” such that

i(At+€-x)

u(t,x) :=e xeR", >0,

is a (bounded) solution for the heat equation.
(b) Let R} = {x € R"|x; > 0} be the upper half space and let 4 > 0. Use the ansatz

u(t, x) := W, xeRL, >0,
to find a bounded solution for the boundary value problem

vi(t, x) — Av(t,x) =0, xeRY, >0,

v(t,0, xp,...,x,) = cos(Ar), X2,..., X%, €ER,

where v =Re(u) is the real part of u, and &, € C is to be determined.

(c) What is the behavior of the temperature distribution v in the set
Ry={xeR"|x =d},

for d > 07 In which distance d from the boundary R of R’} did the amplitude decrease to
half of the amplitude on the boundary?

E4.8 Uniqueness in R"
Let f € C12((0,T] x R") N C([0, T] x R") and g € C(R"). Show that the initial value problem

u,—Au=f in (0, T] xR",
u©,)=g on R”,

has at most one classical solution satisfying the growth condition
2
lu(t, 0l < A, (1,x) € [0, T X R”,

for some constants a, A > 0.
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E4.9

E4.10

E4.11

Comparison principle

Let U c R” be open and bounded with C l—boundary OU. Assume that uj,u; € C 1’Z(UT)OC(U_T)
are solutions of the (semilinear) initial-boundary value problems

Ouui(t, x) — Aui(t, x) = f(t, x, u;(t, x)), (t,x) e Ur,
u;(t, x) = g(t, x), (t,x) elr,

where f; € C(Ur XxR) and g; € C(I'7), i = 1, 2. Show that if

[t x,u1) < f(t, x,u2) in Ur xR,
g1(t, x) < ga2(t, %) onIr,

then, the solutions satisfy u; < up in Uy.

Maximum principle

Let U c R” be open and bounded and assume that u € C'?(Ur). Consider the partial differential
operator
Lu:=u;—Au+b-Vu+cu on Urp,

with b € R" and ¢ € C(Uy). Show that if Lu < 0 and ¢ > 0 on Uy then

max u < maxu’,
Ur Ir

where u* = max{u, 0} is the positive part of u.

Hint: Use ideas applied in the proof of the maximum principle for the heat equation. First,
consider the case that Lu > 0, and then extend the result for the case Lu > 0.

Energy methods

Let U c R" be open and bounded with C 1—boundary, where f € C(Ur) and g € C(U). Use the
energy method to prove uniqueness of classical solutions u € C%((0, o) x U) of the following
initial-boundary value problem,

u (t, x) — Au(t, x) + u(t, x) = f(t,x), t>0,xel,
u(0, x) = g(x), xevy,
ou
au(t, x) + a—(t, x) =0, t>0,x€dU,
4

where ¢ € R,a > 0 and g—ﬁ denotes the normal derivative of u.

Hint: Let u,v be two solutions and consider their difference w = u — v. Multiply the resulting
PDE for w by w and integrate over U.
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Chapter 5

The Wave Equation

In this chapter we analyze the wave equation

ugy —Au=0 in (0, 00) X R", G.D
and the inhomogeneous wave equation

Uy —Au=f in (0, 00) X R”, 5.2)

where f: [0,00) X R" — R is given and u: [0,00) X R" — R is the unknown. As for the heat
equation, Au = A,u is the Laplacian with respect to the spatial variable x € R" and ¢ > 0 denotes
time.

5.1 Motivation

The wave equation is a simplified model for a vibrating string (n = 1), a membrane (n = 2) or an
elastic solid (n = 3). In these cases, the solution u(¢, x) denotes the displacement in a point x € R"
attime r > 0.

Let V c R”" be an arbitrary open set with C!-boundary dV. If the mass density is taken to be
unity, the acceleration within V is given by

d2
sl g u(t,x)dx = j‘; uy(t, x) dx,

and the net contact force is

- f F(t,x) - v(x)dS (x),
ov

where F is the force acting through the boundary dV on V. By Newton’s law the net force equals
mass times acceleration and hence,

f uy(t, x)dx = —f F(t,x)-v(x)dS (x).
1% v

The GauB—Green Theorem (Theorem [3.4) now implies that

f uy(t, x)dx = — f div F(t, x) dx.
v v
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For elastic bodies, the force F is a function of the displacement gradient Vu, and for small dis-
placements the linearization
F(t, x) =~ —aVu(t, x),

for some constant a > 0, is often appropriate. Hence, we obtain the integral equation

fu,,(t,x)dxzfaAu(t,x)dx.
1% 1%

If the function u € C%((0, 00) X V), it is a solution of the wave equation,
Uy —alu =0 in (0, 0) X R",

since V was arbitrary (see Problem E3.2). If there is an additional volume force Q acting, we
would obtain the inhomogeneous wave equation

Uy —alu = Q in (0, 00) x R".

In both cases, rescaling of the time variable leads to (5.1)) and (5.2).

The physical interpretation of the wave equation suggests that we specify two initial condi-
tions, the initial displacement u(0, -) and the initial velocity u,(0,-). First, we analyze the initial
value problem for the homogeneous wave equation,

uy —Au=0 in (0, o0) X R",
(5.3)
u@,) =uo, u(0,)=u;  onR",
where ug € C2(R") and u; € C'(R").
Definition 5.1. A function u € C([0, o) x R") that satisfies (5.3) is called a classical solution of
the initial value problem for the homogeneous wave equation.

5.2 D’Alembert’s formula (1D)

In this section, we consider the one-dimensional case, i.e. n = 1. Let u be a classical solution of
the IVP (5.3)). Note that we can write the wave equation as follows,

0 =y — tyy = (0; — 0,)(0; + Ox)u.

Thus, if we define v := u; +u,, then v satisfies the initial value problem for the linear homogeneous
transport equation,

ve(t, x) — vy(t, x) = 0, (t,x) € (0,00) X R,
v(0, x) = ui(x) + up(x), x€R.

By Theorem [2.1] the unique solution is given by

v(t, x) = ui(x + 1) + up(x + 1),
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and hence, u satisfies the initial value problem for the inhomogeneous transport equation

up(t, X) + ux(t, x) = v(t, x) = ur(x + 1) + up(x + 1), (t,x) € (0,00) X R,
u(0, x) = uo(x), xeR.

By Theorem [2.3] the unique solution of this initial value problem is
!
u(t,x) = upg(x —1) + f u(x+(G—-10+s)+ u(’)(x+ (s—1)+ s5)ds
0

=up(x —1) + %(uo(x +1)—up(x—1)) + f uj(x +2s — tyds.
0

Finally, the substitution y = x + 2s — ¢ yields D’Alembert’s formula

X+t

1 1
u(t,x) = E(uo(x -+ up(x+1)+ 3 f u1(y)dy. 5.4

x—t

Remark 5.2. Another way to solve the wave equation is via the characteristic coordinates
E=x+1, n=x-—t.

Then, the wave equation takes the form
Uy = 0,

and hence, the solutions of this equation are of the form

u(t, x) = ¢(&) + Y() = ¢(x + 1) + Y(x - 1).

Using the initial conditions then leads to d’ Alembert’s formula (see Problem E1.3).

Conversely, (5.4) can be rewritten in the form u(f,x) = ¢(x + t) + Y(x — t) with suitable
functions ¢,y € C2(R), and it is easy to see that functions of this form satisfy the wave equation.
This general form shows the simple geometry of the wave equation. The solution is a combination
of two waves, ¢(x + f) is a wave traveling to the right with speed 1 and y/(x — ¢) is a wave traveling
to the left with speed 1.

Theorem 5.3. Let ug € C*(R) and u; € C'(R). Then, d’Alembert’s formula (5.4) defines the
unique classical solution u € C*([0,00) X R) of the initial value problem for the wave equation
(5.3) in the case n = 1.

Proof. The regularity of u, u € C*([0, c0) x R"), follows immediately from the regularity of 1 and
u1. That the function u defined by d’Alembert’s formula satisfies the wave equation and attains
the initial values in can be verified by direct calculation.

Furthermore, the above derivation shows that any classical solution u of the initial value prob-
lem satisfies (5.4), and this formula defines u uniquely. mi

Remark 5.4. e We observe that the smoothness of the solution of the wave equation depends
on the smoothness of the initial conditions. This is essentially different from the heat and
Laplace equation, whose solutions are infinitely times continuously differentiable.
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e While the heat equation forces an infinite speed of propagation of disturbances, the wave

equation has a finite speed of propagation of information. In fact, let x € R and # > 0. Then,
u(t, x) is uniquely determined by the values of u; in the interval [x—¢, x+¢] and by the values
of ug at the endpoints of this interval. This domain of dependence forms a backwards cone
in space-time.
Conversely, if y € R, the values u(y) and u;(y) influence the value of the solution u(t, x) for
those values of x and ¢ such that y — # < x < y + ¢. In particular, if xo € R, r > 0 and ug and
up vanish in the interval |x — xg| < r then u(z, x) = O for all  and x such that |x — xo| < r — 1.
This domain of dependence forms a forwards cone in space-time.

u(t,x)

domain of ///
dependence
domain of
/ influence
)

X-t X X+t X 0

5.3 Spherical means

We aim to find solution formulas for the wave equation in higher space dimensions n > 2. This can
be done by studying spherical means of the solution, i.e. averages over certain spheres. Namely,
let u be a solution of the initial value problem (3.3)), then for x € R”,7 > 0 and r > 0 we define

U(x;t,r):= JC u(t,y)ds (y).
0B(x)

It turns out that these averages as functions of 7 and r satisfy a PDE that, for odd space dimensions,
can be converted into a one-dimensional wave equation. Using d’ Alembert formula to solve the
one-dimensional wave equation and transforming back to the original variables then leads to a
solution formula for the wave equation in higher odd dimensions.

