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Abstract

In this article, we classify invariants and conjugacy classes of triangular
polynomial maps. We make these classifications in dimension 2 over domains
containing Q, dimension 2 over fields of characteristic p, and dimension 3 over
fields of characteristic zero. We discuss the generic characteristic 0 case. We
determine the invariants and conjugacy classes of strictly triangular maps of
maximal order in all dimensions over fields of characteristic p. They turn
out to be equivalent to a map of the form (x1 + f1, . . . , xn + fn) where fi ∈
xp−1n k[xpi+1, . . . , x

p
n] if 1 ≤ i ≤ n− 1 and fn ∈ k∗.

AMS classification:

1 Introduction

1.1 Background

(For notations and some definitions, please read the next section.) Triangular poly-
nomial maps are an important class of maps: they are the first nonlinear (nonaffine)
polynomial automorphisms one comes up to, and they are a basic building block
of many polynomial automorphisms. For one, in dimension two, all automorphisms
are compositions of affine and triangular ones. Second, almost all basic examples
(like Nagata’s automorphism, exponents of locally nilpotent derivatons) are “almost
triangular” (they are triangular over their invariant ring, or an exponent of a locally
nilpotent derivation which is equivalent to a triangular derivation).

Due to polynomial automorphisms and endomorphisms in general being quite
difficult, triangular polynomial maps are often considered trivial. (For example -
it’s completely trivial to prove the Jacobian Conjecture for triangular polynomial
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endomorphisms. . . ) This is deceptive, however: if it is trivial to see that a polyno-
mial is an automorphism, doesn’t make it easier to, for example, iterate it, or to find
its invariants, or to find its conjugacy class. For all these last questions, there are
some reasonably satisfactory answers one can give over fields of characteristic zero,
or even rings or domains containing Q (see section 2). Over fields of characteristic p
this becomes much harder already. It’s exactly this characteristic p case, especially
the finite field case, which has gained more of an interest, also outside of the field
of affine algebraic geometry [7, 8, 11].

The overview of this paper is as follows: In section 1 we give background, in-
troduction, definitions etc. In section 1.3 we elaborate on the characteristic 0 and
rings-containing-Q case. We give a link between locally nilpotent derivations, which
is reasonably well-known for the invariant case but not that well-known for the im-
age case. We determine conjugacy classes in dimension 2 over general rings and in
dimension 3 over fields. In section 3 we do in all dimensions the equivalent of the “lo-
cally nilpotent dervation having a slice” -case for characteristic p. Since there is no
locally nilpotent derivation (or its characteristic p version, a locally iterative higher
derivation), this case is truly different, and has a nontrivial answer (whereas the
characteristic 0 case yields “equivalent to an affine map”). We provide a reasonable
description of invariants, image and conjugacy classes for this case. This is perhaps
the strongest new result of this paper. In section 4 we determine the dimension 2
case over fields of characteristic p. In section 5 we briefly discuss automorphisms of
finite order, and in section 6 we give further research and acknowledgements.
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1.2 Some notations and basic definitions

If R is a ring, we will denote R[x1, . . . , xn] as R[n]. All rings in this article will be
commutative with 1, and most of the time will be domains. We will reserve k for
a field. We define GAn(R) as the set of polynomial automorphisms of R[n], and
elements F ∈ GAn(R) as F = (F1, . . . , Fn) where Fi ∈ k[n]. BAn(R) is the set
of triangular polynomial automorphisms , i.e. where Fi ∈ k[xi, xi+1, . . . , xn]. (BA
stands for Borel Automorphisms, see [1].) It follows that Fi = aixi + fi where fi ∈
k[xi+1, . . . , xn]. The group BAsn(R) is the set of strictly upper triangular polynomial
maps, i.e. maps of the form F = (x1 + f1, . . . , xn + fn) where fi ∈ k[xi+1, . . . , xn].
Affn(R) is the set of affine maps, i.e. compositions of linear maps and translations.

1.3 Unipotent and triangular maps

Definition 1.1. Let F ∈ GAn(R). Then F is called locally finite (short LF) if there
exist d ∈ N and ai ∈ R such that F d =

∑d−1
i=0 aiF

i. It follows that deg(Fm) is

bounded. In case the polynomial T d −
∑d−1

i=0 aiT
i = (T − 1)d, then we say that F is

unipotent.

(Note: in some articles, LF is called “algebraic”, see for example [5].)

Example 1.2. All elements in BAn(R) are locally finite. The elements in BAsn(R)
are unipotent.

It will be convenient to abbreviate elements in BAsn(k) which have many identity
components, for example

(x1, . . . , xi−1, xi + fi, xi+1, . . . , xn) = (xi + fi)

(x1, . . . , xi−1, xi + fi, xi+1, . . . , xj−1, xj + fj, xj+1, . . . , xn) = (xi + fi, xj + fj)

etc.
If A ⊆ R[n] then we denote AF = {a ∈ A | F (a) = a}. In case A is clear (mostly,

meaning A = R[n]) then we write inv(F ) = AF .
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In this article, our goal is to understand elements in BAsn(k) for any field k. In
particular, we want to understand the following:

• What are the invariants of some F ∈ BAsn(k)?

• What are the conjugacy classes of BAsn(k) in BAsn(k)?

• What are the conjugacy classes of BAsn(k) in BAn(k)?

• What are the conjugacy classes of BAn(k) in BAn(k)?

These questions will be a bit too ambitious to solve in general - in fact, one can say
that even in characteristic zero, the invariants are quite complicated. (See example
2.8.) For completeness sake, we will first discuss the characteristic zero case, after
which we will discuss the characteristic p case, which will be more involved. We will
also consider the above questions over rings (domains), as these sometimes can help
us answer the question over fields in one variable higher.

2 Characteristic zero

Let R be a domain of characteristic zero (i.e. Q ⊆ R).

Definition 2.1. Let D : R[n] −→ R[n] be an R-linear map. Then D is called a
derivation if D(fg) = fD(g)+D(f)g for all f, g ∈ R[n]. D is called locally nilpotent
if for every f ∈ R[n], there exists d ∈ N such that Dd(f) = 0. D is called triangular
if D(xi) ∈ R[xi+1, . . . , xn]. A slice of D is an element s ∈ R[n] such that D(s) = 1.

Lemma 2.2. Let R be a domain containing Q. Then F ∈ GAn(R) being unipotent
is equivalent to F = exp(D) for some locally nilpotent derivation D.

Proof. In [2] lemma 2.3, the above theorem is proven for the case R = k, a field. If
we let k be the quotient field of R, we thus can find some l.n.d. D having coefficents
in k. We will show that D actually has coefficients in R. We know that for each
m ∈ N, we get Fm(xi) = exp(mD)(mxi) ∈ R[n]. Let d ∈ N such that Dd(xi) = 0,
and let V =

∑
m∈NR exp(D)(mxi). We claim that D(xi) ∈ V . Indeed:

exp(0D)(xi)
exp(D)(xi)

...
exp((d− 1)D)(xi)

 = M


xi

D(xi)
...

Dd−1(xi)


where M is some Vandermonde matrix. So indeed Dj(xi) ∈ V for each j. Since
V ⊆ R[n] we are done.

This fact makes the characteristic zero case so understandable. Before we state
our main theorem, let us elaborate a bit. We have the following well-known theorem:
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Lemma 2.3. Let D be a locally nilpotent derivation on a ring A having a slice s.
Then AD = ker(D) = k[a1, . . . , an] for some ai ∈ A, and A = AD[s].
Furthermore, Im(D) = A if and only if D has a slice.

A locally nilpotent derivation having a slice is obviously something very useful
for such a derivation, and correspondingly for the map. It is conjectured that such
a slice s must automatically be a coordinate (meaning there exist mates s2, . . . , sn
such that R[s, s2, . . . , sn] = R[n]). Note that exp(D)(s) = s+1, making the following
definition natural:

Definition 2.4. We say that F ∈ GAn(R) has a slice if there exists s ∈ R[n] such
that F (s) = s+ 1. If s is a coordinate, we say that s is a coordinate slice.

