DEPARTMENT OF MATHEMATICS UNIVERSITY OF NIJMEGEN The Netherlands

Derivations having divergence zero on R[X,Y]

Joost Berson, Arno van den Essen, Stefan Maubach

Report No. 9918 (April 1999)

DEPARTMENT OF MATHEMATICS UNIVERSITY OF NIJMEGEN Toernooiveld 6525 ED Nijmegen The Netherlands

Derivations having divergence zero on R[X, Y]

Joost Berson, Arno van den Essen, Stefan Maubach

Abstract

In this paper it is proved that for any \mathbb{Q} -algebra R any locally nilpotent R-derivation D on R[X,Y] having divergence zero and $1 \in (D(X), D(Y))$ (i) has a slice, and (ii) $A^D = R[P]$ for some P. Furthermore it is shown that any surjective R-derivation on R[X,Y] having divergence zero is locally nilpotent. Connections with the Jacobian Conjecture are made.

1 Introduction

Locally nilpotent *R*-derivations on the polynomial ring R[X, Y] where *R* is a UFD containing \mathbb{Q} were studied by Daigle and Freudenburg in [1]. The more general situation where *R* is a (normal) noetherian domain containing \mathbb{Q} was studied by Bhatwadekar and Dutta in [4]. They showed, amongst other things, that if *D* is a locally nilpotent derivation on R[X, Y] such that the ideal generated by D(X) and D(Y) contains 1, then $R[X, Y]^D$ is a polynomial ring in one variable over *R* and R[X, Y] is a polynomial ring in one variable over $R[X, Y]^D$. In particular this implies that *D* has a slice in R[X, Y].

In this paper we generalise this result to arbitrary \mathbb{Q} -algebras R in the sense that we consider locally nilpotent derivations having divergence zero (in the domain case any locally nilpotent derivation has divergence zero).

Also we generalise a result of Stein in [2], asserting that any surjective k-derivation on k[X, Y] (k a field of characteristic zero) is locally nilpotent, to surjective divergence zero R-derivations on R[X, Y] where R is an arbitrary Noetherian Q-algebra.

At the end of this paper we relate this result to the Jacobian Conjecture. In fact the importance of divergence zero derivations for this conjecture will be described in a forthcoming paper of the second author.

2 Preliminaries

2.1 Notations

We assume for the rest of the article that R is a commutative \mathbb{Q} -algebra. Let A be an R-algebra containing R. Let Spec(R) be the collection of all prime ideals of R. So $\bigcap_{\mathfrak{p}\in Spec(R)}\mathfrak{p}$ equals the collection of nilpotent elements of R, which we denote by η . Throughout this paper D denotes an R-derivation on A. We say that an element

1

 $s \in A$ is a slice of a derivation D if D(s) = 1. If $A = R[X] = R[X_1, \ldots, X_n]$ and $D = a_1 \partial_{X_1} + \ldots + a_n \partial_{X_n}$ then the divergence of D, denoted by div(D), equals $\sum_{i=1}^n \partial_{X_i} a_i$.

2.2 Tools

Now follows a score of lemmas which prove themselves useful in the proofs of the next section.

Lemma 2.1. If D is a locally nilpotent R-derivation on A then D has a slice if and only if D surjective.

Proof. If D is surjective then among others 1 is in the image, and hence some $s \in A$ is mapped onto 1. So let us assume we have a locally nilpotent derivation having some slice s. Let $F \in A$. Define $G = \sum_{i=0}^{\infty} (-1)^i \frac{s^{i+1}}{(i+1)!} D^i(F)$. $G \in A$ because the sum is finite: $D^i(F) = 0$ for $i \geq N$ for some N, since D is locally nilpotent. Now

$$D(G) = \sum_{i=0}^{\infty} (-1)^{i} D(\frac{s^{i+1}}{(i+1)!} D^{i}(F))$$

= $\sum_{i=0}^{\infty} (-1)^{i} (\frac{s^{i}}{i!} D^{i}(F) + \frac{s^{i+1}}{(i+1)!} D^{i+1}(F))$
= $\sum_{i=0}^{\infty} (-1)^{i} \frac{s^{i}}{i!} D^{i}(F) + \sum_{i=0}^{\infty} (-1)^{i} \frac{s^{i+1}}{(i+1)!} D^{i+1}(F)$
= $F.$

So D is surjective.