Using the transformation formula, we can rewrite the spherical means as
1
U(x;t,r) = JC u(t,x+2z)dS(z) = — f u(t, x + rz)dS (),
B,(0) Wn JaB,(0)
and by setting
Ux;t,r) :=U(x;t,—r)

we get an extension for all r € R. Note that whenever the function u is of class C k k € N, then
for x € R”, the extended spherical means U(x;-) are of class C¥ as well with respect to ¢ and r.
Similarly, we define the (extended) spherical means for the initial data ug and u; by

1
Uo(x;r) :== — up(x +ry)dS(y),
Wi JoB(0)
1
Ui(x;r) := — ur(x +ry)ds(y,
Wy JoB,(0)
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r € R. We remark that the solution u can be recovered from the spherical means U by taking the
limit » — 0,
u(t,x) = lir% U(x;t,r) = U(x;t,0).
r—

As in the proof of Theorem [3.6] (mean value formulas), we conclude that for r > 0

Ux;t,r) = Au(t,y)dy =

Acu(t,x +y)dy.
9B, Jg.00 9B,O) Jp.0) »e

-1
Since [0B,(0)| = (f))n |0B,(0)], the right hand side can be expressed in terms of U, namely,

1-n
U(x;t,r) = (’5) Awu(t,x+y)dS(y)d
(x:1,7) fo B,y g M+ D401

-
= rl_"Axf 0" U(x; 1, p) dp.
0
Multiplying this equation by 7'~ and taking the derivative with respect to r we obtain
.U, = AU
Thus, for r > 0 the spherical means satisfy Darboux’s equation
n—1

Uy + ——U, = AU.
r

On the other hand, u is a solution of the wave equation u;, — Au = 0, and hence, we obtain

1
AUt r) = Ay———— u(t,x+y)ds®)
0B,O0)| Jag,0) Y
1
= Au(t,x +y)dS (y)
10B-(0) Jag,0) ey
1

= — uy(t,x + y)dS(y) = Uy(x;t,r).
0B, O] Jag, 0 TR E

That is, U satisfies the initial value problem
-1
U 1,1) = Un(s1,7) = U, (s 1,1) = 0 in (0, 00) x (0, ),
r
U(X, 0’ ') = UO(X’ '), UI(X; 0’ ) = U] (X, ) on (0’ OO)
By definition, our extension of U is an even function in r and hence,

Ur(xst,—r) = =Up(x; 1, 1),
Urr(-x; f, —I’) = Urr(x; L, }").

Therefore, the PDE for U holds for all r # 0, and we obtain the following result.
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Theorem 5.5. Let u be a classical solution of the initial value problem (5.3). Then for all x € R"
the spherical means U(x; -, -) satisfy the Euler—Poisson—Darboux equation

-1
Un(xst,r) = Up(xit.1) = —Up(xit,/) =0, 1€ (0,00), reR,
r
and the initial data
U(x;0,r) = Up(x; 1), Ui(x;0,r) = Ui(x; 1), reR.

Proof. That the spherical means satisfy the Euler—Poisson—-Darboux equation was shown above.
Moreover, we note that for x € R” and 7 > 0 the function h(r) := U(x;1t,r) satisfies h € C2(R).
Since A is even, the derivative &’ is odd, and hence, #’'(0) = 0. By L’Hospital’s rule we conclude
that the limit

. W)

lim

r—0 r

exists and therefore, the Euler—Poisson—-Darboux equation can be considered for all r € R. O

5.4 Kirchhoff’s formula (3D)

For spatial dimension n = 3 the Euler—Poisson—Darboux equation is of the form
2
Utt(x’t,r)_Urr(x;[sr)__Ur(X,t’r)zo’ tE(0,00),rER (55)
r

We can transform this PDE into a one-dimensional wave equation which can be solved using
d’ Alembert’s formula.

Theorem 5.6. Let u be a classical solution of the initial value problem (5.3) in space dimension
three, i.e. n = 3. Then, for all x € R? the function

Ux;t,r) = rU(x;t, 1), t>0,reR,

where U denotes the spherical mean, is a classical solution of the initial value problem for the
one-dimensional wave equation

Uu(x;t,r) = Upp(x31,1) = 0, t€(0,00),r €R, (5.6)
U(x; 0,r) = rUy(x;r), Ut(x; 0,r) =rUi(x;r), reR.

Moreover, if uy € C3(R?) and uy € C*(R>), then u is given by Kirchhoff’s formula
. 1
ut,x) = Up(x;1,0) = — f (uo(y) + Vuo(y) - (v — x) + tur (y)) dS (y), (5.7)
Art OB,(x)

t>0,xeR3.
Proof. Differentiating U we observe that

Us=rUy, U,=rU.+U, U, =2U;+rU,.
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Since U satisfies the Euler—Poisson—Darboux equation (5.3), we conclude that
- _ 2 .
Un—Urr:r Utt__Ur_Urr =0 ln(0,00)XR.
r

Furthermore, we observe that U € C?([0, o) x R). That U satisfies the stated initial conditions
directly follows from the definition of U and the initial conditions for U. Hence, U is a classical
solution of the initial value problem (5.6) and by applying d’ Alembert’s formula we obtain

l7(x; t,r)= %((r—t)Uo(x;r—t) +(r+0Up(x;,r+1) + % fr yU(x;y)dy.

r—t

Moreover, taking the derivative with respect to r and evaluating it in r = 0 it follows that
U, (x;1,0) = 0U(x;1,0) + U(x;1,0) = u(t, x)
and thus,

u(t, x) = U,(x;1,0)
1

5 (Uo(:=0) + Uges 1) = iU =1) = U 0) + 1V () + U =)

To differentiate the last term we used the Leibniz rule. Since Uy and U, are even in r, it follows
that

u(t, x) = Up(x; 1) + tU((x; 1) + tU1(x;1).

Finally, we observe that

Uy(x; 1) Vio(x +1y) - ydS ()

10B1(0)] Jas,0)
1

- X
- Vuy(z) - —— dS (),
10B(0)| JoB,(x) 0@ t @

and since |0B,(x)| = 4n1%, we obtain Kirchhoff’s formula
1
) = s [ w0+ Vo) =0 + 1 (1) dS ). o
At AB,(x)

Remark 5.7. This method can be generalized for arbitrary odd space dimensions. In fact, for
n = 2k + 1,k € N, the Euler—Poisson—Darboux equation in Theorem @] can be reduced to the
wave equation in one space dimension via the function

Ux;t,r) := (%6,)](_1 (1"2]‘_1 U(x;t,r)).

For details, see e.g. [4].

We have shown that every classical solution of (5.3) satisfies Kirchhoff’s formula. We now
prove the existence of classical solutions of the initial value problem by verifying that Kirchhoff’s
formula indeed provides a classical solution.
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Theorem 5.8. Letn = 2k + 1, k € N, and ug € C*2(R"), u; € C**\(R"). Then the initial value
problem for the wave equation (5.3) has a unique classical solution u € C*([0, o) X R™).

For n = 3 it is given by Kirchhoff’s formula (5.7). Moreover, u(t,x), t > 0 and x € R3, only
depends on the initial data on 0B,(x).

Proof. We only prove the theorem for n = 3, for the general case we refer to [4]].
We show that Kirchhoft’s formula provides a classical solution. We can rewrite the formula as

u(t, x) uo(x + ty) + tVug(x + ty) - y + tu1(x + ty) dS ()

1
10B1(0)] Jag,0)

1 d
= — (tup(x + ty)) + tuy (x + ty) dS (v).
10B1(0)| Jag, (o) dt 0 Y : Y Y

(5.8)

Due to the regularity of the initial data, the integrand is twice continuously differentiable with
respect to ¢, x and y and dB;(0) is compact. Therefore, we can interchange differentiation and
integration and the right hand side is in C 2([0, 00) X R™).

Let us consider the case uy = O first. Then, can be written as

u(t, x) u(x +ty)dS (y) = tUi(x; t).

 10B1(0)| Jas, 0

One the one hand, this implies that

Au(t, x) =

Auj(x +y)dy.
0BO) Jopop

On the other hand, differentiating with respect to ¢ we obtain
ur = (tUy)y = Uy + t(Uy)y, uy = (tU Dy = 22U + (U1

As previously observed for the spherical means (see the proof of Theorem and the derivation
of the Euler-Poisson-Darboux equation), it follows that

Ui(x;0) = Aui(x +y) dy.
’ 9B,0)] Js,0 e
Moreover, note that |9B,(0)| = 72|0B;(0)| which implies that d% IOB:(O)I = _t|632,(0)|' Consequently,

we have

2
(UDu(x:1) = == (UDix: 1) Aui(x +y)dS (y),

+ —_—
[0B:(0) Ja,0)

and we conclude that

up =201 + (U = Aui(x +y)dS(y) = Au(t, x).

t
10B/(0)| Jas,0)
For the general case that 1y # 0 we note that also the term involving ug in Kirchhoft’s formula
satisfies the wave equation. Indeed, if we replace u; by ug in the arguments above, it follows that
the function

w(t, x) tug(x + ty) dS (y) = tUo(x; 1)

10B1(0)] Jas, 0

63



solves the wave equation as well. Moreover, v is three times continuously differentiable and there-
fore, v, also satisfies the wave equation. Finally, we observe that

d

1
= BBO) Jon o) 7 fuo(x + 1)) dS (3)

vi(t, x)

which is the first term in the formula (5.8).
It remains to show that the function u given by (5.7) satisfies the initial conditions. To this end
we observe that by (5.8)), u(0, x) = up(x) and

u (0, x) = (Uy + ((U1))(0, x) = ui(x).

The statement concerning the dependence of the solution on the initial data directly follows
from Kirchhoff’s formula (5.7). O

Remark 5.9. If we compare Kirchhoff’s formula with d’ Alembert’s formula we observe that the
latter does not involve derivatives of the initial data. Hence, the solution of the wave equation at
t > 0 for n > 1 may be less regular than the initial data.

5.5 Poisson’s formula (2D)

For even dimensions a reduction of the Euler—Poisson—Darboux equation to a one-dimensional
wave equation is not possible. Instead, we consider the initial value problem for n = 2 as a problem
in three space dimensions. More precisely, assuming that u € C 2([0, 00) x R?) is a solution of G.3)
forn = 2 let

At x,x3) = u(t,x),  (x,x3) € [0,00) x R X R.

Then, # satisfies the initial value problem

iy —Ai=0 in (0, c0) X R3,

w(0,-) = itg, @,(0,") = iy on R,

where iig(x, x3) := up(x) and i (x, x3) := up(x), x € R%, x3 € R. We can now apply Kirchhoft’s
formula (5.7) and obtain

1
) =gz [ o)+ Vi) 0= 0+ ) dSO).
4nt” Jod (v
We observe that the integrand does not depend on the third space variable which allows us to
simplify the formula.

To distinguish dimensions we denote by BX(x) a ball in R¥ with radius » > 0 around x. Let
w : R* — R be a continuous function that is independent of y3. Then, using the parametrization

31, ¥2, £¥(y1, ¥2)) With ¥(y1,¥2) = 4[r? = y? — 2 for the sphere dB(0), it follows that

f W) dS (v, y3) = 2 f w() A1+ VY0P dy
4B(0) B2(0)
BX0) /r? — |y
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Thus, for initial data # and i; Kirchhoft’s formula yields Poisson’s formula
1 _ _ _
ut,x) = — (io(y) + Vitg(y) - (v = x) + i1 ()) dS (y)
At 6B,3(x)
_ L up(y) + Vup(y) - (y — x) + tu1(y) dy
2t B%(x) \ /t2 _ |y _ x|2 ’

for the solution of the initial value problem (5.3) for n = 2.