When conjugating, we encounter the following fenomenon: (xi+gi)(xi+fi, ~Fi+1)(xi−
gi) = (xi + fi + gi(~Fi+1)− gi, ~Fi+1). This gives rise to the following definitions:

Definition 2.5. Given F ∈ BAsn(R), define N := F − I, ~Fi = (Fi, Fi+1, . . . , Fn),

Ni = ~Fi − (xi, . . . , xn) (i.e. N1 = N).

Lemma 2.6. (xi+gi)F (xi−gi) = (F1(xi−gi), . . . , Fi−1(xi−gi), Fi+N(gi), Fi+1, . . . , Fn).

The above (trivial) lemma explains how we can determine equivalence classes of
elements in BAsn(R): we first conjugate by a map (xn+gn) to bring fn to a standard
form, then conjugate by (xn−1 + gn−1) to bring fn−1 to a standard form, etc. This
means that we need to understand Im(N). (Incidentally, ker(N) = inv(F ), and thus
forms a similar role as a locally nilpotent derivation!)

We will prove the following theorem:

Theorem 2.7. Let R be a ring containing Q. Assume F = exp(D) is unipotent on
R[n]. Then
(1) inv(F ) = ker(D) (= ker(N)),
(2) Im(N) = Im(D).

Proof. inv(F ) = {f | F (f) = f} = {f | (F − I)(f) = 0} = ker(N). Now inv(F ) is
the invariants of exp(D) which is well-known to be equal to ker(D) if D is locally
nilpotent, so the first statement holds.

Define a degree function on R by r 6= 0 then deg(r) = max{d | Dd(r) 6= 0},
deg(0) = −∞. (It is well-known that this yields a degree function if D is locally
nilpotent.) Denote Rd := {r ∈ R | deg(R) ≤ d}. Given f ∈ R, we proceed by
induction to d = deg(f) to prove f ∈ Im(D)⇐⇒ f ∈ Im(N).
d = −∞ : then f = 0 and the statement is true.
Assume that Im(D) ∩Rd−1 = Im(N) ∩Rd−1, let f ∈ Rd.

Assume f ∈ Im(D), then f = D(g) for some g ∈ R. Now N(g) = D(g)+h where
h =

∑∞
i=2

1
i!
Di(g) ∈ Im(D). Since deg(h) = deg(g)−2 = d−1 we use induction and

find h′ such that N(h′) = h, then N(g − h′) = D(g) = f , and thus f ∈ Im(N).
Assume f ∈ Im(N), then f = N(g) = D(g) + h where h = as above. Since

h ∈ Im(D) we find h′ such that D(h′) = h. Thus D(g + h′) = D(g) + D(h′) =
D(g) + h = f and thus f ∈ Im(D).
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In some sense, the above theorem only translates the problem. Im(D) and ker(D)
are not really easy even for triangular derivations. One example:

Example 2.8. Let F = (x1+x
3
5, x2+x

3
6, x3+x

3
7, x4+(x5x6x7)

2, x5, x6, x7) ∈ BAsn(k),
where char(k) = 0. Then inv(F ) is not finitely generated.

The above example is nothing other than the exponent of Robert’s example [6],
a locally nilpotent derivation whose kernel is not finitely generated. Note there exist
counterexamples by Freudenburg & Daigle-Freudenburg in dimensions 5 and 6 too
[3, 4].

2.1 Conjugacy classes

We now want to give some answer to how to describe (representants) of conjugacy
classes. The generic case is rather complicated, and we will not fully answer it
(similarly as no one truly can answer exactly what Im(D) and ker(D) are in general).
We will focus on some special cases, especially as we want to determine what happens
in low dimensions. A first case is easy, but it is an important case:

Proposition 2.9. If F = (x1 + f1, . . . , xn + fn) ∈ BAsn(R) where fn ∈ R∗, then F
is in the same conjugacy class as (xn + fn).

Proof. Since Im(Ni) = k[xi, . . . , xn] (as F = exp(D) where D has a slice, and using
theorem 2.7) for each integer 2 ≤ i ≤ n, we can find gi ∈ k[xi, . . . , xn] such that
N(gi) = Ni(gi) = fi. This means that we can conjugate any F = (x1 + f1, . . . , xj +
fj, xj+1, . . . , xn−1, xn + fn) by (xj + gj) (see lemma 2.6) and get a map of the form
(x1 + f ′1, . . . , xj−1 + f ′j−1, xj, . . . , xn−1, xn + fn). Continuing this process we end up
at the map (xn + fn).

The above proof contains a little bit what one can do in general, and what
is explained in lemma 2.6: given F = exp(D) = (x1 + f1, . . . , xn + f1) we first
conjugate by (xn−1 + gn−1) for some appropriate gn−1 (conjugating by (xn + gn)
changes nothing). This changes the n− 1-term into xn + fn−1 + N(gn−1), and this
requires us to understand N(R[xn]), which is equal to D(R[xn]). We then can pick
a representant of fn−1 modulo Im(D) and continue by conjugating by (xn−2 + gn−2)
etc. It is therefore important to understand R[n]/Im(D) for a triangular D; it enables
one to understand the conjugacy classes in BAsn(R).

At first it seems like R[n]/Im(D) might be understandable, allow us to elaborate:
Im(D) is a free R-module generated by {D(T ) | T is a monomial in R[n]}. So you can
reduce each given g ∈ k[n] modulo the highest degree terms appearing in these D(T )
(with respect to a lexicographic grading degL given by x1 >> x2 >> . . . >> xn),
and get something unique. (Indeed, with respect to this lexicographic ordering,
denoting lt(g) as the leading term of g, one can give a nice description of lt(D(g))
related to lt(g) with respect to this grading.)
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However, this does not necessarily give unique representants of R[n]/Im(D). The
main reason why this fails is that there can exist polynomials g, h with the prop-
erty that degL(g) > degL(h) but degL(D(g)) < degL(D(h)). We give the following
example:

Example 2.10. LetD = x2∂1+∂2. Then lt(x1) > lt(x22) but lt(D(x1)) < degL(D(x22).

Nevertheless, this is an important idea to keep in mind in the low dimensional
cases we shall now consider.

2.2 Conjugacy classes within BAs in dimensions 2 and 3

Theorem 2.11. The conjugacy classes of BAs2(R) in BAs2(R) where Q ⊆ R is a
domain, are parametrized by pairs (f̄1, f2) where

1. f2 = 0, f̄1 = anx
n
2 + an−1x

n−1
2 + . . . + a0 where an−1 is picked as a unique

representant in R/anR,

2. f2 ∈ R\{0}, f̄1 = ānx
n
2 + ān−1x

n−1 + . . . + ā0 ∈ R/(f2)[x2], where ān−1 is a
uniquely picked representant from (R/(f2))/(ān).

In particular, if R = k a field, then the classes are

1. (x1 + f(x2), x2), f(x2) = fnx
n
2 + fn−2x

n−1
2 + . . .+ f0 ∈ k[x2] where fn 6= 0 (i.e.

the next-to highest term has coefficient zero),

2. (x1, x2 + λ), λ ∈ k.

Proof. Let F = (x1 + f1, x2 + f2) be the triangular map. The x2 + f2 part cannot be
changed. We will first conjugate by something of the form (x1 + g1) and then of the
form (x2 + g2). F equals exp(D) where D = f ′1∂1 + f2∂2 and some f ′1 ∈ R[x2]. Since
conjugation by (x1 + g1) means modifying f2 by N(R[x2]), we need to understand
R[x2]/N(R[x2]), and using theorem 2.7 part (2) we see N(R[x2]) = D(R[x2]) =
Im(f2∂2) = f2R[x2]. We can thus conclude that (x1+g1, x2+g2) and F are equivalent
under conjugation by some (x2 + h2) if and only if f2 = g2 and g1 ∈ f1 + f2R[x2].
Let us assume f1 = anx

n + an−1x
n−1 + . . .+ a0. We can still conjugate by (x2 + h̃2),

which means that we can change the term of degree n− 1: f1(x2 + h̃2) has the top
part anx

n + (nh̃2an + an−1)x
n−1 + . . .. Thus we can change the n − 1 term by any

element in anR. Note that conjugating by any (x1 + h̃1) or (x2 + h̃2) disturbes the
standard form (it is important that R is a domain here!). This finally proves the
theorem for rings R.