Definition 2.2. If I is any ideal of R then we write $D_I := D \mod(I)$, the induced derivation on A/AI. Also if $F \in A$ then write $F_I := F \mod(IA)$.

Lemma 2.3. Let D be an R-derivation on A. Let $I, J \subset R$ be ideals of R and suppose D_I has a slice and D_J is surjective. Then D_{IJ} has a slice.

Proof. There exists $s \in A$ such that $D_I(s_I) = 1$ and hence D(s) = 1 + f for some $f \in IA$. Write $f = \sum f_{\alpha} a_{\alpha}$ where $f_{\alpha} \in I$ and $a_{\alpha} \in A$. Since D_J is surjective there exists $F_{\alpha} \in A$ such that $D(F_{\alpha}) = a_{\alpha} + h_{\alpha}$ where $h_{\alpha} \in JA$. Denote $S := s - \sum f_{\alpha}F_{\alpha}$. Then

$$D(S) = D(s - \sum f_{\alpha}F_{\alpha})$$

= $D(s) - \sum f_{\alpha}D(F_{\alpha})$
= $1 + f - \sum (f_{\alpha}a_{\alpha} + f_{\alpha}h_{\alpha})$
= $1 - \sum f_{\alpha}h_{\alpha}$

and since $f_{\alpha}h_{\alpha} \in IJ$ we have $D_{IJ}(S_{IJ}) = 1$.

Lemma 2.4. Let D_{I_i} be surjective for the ideals $I_1, \ldots, I_r \subset R$. Then $D_{I_1 \cdots I_r}$ is also surjective.

Proof. It is enough to show that if D_I, D_J are surjective that D_{IJ} is too. Let $a \in A$ be arbitrary. There exists $b \in A$ such that $D_I(b_I) = a_I$ hence D(b) = a + i where $i \in IA$. Write $i = \sum_{k=0}^{t} i_k c_k$ where $i_k \in I$, $c_k \in A$. Then for every c_k there exists some d_k such that $D(d_k) = c_k + j_k$ some $j_k \in JA$ since D_J surjective. Now $D(b - \sum_{k=0}^{t} i_k d_k) = a - \sum_{k=0}^{t} i_k j_k$. Since $\sum_{k=0}^{t} i_k j_k \in IJA$ we're done.

Lemma 2.5. Let D be a locally nilpotent R-derivation on A. If $I_1, \ldots, I_r \subset R$ are ideals of R and D_{I_i} has a slice for all i then $D_{I_1 \cdots I_r}$ has a slice too.

Proof. It is enough to show that if D_I, D_J both have a slice then D_{IJ} has one too. By lemma 2.1 D_I and D_J are surjective. By lemma 2.4 D_{IJ} is surjective. In particular, D_{IJ} has a slice.

Lemma 2.6. If $I_1, \ldots, I_r \subset R$ are ideals of R and D_{I_i} is locally nilpotent for all i then $D_{I_1 \ldots I_r}$ is locally nilpotent too.

Proof. It is enough to show that if D_I, D_J are locally nilpotent then D_{IJ} is locally nilpotent. Let $a \in A$. One knows there exists $N \in \mathbb{N}$ such that $D_I^N(a_I) = 0$ hence $D^N(a) = \sum_{k=0}^t i_k b_k$ where $i_k \in I, b_k \in A$. Now there exists $M_k \in \mathbb{N}$ such that $D^{M_k}(b_k) \in JA$. Let $M = max_k(M_k)$. Then $D^{N+M}(a) = D^M(\sum_{k=0}^t i_k b_k) =$ $\sum_{k=0}^t i_k D^M(b_k) \in IJA$.