(5.9

This approach to first consider and solve the problem in space dimension n = 3 is called the
method of descent.

Remark 5.10. The method of descent can be applied to derive a solution formula for the wave
equation in even space dimensions n = 2k, k € N. Knowing the solution u for odd space dimen-
sions one considers i(t, x, x,41) = u(t,x) which is a solution of the (n + 1)-dimensional wave
equation.

We now show that Poission’s formula provides a classical solution of the initial value problem
(5.3) for n = 2, if the initial data is sufficiently regular.

Theorem 5.11. Let n = 2k, k € N, and uy € C**R"), u; € CK*'(R?). Then, the initial value
problem for the wave equation (5.3) has a classical solution u € C 2([0, 00) X R™).

Forn = 2 it is given by Poisson’s formula (5.9). Moreover, u(t, x), t > 0, x € R?, only depends
on the initial data in B,(x).

Proof. We only prove the theorem for n = 2. A proof of the general case can be found in [4].
Poisson’s formula is Kirchhoff’s formula for initial data that are independent of the third space
variable x3. Therefore, by Theorem[5.8]it provides a classical solution for the initial value problem
(.3) forn = 2.
The statement concerning the dependence of solutions on the initial data directly follows from
Poisson’s formula (5.9). |

The set of points in [0, c0) X R” that determine the value u(z, x), t > 0,x € R”", is called the
domain of dependence and forms a cone. If we change the initial conditions outside of this region,
the value u(z, x) will not change. Similarly, for xyo € R” the domain of influence consists of all
points in [0, c0) X R” that are influenced by the values of the initial data in xy. This set forms an
inverted cone.

Remark 5.12. The existence theorems (Theorems and [5.11) and D’Alembert’s formula in
dimension one reveal two important properties of the wave equation.

e In dimensions n > 2 the solution can be less regular than the initial data. This is caused
by a focusing effect, i.e. irregularities in uy may focus at a later time and cause u to be less
regular. This is essentially different from solutions of the heat equation that are C* for¢ > 0
if the initial data is bounded and continuous.

o The wave equation exhibits a finite speed of propagation, i.e. the value of the solution u(¢, x)
depends only on the values of ug and u; within the set B,(x). In contrast, the solution of the
heat equation depends on the initial data g in the whole space R”.
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Huygen’s principle: In dimension n = 3 Kirchhoff’s formula shows that the initial data in a
given point x € R3 only affect the solution on the boundary dC = {(¢,y) : t > 0,|y — x| = ¢} of the
cone C = {(¢,y) : t > 0,|y — x| < t}. That is, a disturbance in the point x propagates along a sharp
wave front.

On the other hand, in dimension n = 2 Poission’s formula shows that the initial data in a given
point x € R" affect the solution in the whole set C. That is, a disturbance in the point x continues
to have an effect even after the leading edge of the wavefront has passed.

u(t,x)

domain of
dependence

domain of
influence

time line of
a stationary

\;/ observer in X X
B.(x) 0

5.6 Inhomogeneous initial value problems

We now consider the initial value problem for the inhomogeneous wave equation. First, we derive
a solution for vanishing initial data,

U — Au = f in (O, 00) X Rn,

(5.10)
w@0,)=0 u(0,)=0 on R”,

where f : [0, 00) X R" — R is given.
As previously done for the heat equation we apply Duhamel’s principle. To this end we define

u(t,x)=fﬁ(t,x;s)ds, (5.11)
0

where ii(t, -, -), s > 0, is the solution of the homogeneous initial value problem

(-, 5 8) — Ali(-, -3 8) = 0 in (s, 00) X R",
) (53 5) ' (59) (s,00) (5.12)
i(s,58) =0, f(s,59) = f(s,-)  onR"
The solution ii(t, -, -) is given by Theorems [5.8]and [5.11]

For a € R we denote by |a] the greatest integer less than or equal to a.

Theorem 5.13. Let n > 1 and f € C3¥1([0, 00) x R"). Then u defined by (5.11) is a classical
solution of the initial value problem (5.10).
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Proof. By Theorems|5.8]and it follows that for s > 0 the solution (-, -; 5) of the initial value
problem (5.12)) exists and is in C?([s, 00) x R"). Consequently, the function u defined by (5.11)
satisfies u € C%([0, o) x R"). Furthermore, computing the partial derivatives we observe that

! !
ut(t,x):fﬁ,(t,x;s)ds+f4(t,x;t):fit,(t,x; s)ds,
0

0

t t
(1, x) = f ua(t, x1 5) ds + y(t, ;1) = f it (t, x: 8)ds + f(1,),
0 0

!
Au(t, x) = f Ai(t, x; s)ds.
0

Therefore, since (-, -; s) satisfies the wave equation, it follows that

t
uy(t, x) — Au(t, x) = f (1, x;8) = Aii(t, x; s) ds + f(t,x) = f(2, ).
0

Moreover, we observe that u(0, x) = 0 and u,(0, x) = 0 for x € R”, which shows that the initial
conditions are satisfied. O

An explicit representation formula for the inhomogeneous wave equation in space dimensions
n = 1,2,3 can be derived from (5.11)) (see Exercises). Finally, we obtain a solution of the inho-
mogeneous wave equation with non-zero initial values by adding the solution of the homogeneous
problem to the solution (5.1T).

Corollary 5.14. Let uy € CL2*2(R"), u; € CLFYR") and f € CL21+1([0, o) X R™). Then, there
exists a classical solution of the inhomogeneous initial value problem

uy—Au=f in (0, 00) x R",
u0,) = up, u/(0,-) =u on R".

Proof. The solution is obtained by adding the solutions of the initial value problems (5.11)) and
(5.3). O

5.7 Energy methods

The explicit solution formulas for the wave equation show that with increasing space dimension
n higher and higher regularity assumptions are required for the initial data uy and #; in order to
obtain a classical solution. Energy ‘“norms” are an alternative to measure the size and regularity
of solutions. In this section we use energy methods to prove the uniqueness and to examine the
domain of dependence of solutions.

We derive an energy inequality for solutions of the initial value problem

Uy —Au=f in (0, 00) x R”,

(5.13)
u(0,) =ug, ul0,-) =uy on R".

To this end for a given point (7, £) € (0, ) x R" we define the backwards wave cone (domain
of dependence) by
CE2)={(s,x) : 0<s<fi|x—%<i-s},
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and for ¢ € (0, 7) the cone sections by

Ct;5,8) ={(s,x) : 0<s<t, |x—R <i-s}.

Theorem 5.15. Let ug € C2(R"), u; € C'(R") and f € C([0, 00)xR™). Then, any classical solution
u € C*([0, 00) x R") of (5.13) satisfies for all (, %) € (0,00) X R" and & > O the energy estimate

2 2
”Mt(t’ ')”LZ(B,L,(X)) + ||Vu(t’ ')”Lz(Bf,t(f))
1
2 2 2
<e” (HMIHLZ(B;()?)) + ”VMOHLZ(B;()?)) + g”f”Lz(C(l:ff)) ’

where t € (0,7). If f = 0, then & = 0 is allowed.

Proof. Leti > 0,% € R" and & > 0. To shorten notations we write B; = B;_,(%). Defining the
energy

)= [ ()4 FueP). 10,
B,
we observe that

S = | Quylt, uu(t,”) + 2Vu,(t, ) - Vu(t, ) - f (7 (t,) + IVu(t, )P) ds.

B; 0B,

since fB gn)dy = fOH f?B & g(»)dS (y)dp for a continuous function g. Using integration by parts
t 0bp
it follows that

(2”1”,1 + ZVI/{, . VM) = f
B,

:f2u,f+f 2u;Vu - vds,
B, B,

where we used that u is a solution of the inhomogeneous wave equation (5.13). We further estimate
. . . . . z
the right hand side using the inequalities 2ab < a” + b? and 2ab < ga® + %, a,beR,

2u(uy — Aut) + f 2u,Vu - vdS
B, 4B,

1
2uf+f 2u,Vu - vdS <&l .. +—IfI? +f u? +|Vul?) ds.
fB, ! o8, M2y * VN2 aB,(’ )
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Consequently, this estimate implies that

1 1
’ 2 2 2
e (t) S 8||M[(t, ‘)HLZ(B,) + E”f(t’ ‘)”LZ(B,) S ‘Se(t) + g”f“LZ(BI),

and integrating the inequality from O to r we obtain

e(t) < e(0) + E”f”B(C(z;f,)?)) + sﬁ) e(s)ds.

Finally, the energy inequality follows by Gronwall’s lemma applied to the function e. O

An immediate consequence of the energy estimate in Theorem [5.13]is the uniqueness of solu-
tions.

Corollary 5.16. Let ug,u; and f be as in Theorem Then, there exists at most one classical
solution of the initial value problem (5.13).

Proof. Let u and v be two classical solution. Their difference w = u — v satisfies the initial value
problem (5.13) with up = u; = f = 0. Hence, the energy inequality in Theorem [5.15]implies that
w; = Vw=0in C(f, %) forall f > 0 and % € R" . Since w(0, -) = 0, we conclude that w = 0. m|

The energy estimate in Theorem also provides an alternative proof for the finite speed of
propagation for solutions of the homogeneous wave equation.

Corollary 5.17. Let uy € C2(R"), u; € C'(R") and u be a classical solution of the homogeneous
initial value problem (5.3).
Iff>0,% € R" and ug = u; = 0 on Bx(X), then u = 0 within the cone C(i, %).

Proof. By the energy inequality for f = 0 and up = u; = 0 in Theorem5.13]it follows that e(r) = 0
for all 0 < ¢ < 7. Hence, we conclude that u, = Vu = 0 on C(7, ), which implies that u = 0 on
C(#,%) as u(0,-) = 0. m]

We notice that any disturbance originating outside of B;(X) has no effect on the solution within
the cone C(i, %), and consequently, has a finite speed of propagation. We had already observed
this property based on the representation formulas for solutions in dimensions n = 1,2, 3. Energy
methods provide a much simpler proof and do not require the knowledge of explicit solution
formulas.

5.8 Exercises

E5.1 An initial value problem

Find the solution of the initial value problem

Mxx_3uxt_4utt = 0 in (0,00)XR,

u(0,x) = %%, u(0,x) = €, x€R.

Hint: Factor the partial differential operator as done in the lecture for the one-dimensional
wave equation.
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E5.2 Spherical waves

A spherical wave is a solution of the three-dimensional wave equation of the form u(z, r), where
r = |x| is the distance to the origin. In spherical coordinates the wave equation takes the form

2
Uir = Upr T — Uy in (0, c0) X (0, 00).
r

(a) Use the change of variables v = ru and show that v satisfies v = v,.. Note that you can
consider the equation for > 0 and r € R.