The second case R = k follows directly from the previous, but can also be
partially proven using lemma 2.9.

Theorem 2.12. The conjugacy classes of BAs3(k) in BAs3(k) are

1. (x1, x2, x3 + λ), λ ∈ k,
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2. (x1+f1(x2, x3), x2+f2(x3), x3) where f(x2) = fnx
n
2 +fn−2x

n−1
2 +. . .+f0 ∈ k[x2]

where fn 6= 0,

f1(x2, x3) = an(x3)x
n
2 + an−1(x3)x

n−1
2 + . . .+ a0(x3),

and for i = 0, 1, . . . , n − 2, n, ai(x3) is the lowest degree element in ai(x3) +
f2(x3)k[x3], while an−1(x3) is the lowest degree element in an−1(x3)+(f2(x3), an(x3))k[x3].

Proof. Using proposition 2.9 we see that if f3 ∈ k∗, then the map is equivalent to
(x1, x2, x3 + f3), yielding the first case. Left is f3 = 0, which comes down to the
general case of theorem 2.11, picking R = k[x3]. The result now immediately follows,
keeping in mind that since lowest degree elements in sets like ai(x3) + f2(x3)k[x3]
are unique: if ai ∈ f2k[x3], then the lowest element is zero.

2.3 Conjugacy classes of BAs in BA in dimensions 2 and 3

Any element in BAn can be written as DG where D is diagonal linear, and G ∈
BAsn. This means that if we try to determine a representant of a conjugacy class of
F ∈ BAsn, we conjugate by DG, i.e. consider DGFG−1D−1. We thus first pick a
representant in GFG−1 ∈ BAsn, and on top of that conjugate by a diagonal linear
map.

Conjugation by (λx3) where λ ∈ R∗ on R[x3] gives a group action R∗×R[x3] −→
R[x3], given by λ · f(x3) = λ−1f(λx3). This case thus gives an additional gathering
of conjugacy classes under these kind of orbits. There’s not really a simplification
of this possible, unless R is an algebraically closed field, or the reals or something
specific. And even then it is limited: the polynomials of the form axm + bxl can be
conjgated to the form xm + b̃xl, and then the coefficient b̃ can be changed if l does
not divide m by some conjugation by λx where λ is an m-th root of unity, etc. . .

Theorem 2.13. The conjugacy classes of BAs2(R) in BA2(R) where Q ⊆ R is a
domain, are parametrized by pairs (f̄1, f2) where

1. f2 = 0, f1 = anx
n
2 + an−1x

n−1
2 + . . . + a0 where an−1 is picked as a unique

representant in R/anR, and then additionally f1 is a unique element in the
orbit of the action λ −→ λ−1f1(λx2).

2. f2 ∈ R\{0}, f̄1 = ānx
n
2 + ān−1x

n−1 + . . . + ā0 ∈ R/(f2)[x2], where ān−1 is a
uniquely picked representant from (R/(f2))/(ān). Then, additionally f1 is a
unique element in the orbit of the action λ −→ λ−1f1(λx2).

In particular, if R = k a field, then the classes are

1. (x1 + f(x2), x2), f(x2) = fnx
n
2 + fn−2x

n−1
2 + . . . + f0 ∈ k[x2] where fn 6= 0

(i.e. the next-to highest term has coefficient zero). Additionally f1 is a unique
element in the orbit of the action λ −→ λ−1f1(λx2).
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2. (x1, x2 + 1),

3. (x1, x2).

Proof. The form (x2 + f2) can be conjugated by (x1, λx2) where λ ∈ R∗. This
explains why we pick f̄2 ∈ R/R∗. Let f2 be any representant of f̄2. Then the ideal
Rf2 is always the same ideal, regardless of representant. Now (x1 + f1, x2 + f2) can
be conjugated by (λx1, x2) to get any element in R∗f1 in stead of f1. This proves
the first statement.

The case R = k is now trivial.

Theorem 2.14. The conjugacy classes of BAs3(k) in BA3(k) are

1. (x1, x2, x3),

2. (x1, x2, x3 + 1),

3. (x1+f1(x2, x3), x2+f2(x3), x3) where f(x2) = fnx
n
2 +fn−2x

n−1
2 +. . .+f0 ∈ k[x2]

where fn 6= 0. Additionally, f2 is a unique element in the orbit of the action
λ −→ λ−1f2(λx2). Now

f1(x2, x3) = an(x3)x
n
2 + an−1(x3)x

n−1
2 + . . .+ a0(x3),

and for i = 0, 1, . . . , n − 2, n, ai(x3) is the lowest degree element in ai(x3) +
f2(x3)k[x3], while an−1(x3) is the lowest degree element in an−1(x3)+(f2(x3), an(x3))k[x3].
Furthermore, the sequence (an, an−1, . . . , a0) is picked uniquely from the orbit
under conjugation by (λx3).

Proof. Using proposition 2.9 we see that if f3 ∈ k∗, then the map is equivalent
to (x1, x2, x3 + f3), yielding the first case. Left is f3 = 0, which comes down to
the general case of theorem 2.11, picking R = k[x3]. Picking a representant in
f1 + (k[x3]/f3)[x2] of lowest degree is unique, and the theorem is proven.

2.4 Conjugacy classes of BA in itself

The 2-variable case over a domain (and with that, the 3-variable case over a field) are
much more involved (but doable in future research). Here we aim at the 2-variable
case over a field k of characteristic zero. We start with the one-variable case over a
ring:

Lemma 2.15. Let R be a reduced ring (not necessarily containing Q). Then the
conjugacy classes of BA1(R) = GA1(R) are

1. x+ b where b is a (unique) representant in R of R/R∗ (the orbit space of the
action R∗ ×R −→ R),

2. ax + b where a 6= 1, and b is a unique representant in R of (R/(a− 1)R)/R∗

(the orbit space of the action R∗ ×R/(a− 1)R −→ R/(a− 1)R).
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In particular, if R = k is a field, then the conjugacy classes are ax, a ∈ k∗ and
x+ 1.

Proof. A generic element looks like ax + b where a ∈ R∗, b ∈ R. If a = 1, then
conjugating by λx can change b to λb, meaning that we have to pick b’s uniquely
from each orbit of the natural action R∗ × R −→ R. Conjugation by x + λ does
nothing, so this gives the first case.

Now if a 6= 1 then let us conjugate by a generic element (µx − λ) where µ ∈
R∗, λ ∈ R. Then (µx−λ)(ax+ b)(µ−1x+µ−1λ) = (ax+µb+λ(a− 1)). This means
that we cannot change a, but we can change b to any element in R∗b+R(a−1).

(The above can be extended easily to R not a domain, but in case then one
should be careful with the definition of BA: does one mean all invertible triangular
maps, or maps which send each variable xi to λixi + fi(xi+1, . . . , xn). i.e. is BA1(R)
polynomials of degree 1 or BA1(R) = GA1(R)?)

Lemma 2.16. Let k be a field of characteristic zero. The conjugacy classes of
BA2(k) are

1. Second component y:

(a) (x, y),

(b) (x+ f(y), y) where f(y) = yd + ad−2y
d−2 + . . . a0 (i.e. monic and second

coefficient zero), and picked uniquely from the set {f(cy) | cd−1 = 1}.
(c) (bx, y) where b 6= 0, 1,

2. Second component y + 1:

(a) (x, y + 1)

(b) (ax, y + 1) where a ∈ k∗, a 6= 1

3. Second component ay where a 6= 1, 0:

(a) (bx, ay) if there is no m ∈ N such that bm = a,

(b) (amx+ ym, ay) if a is no root of unity,

(c) (amx + ymf(yr), ay) if r = ord(a), and f monic. Furthermore, ymf(yr)
is uniquely picked from {(µy)mf(µryr) | µm+rd = 1} where d = deg(f).