3 Divergence zero derivations

Throughout this section let A = R[X, Y] and D a non-zero R-derivation on A with divergence zero. Then it is well-known that $D = P_Y \partial_X - P_X \partial_Y$ for some $P \in A$ (where $P_X = \partial_X(P), P_Y = \partial_Y(P)$ are the derivatives of P) which is unique if one assumes P(0,0) = 0. We denote this element by P(D). We say that R has property B(R) if and only if the following holds:

 $B(R) Any locally nilpotent derivation D on A with div(D) = 0 and 1 \in (D(X), D(Y)) has a slice and satisfies A^D = R[P(D)].$

The main aim of this section is to show that B(R) holds for any Q-algebra R (Theorem 3.7). We first reduce to the case that R is Noetherian. Therefore let R' be the Q-subalgebra of R generated by the coefficients of the polynomials P, a and b where a, b are such that $1 = aP_X + bP_Y$. Notice that R' is noetherian, regardless of R. Write A' = R'[X, Y], D' the restriction of D to A'.

Lemma 3.1. If D' has a slice and $A'^{D'} = R'[P]$ then D has a slice and $A^D = R[P]$.

Proof. Let $S \in A'$ such that D'(S) = 1. Then since $A' \subseteq A$ we have $S \in A$ and D(S) = D'(S) = 1. So let $A'^{D'} = R'[P]$. In general for any locally nilpotent derivation having a slice S one has $R[X] = R[X]^D[S]$. Hence $R'[X,Y] = A' = A'^{D'}[S] = R'[P,S]$. So there exist $F, G \in R'[X,Y]$ such that F(P,S) = X and G(P,S) = Y. But since all is contained in R[X,Y] we have

$$R[X,Y] = R[F(P,S),G(P,S)] \subseteq R[P,S] \subseteq R[X,Y].$$
 Hence $A^D = R[P,S]^D = R[P].$

To prove B(R) for Noetherian domains containing \mathbb{Q} , we first need a lemma from

Lemma 3.2. Let R be a domain containing \mathbb{Q} and $P \in R[X,Y]$ such that $1 \in (P_X, P_Y)$. Then $K[P] \cap R[X,Y] = R[P]$, where K = Q(R), its field of fractions.

Proof. If $K[P] \cap R[X,Y] \not\subseteq R[P]$, then there exists an $F \in K[T] \setminus R[T]$ with $F(P) \in R[X,Y]$. Choose one of minimal degree. Observe that $F(P) \in R[X,Y]$ implies that $F'(P)F_X$ and $F'(P)F_Y$ belong to R[X,Y].

Since there are $g, h \in R[X, Y]$ with $P_X g + P_Y h = 1$, we deduce $F'(P) = F'(P)P_X g + F'(P)P_Y h \in R[X, Y]$. So $F'(T) \in K[T]$ and $F'(P) \in R[X, Y]$, thus by minimality of the degree of F we must conclude, that $F' \in R[T]$. Now write $F = \sum_{i=0}^{d} f_i T^i$, then $F' \in R[T]$ implies (since R is a Q-algebra) that $f_i \in R$ for all $i \ge 1$, thus yielding $f_0 = F(P) - \sum_{i=1}^{d} f_i P^i \in R[X, Y] \cap K = R$, contradicting the assumption, that $F \notin R[T]$.

Now we can prove the next theorem :

Theorem 3.3. Let R be a Noetherian domain containing \mathbb{Q} , K = Q(R), and let D be a locally nilpotent derivation on R[X,Y] with $1 \in (D(X), D(Y))$. Then $R[X,Y]^D = R[P]$ for some $P \in R[X,Y]$ and D has a slice $t \in R[X,Y]$.

Proof. Extend D to K[X, Y] the natural way. We know by [3] (Th.1.2.25) or [5] that there is a $Q \in K[X, Y]$ with $K[X, Y]^D = K[Q]$. Because D is locally nilpotent, we know that div(D) = 0, so there is a $P \in R[X, Y]$ with $D(X) = P_Y$ and $D(Y) = -P_X$. This means that D(P) = 0, and, as a consequence, $P \in K[X, Y]^D = K[Q]$. So write P = g(Q) with $g \in K[T]$. We now have $P_X = g'(Q)Q_X$ and $P_Y = g'(Q)Q_Y$. Notice that $(P_Y, P_X) = (D(X), D(Y)) = (1)$ (also in K[X, Y]), which means that $g'(Q) \in K^*$. Then there are $\lambda, \mu \in K, \lambda \neq 0$ satisfying $P = g(Q) = \lambda Q + \mu$, yielding K[P] = K[Q]. By the previous lemma, $R[X, Y]^D = K[X, Y]^D \cap R[X, Y] =$ $K[P] \cap R[X, Y] = R[P]$.