(b) Find a solution of the spherical wave equation with the initial conditions u(0, r) = uy(r),
u(0,7) = uy(r), assuming that uy and u; are even functions of r. To this end, first use
d’ Alembert’s formula to solve the wave equation for v.

E5.3 Equipartition of the energy

Let u € C2([0, ) x R) solve the one-dimensional wave equation

U — Uyx = 0 in (0, 0) X R,
u(0,-) = ugp on {0} X R,
u(0,) = uy on {0} x R.

Suppose that ug € C2(R), u; € C'(R) have compact support. The kinetic energy is

k(?) = % f ) ul(t, x) dx

and the potential energy is
1 00
p) = Ef ui(t, x)dx.
Prove the following:

(a) k(r) + p(¢) is constant, that is, the total energy is conserved.

(b) k(r) = p(¢) for all large enough times z.
Hint: By d’Alembert’s formula
ur(t, x) = ¢’ (x + 1) = ¢/ (x - 1),
ux(t, x) = ¢'(x + 1) + 4 (x - ),
where ¢’ = %(ué +uy)andy’ = %(ué - up).

E5.4 Wave equation in 1D

Consider the initial value problem

Uy — thyy = 0 in (0, 00) X R, (5.14)

u=uy, U =1u on {0} X R,

where uy € C2(R) and u; € C1(R).
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(a) Verify that the function given by d’ Alembert’s formula is a classical solution of the initial
value problem (5.14).
(b) Consider the inhomogeneous initial value problem

U = Uy = f in (0,00) X R, (.15)
u=0, u =0 on {0} X R,

where f € C%([0, o0) X R).
A solution can be found by Duhamel’s principle: Show that the unique solution of the
initial-value problem (5.13) is given by

!
u(t, x) = f u(t, x; s)ds,
0
where it solves

ly (1, x5 8) — (2, x5 8) = 0, t>s,x€eR,

a(s,x;8) =0, (s, x;8) = f(s,x), x €R,
for s > 0.

E5.5 Duhamel’s principle (n = 3)
Use Duhamel’s principle together with Kirchhoff’s formula to get an explicit formula for the
solution for the equation
Uy —Au=f in (0, 00) x R?,
u@,)=0, u(0,)=0 on R,

To obtain a classical solution, which regularity do you need to require for f?

E5.6 Propagation of singularities
Use d’Alembert’s formula to express the solution of the initial value problem for the wave
equation
Uy — Uy =0 in (0, 00) X R,
u,-) =ug, ui0,)=u on R,

where

(a) uj(x) =0and

. 1 if —-1<x<1,
up(x) =
0 0 else.

(b) up(x) =0and
if —1<x<1,

1
uy(x) =
1) {O else.
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E5.7

E5.8

E5.9

Plot u(t, x) for 1y =0,1,1,2,xeR.

9 2’
In case (a), where are the discontinuities of u in space-time (¢, x) € (0, c0) X R?
In case (b), is u discontinuous? Is the derivative u, discontinuous, and if so, where?

Remark: Note that the function u is not a classical solution of the initial value problem.

Wave equation in R’

Let u be a solution of the initial value problem

Mtt—AM =0 in (O’OO)XR3’
w(©0,) =up,  ul0,-) = u on R?.

We assume that the support of the functions ug € C3(R) and u; € C?*(R) is compact. Use
Kirchhoft’s formula to show that u satisfies

o

lu(t, x)| < = forallx e R3¢t >0,

N

for some constant ¢ > 0.

Energy and momentum density

For a solution u(t, x) of the one-dimensional wave equation uy; = u,y, the energy density is
defined as e = %(u,2 + ui) and the momentum density as p = u,u,. Assume that u € C3((0, o) X
R).

(a) Show that = and (91‘ %.

(b) Show that both, e(t, x) and p(t, x) also satisfy the wave equation.

Separation of variables

Consider the initial-boundary value problem for the wave equation in a bounded one-dimensional
interval,

utt(t7 -x) - Mxx(t’ X) = 0 t> O,X S (0, 27T),
u(t,0) = u(t,2m) =0 t>0,
M(Oa )C) = uo(x), ut(oa )C) = Ml(x) X € (O, 27T),

where up = 37, f/—k,; sin(%%) and u; 37, \r sin(&) or some constants a, by € R.

Show that the general solution can be written as

. sin($)) 1 kx
u(t,x) = ay cos( ) + by—2= sin (=).
2 PG

To this end use the method of separation of variables, i.e. assume that the solution is of the
form u(t, x) = g(x)h(t) and solve the resulting ODEs for g and A.
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E5.10 Wave equation in bounded domains

E5.11

E5.12

Let U c R” be open and bounded with C! boundary U. For T > 0 we define
Ur:=Ux(0,T], Ty:=Ur\Ur.
Consider the initial boundary value problem

M[t_AI/lzf iIl UT,
u=g on Iz, (5.16)
us =h on{r=0}xU,
where the functions f, g and h are twice continuously differentiable. Use energy methods to
prove that there exists at most one classical solution « € C>(Ur) of (5.16).
Hint: For w € C2(Ur) consider the energy
e(t) == f w2(t, x) + [Vw(t, x)* dx,  t€[0,T).
U —

———
Ein Epot

Damped vibrating string

Let u describe the displacement from equilibrium of a flexible, elastic, infinite string. If signifi-
cant air resistance r > 0 is present, the vibrating string is modeled by a wave equation with an
additional term proportional to the speed u;,

Uy — Uy + 17U =0 in (0, o0) X R.

Let u denote a solution of the damped wave equation and assume that there exists R > 0 such
that u vanishes for [x| > R. Show that the energy

e(r) = f ) u?(t, x) + u>(t, x)dx

is preserved if r = 0 and decreases in time if r > 0.

Maximum principle

Recall the maximum principle for the heat equation (Theorem[d.10). Construct a counterexam-
ple to show that such a result does not hold for the wave equation.
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Chapter 6

Nonlinear First Order PDEs

We analyze general nonlinear PDEs of first order,

F(Vu(x), u(x),x) =0, x €, (6.1)
u(x) = g(x), xeTl, (6.2)

where Q ¢ R” is open and I ¢ 9Q is a C!-hypersurface in R” (see Appendix . Moreover, the
functions F € C/(R" x R x Q) and g € C(I') are given, and u : Q — R is the unknown.

To solve the boundary value problem, we apply the method of characteristics, that transforms
the PDE into an appropriate system of ODEs. The idea is that for a given x € Q we aim to
find a curve that connects x with a point y € I" and along which we can calculate u.

Iy

We had applied this method to solve the linear transport equation in Chapter 2[and generalize
it now for nonlinear equations.

6.1 The method of characteristics

Let Q c R? be open and I' ¢ Q be a regular C! curve in R%. We consider the linear boundary
value problem

a(x,y) - Vu(x,y) + b(x, y)u(x,y) = f(x,y), (x,y) € Q, (6.3)
u(x,y) = g(x,y), (x,y) T, (6.4)
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where a € C'(Q;R?),b € C'(Q), f € C'(Q) and g € C'(I'). The PDE (6.3) can be written as

Uy ai
uy |- ap =0 in Q.
-1) \-bu+ f

Uy
If u € C'(Q) is a solution, the graph of u is a two-dimensional surface in R3, and since [uy] is

-1
ay(x,y)
normal to the surface, the vector ay(x,y) , (x,y) € Q, lies in the tangent plane to
=b(x, y)u(x,y) + f(x,y)

the graph of u in (x, y, u(x, y)), see the figure below.

Consequently, the system of first order ODEs,

x'(5) = ai(x(s), y(s)),

Y'(5) = az(x(s), y(s)), s >0, (6.5)

() = =b(x(s), y())z(s) + f(x(s), ¥(s)),
where z(s) = u(x(s), y(s)), define spatial curves lying on the graph of the solution u. These are
the characteristic equations and the solutions of these ODEs are called characteristic curves.
We require that the initial data lies on I', and since each curve emanates from a different point
¥ = (y1,¥2) € I' we indicate this dependency by writing x,, y,, z,, and hence, the initial conditions
are

O =y,  »O0O =y, 70)=g0y), vyel.
The idea of the method of characteristics is that solving the system of ODEs (6.3), we can

reconstruct the solution u(x, y) of the original PDE for

(x, ) € {(xy (D), yy() sy € 1,1 € [0, T)} == W,

for some 7 > 0. This is suitable, if W is a “large set”, i.e. an open neighborhood of T in Q.
Certainly, a necessary condition is that the vector a(y) is not tangential to I" in 1, i.e.

a(y) ¢ T,I, yeTl,

where 7, I" denotes the tangent space of I' in .
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We notice that the first two equations in are independent of the last equation, and the
last equation is a linear ODE for z that we can explicitly solve if x and y are known. This will be
different for quasi-linear and fully non-linear PDE:s.

Example 6.1. Let Q = {(x,y) €eR?> : x>0,y >0}andT ={(x,y) eR?> : x>0,y =0} c 9Q.
We consider the boundary value problem

xuy(xay) - yux(x’)’) = u(x’y)’ (XQ’) € Q’
M(-xa 0) = g(x), X > 0
Hence, using the previous notation we have a = (_xy ) b = -1 and f = 0, and the system of

characteristic equations is

x'(s) = —y(s),
y'(s) = x(s),
Z'(s) = z(s),

with the initial conditions
x(0) = x0 > 0, ¥(0) =0, 2(0) = g(xo).
We observe that X'/ = —x, ¥ = —y and (x* + y*)’ = 0. Therefore, the solutions are

x(s) = xgcos s,
y(s) = xp sin s,

2(s) = g(xo)e’.

Q

X,y
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We observe that all vectors that are tangential to the curve I are of the form v = ((C)) ,c € R\ {0}.

Moreover, if y = (xg,0) € I" then a(y) = ()? ) Hence, a(y) is not tangential to I" and the condition
0

a(y) & 7, I for all y € I is satisfied.
For a given (x,y) € Q there exist s > 0, xo > 0 such that (x(s), y(s)) = (xgcos s, xg sin ).
Indeed, xo = +/x2 + y? and s = arctan f Hence, we obtain

u(x,y) = u(x(s), y(5)) = 2(s) = gxo)e" = g {2 + 7)),

6.2 Quasilinear equations

Before we consider general nonlinear equations we analyze boundary value problems for quasi-
linear equations,

a(x, u(x)) - Vu(x) = b(x, u(x)), x€eQ, (6.6)
u(x) = g(x), xel, (6.7)

where Q c R" isopen, ' c 9Q is a C]—hypersurface inR" ae C](ﬁ XR;R"), b € C](ﬁ X R) and
geC\(D).
As we observed for linear problems, we can rewrite the PDE (6.6)) as

a(x,u(x))\ (Vu(x)\ _
(b(x’u(x))).( u )_o, reQ.