Another classification is:

A (affine), and then

1. (bx, y + c) where b ∈ k∗, c ∈ {0, 1},
2. (bx, ay) where a, b ∈ k∗,
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S (sequential)
(amx + ymf(yr), ay) where m ∈ N, r = ord(a) (r = 0 if a is no root of
unity), and ymf(yr) is monic. Furthermore, ymf(yr) is uniquely picked from
{(µy)mf(µryr) | µm+rd = 1} where d = deg(f).

Proof. Write F = (bx+ f(y), ax+ λ). Using lemma 2.15, and the fact that a− 1 is
invertible if a 6= 1 and thus (a− 1)R = (a− 1)k = k, the second component is one
of three y, y + 1, ay where a 6= 1, 0. We will consider these three cases.

Case a = 1, λ = 0
Then we have (bx + f(y), y). We can actually apply lemma 2.15 to (bx + f(y))

on R = k[y]. If b 6= 1 then k[y] = (b − 1)k[y], so we can get f = 0. In case
b = 1, f is unique in k[y]/k∗ - which means we can pick f monic (or f = 0). Now
we’ve only taken into account conjugations by (cx + g(y)), however - we still need
to check what happens under conjugation by (cy+ g), i.e. conjugations by (cy) and
(y + g). Write d = deg(f). Using conjugation by (y + g) where g ∈ k, we can
make sure that the d− 1 coefficient is zero. Conjugation by cy can change f(y) by
a nonzero scalar. However, f(y) needs to stay monic, so we can only change f(y)
into c−1f(cy) = cd−1yd + . . . where cd−1 = 1.

Case a = 1, λ = 1
Conjugating by (x+ g(y)) gives (bx+ bg(y)− g(y+ 1) +f(y), y+ 1) which means

we need to consider the map k[y] −→ k[y] given by g(y) −→ bg(y) − g(y + 1).
This map is surjective in all cases: if b 6= 1 then ym is mapped to a polynomial
of degree m and the map is bijective, actually. If b = 1 then ym is mapped to a
polynomial of degree m − 1, and the map is still surjective (though not bijective).
Thus, we conjugate to (bx, y + 1). Any conjugation will disturb this form or leave
it unchanged, so this is the final form for this case.

Case a 6= 1, 0, λ = 0
Conjugation by (x+ g(y)) yields (bx+ bg(y)− g(ay) + f(y), ay). This means we

need to understand the map k[y] −→ k[y] given by g(y) −→ bg(y)−g(ay). This map
decomposes into homogeneous parts, so we need to consider ym −→ bym − amym.
This map is surjective if b − am 6= 0 for all m. If b = am, then the ym part cannot
removed. So let m is the lowest integer such that b = am. If there’s another integer
m′ such that b = am

′
, then am

′−m = 1 and thus a has finite order. Concluding, we
get (amx + cym, ay) where c ∈ k if a is no root of unity, and (amx + ymg(yr), ay)
where r = ord(a), and m < r. Conjugating by (µx) we can make sure that c = 1 (or
c = 0) and g(yr) monic. Conjugating by (µy) we change the monicness of ymg(yr)
unless µd = 1 where d = deg(ymg(yr)).

2.5 Higher dimensions

There are some higher dimensional cases which we expect that can be aquired by
some more effort (but become rather technical): BAs3(R) in BAs3(R) and BA3(R)
for domains R ⊃ Q, and with that also BAs4(k) in BAs4(k) and BA4(k) for fields k
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of characteristic zero. Also BA2(R) in BA2(R) and with that also BA3(k) in BA3(k)
should be achievable. It is a bit of a challenge to give a good description which
doesn’t “explode”, however.

We do expect that (perhaps in dimension 5 or 6) it is very, very hard or impossible
to truly classify the conjugacy classes. We expect similar difficulties as with ker(D),
which can be infinitely generated in dimension 5, and where it’s unknown if it can
be infinitely generated in dimension 4.

3 Characteristic p: strictly triangular maps of max-

imal order

3.1 Introduction

In this whole section 3, k is a field of characteristic p. The characteristic p case
brings in additional difficulties with respect to the goal of classifying conjugates.
In characteristic zero we have proposition 2.9, which essentially states that if F
has last component xn + fn where fn ∈ k∗, then your map is very simply up to a
conjugation. Another issue is that in characteristic p, we have no true equivalent of
lemma 2.2, which states that F = exp(D) for some locally nilpotent derivation D.
The equivalent object in characteristic p to a locally nilpotent derivation is a locally
finite higher iterative derivation (see [9], we will not give details in this article),
which has the following issue: if F = exp(D) where D is such a locally finite higher
iterative derivation, then F p = I. This means, that it doesn’t even include all
strictly triangular polynomial maps, let alone all unipotent maps. Hence, we need
to resort to (slightly) different methods, and will have difficulty going into dimension
3 (and higher) except for special cases.

Definition 3.1. If F ∈ BAsn(R), define Mi :=
∑pn+1−i−1

j=0 F j for 1 ≤ i ≤ n. We
recall the definition N = F − I. We say M = M1.

Lemma 3.2. Let R be a commutative ring of characteristic p. Let F = (x1 +
f1, . . . , xn + fn) ∈ BAsn(R).
(1) F p fixes xn, i.e. F p ∈ BAsn−1(R[xn]).
(2) F pn = I.
(3) F pm = (x1 + g1, . . . , xn−m + gn−m, xn−m+1, . . . , xn) for some gi ∈ R[xi+1, . . . , xn],
and gn−m = Mn−m(fn−m) ∈ Im(Mn−m).

Proof. (1) is trivial. (2) follows from (1) using induction. (3) we prove by induction:
we prove that if 1 ≤ d ≤ pm then the n−m-th part of F d is xn−1 +

∑d−1
i=0 F

i(fn−m).
Indeed, for d = 1 this is correct. Now assume d. Then the n−m-th component of
F d+1 = F d◦F equals (xn−m+

∑d−1
i=0 F

i(fn−m))◦F = xn−m+fn−m+
∑d

i=1 F
i(fn−m)),

proving the induction step.
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3.2 Main theorems on invariants and an exact sequence

The important special case we consider in all dimensions is the case where ord(F ) =
pn. On this, we want to prove the following two theorems:

Theorem 3.3. Let F = (x1 + f1, . . . , xn + fn) ∈ BAsn(k) where ord(F ) = pn. Then
inv(F ) = k[x̃1, . . . , x̃n] where x̃i = xpi − a

p−1
i xi + bi where ai, bi ∈ k[xi+1, . . . , xn].

Theorem 3.4. Let F = (x1 + f1, . . . , xn + fn) such that ord(F ) = pn. Then the
sequence

0 −→ (k[n])F −→ k[n]
N−→ k[n]

M−→ (k[n])F −→ 0

and the sequence

0 −→ Im(N) −→ k[n]
M−→ k[n]

N−→ Im(N) −→ 0

are exact.

The proof of both theorems is rather involved, as the proof of the n-dimensional
case of any of the theorems involves the n − 1-dimensional case of both theorems.
In fact, if we denote T3.3[n] by the statement “theorem 3.3 is true in dimension n”
and similarly T3.4[n], the proof will follow the following scheme:

• Prove T3.3[1] and T3.4[1],

• Prove (T3.3[n− 1], T3.4[n− 1])−→ T3.3[n],

• Prove (T3.3[n], T3.4[n− 1])−→ T3.4[n].

3.3 Generalities on linear maps of order pn

Lemma 3.5. Let V be a k-vector space where k is a field of characteristic p, and
let L : V −→ V be a k-linear map such that Lpm = I. Then
(1) L = I +N where Npm = 0,
(2) the only eigenvalue of L is 1,
(3) L is locally finite,
(4) I + L+ L2 + . . .+ Lpm−1 = Npm−1.