Hence we proved our first claim. Now we can use Theorem 4.7 in [4] to conclude that

$$R[X,Y] = R[P][s] \text{ for some } s \in R[X,Y]$$
(1)

This means that $f : R[X, Y] \longrightarrow R[X, Y]$ defined by f(X) = P(X, Y) and f(Y) = s(X, Y) satisfies $f \in Aut_R R[X, Y]$. A well-known consequence is that

$$\det JF(X) \in R[X,Y]^* = R^* \tag{2}$$

But this determinant is equal to $-P_Y s_X + P_X s_Y = -D(s)$. So $D(s) \in \mathbb{R}^*$, whence t := s/D(s) satisfies D(t) = 1 and we are done.

Combining lemma 3.1 and theorem 3.3 we have

Theorem 3.4. Let R be any domain containing \mathbb{Q} . Then B(R) holds.

Lemma 3.5. Let D be an R-derivation on A and $I_1, \ldots, I_r \subseteq R$ ideals of R. Suppose there exists $P \in A$ such that $R/I_i[X,Y]^{D_{I_i}} = R/I_i[P_{I_i}]$ for all i. Then $A^D \subseteq R[P] + I_1 \cdots I_r A^D$.

Proof. It is enough to prove the lemma for r = 2. So let I, J be ideals in R. We know $R/I[X,Y]^{D_I} = R/I[P_I]$. Hence $A^D \subseteq R[P] + IA^D$. In the same way $A^D \subseteq R[P] + JA^D$. Substituting the latter in the first we get

$$\begin{array}{rcl} A^{D} \subseteq & R[P] + IA^{D} \\ & \subseteq R[P] + I(R[P] + JA^{D}) \\ & \subseteq R[P] + IJA^{D} \end{array}$$

Now we assume R to be a reduced ring, that is, its nilradical η equals (0). We will prove B(R) for these rings.

Theorem 3.6. Let R be any reduced \mathbb{Q} -algebra. Then B(R) holds.

Proof. Let $D = P_Y \partial_X - P_X \partial_Y$ be an arbitrary locally nilpotent derivation having div(D) = 0 and $1 \in (P_X, P_Y)$. We have to prove that D has a slice and that $A^D = R[P]$. By lemma 3.1 we may assume R to be Noetherian. We know that for any prime ideal \mathfrak{p} we have R/\mathfrak{p} is a domain. Hence by theorem 3.4 $D_{\mathfrak{p}}$ has a slice and $A/\mathfrak{p}A^{D_{\mathfrak{p}}} = R/\mathfrak{p}[X, Y]^{D_{\mathfrak{p}}} = R/\mathfrak{p}[P_{\mathfrak{p}}]$. Since R is assumed to be Noetherian there are finitely many minimal prime ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$. Write $\mathfrak{q} := \mathfrak{p}_1 \cdot \ldots \cdot \mathfrak{p}_n$. Now using lemma 2.5 we see that $D_{\mathfrak{q}}$ has a slice too and by lemma 3.5 we have $A/\mathfrak{q}^{D_{\mathfrak{q}}} = A/\mathfrak{q}[P_{\mathfrak{q}}]$. But since

$$\mathbf{q} = \mathbf{p}_1 \cdot \ldots \cdot \mathbf{p}_n \subseteq \bigcap_{i=1}^n \mathbf{p}_i = \eta = (0)$$

we are done.

Now we do the main theorem:

Theorem 3.7. Let R be any \mathbb{Q} -algebra. Then B(R) holds.