Vu(x)
-1
normal to the graph of u in (x, u(x)), we observe that u is a solution of (6.6) if and only if the vector
(a(x, u(x))
b(x, u(x))
following definitions.

If u € C'(Q), then the graph of u is a hypersurface in R"*!. Moreover, since ( ) x € Q,1is

) is in the tangent space of the graph of u in (x, u(x)), for all x € Q. This motivates the

Definition 6.2. The characteristic equations for the quasilinear PDE (6.6) are

x'(s) = a(x(s), z2(s)),

' (6.8)
Z(8) = b(x(s), 2(5)),

with the initial conditions
x(0) =, 2(0) = gy), yerl.
Moreover, the boundary data is non-characteristic if
a(y,g(y)) ¢ 7,1 Vy eT.

The solutions of the characteristic equations are curves that lie on the graph of the solution u
of (6.6). In particular, z(s) = u(x(s)), determines the values of the solution along the curve x(s).
Different from linear and semilinear equations, the system of ODEs for x is not decoupled from
the ODE for z.
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Example 6.3. Let Q = {(x,y) € R*> : y>0}andT = {(x,y) € R? : y = 0} = Q. We consider
the semilinear boundary value problem

(X, y) + uy(x,y) = u?(x,y) (x,y) € Q,
u(x,0) = g(x) xeR.

1 . .
Hence, we have a = (1) and b = 72, and the system of characteristic equations is

X' (s) =1,
y(s) =1,
Z(s) = 22(s),
with the initial conditions
x(0)=x0eR, y(0)=0, 2(0) = g(xo).

We obtain x(s) = xo + s and y(s) = s, for s > 0. The last equation implies that ‘Zif = ds and hence,

_% =5- Z(LO), which leads to
1
«s) = 200 glxo) s3>0,

1 - _ - _ >
s+ T=520) 1= sg(x0)

as long as the denominator is nonzero.
C

0
the boundary data is non-charateristic. For given (x,y) € Q there exist s > 0 and xy € R such that
(x,y) = (x(s), y(s)) = (x9 + s, 5). Namely, xo = x —y and s = y, and hence we obtain

We observe that the vectors that are tangential to I" are of the form ( ) ,c#0.Sincear, =1+#0,

gxo) _ 8x—y)
1 - sg(xo) 1-yglx—y)’

u(x, y) = u(x(s), y(s)) = z(s) =

if 1 —yg(x—y) #0.

The system of characteristic equations and ODE theory can be used to prove the local existence
and uniqueness of solutions for the boundary value problem (6.6)—(6.7).

Theorem 6.4. If the boundary data is non-characteristic, then there exists a neighborhood U of '
in Q such that there exists a unique solution u € C'(U) of the boundary value problem (6.6)—(6.7)
inU.

Proof. The theorem is a special case of the general result for nonlinear equations (Theorem [6.12).

The proof is given in the following section. O

6.3 Fully nonlinear equations

We now consider boundary value problems for fully nonlinear equations (6.1)—(6.2),

F(Vu(x), u(x), x) = 0, x€Q,
u(x) = g(x), xeT,
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where Q c R"isopenandI' c dQ isa C L_hypersurface. Moreover, we assume that F € C!(R" x
RxQ)and g € CI(I).

From now on, we will use the notation
(p,z,x) - F(p,z,%), peR,zeR xeQ,

i.e. p substitutes the gradient of u and z substitutes u.

6.3.1 Characteristic equations

We search for suitable characteristics. Suppose that u € C2(Q) is a solution of and x : I — Q
is a curve in Q, where I C R is an interval. Let

2(s) := u(x(s)), (6.9)
p(s) := Vu(x(s)), (6.10)

s € I. We aim to derive a system of ODEs for x,z and p that allows to compute the solution u.
Differentiating p; = u,,(x) we obtain

n

pi(s) = Z uxixj(x(s))x}(s), i=1,...,n (6.11)

J=1
To eliminate the second order derivatives of u we differentiate the PDE with respect to x;,
n
Z Fp (Vitytt, Yty + Fo(Vit, , ity + Fr(Vityu,-) = 0. (6.12)
j=1
Consequently, we set
Xi(s) = Fp(p(s),z(s), x(8)),  j=1,....m, (6.13)

and inserting x = x(s) and (6.9)—(6.10) in (6.12) we obtain

Fpp (p(8), 2(8), x(8))tx,; (x(5)) + F(p(s), 2(5), x(5))pi(s)
=1

J
+ Fy(p(s), 2(5), x(s)) = 0.

Finally, using this relation and (6.13)) in the ODE (6.11]) it follows that
pi(s) = —Fy(p(s), 2(5), x(5)) = F2(p(s), 2(s), x(5)) pi(s).

Moreover, by and (6.10) together with (6.13]) we obtain

n

(5) = D g (DY) = D I (p(s),2(s), X(5).
j=1

J=1
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Hence, for the PDE (6.1)) we obtain the system of characteristic equations

x'(s) = VpF(p(s), 2(s), x(5)), (6.14)
Z(s) = VpF(p(s), 2(s), x(s)) - p(s), (6.15)
P'(5) = =V.F(p(s), 2(s5), x(5)) = F(p(s), 2(s), x(5))p(5). (6.16)

This systems consists of 2n+1 first order ODEs. The functions p, z and x are called characteristics.
The curve x is the projection of the full characterstics (p, z, x) onto the set Q ¢ R" and is therefore
sometimes called the projected characteristic.

The following theorem summarizes our observations.

Theorem 6.5. Let Q C R" be open and u € C*(Q) be a solution of in Q. If x is a solution of
(6.14), where z = u o x and p = Vu o x, then z solves (6.15) and p solves (6.16) for those s such
that x(s) € Q.

Remark 6.6. e In order to solve the system of characteristic equations (6.14)—(6.16) we still
need to specify suitable initial values.

e If uis a C?-solution of (6.1), then (6.14)—(6.16) is an explicit system of ODEs for x, z = uox
and p = Vuox. The key step in the derivation was to set x’ = V,F such that the second order
derivatives of u dropped out. This avoids introducing ODEs for the derivatives of second
and higher order of u.

o In case of quasi-linear equations, the ODE for p is not required and the characteristic equa-
tions reduce to a system of ODEs for x and z.

Example 6.7. Let Q = {(x,y) € R? : x> 0}andT = {(x,y) € R? : x = 0} = 9Q. We consider
the fully nonlinear boundary value problem

(X, y)uy (X, y) = u(x, y) (x,y) €Q,
M(O’y):y29 yER
Thus, F(p,z,x) = p1p2 — z, and the system of characteristic equations (6.14)—(6.16) is
x'(s) = pa(s),
Y'(5) = pi(s),
' (s) = 2p1()pa(s),
pi(s) = pi(s),
p5($) = pa(s).

The solutions of the first two equations are

p1(s) = p1(0)e’, p2(s) = p2(0)e’,

and inserting these functions in the system of ODEs we obtain

x(s) = pa(0)(e® - 1),
y(s) = yo + p1(0)(e* - 1),
2(s) = y2 + p1(0)pa(0)(e* — 1),
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where we used the initial values x(0) = 0, y(0) = yo € R and z(0) = yg.

We still need to determine suitable initial values for p. Since u(x,y) = y*> on I', we have
P2(0) = u,(0,y) = 2yo. Furthermore, the PDE u,u, = u implies that p;(0)p>(0) = z(0) = y(z), and
consequently, p;(0) = )70

Finally, for a given (x,y) € Q, x # 4y, there exist s > 0 and yg € R such that

(x,y) = (x(s), ¥(5)) = (2)’0(€S - D, %O(es + 1))-

In fact, we find
4y —x x+4y
Yo = 4

s _

C4y—x

and therefore, the solution of the boundary value problem is given by

(x +4y)°

M(X, y) = u(x(s),y(s)) = Z(S) = (yO)ZeZs — =

This example illustrates that we need to specify suitable initial data for the system of charac-
teristics (6.14)—(6.16)), which we will do in the next subsection.

6.3.2 Boundary data

From now on we make the simplifying assumption that
F'c{xeR" : x,=0} (6.17)
and T c R""! is open. We will comment on the general case in Section[6.3.4]
We look for suitable initial conditions
p0) =po, z(0)=2z0, x(0)=xo,

for the system of characteristic equations (6.14)—(6.16) that allow to construct a solution of the
boundary value problem (6.1)—(6.2). Since x(0) = xo € I, a necessary condition is that

20 = 2(0) = u(x(0)) = u(xo) = g(xo)- (6.18)

To determine p(0) = po we note that u(xy, ..., x,-1,0) = g(x1, ..., Xx,—1) near xg, and differentiat-
ing with respect to x; we obtain

pi(0) = uy,(x0) = gx,(x0), i=1,....n—-1.

In addition, the PDE (6.1) should hold and hence, we obtain the following n equations that deter-
mine po = ((po)1,- -, (Poln),

(po)l = g)C,'(xO)’ i= 13 N 17

(6.19)
F(po, 20, x0) = 0.

Definition 6.8. The conditions (6.18))—(6.19) are called compatibility conditions, and a triple
(po» 20, o) € R¥™*! satisfying (6.18)—(6.19) is called admissible.
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We remark that zp is uniquely determined by g and the choice of xg € I, but a vector pg
fulfilling (6.19) may not exist or may not be unique.

Now suppose that (pg, 2o, Xo) is an admissible triple. Then x(0) = xg, z(0) = z¢ and p(0) = po
are possible initial values for the system of characteristics (6.14)—(6.16). We need to solve this
system also for nearby initial values y € I', and consequently, must ensure that the compatibility
conditions remain valid. Hence, we also want to solve (6.14)—(6.16) with initial values

pO) =q@y), z2(0)=g(), xO0)=y,
where y € I is close to xgp and ¢ = (¢q1, .. ., gy) 1s a function such that
q(x0) = po (6.20)
and (q(y), g(y), y) is admissible, i.e.

Qi(y)zgxi@), i=1,...,l’l—1,

(6.21)
F(g(»),8(),y) = 0.
Lemma 6.9. Ler F € C2(R" X R x Q) and (po, 20, Xo) be an admissible triple. If
F),(po, z0, x0) # 0, (6.22)

then there exists a unique C*-solution q of (6.21) for all y € T near xo.

Proof. Consider the function G: R" X R" — R", where

Gi(p,y) = pi — &x(), i=1,...,n-1,
Gu(p,y) = F(p,g(y),y).