Proof. (1) Write N = L− I. Then Lp = (I +N)p = I +Np so Lp = I ⇐⇒ Np = 0.
(2) follows from all eigenvalues being unit roots of order pm, and the fact that the
only p-th root of 1 in characteristic p is 1 (the only solution to xp − 1 is 1).
(3) Let w ∈ V . Then w,L(w), . . . , Lpm−1(w) spans a finite dimensional subspace Vw
of V such that w ∈ W . Hence L is locally finite.
(4)

pm−1∑
n=0

Ln =

pm−1∑
n=0

(I +N)n =

pm−1∑
n=0

n∑
i=0

(
n

i

)
N i =

pm−1∑
i=0

(
pm−1∑
n=i

(
n

i

))
N i =
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pm−1∑
i=0

(
pm

i+ 1

)
N i = Npm−1.

Remark 3.6. Note that M := Npm−1.

Lemma 3.7. Let L be as in lemma 3.5. Define N = L− I and M = I + L+ L2 +
. . .+ Lpm−1. The sequence

0 −→ V L −→ V
N−→ V

M−→ V L −→ V L/Im(M) −→ 0

is a well-defined complex sequence. The only non-trivial homology is ker(M)/Im(N).
If V is not only a k-module but also a ring (i.e. a k-algebra), and L is a ring
homomorphism of V , then Im(M) is an ideal of V L.

Proof. Exact at the first V L is trivial.
Exact at the first V follows since ker(N) = ker(L− I) = {v ∈ V | L(v) = v} = LV .
Well-defined at the second V follows since from lemma 3.5 we see that M = Npm−1

and thus NM = 0.
Well-defined at the second V L: M(v) = v + Lv + . . .+ Lvm−1v is invariant under L
so Im(M) ⊆ V L. Exactness is trival.
For the last sentence: notice that V L is automatically a k-algebra. Now let us show
that Im(M) is an ideal. Let w ∈ Im(M), v ∈ V L. Then there eixsts u ∈ V :
M(u) = w. Now M(uv) =

∑pm−1
i=0 Li(uv) = (using that L is a ring homomorphism

and L(v) = v) =
∑pm−1

i=0 Li(u)v = M(u)v hence wv ∈ V L. Since Im(M) is a linear
subspace of V L, we are done.

In the next sections, V = k[n] and L = F = (x1 + f1, . . . , xn + fn) ∈ BAsn(k).

3.4 Dimension 1

Note that below, N,M are as in lemma 3.5 and definition 3.6. We have n = 1
here,so F of order p is equivalent to f1 ∈ k∗.

Lemma 3.8. If F = (x1 + f1) where f1 ∈ k∗, then k[x1]
F = k[x̃1] where x̃1 =

xp1 − f
p−1
1 x1 and the sequences

0 −→ k[x̃1] −→ k[x1]
N−→ k[x1]

M−→ k[x̃1] −→ 0

0 −→ Im(N) −→ k[x1]
M−→ k[x1]

N−→ Im(N) −→ 0

are exact.
A representant system for k[x1]/Im(N) is xp−11 k[x̃1]. Another representant system
is xp−11 k[xp1].
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Proof. Since ord(F ) = p this is a special case of 3.7. We need to check a few things:
(1) k[x1]

F = k[x̃1]. Note that x̃1 ∈ k[x1]
F indeed. Let f ∈ k[x1]

F be the lowest de-
gree polynomial which is not in k[x̃1]. Since we can reduce f by x̃m1 , we can assume
that deg(f) = m is not a multiple of p. So assume f = amx

m
1 + am−1x

m−1
1 + . . .

where ai ∈ k and (m, p) = 1. Then the coefficient of xm−11 of f(x1 + f1) − f(x1)
turns out to be ammf1 which is nonzero. This is a contradiction, so there exists no
such f , and thus k[x1]

F = k[x̃1].
(2) Im(M) = k[x̃1] = ker(N). Note that N decreases degree: hence, M(xp−11 ) =

Np−1(xp−11 ) ∈ k. But the constant term is
∑p

i=0(x1 + if1)
p−1 =

∑p
i=0 i

p−1fp−1
1 =

−fp−1
1 ∈ k∗. Hence, 1 ∈ Im(M) so the ideal Im(M) = k[x̃1].

(3) ker(M)/Im(N) = 0. The sequence is now exact if ker(M)/Im(N) = 0. If the
vector spaces would be finite dimensional, then this result follows from the fact that
ker(N) = Im(M). We will restrict to finite dimensional subspaces to conclude the
result: Define k[x1]d = the set of polynomials of degree d and less. We claim that
the sequence

0 −→ k[x̃1]d
i
↪→ k[x1]d

N−→ k[x1]d
M−→ k[x̃1]d −→ 0

is exact if d = d0p + p − 1 for some d0 ∈ N (it will NOT be exact for other
d !). Now if g ∈ k[x̃1] then M(xp−11 g) = g; hence k[x̃1]pd0+p−1 ⊇ M(k[x1]d) ⊇
M(xp−11 · k[x̃1]pd0) = k[x̃1]pd0 = k[x̃1]pd0+p−1 and thus Im(M |k[x1]d) = ker(N |k[x1]d), a
vector space of dimension d0. Thus, dim(ker(M |k[x1]d) = dim(Im(Nk[x1]d)) and we
can conclude that since ker(M |k[x1]d) ⊇ Im(Nk[x1]d) that they must be equal. If we
now take unions, we get

ker(M) =
⋃

d∈pZ+p−1

ker(M |k[x1]d) =
⋃

d∈pZ+p−1

Im(Nk[x1]d) = Im(N).

(4) The second sequence is exact since ker(M) = Im(N) by the first exact sequence,
and by the fact that Im(M) = ker(N) = k[x̃1].

Now let us determine a (5) representant system for k[x1]/Im(N). SinceN(xp−11 g(x̃1)) =

g(x̃1), ker(N)∩xp−11 k[x̃1] = {0}. Thus xp−11 k[x̃1] is a representant system of k[x1]/ ker(N) =
k[x1]/Im(M).

Now notice that if (m, p) = 1, then deg(N(xm1 )) = m − 1. This means that we
have polynomials of all degrees d as long as d mod p 6= p−1. Note that deg(x̃1) = p,

and notice that we thus have xp−11 x̃m1 mod (ker(N)) = xp−11 (xpm1 + am−1x
p(m−1)
1 +

. . .+a1x
p
1+a0) for some ai ∈ k. These elements form a k-basis of a new representant

system for k[x1]/ ker(N). This means that {xp−11 (xpm1 ) | m ∈ N} forms a k-basis of
this new representant system, i.e. xp−11 k[xp1] is another representant system.

Corollary 3.9. Let R be a commutative domain of characteristic p. If F = (x1+f1)
where f1 ∈ R∗, then R[x1]

F = R[x̃1] where x̃1 = xp1 − f
p−1
1 x1 and the sequences

0 −→ R[x̃1] −→ R[x1]
N−→ R[x1]

M−→ R[x̃1] −→ 0
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0 −→ Im(N) −→ R[x1]
M−→ R[x1]

N−→ Im(N) −→ 0

are exact.
A representant system for R[x1]/Im(N) is xp−11 R[x̃1]. Another representant system
is xp−11 R[xp1].

Proof. Obviously if k is the quotient field of R, the result follows from lemma 3.8.
We need to check that intersecting from k[x1] to R[x1] everything goes well. First
of all, R[x1]

F = k[x1]
F ∩R[x1] = k[x̃1]∩R[x1] = R[x̃1]. Then, we need to check that

the maps N and M do not miss things in their images; i.e. we need to check that
Im(N |R[x1]) = Im(N |k[x1]) ∩ R[x1], whereas a priori we only have ⊆ in stead of =.
(Note that ker(N |R[x1]) = ker(N |k[x1])∩R[x1] as well as ker(M |R[x1]) = ker(M |k[x1])∩
R[x1] trivially.) R[x1] is a free R-module with basis 1, x1, x

2
1, . . .. M andN send these

basis elements into Fp(f1)[x1] (which is a subring of R[x1]), and thus Im(N |R[x1]) =
R · Im(N |Fp(f1)[x1]) = k · Im(N |Fp(f1)[x1])∩R[x1] = Im(N |k[x1])∩R[x1] = ker(N |k[x1])∩
R[x1] = ker(N |R[x1]). A similar proof for M .