Proof. Let $D = P_Y \partial_X - P_X \partial_Y$ be an arbitrary locally nilpotent derivation having div(D) = 0 and $1 \in (P_X, P_Y)$. We have to prove that D has a slice and that $A^D = R[P]$. By lemma 3.1 we may assume R to be noetherian. Hence $\eta^N = 0$ for some $N \in \mathbb{N}$. By theorem 3.6 we know $D_\eta(s_\eta) = 1$ for some $s \in A$ and $A/\eta^{D_\eta} = R/\eta[P_\eta]$. Now using lemma 2.5 we see that D_{η^N} has a slice too and by lemma 3.5 we have $A/\eta^{N D_{\eta^N}} = A/\eta^N[P_{\eta^N}]$. But since $\eta^N = 0$ we are done.

Finally we consider surjective R-derivations on R[X, Y] having divergence zero. We say that a Q-algebra R satisfies property S(R) if and only if the following holds:

S(R) Any surjective *R*-derivation of R[X, Y] having divergence zero is locally nilpotent.

Theorem 3.8. S(R) holds for any Noetherian \mathbb{Q} -algebra.

Proof. i) If R is a field the result was proved by Stein in [2]. One easily deduces that S(R) holds for any domain R.

ii) Now assume that R is a reduced ring. So $(0) = \mathfrak{p}_1 \cap \ldots \cap \mathfrak{p}_r$ for some prime

ideals \mathfrak{p}_i . Let D be a surjective derivation on R[X, Y] satisfying div(D) = 0. Then each induced derivation $D_{\mathfrak{p}_i} : R/\mathfrak{p}_i[X, Y] \longrightarrow R/\mathfrak{p}_i[X, Y]$ is surjective and satisfies $div(D_{\mathfrak{p}_i}) = 0$. So by i) each $D_{\mathfrak{p}_i}$ is locally nilpotent, hence by lemma 2.6 D is locally nilpotent.

iii) Finally let R be any Noetherian Q-algebra. Let η be the nilradical. Since R is Noetherian there exists some $N \in \mathbb{N}$ such that $\eta^N = 0$. $D_\eta : R/\eta[X,Y] \longrightarrow R/\eta[X,Y]$ is surjective and $div(D_\eta) = 0$. So by ii) D_η is locally nilpotent. Then it follows by lemma 2.6 that D locally nilpotent.

Comment: Theorem 3.8 above is a special case of the Jacobian Conjecture, namely the surjectivity of D certainly implies that $1 \in Im(D)$ i.e. D(s) = 1 for some $s \in R[X, Y]$ or equivalently, writing $D = P_Y \partial_X - P_X \partial_Y$ that detJ(s, P) = 1. So if the two-dimensional Jacobian Conjecture is true then apparently the condition $1 \in Im(D)$ is equivalent to the surjectivity of D. So in order to try to make the gap between theorem 3.8 and the Jacobian Conjecture smaller one can pose the following questions:

Question 1: Can one give a finite number of elements a_1, \ldots, a_m in R[X, Y] such that $a_i \in Im(D)$ for all i implies that D is surjective (of course assuming div(D) = 0)?

Or more concretely:

Question 2: Does $\{1, X, Y\} \subset Im(D)$ imply that D is surjective?

If the answer to the first question is affirmative one can improve theorem 3.8 to arbitrary \mathbb{Q} -algebras (instead of Noetherian \mathbb{Q} -algebras) using an argument similar to the one used in the proof of lemma 3.1.

References

- D. Daigle and G. Freudenburg, Locally nilpotent derivations over a UFD and an application to rank two locally nilpotent derivations on k[X₁,...,X_n], Journal of Algebra 204 (1998), 353-371.
- [2] Y. Stein, On the density of image of differential operators generated by polynomials, Journal d'Analyse Mathématique, Vol. 52 (1989), 291-300.
- [3] A. van den Essen, Polynomial automorphisms and the Jacobian Conjecture, draft book, November 1998.
- [4] S. Bhatwadekar and A. Dutta, Kernel of locally nilpotent R-derivations on R[X, Y], Transactions of the A.M.S. 349 (1997), 3303-3319.
- [5] M. Nagata and A. Nowicki, *Rings of constants for k-derivations on* $k[x_1, \ldots, x_n]$, J.Math.Kyoto Univ. 28 (1988), no. 1, 111-118.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF NIJMEGEN Toernooiveld 6525 ED Nijmegen The Netherlands

Email : berson@sci.kun.nl, stefanm@sci.kun.nl, essen@sci.kun.nl

7