Since (po, zo, Xo) is an admissible triple, G(pg, xo) = 0. Moreover, we obtain

1 0 0
0 1 0 ... 0
D,G(po, xo) = : : ,
0 ... 0 1 0
Fp](po,ZO,XO) Fpn(po,ZQ,xO)

and consequently, det D,G(po, x0) = F),(po,20,X0) # 0 by assumption (6.22). The Implicit
Function Theorem now implies that the equation

G(p,y)=0

is uniquely solvable for y near xo, i.e. there exists a function g such that p = g(y). Moreover, g is
twice continuously differentiable if F € C2C*(R"” X R x Q). O

Definition 6.10. An admissible triple (po, zo, xo) that satisfies (6.22) is called non-characteristic.
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6.3.3 Local solution

We want to solve the system of characteristic equations (6.14)—(6.16) for non-characteristic initial
data (po, zo, X0), where xg € I' C {x € R" : x,, = 0}, and values y € I close to xy. By Lemma
there exists a function ¢ such that pg = g(xo) and (¢(y), g(y), y) is admissible for all y € I" close to
xo. Lety = (v1,...,yn—1) € I (to simplify notations we omit here the zero iny = (yi,...,¥V,-1,0))
and let

p(S) = P(y, S) = P()’I,- . '7yn—las)a
2(8) =2, 8) = 215 -+ V01, 5), (6.23)
)C(S) = -x(y’ S) = x()’l,- . -’yn—l,s),

denote the solutions of the characteristic equations with initial data
pO) =4q@(), z(0) =g, x0)=y. (6.24)

Lemma 6.11 (Local invertibility). Let (po, zo, Xo) be admissible, F € C3(R" x R x ﬁ) and let
F,,(po, 20, X0) # 0. Then, there exists an open interval I containing 0, a neighborhood W of xy in
I' ¢ R"! and a neighborhood V of xo in R" such that for x € V there is a unique (y,s) € W x I
with

x = x(y, $).
Moreover, the map x — (y, s) is CX(V; W x I).

x=x(y,s) VvV

4NN

P E3/AN

Proof. By Lemma and since F € C3(R" x R x Q), the function q is C? and the solutions p, z, x
of the characteristic equations in (6.23)) as well. We observe that

x(x0,0) = xo,

and hence, the claim follows from the Inverse Function Theorem if det Dx(xo,0) # 0. By (6.23)
and (6.24) we have

x(y,0) =y,
and thus, we conclude that
ox; 0;; j=1,...,n—1,
52 (x0,0) = { s
i 0 j=n



fori =1,...,n— 1. The characteristic equations (6.14) furthermore imply that

(9Xj
g(xo, 0) = Fp,(po, 20, X0)-

Therefore, we obtain

1 A 0 Fpl(PO, ZOa XO)
Dx(x0,0)=| = : ,
o --- 1 :
0 ... 0 F,(po,zo0,x0)
and consequently,
det Dx(x9,0) = F,(po, 20, Xo) # 0. =

By Lemma for every x € V there exist unique solution y = y(x) and s = s(x) of the
equation
x = x(y, $).

Finally, we define

u(x) := z(y(x), s(x)),
p(x) := p(y(x), s(x)),

for x € V and show that u is indeed a (local) solution of the PDE (6.1]).

(6.25)

Theorem 6.12. Let F € C3(R" X R X ﬁ), g € CX(T) and (po, 20, Xo) be admissible. Moreover, we
assume that F, (po, 20, %) # 0. Then, u defined in (6.23) is a C*-function and the unique solution
of the initial value problem

F(Vu(x), u(x), x) = 0, xeV,
u(x) = g(x), xel,

with Vu(xg) = po.
Proof. Let I and W be as in Lemma(6.11} y € W and let
p(s) =pQ.s), z2s)=z(y,s5), x(s)=x(y,s)

denote the solutions of the characteristic equations (6.23) with initial data (6.24)).
Step 1. First, we show that F vanishes along the characteristic curves, i.e.

f,8) = F(p(y,s),2(y, 8), x(y, 5)) = 0, sel. (6.26)

Indeed,
1000 = F(p(,0),20, 01, x0,0) °7 Flg(, 80),) *7 0,
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and

0
8_{: = VuF(p,z,0) - p' + F(p,z, 07 + Vi F(p,z,x) - X'

CBCI0G F(p,2,2) - -V F(p, 2,2 = Fi(p, 2, 90p)
+ F.(p,z,x)p - Fp(p,2,x) + Vi F(p,z,x) - V,F(p,z,x) = 0,

which implies
Step 2. By (6.25)) and Lemma|6.1T| we conclude that

F(p('x)’ l/t(x), X) = 0, X € ‘/,

and therefore, it remains to show that p(x) = Vu(x), x € V. To this end we first prove that

0z ox

—,9) =pQ,s) - —0,9), (6.27)
os os

P P)

s =pons) - Zs),  i=1,...n—1, (6.28)
dyi dy;

fory € W and s € I. The first condition follows immediately from the system of characteristics,
more precisely, from (6.15) and (6.14). To show the second equation let

P
gi@Jx i=1,...n-1.

0
ri(s) = a—j(y, $) = p(, $) -

1

Then, r;(0) = g,,(y) — gi(y) = 0 by the compatibility conditions (6.20)—(6.21). Moreover, differen-
tiating r; we obtain

€D op 9x dp ox

dy; Os Os 0y,
) 0 O0x
CRLI 2P G, F(p,2,3) = (<Y F(p.2,X) = pFo(p, 2, %) - o

Ay i
0 0z 0x
= _F(P,Z,x) - Fz(pez’x)_ + Fz(p,Z,X)p T a
ay; dy; dyi
Step 1 0z Ox
=p _FZ(P’Z,X) o P 5 :_FZ(p9Z’x)ri~
dyi dyi

Consequently, r; satisfies a linear homogeneous ODE with initial data r;(0) = 0, and we conclude
that ;, =0in /1.
Step 3. We now show that p(x) = Vu(x), x € V, using the formulas (6.27) and (6.28)). Indeed,
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for j=1,...,n, we obtain

ou @Z 9z dyi Bzﬁ
ij 0y; c')xj 65 Ox;j

©.27).(6.28) Py 0x\ Os
121:( 6y,)(9xj+(p 6s)(9xj

Z Ox ay, O0x Os Z Oxc
ay,ax, Bsaxj o Pr ax, - Py
—‘5k./

Step 4. Uniqueness. Two different solutions u and v with Vu(xp) = po would lead via the
relation

2y, 8) = u(x(y, s)), Ay, s) = v(x(y, ),

to two different solutions of the initial value problem for the characteristic equations which is
impossible by Lemma [6.T1] In fact, for every x € V there exists a unique y € W and s € I such
that x(y, s) = x. |

Remark 6.13. In the quasilinear case, the compatibility conditions are a system of n linear alreg-
braic equations, and the non-characteristic condition ensures that there exists a unique solution.

For fully nonlinear equations the compatibility conditions are a system of nonlinear equations
and the non-characteristic condition is not sufficient to ensure that a solution exists.

6.3.4 Straightening the boundary

Theorems [6.4] and [6.12] can be extended for more general domains Q c R”. Let Q c R” be open
and bounded and 0Q be of class C', i.e. for every xo € dQ there is an > 0 and a C'-function
¢: R*! — R such that (possibly after relabeling and reorienting the coordinate axes)

QN By(xp) = {x € By(x0) : x4 > p(x1,...,%-1)}.

Via a change of coordinates near xo we can flatten out the boundary 02 near xg.

O

I Y |

In fact, let xg € 9 and consider r and ¢ as above. We define
D (x) :
D" (x) :

Xi, fori=1,...,n—1,

_(70(x1’---’x}’l—1)7

86



and write y = ®(x). Similarly, we define
Yiy) =y, fori=1,...,n—1,
') = yn + @01, - Yn-1),

and write x = P(y). Then, ¥ = ®~! and the mapping x — ®(x) = y straightens out AQ near xo.
We reformulate the initial value problem (6.1))—(6.2) accordingly. Suppose that u: Q — Ris a
solution and define V := ®(Q) and v(y) := u(¥(y)) for y € V. Then,

u(x) = v(d(x)), x € Q,

and
Vu(x) = Vv( ®(x) )DD(x).
——

=y

Consequently, we obtain
0 = F(Vu(x), u(x), x) = F(Vv(y) DO(Y(y)), v(¥ (), ¥()),
and this equation is of the form
GV, v(»),y) =0,  yeV

Moreover, with i(y) := g(¥(y)), in the new coordinates the initial value problem (6.1))—(6.2) takes
the form

G(Vv,v,-) =0 inV,
v=nh on ®(I).

This system is of the same form as the original one, but with a “flat” boundary near xy. This shows
that our simplifying assumption (6.17), I' c {x € R" : x, = 0}, is not restrictive, and the theory
can be extended to more general C!-hypersurfaces I".
6.4 Exercises
E6.1 Solvability of first order PDEs
(a) Let Q c R" be open and let u € C ! (ﬁ) be a solution of the quasilinear PDE

a(x, u(x)) - Vu(x) = 0, x € Q, (6.29)

where a € C1(Q x R; R").
Show that the solution u is constant along every characteristic curve.

(b) Assume that Q is open and bounded with Cl—boundary 0Q and a(x, u(x)) = a(x), i.e.
the equation (6.29) is linear. Moreover, suppose that the trajectories of the characteristic
curves are as in the figure below,
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i.e. a vanishes only in one point xg € Q, a(x) # 0in Q\ {xp} and a(x) - v(x) < 0 for x € Q.

Does there exist a solution u € C'(Q) of the boundary value problem

a(x) - Vu(x) =0, x e,
u(x) = g(x), x€0Q?

(c) Now, assume that the trajectories look as follows:

A
Can then a solution u € C'(Q) of the boundary value problem (6.30) exist?

E6.2 Semilinear equation

Consider the semilinear boundary value problem

Cur(x,y) — yuy(x,y) = u*(x,y), (x,y) € R?,
u=1 onl,

where I' = {(x,y) e R? | x > 0,y = 2x}.

(6.30)

Verify that the boundary value problem is locally solvable and use the method of characteristics

to find an explicit solution.

E6.3 Method of characteristics

Use the method of characteristics to find a solution of the following boundary value problems
(the shape of the boundary and the boundary values are determined by the second equation):

(a)

(v + u(x, y)uy(x,y) + yuy(x,y) = x =y
ulx,1)=1+x
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(b)
utty + uy =1

1
u(x, x) = Ex

(©)

xXuy(X,y,2) + 2yuy(x,y,2) + u(x,y,2) = 3u(x,y,z)
u(x,y,0) = g(x,y)

Are the PDEs linear, semilinear or quasilinear? Do there exist unique local solutions of the
boundary value problems? Do the solutions exist globally?