The results on the representant system follow by a similar argument: A basis of
the representant system over k is {xp−11 x̃i1; i ∈ N}. Then this can be used as a basis
for the representant system of R[x1]/Im(N |R[x1]) as well.

3.5 Induction step T3.3[n] from T3.3[n− 1] and T3.4[n− 1]

In the rest of this section, we will consider F = (x1 + f1, . . . , xn + fn) ∈ BAsn(k) of

order pn. Define Fi = xi + fi and ~Fi = (Fi, Fi+1, . . . , Fn). We define N = F − I and
M =

∑pn−1
i=0 F i as before, but also define

Ni := ~Fi − Ii = N |k[xi,...,xn]

Notice that ~F1 = F,N1 = N .

Lemma 3.10. Let R be a domain of characteristic p. Let F = (x1+f1, . . . , xn+fn) ∈
BAsn(R), where fn ∈ R∗. Then F p = I if and only if F can be conjugated by some
τ ∈ BAsn−1(R[xn]) to τ−1Fτ = (xn + fn).

Proof. The “if” side is trivial. So let us assume F p = I and show we can conjugate
F to the given form. Let us assume we can conjugate F to (x1 + f1, . . . , xk +
fk, xk+1, . . . , xn−1, xn + fn). We will consider this as a map F ′ = (x1 + f1, . . . , xk +
fk, xn + fn) on (R[xk+1, . . . , xn−1])[x1, . . . , xk, xn]. We get I = F p = (. . . , xk +
M(fk), xn + fn), and thus apparently M(fk) = 0. Thus, fk ∈ ker(M) which equals
(using corollary 3.9) Im(N). Let gk be such that N(gk) = fk. Then (xk− gk)F (xk +
gk) = (. . . , xk, xk+1, . . . , xn−1, xn+fn). Continuing this process, the lemma is proven.

Lemma 3.11. Assume T3.3[n− 1] and T3.4[n− 1] . Then T3.3[n] holds.

16



Proof. We are thus considering F = (x1 + f1, . . . , xn + fn) ∈ BAsn(k) where fn ∈ k∗
and ord(F ) = pn. We want to prove inv(F ) = k[x̃1, . . . , x̃n] where x̃i = xpi +a

p−1
i xi+bi

where ai, bi ∈ k[xi+1, . . . , xn]. The induction assumption T3.4[n − 1] is used in the
form of Im(M2) = ker(N2) and Im(N2) = ker(M2).

Consider F pn−1
= (x1 + g1, x2, . . . , xn). Note that 0 6= g1 = M2(f1) ∈ Im(M2) ⊆

ker(N2) ⊆ ker(N) = inv(F ) (no appeal to assumptions here!) and thus F (g1) = g1.
Now inv(F pn−1

) = k[x′1, x2, . . . , xn] where x′1 = xp1 − gp−11 x1. Note that inv(F ) ⊆
inv(F pn−1

). We will restrict F to A := inv(F pn−1
) and compute AF = inv(F ). Now

F (x′1) = (x1 + f1)
p − F (g1)

p−1(x1 + f1) = x′1 + fp
1 − g

p−1
1 f1.

Thus, F |A is triangular: (x′1, x2, . . . , xn) = (x′1 + g, x2 + f2, . . . , xn + fn) where
g = fp

1 − g
p−1
1 f1.

F |A has order pn−1: it must be at least pn−1 since F |A restricted to k[x2, . . . , xn]
has order pn−1. If h ∈ A, then F pn−1

(h) = h by definition - so F |A is at most pn−1.

Now F |A = (x′1+g, F̃ ) where F̃ = F |k[x2,...,xn]. I|A = F |p
n−1

A = (x′1+M2(g), x2, . . . , xn)

and thus apparently M2(g) = 0, i.e. g ∈ ker(M2) = Im(N2) = k[x2, . . . , xn]F̃ (here
we have used T3.3[n− 1]). This means that we can find h ∈ k[x2, . . . , xn] such that
(x′1 +h)F |A(x′1−h) = (x′1, F̃ ). Thus, inv(F |A) = (x1 +h) inv(x′1, F̃ ). Now inv(F̃ ) =
k[x̃2, . . . , x̃n] as provided by induction. So inv(F |A) = (x′1 + h)k[x′1, x̃2, . . . , x̃n] =
k[x′1 + h, x̃2, . . . , x̃n] and thus if we define x̃1 = x′1 + h = xp1 − gp−11 x1 + h we are
done.

Remark 3.12. In the proof above, we thus see that the ai in theorem 3.3 satisfy
ai = Mi(fi).

3.6 Induction step T3.4[n] from T3.4[n− 1] and T3.3[n]

Definition 3.13. Assume T3.3[n]. Given F = (x1 + f1, . . . , xn + fn), define (induc-
tively) degF on k[n] by
(1) degF (xn) = 1,
For i = 2 to n choose degF (xi) large enough such that such that
(2a) degF (xi) ≥ degF (fi),
(2b) degF (xi) ≥ degF (ai), degF (bi) from theorem T3.3[n],
(2c) degF (xi) ∈ pZ.

Write k
[n]
d = {g ∈ k[n] | degF (g) ≤ d}.

Define Vd := k[xn]p−1k
[n]
d .

Define Wd := Vd ∩ (k[n])F = V F
d .

In the above definition, we have some choice in degF (xi), but we can make it
unique in stating that degF (xi) should be as low as possible within the constraints

(though we don’t really care). The requirement (2a) is picked such that F (k
[n]
d ) ⊆

k
[n]
d . The requirement (2b) is picked so degF (x̃i) = degF (xpi ), in order to be able to
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predict the degree of x̃i. The requirement (2c) is added so that degF (xn) is the only
variable having degree coprime to p.

Note that since F (k
[n]
d ) ⊆ k

[n]
d , we have a finite dimensional filtration of k[n]

preserved by F (see lemma 3.5). Note that also F (Vd) ⊆ Vd, as F (xing) = (xn +
fn)iF (g) ∈ Vd for every g ∈ (k[n])d etc. so Vd gives another such filtration of k[n].

Lemma 3.14. Assuming T3.3[n], we have Wpd = (k
[n]
pd )F .

Proof. If (k[n])F = k[x̃1, . . . , x̃n], then we see that any element invariant under F

has degree a multiple of p, i.e. Wpa+b ⊆ k
[n]
pa for each a, b ∈ N, 0 ≤ b ≤ p− 1. Since

Vpd ⊆ k
[n]
pd+p−1 we get Wpd = Vpd ∩ (k[n])F ⊆ (k

[n]
pd ) and the result follows.

Lemma 3.15. Assume T3.3[n] and T3.4[n − 1]. Then T3.4[n] is true. So, let F =
(x1 + f1, . . . , xn + fn) such that ord(F ) = pn. Then the sequence

0 −→ (k[n])F −→ k[n]
N−→ k[n]

M−→ (k[n])F −→ 0

is exact. Furthermore, Im(M) = ker(N).