E6.4 Quasilinear equation
Consider the initial value problem
2u(x, y)uy(x,y) — yuy(x,y) = 2x,

u(1+s2,s):1—s2, s €R.

Argue that there exists a unique solution in a sufficiently small neighborhood of {(1 + 52, 5)|s €
R} ¢ R? and compute the solution explicitly.

E6.5 Burger’s equation

Consider the inviscid Burgers’ equation

%”%zo in (0, 00) X R,
u(0,-) = ge inR,

where the initial data g, € C*(R), € > 0, is smooth and such that

1 x <0,
ge(x) =ql-x [g1-¢],
0 x> 1.

(a) Check whether the initial data is non-characteristic and solve the characteristic equations.
Hint: Recall Problem 1, Sheet 12.

(b) Sketch the characteristic curves in the x-t—plane. For simplicity restrict yourself to the
limiting case € — 0. Pay special attention to what happens at the lines {x = 1} and {¢t = 1}.

(c) Use part (b) to deduce a formula for the solution for times 0 < ¢ < 1 in the limit € — O.
Which peculiarity occurs when ¢ approaches 1?

E6.6 Fully nonlinear equation
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E6.7

E6.8

E6.9

Use the method of characteristics to solve the initial value problem

1
u+ 5(ux)2 +uy=0 in R X (-0, 0),
u(x,0) = —xz, x€eR,

where x € R,y < 0. Verify that the boundary data is non-characteristic and use the compatibility
conditions.
Conservation laws

Consider in Q = (0, c0) X R” the equation
G(Du, us,u, x,t) = u; +divF(u) = u; + F'(u) - Vu =0

with the initial condition
u=g onT = {0} x R".
(a) Show that the non-characteristic condition is satisfied on I.

(b) Compute the system of characteristics and show that the projected characteristic is a
straight line along with the solution is constant.

(c) Derive an implicit formula for the solution u.

Fully nonlinear equation

Consider the initial value problem

U, =0 in (0,0) X R,

(6.31)
u0,x) =1, x€R,

where t € (0, 00).

(a) Does the local existence theorem apply? Explicitly check the non-characteristic and com-
patibility conditions.

(b) Find all solutions of the initial value problem ((6.31)).

Hint: Prove by contradiction that u, = 0. To this end consider a shift of the initial surface
I' = {0} X R and solve the corresponding characteristic equations.

Eikonal equation
The eikonal equation arises in problems of wave propagation and provides the foundation of

geometrical optics. In R? it takes the form

2 2_ 2 .2
uy+uy=n in R~,

where level sets of the solution correspond to wave fronts and » is the refraction index of the
medium.

Find the solution of the eikonal equation for a medium with constant refraction index n = ng € R
and initial condition u(x,2x) = 1.
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Appendix A

Integration Theory in R”

In this appendix we summarize basic facts from integration theory that are used throughout the
course. For further details and proofs we refer to [3]] and [5]].
If we write U C R” then either U = R” or U C R”. Similarly, if U,V c R", we write U C V if

U =V or U ¢ V. We denote by U the interior of U, by U the closure of U and by AU the boundary
of U.

A.1 Riemann integrability

We call D an n-dimensional rectangle parallel to the coordinate axis if it is a compact subset of
the form
D:{xeR”:aJS)cjsbj, j= 1,...,n},

where a; < bj, a;, b; € R. The n-dimensional volume of D is

D =] [®; - ap.
j=1

Note that |[D| = 0 if there exists j such thata; = b;.
A partition of D is a finite collection D = {D; : i € I}, I an index set, of n-dimensional
rectangles D; such that

D= D,  DiND;j=0 or ID;AD}=0 if i#]
i€l
Throughout this section we assume that D is an n-dimensional rectangle and f : D —» Risa

bounded function.

Definition A.1. For every partition O = {D; : i € I} of D we define the lower sum and upper
sum of f by

S(.D)= ) sup f@ID. S(f.D) = inf sup f(R)ID4l.

icl xeD; xeD;

The function f is (Riemann-)integrable over D if

sup  S(,D)=  inf  S(f,D).
D partition of D D partition of D
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The common value is called the integral of f over D and denoted by

f f(x)dx.
D

We recall a special case of Fubini’s Theorem that allows to interchange the order of integration.

Theorem A.2. Let f : R™™ — R be a continuous function with compact support. Then, for every
y € R", the integral j;%m f(v,2)dz is well-defined and Riemann integrable on R", and for every
z € R™, the integral fR" f(v, 2)dy is well-defined and Riemann integrable on R™. Moreover, we

have
[ seoas= [ [ poaavaz= [ [ poozay

For A ¢ R" we denote by y4 the characteristic function of A, i.e. ya(x) = 1if x € A and
xa(x)=0if x ¢ A.

Definition A.3. A bounded subset A C D is called (Jordan-)measurable if y, is integrable over
D. Then its (Jordan-)volume is given by

Al := f)(A(x)dx=fdx.
D A

We call a function f : D — R (Riemann-)integrable over A if fy4 is integrable and write

f fodx = f JOxa(x)dx.
A D
Definition A.4. Let U C R” be open. We call a function f : U — R absolutely (Riemann-)

integrable in U if for every x € U there exists a rectangle D C U such that x € D and f is
(Riemann-) integrable over D, and

sup flf(x)ldx<oo,
Keg(U) JK

where J(U) denotes the set of compact and Jordan measurable subsets of U.

The following theorem provides a criterion for the absolute integrability of a continuous func-
tion over an open set.

Theorem A.S. Let U C R" be open and f : U — R be continuous. Suppose that (K;)jen is a

family of subset such that K; is compact and Jordan measurable, K; C K1 for all j € N and
Ujewt Kj = U. Then the following statements are equivalent:

(i) The function f is absolutely Riemann integrable over U.

(ii) (fK, |f(x)|dx) . is a bounded sequence in R.

JE

If one of the statements holds then 1fx0)ldx is monotonically nondecreasing and
K
7 JEN

lim ( f f(x)dx) = f f(x)dx.
I7\JK; jeN v
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A.2 Interchanging differentiation and integration

Theorem A.6. Let U C R" and V € R™ be open and f : U XV — R be a function with the
following properties.

(a) Forevery x € U, the function t — f(x,1t) is absolutely Riemann integrable over V.

(b) The total derivative D f with respect to the variable x € U exists and, for every x € U, the
mapping t — D1 f(x, t) is absolutely Riemann integrable over V (here, integrability is meant
component-wise).

(c) There exists a function g : V — [0, 00) that is bounded on V and absolutely Riemann
integrable over V, such that |Dy f(x, t)|| < g(t) for all (x,t) € U X V.

Then the function F : U — R, defined by F(x) = fv f(x, ndt, is differentiable and
D F(x) = fle(x, Hdt, xe U
14

Example A.7. The function f(x) = ¢ is continuous on R2. Let r > 0. Using polar coordinates

we observe that o
f = f f re"zdrd(,o =n(l - e_rz) <.
B,(0) -nJo

Let K c R2be a compact, Jordan measurable set. Then, there exists » > 0 such that K c B,(0).
Moreover, since f is positive, we have

f Jdx < Jdx <z,
K B,(0)

which shows that f is absolutely integrable over R.
By Theorem[A.2] we conclude that

" 2 2 " 2 " 2 2,2
(Lo =([ian) [san) - i
-r -r -r .

where C, = [-r,r] X [-r, r]. We observe that B,(0) c C, C B, \5(0) and therefore,

R f f(dx < (1 — 2.
C,

Finally, by Theorem[A.5|we conclude that

2
(fe_szds) = limf fx)dx =,
R r—00 C,

fe_szds = .
R

which shows that
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A.3 Change of variables

Let U and V be open subsets of R". Recall that a function ¥ : V — U is a C'-diffeomorphism if it
is bijective and if ¥ and P~! are continuously differentiable.

Theorem A.8. Let U and V be open subsets of R" and ¥ : V. — U be a C'-diffeomorphism. Let
f : U = R be a bounded function with compact support. Then f is integrable over U if and only
if the function y — (f o W)(y)|detDY(y)| is integrable over V. In this case we have

me=fGMM=fﬁw%wmmwmw
Y(V) U %

An important special case of this theorem are polar and spherical coordinates.

Polar coordinates
Let U = R?\ ([0, 00) X {0}) and V = [0, o) X (0, 27). Then ¥, : V — U, defined by
Wa(r,¢) = (rcos ¢, rsing), (rng)eV,

is a C!-diffeomorphism. We observe that

=r>0.

detD¥(r, ¢) = det (COS ¢ —rsin ¢)

sing rcos¢

Hence, for a continuous function f with compact support in U we obtain
00 T
f f(x)dx = f (f o ¥2)(W)ldetD¥>(y)ldy = f r f f(rcos ¢, rsing)d¢ dr
R2 1% 0 B

= fﬂfw rf(rcos ¢, rsing)drde.
- JO

Spherical coordinates

Let U =R3\{xeR3:x >0,x, =0}and V = [0, 00) X (0,27) X (0,7). Then ¥3 : V — U,
defined by
Y3 (r, ¢,60) = (rcos¢sinf, rsin ¢ sin 6, r cos 6), (r,9,0) €V,

is a C'-diffeomorphism. To shorten notations we write 3 = Yo W, where

Y(r, ¢,0) = (rsinf, ¢, rcosb) = (o, ¢, 2),
¥(p, ¢.2) = (¥2(p. 9).2).

The chain rule then implies that D¥3 = DY o Dy and consequently,
ldetDW3(r, ¢, 0)| = |detD¥(p, ¢, 2)| - |[detDy(r, $,0)| = pr = r* sin 6.

We can generalize this to arbitrary dimensions n € N. Let U = R" \ {x € R3:x; >0,x =0}
and V = (0, c0) % (0,27) x (0, 7)"2. Then ¥, : V — U, defined by

Tn(r9¢961""’0n—2) = x’ (Al)
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where

x| = rcos ¢ sinf; sin b sin s - - - sin 6,,_»,
Xy = rsin¢sinf; sin6, sinés - - -sin6,_»,
X3 = rcos 0y sin@, sinfs - --sinf,_o,
X4 = rcos@,sinfs---sinf,_o,
Xp_1 = rcos 0,_3 sin6,_»,
X, = rcosd, o,

is a C!-diffeomorphism. Moreover, by induction one can show that

|detDW,,(r, ¢, 01, . . ., Op—2)| = "~ sin O (sin 62)% - - - (sin G,_»)" 2. (A.2)

A.4 Surface integrals

We shortly discuss integration over k-dimensional surfaces in R”. Recall that the Gram determi-

nant G(vy,...,v;) of m vectors vy, ..., vy € R" is defined as
vl . vl e vl . vk
G(vi,...,v) = det s
Vk . Vl .o e Vk . vk

where - denotes the inner product in R”. Moreover, the volume of a parallelepiped spanned by

Vi,...,vequals VG(vy,...,v).