Proof. Notice first that fn ∈ k∗ since otherwise ord(F ) ≤ pn−1.
Using lemma 3.7 we see that the only things to prove are (1) ker(N) = (k[n])F ,

(2) Im(M) = (k[n])F , (3) Im(N) = ker(M) and (4) Im(M) = ker(N).
(1) ker(N) = {g ∈ k[n] | F (g)− g = 0} = (k[n])F .
(2) M(xp−1n ) = −fp−1

n ∈ k∗ (see part (2) of the proof of 3.8 for a detailed computa-
tion), so the ideal Im(M) = (k[n])F .
(4) follows from (1) and (2).
(3) It is now tempting to state that since (k[n])F = ker(N) = Im(M), then Im(N) =
ker(M), but since the k-vector spaces are infinite dimensional, this argument does
not hold. However, what we will do, is restrict to finite dimensional subspaces Vd
and Wd := Vd ∩ (k[n])F for which ∪dVd = k[n], and for which the restricted sequence

0 −→ Wd −→ Vd
N−→ Vd

M−→ Wd −→ 0

is (a) well-defined, (b) exact. Note that there DO exist linear subspaces for which (a)
holds but (b) not, so we need to define Vd carefully - we claim that the definition in
3.13 works for well-chosen d. For this, note that M(xp−1n ) ∈ k∗, and that if f ∈ (kn])F

and g ∈ k[n], then M(fg) = fM(g). This means that M(Vd) ⊇ M(xp−1n (k
[n]
d )F ) =

(k
[n]
d )F . Thus, using lemma 3.14

Wpd = Vpd ∩ (k[n])F ⊇M(Vpd) ⊇ (k
[n]
pd )F = Wpd

Thus, Im(M |Vpd
) = Wpd = ker(N |Vpd

) and the sequence

0 −→ Wpd −→ Vpd
N−→ Vpd

M−→ Wpd −→ 0

is exact. So (3) holds (and (1),(2), (3) yield that the sequence stated in the lemma
is exact).
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3.7 Conjugacy classes: maximal order case in BAsn(k)

When we’re conjugating F by (xi + gi), then the i-th component changes by gi −
F (gi) = N(gi), which means we need to understand Im(N) - or, better said, we
want to have representants in k[n] of k[n]/Im(N). For this, we need the following
lemma, which builds on on theorems 3.3 and 3.4.

Lemma 3.16. Let F = (x1 + f1, . . . , xn + fn) such that ord(F ) = pn. Then

k[n] = xp−1n inv(F )⊕ Im(N).

Proof. Using theorem 3.4 we see that Im(N) = ker(M). We have the surjective map

k[n]
M−→ inv(F ). We provide a section s : inv(F ) −→ k[n] by s(f) = −f 1−p

n xp−1n f .
Indeed, since M(xp−1n ) = −fp−1

n , we get that M(−f 1−p
1 xp−1n f) = f (see the argument

at the end of the proof of 3.7 for detailed reasoning). Thus, Ms(f) = f . This means
that we can make a split exact sequence

0 −→ ker(M) −→ k[n] −→ Im(M) −→ 0

and k[n] = ker(M)⊕ s(Im(M)) = Im(N)⊕ xp−1n inv(F ).

Corollary 3.17. (of lemma 3.16) Let F = (x1+f1, . . . , xn+fn) such that ord(F ) =
pn. Then

k[n] = xp−1n k[xp1, . . . , x
p
n]⊕ Im(N).

Proof. Theorem 3.3 tells us that inv(F ) = k[x̃1, . . . , x̃n]. Lemma 3.16 tells us that a
k-basis of a representant system of k[n]/Im(N) is {xp−1n x̃a11 · · · x̃ann | ai ∈ N}. Now let
us use the standard lexicographic ordering dlex on k[n] by stating x1 >> . . . >> xn
(and beyond that the standard ordering, like dlex(x2i ) > dlex(xi)). Then of any
x̃a11 · · · x̃ann , the leading term w.r.t. dlex is xpa11 · · · xpann . This means that the following
is also a k-basis of a representant system of k[n]/Im(N): {xp−1n xpa11 · · ·xpann | ai ∈ N}.
In other words, we can pick xp−1n k[xp1, . . . , x

p
n] as a representant system, and the

result follows.

Corollary 3.18. (of theorem 3.3 and lemma 3.16.) Let F = (x1 + f1, . . . , xn + fn)
such that ord(F ) = pn. Then F is equivalent to exactly one G = (x1 +f ′1, . . . , xn−1 +
f ′n−1, xn + fn) where f ′i ∈ xp−1n (k[n])G if 1 ≤ i ≤ n− 1.

Proof. By induction. The theorem is true for n = 1. Assume the theorem is true
for n − 1. This means we can assume F = (x1 + f1, x2 + f ′2, . . . , xn + f ′n), and
that conjugation by (xi + gi) where 2 ≤ i ≤ n cannot be used anymore as it
disturbes the form. Now, conjugation by (x1 + g1) makes it possible to change f1
by elements of Im(N). Using lemma 3.16 we see that we can change to exactly one
f ′1 ∈ xp−1n inv(F ).

The below is actually a corollary of corollary 3.18 and lemma 3.17, but since the
result is the most elegant one, we call it “theorem”:
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Theorem 3.19. Let F = (x1 + f1, . . . , xn + fn) such that ord(F ) = pn. Then
F is equivalent to exactly one G = (x1 + f ′1, . . . , xn−1 + f ′n−1, xn + fn) where f ′i ∈
xp−1n k[xp1, . . . , x

p
n] if 1 ≤ i ≤ n− 1.

Proof. The result follows directly from corollary 3.17, with the same proof as 3.18
required.

Warning: The above theorem does NOT state that any sequence f ′1, . . . , f
′
n−1, fn

where f ′i ∈ xp−1n k[xp1, . . . , x
p
n] if 1 ≤ i ≤ n− 1, fn ∈ k∗ gives a map of order pn.

Remark 3.20. In [11] a similar case was done for k = Fp a finite field with p
elements, and then not considering the triangular automorphisms, but the permu-
tations Fn

p −→ Fn
p induced by them. It was shown that if F = (x1 + f1, . . . , xn + fn)

and additionally, degxi
(fj) ≤ p − 1 for each i, j (which you may assume as you’re

only interested in the map), then F is of order pn if and only if for all 1 ≤ i ≤ n,
the coefficient of (xi+1 · · ·xn)p−1 is nonzero. This statement is not in contradiction
with corollary 3.19 - an example is (x+ ypzp−1, y + zp−1, z + 1) which has order p3,
but restricted to F3

p has order p2.

Question 3.21. The representation of 3.19 is pleasing to the eye, but perhaps not
the best if your goal is to actually iterate such an element. In characteristic zero,
we can write F = exp(D) and then F n = exp(nD). It would be nice if there’s a way
to have such an elegant description of iterates of F in this characteristic p case too.

4 Characteristic p: the generic 2-variable case

In this whole section 4, k is still of characteristic p.

4.1 Conjugacy classes of BAs2(k)

The previous section now makes it easy to determine the conjugacy classes of ele-
ments in BAs2(k). (We shun away from the generic ring case, as it would require a
deeper understanding of the map N over rings. In particular, we need to understand
how lemma 3.16 behaves in that case.) There are only three types of maps: order
1 (the identity), order p, and order p2. Order p2 is taken care of by theorem 3.19,
while order p is taken care of by lemma 3.10. Gathering up these results we get with
very little extra effort the following corollary:

Corollary 4.1. The conjugacy classes in BAs2(k) are

• (x, y + λ) where λ ∈ k,

• (x+f(y), y) where f 6= 0, and a unique representant in k[y]/k under the action
k × k[y] −→ k[y] given by λ · g(y) −→ g(y + λ),

• (x+ yp−1f(yp), y + λ) where λ ∈ k∗ and f 6= 0.
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4.2 Conjugacy classes of BAs2(k) in BA2(k)

Now the result of corollary 4.1 can now be slightly improved:

Corollary 4.2. The conjugacy classes in BAs2(k) are

• (x, y),

• (x, y + 1),

• (x+ f(y), y) where f 6= 0 and monic, and a unique representant in k[y] under
the action GA1(k)× k[y] −→ k[y] given by (µy + λ) · g(y) −→ g(µy + λ),

• (x+ yp−1f(yp), y + 1) where λ ∈ k∗ and f 6= 0 monic.

Proof. The proof is very similar to the proof of 2.11, and in general easier since
we’re sticking with fields. We just give a brief sketch of the two main points:
(1) “monic” in the fourth and third bullet point we get by conjugating with (λx)
for suitable λ.
(2) The third bullet point is the only one where conjugation by (µy + λ) does
not change the second component, but can change the first component. Here, the
“characteristic p” shows its head: we cannot use y −→ y + λ to make sure that
the d − 1-th coefficent of f is zero (where d = deg(f)). So, we’re essentially stuck
in stating that f should be picked unique under its equivalent forms under y −→
µy + λ.