Let now U c R™ be open and ¢ € CY(U;R") be an immersion, i.e.
rank(De(x)) = m Vx e U

This condition is equivalent to the linear independence of the vectors Djp(x),..., D,e(x) and
hence, these vectors span an m-dimensional subspace in R”. Therefore, M := ¢(U) is called an
m-dimensional surface in R".

The area of S is given by

M| = fU JGDg)dx.

The intuition is that the surface consists of infinitely many spanned parallelepipeds spanned by
the vectors Dygp(x),...,D,;¢(x) and we integrate over all of them to determine the area. For a
continuous function f : R” — R the integral of f over M is defined as

fM f(x)dS (x) := fU J(@(x) VG(Dg(x))dx.

Formally, one often writes dS (x) = y/G(Dy(x))dx, and dS (x) is called the m-dimensional surface
element.
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Spheres and balls

As an example, we calculate the volume of the unit ball B;(0) in R" and the surface area of the
unit sphere dB1(0) in R*. We first observe that if m = n and A := (vy,...,v,) for given vectors
Vi,...,v; € R" then

G(1,...,vy) = det(A?) = (det(A))%.

We can parametrize the unit sphere in R” using (A1), ¢ := \P"|r=1 : (0,27) x (0, 7)""2 — R",
y=(8,01,....0,2) > ¥y (1,8,01,...,0,-2).
First, we observe that (A.T)) implies that
oY, -0, =1, 0¥, 0s¥,=0=0,%,-0g¥,=1,0i=1,...,n-2,

and hence, it follows that
0
G(DY,)|,_, = det| = det(Dy) = G(Dg).

Consequently, using (A.2)) we obtain

dS () = NG(De()dy = \G(DY,)| _, = V(detD¥,?| _, = [detDW,|| _,

= sin 61 (sin 62)* - - - (8in 6p_2)" " 2dpd0); . .. dO,_».
We can now compute the surface area of the unit ball,
T T 27
0B (0)] = f ds(y) = f ‘oo f f sin 0y (sin 65)% - - - (sin G,_2)" " 2ded0); . .. d6,—> = W,
9B1(0) 0 0 Jo

and one can show that

where I" denotes the Gamma-function.
As a consequence, we can calculate the volume of the unit ball. To this end we observe that

15;1(0) = ¥,((0, 1) x (0,2n1) x (0,7)""2) = ¥,(U) and hence, the change of variables formula
implies that

|B1(0)| = 1;1(0) :j: dx = f |detD¥,,(x)|dx
B1(0) U

1 T T 27
= f f f f P71 sin 6 (sin 65)% - - - (sin 0,_2)" " 2d¢d6); . .. d6,_»
0 0 0 0

1
rn
=f r”_lf dS)dr = “—w,|y = =2
0 9B1(0) n n
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Finally, we aim to integrate continuous functions over general balls B,(x) and spheres 0B, (x)
for some x € R" and r > 0. For the sphere dB,(x) we use the parametrization

y=(,61,...,602) = x+r¥,(1,4,61,....0,2)
Analogously as above, we obtain
dS (y) = |detD¥,| | = """ sin61(sin ) - - - (sin 6,-2)" dpd); ... A6,

and we conclude that

f u()dS ()
0B, (x)

T T 2
= f con f f u(x + r¥,(1,0,01,...,0,-2)r"" " sin6;(sin 65)* - - - (sin 6,_»)" " 2dd6) . .. d6,_»
0 0 0

= f u(x + ry)dsS (y).
0B1(0)

Similarly, for a general ball we write B,(x) = x + ¥, ((0,7) x (0,27) x (0,m)"2) =: W(U),
where Y(r, ¢, 01,...,60,—2) = x+ ¥, (r,¢,601,...,0,-2). Hence, we obtain

f u(x)dx = f u(P(r,¢,01,...,0,-0))|detD¥|dsdpd0; ...d6,
B,(x) U

= fr s”_lf u(x + sy)dS (y)ds = frf u(y)dsS (y)ds.
0 8B1(0) 0 JoB(x)

If we now choose u = 1, we obtain the surface area of spheres and the volume of balls in R"
with radius r > 0,

10B,(x)| = " 110B1(0)] = " w,,

:
},J’l

1B,(x)] = f S wpds = 21

0

n

A.5 Integral theorems and integral formulas

In this section we recall Gauf3’ divergence theorem and several of its consequences that are fre-
quently used throughout the course.

Theorem A.9. Let U C R”" be open and bounded with C'-boundary U and lying on one side of
AU. Moreover, let v : U — R be the outer unit normal vector and F € C'(U;R). Then we have

f divF(x)dx = f F(x) - vdS (x),
U U

where - denotes the inner product.
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Applying the divergence theorem to a function F of the form F = (0,...,0,u4,0...,0) where
the i-th component of F is given by a function u € C'(U;R) we obtain the Gauf3-Green theorem

f Uy, (x)dx = f u(x)vi(x)ds (x).
U U

Moreover, applying this formula with u replaced by the product uv of two functions u, v € C'(U;R)
we obtain the integration by parts formula

f Uy, (X)V(x)dx = — f u(x)vy, (x)dx + f u(x)v(x)vi(x)ds (x).
U U U
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Appendix B

Submanifolds and tangent spaces

In this section we recall the notions of submanifolds in R”, hypersurfaces and tangent spaces that
are used in Chapter@ For further details and proofs we refer to [3]] and [5].

Definition B.1. Let 0 # V c R” be a subset, k € NU {co} and 0 < d < n. Then V is a CF
submanifold in R" of dimension d, if for every x € V there exists an open neighborhood U of x
in R” such that V N U is the graph of a C¥ mapping ¢ : W — R"¢, where W c R¢ is open, i.e.

VNU={w,ew)eR":we W}.

If d = 1 we call V a C* curve, if d = 2, we call it a C* surface, and if d = n — 1 then we call
V a C* hypersurface in R”.

Definition B.2. Let ) # W c R be open, d < nand k € NU{co}. Then a C¥ mapping, y : D — R”,
k € N, is called C* immersion if

rankDy(w) = k Yw e W.

The following theorem provides a characterization of submanifolds in R".

Theorem B.3. A subset O # V C R" is a C* submanifold in R" of dimension d if and only if for
every v € V there exists a relatively open neighborhood U C V of v, an open subset W c R?
and a C* immersion  : W — R? such that  : D — U is a homeomorphism. In this case,
Y~ 1 y(D) - D is called a local chart of V.

Next, we recall the notion of tangent space. Let I € R be an interval and y : I — R”" be a
differentiable mapping. Then, vy is called a differentiable curve in R" and the vector y'(t) € R" is
the tangent vector of y at the point y(¢),t € 1.

Definition B.4. Let V be a C! submanifold of R” of dimension d and v € V. A vector w € R”
is called tangential vector of V in v if there exists a differentiable curve y : I — R", I C R, and
tp € I such that

y()cV Nrel, v(ty) = v, V() = w.

The set of all tangential vectors of V at a point v € V is the tangent space 7,V of V at v.

99



Bibliography

(1]

(2]

(3]

(4]

(5]

(6]
(7]
(8]
(9]

[10]
[11]
[12]

[13]

Craig, W., A course on Partial Differential Equations, Graduate Studies in Mathematics 197, American Mathe-
matical Society, Providence, RI, 2018.

Dacorogna, B., Introduction to the Calculus of Variations, Third Edition, Imperial College Press, Cambridge,
2015.

Duistermaat, J. J., Kolk, J. A. C., Multidimensional Real Analysis II. Integration, Cambridge Studies in Advanced
Mathematics 87, Cambridge University Press, Cambridge, 2004.

Evans, L., Partial Differential Equations, Graduate Studies in Mathematics 19, American Mathematical Society,
Providence, RI, 1998.

Forster, O., Analysis 3. Integralrechnung im R" mit Anwendungen, Fifth edition, Vieweg + Teubner, Wiesbaden,
2009.

John, F., Partial Differential Equations, Fourth edition, Springer-Verlag, New York, 1995.
Konigsberger, K., Analysis 1, Sixth edition, Springer-Lehrbuch, Springer-Verlag, Berlin, 2004.
Miiller, P, Partial Differential Equations I, Lecture notes, Ludwig-Maximilians-Universitit Miinchen, 2009/10.

Pinchover, Y., Rubinstein, J., An Introduction to Partial Differential Equations, Cambridge University Press, Cam-
bridge, 2005.

Strauss, W. A., Partial Differential Equations. An ntroduction, John Wiley & Sons, Inc., New York, 1992.
Ulbrich, S., Partial Differential Equations, Lecture notes, Ludwig-Maximilians-Universitdt Miinchen, 2003.

Vasy, A., Partial Differential Equations. An Accessible Route through Theory and Applications, Graduate Studies
in Mathematics 169, American Mathematical Society, Providence, RI, 2015.

Walter, W., Gewohnliche Differentialgleichungen. Eine Einfithrung, Fifth edition, Springer-Lehrbuch, Springer-
Verlag, Berlin, 1993.

100



	Introduction
	Basic definitions
	Examples
	Type classification of linear second order PDEs
	Strategies for studying PDEs
	Further notation
	Exercises

	The Transport Equation
	Motivation
	The homogeneous case
	The inhomogeneous case
	Exercises

	The Laplace and Poisson Equation
	Preliminaries
	Motivation
	Properties of harmonic functions
	Mean value formulas
	Maximum principles and uniqueness for boundary value problems

	Fundamental solution
	Green's function and representation formula
	Green's function and existence result for the ball
	Energy methods
	Uniqueness
	Dirichlet's principle

	Exercises

	The Heat Equation
	Motivation
	Fundamental solution
	Initial value problems
	Homogeneous case
	Inhomogeneous case

	Maximum principles
	Uniqueness
	Energy methods
	Exercises

	The Wave Equation
	Motivation
	D'Alembert's formula (1D)
	Spherical means
	Kirchhoff's formula (3D)
	Poisson's formula (2D)
	Inhomogeneous initial value problems
	Energy methods
	Exercises

	Nonlinear First Order PDEs
	The method of characteristics
	Quasilinear equations
	Fully nonlinear equations
	Characteristic equations
	Boundary data
	Local solution
	Straightening the boundary

	Exercises

	Integration Theory in Rn
	Riemann integrability
	Interchanging differentiation and integration
	Change of variables
	Surface integrals
	Integral theorems and integral formulas

	Submanifolds and tangent spaces