4.3 Conjugacy classes of BA2(k)

Theorem 4.3. Let k be a field of characteristic p. Then the conjugacy classes of
F = (F1, F2) in BA2(k) are

• Affine,

• (ax+f(y), y) where a ∈ k∗, f 6= 0 and monic, and a unique representant in k[y]
under the action GA1(k)×k[y] −→ k[y] given by (µy+λ) ·g(y) −→ g(µy+λ),

• (x+ yp−1f(yp), y + 1) where λ ∈ k∗ and f 6= 0 monic.

• (adx+ ydf(ym), ay) where m = ord(a) (m = 0 if a no root of unity). f 6= 0 is
monic.

Proof. There are overlaps with the characteristic zero case, but we still give a com-
plete proof. If F = (F1, F2) then we split up the cases we get from lemma 2.15:
F2 = y, F2 = y + 1 and F2 = ay where a 6= 1.
(1) y: Now F1 = ax+ f(y). Then we can make f monic by conjugating with (µx).
Then, we can conjugate by (µy + λ), and the result follows. which forces us where
f(y) is monic. Again we can now conjugate by y −→ µy+λ and we have no simpler
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way than just stating this.
(2) y + 1: now F = (ax + f(y), y + 1). If a = 1, then we’re in the case of corollary
4.2, and F = (x+ yp−1f(yp), y+ 1) where f is monic or zero. If a 6= 1 then we need
to consider what happens by conjugation with (x+ g(y)). Then we can change f by
ag(y)− g(y+ 1) and thus we need to understand the map g(y) −→ ag(y)− g(y+ 1).
This map sends yd to (a − 1)yd+lower order terms. Since a − 1 is invertible (as
a 6= 1), it is clear that this map is surjective (and actually bijective). Thus, we can
conjugate to (ax, y + 1) which is affine.
(3) ay: If we conjugate (bx + f(y), ay) by (x + g(y)) then we are modifying f by
bg(y)− g(ay). We thus need to understand the map g(y) −→ bg(y)− g(ay), which
preserves monomials. The image of yd is (b−ad)y, so we need to know when b = ad;
if this never happens, then we can conjugate to (bx, ay) which is affine. So, write
b = ad where d ∈ N∗ as minimal as possible. If ord(a) = m (automatically d < m)
then we get (bx+ydf(ym), ay). If a is no root of unity we get (bx+λyd, ay). In both
cases, we can conjugate by (µx), and make sure that we have monic polynomials.

5 Finite order automorphisms in BAs2(k)

In this section, we classify the finite order automorphisms for all fields k. We give a
stand-alone proof (except for reference to 3.8) even though we could use the previous
sections, and a slightly different classification, as we expect this to be of high interest.

Lemma 5.1. Let F ∈ GA2(k) be of finite order ord(F ) = s, i.e. F s = I. Then F
can be conjugated to the following standard forms (unique up to as stated):

A (affine)
An affine map (up to conjugation within the affine group)

U (unipotent) If characteristic k is p,
(x+ yp−1f(yp), y + 1) where f(yp) ∈ k[yp] monic nonzero.
ord(F ) = p2.

M (mixed)
(x+ f(ym), ay) where ord(a) = m. ord(F ) = lcm(p,m).

S (sequential)
(amx + ymf(ylm), ay) where a ∈ k∗ satisfy aml = 1 for some m, l ∈ N∗ (m
chosen as small as possible, l = ord(am) > 0) and f(yml) ∈ k[yml] nonzero,
and unique up to substitution y −→ λy where λ ∈ k∗. ord(F ) = ml.

Proof. If F ∈ GA2(k) of finite order, then using the Jung-v/d Kulk theorem it is
easy to prove that F must be up to conjugation either in Aff2(k) or B2(k). We
thus assume F ∈ B2(k)\Aff2(k). If one conjugates F by some G ∈ GA2(k) and
G−1FG ∈ B2(k), then G ∈ B2(k) because of the same reason. We thus can consider
the conjugacy classes within B2(k).
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Let us write F = (ax+ f(y), by + c). Since we are conjugating within B2(k), we
can first choose a unique form for by+c within B1(k). If b 6= 1 then one can conjugate
by (y−λ)(by+ c)(y+λ) = (by+ c+ (b−1)λ so choosing λ = −c(b−1)−1 we get the
standard form by. In case b = 1, c 6= 0 then we can conjugate (c−1y)(y + c)(cy) =
(y + 1). Thus, we can assume c = 0 or b = 1.

Case c = 0
F = (ax + f(y), by). Conjugate by (x − g(y), y)(ax + f(y), by)(x + g(y), y) =

(ax + f(y) + (ag(y) − g(by)), by). If bm 6= a for any m ∈ N, then we can choose
g(y) such that f(y) + (ag(y) − g(by)) = 0 and achieve (ax, by), an affine map. So:
We may assume b = am for some m ∈ N. In that case, the above conjugation
can standardize f(x) to a polynomial which is a linear combination of monomials
xn such that (bx)n = axn.

Assume b 6= 1, i.e. l := ord(b) > 0. Then n ∈ m + mlZ where l is such
that (am)l = 1, i.e. we get f(x) ∈ xmk[xml]. We can change this form a bit by
conjugation with (x, λy), but we claim that beyond this, the form is unique: if we
conjugate by (dx+ g(y), ey+λ) then we see that λ = 0 otherwise the form changed.
We can write (dx + g(y), ey) = (x, ey)(dx, y)(x + d−1g(y), y). We may ignore the
conjugation by (x, ey). The conjugation by (dx, y) does not change the form. Then,
the conjugation by (x + d−1g(y), y) either changes the form, or leaves it invariant
(in case g(y) ∈ ymk[xlm]). Thus, this gives form S.

Subcase b = 1: we can get the form as in case M. It is easy to check that this
form cannot be improved by a conjugation within B2(k).

Case b = 1, c 6= 0: We thus can assume F = (ax+f(y), y+1). We can conjugate
by (x+ g(y), y)(ax+ f(y), y+ 1)(x− g(y), y) = (ax+ f(y)− ag(y) + g(y+ 1), y+ 1).
In case a 6= 1, then the map E : k[y] −→ k[y] given by g(y) −→ −ag(y) + g(y + 1)
is surjective (as deg(E(xm)) = m). However, in case a = 1, then we are considering
the map N : f(x) −→ f(x + 1) − f(x) from lemma 3.8. We can thus change
f(x) by elements of Im(N). That same lemma shows that a representant system
of k[x]/Im(N) is xp−1k[xp], so we may assume f(x) is in here. We can conjugate
by (dx, y) to make sure that f is monic. We have obtained the form U. We claim
that this form (x + yp−1f(yp), y + 1) is unique. The argument is similar as before:
if one conjugated by (dx+ g(y), ey + λ) then λ = 0, e = 1 otherwise the form y + 1
is destroyed, and then (dx + g(y), y). Conjugating with this either destroys the
standard form or leaves it invariant.

6 Further research

We gather up a list of future research questions.

• For rings R containing Q, determine the conjugacy classes of BAs3(R) and
BA3(R). Determine the conjugacy classes of BAs4(k) and BA4(k) where k is
a field of characteristic zero.
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• For rings R not containing Q (i.e. having prime ring Z or Zn), determine the
conjugacy classes of BAs2(R) and BA2(R).

• Find representants of the conjugacy classes which are relatively easy to iterate.
In characteristic zero, we can do this by noticing that exp(mD) = Fm, but in
characteristic p we have an open question here for the elements of BAs2(k),
and for maximal order maps in BAsn(k). See also [11].

• If char(k) = p, F ∈ GAn(k) satisfies F pn = I (i.e. F is unipotent), are there
similar theorems as 3.3 and 3.4 true for this general case?
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