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Derivations having divergence zero on R[X, Y ]

Joost Berson, Arno van den Essen, Stefan Maubach

Abstract

In this paper it is proved that for any Q-algebra R any locally nilpotent
R-derivation D on R[X, Y ] having divergence zero and 1 ∈ (D(X), D(Y )) (i)
has a slice, and (ii) AD = R[P ] for some P . Furthermore it is shown that any
surjective R-derivation on R[X, Y ] having divergence zero is locally nilpotent.
Connections with the Jacobian Conjecture are made.

1 Introduction

Locally nilpotent R-derivations on the polynomial ring R[X, Y ] where R is a UFD
containing Q were studied by Daigle and Freudenburg in [1]. The more general
situation where R is a (normal) noetherian domain containing Q was studied by
Bhatwadekar and Dutta in [4]. They showed, amongst other things, that if D is a
locally nilpotent derivation on R[X, Y ] such that the ideal generated by D(X) and
D(Y ) contains 1, then R[X, Y ]D is a polynomial ring in one variable over R and
R[X, Y ] is a polynomial ring in one variable over R[X, Y ]D. In particular this implies
that D has a slice in R[X, Y ].

In this paper we generalise this result to arbitrary Q-algebras R in the sense that
we consider locally nilpotent derivations having divergence zero (in the domain case
any locally nilpotent derivation has divergence zero).

Also we generalise a result of Stein in [2], asserting that any surjective k-derivation
on k[X, Y ] (k a field of characteristic zero) is locally nilpotent, to surjective divergence
zero R-derivations on R[X, Y ] where R is an arbitrary Noetherian Q-algebra.

At the end of this paper we relate this result to the Jacobian Conjecture. In fact
the importance of divergence zero derivations for this conjecture will be described in
a forthcoming paper of the second author.

2 Preliminaries

2.1 Notations

We assume for the rest of the article that R is a commutative Q-algebra. Let A be
an R-algebra containing R. Let Spec(R) be the collection of all prime ideals of R.
So ∩p∈Spec(R)p equals the collection of nilpotent elements of R, which we denote by
η. Throughout this paper D denotes an R-derivation on A. We say that an element
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s ∈ A is a slice of a derivation D if D(s) = 1. If A = R[X] = R[X1, . . . , Xn]
and D = a1∂X1 + . . . + an∂Xn

then the divergence of D, denoted by div(D), equals∑n
i=1 ∂Xi

ai.

2.2 Tools

Now follows a score of lemmas which prove themselves useful in the proofs of the next
section.

Lemma 2.1. If D is a locally nilpotent R-derivation on A then D has a slice if and
only if D surjective.

Proof. If D is surjective then among others 1 is in the image, and hence some s ∈ A is
mapped onto 1. So let us assume we have a locally nilpotent derivation having some
slice s. Let F ∈ A. Define G =

∑∞
i=0(−1)i si+1

(i+1)!D
i(F ). G ∈ A because the sum is

finite: Di(F ) = 0 for i ≥ N for some N , since D is locally nilpotent. Now

D(G) =
∑∞

i=0(−1)iD( si+1

(i+1)!D
i(F ))

=
∑∞

i=0(−1)i( si

i! D
i(F ) + si+1

(i+1)!D
i+1(F ))

=
∑∞

i=0(−1)i si

i! D
i(F ) +

∑∞
i=0(−1)i si+1

(i+1)!D
i+1(F )

= F.

So D is surjective.

Definition 2.2. If I is any ideal of R then we write DI := D mod(I), the induced
derivation on A/AI. Also if F ∈ A then write FI := F mod(IA).

Lemma 2.3. Let D be an R-derivation on A. Let I, J ⊂ R be ideals of R and suppose
DI has a slice and DJ is surjective. Then DIJ has a slice.

Proof. There exists s ∈ A such that DI(sI) = 1 and hence D(s) = 1 + f for some
f ∈ IA. Write f =

∑
fαaα where fα ∈ I and aα ∈ A. Since DJ is surjective there

exists Fα ∈ A such that D(Fα) = aα + hα where hα ∈ JA. Denote S := s−
∑

fαFα.
Then

D(S) = D(s−
∑

fαFα)
= D(s)−

∑
fαD(Fα)

= 1 + f −
∑

(fαaα + fαhα)
= 1−

∑
fαhα

and since fαhα ∈ IJ we have DIJ(SIJ) = 1.

Lemma 2.4. Let DIi
be surjective for the ideals I1, . . . , Ir ⊂ R. Then DI1·...·Ir

is
also surjective.

Proof. It is enough to show that if DI , DJ are surjective that DIJ is too. Let a ∈ A
be arbitrary. There exists b ∈ A such that DI(bI) = aI hence D(b) = a + i where
i ∈ IA. Write i =

∑t
k=0 ikck where ik ∈ I, ck ∈ A. Then for every ck there

exists some dk such that D(dk) = ck + jk some jk ∈ JA since DJ surjective. Now
D(b−

∑t
k=0 ikdk) = a−

∑t
k=0 ikjk. Since

∑t
k=0 ikjk ∈ IJA we’re done.
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Lemma 2.5. Let D be a locally nilpotent R-derivation on A. If I1, . . . , Ir ⊂ R are
ideals of R and DIi

has a slice for all i then DI1·...·Ir
has a slice too.

Proof. It is enough to show that if DI , DJ both have a slice then DIJ has one too. By
lemma 2.1 DI and DJ are surjective. By lemma 2.4 DIJ is surjective. In particular,
DIJ has a slice.

Lemma 2.6. If I1, . . . , Ir ⊂ R are ideals of R and DIi
is locally nilpotent for all i

then DI1·...·Ir
is locally nilpotent too.

Proof. It is enough to show that if DI , DJ are locally nilpotent then DIJ is locally
nilpotent. Let a ∈ A. One knows there exists N ∈ N such that DN

I (aI) = 0
hence DN (a) =

∑t
k=0 ikbk where ik ∈ I, bk ∈ A. Now there exists Mk ∈ N such

that DMk(bk) ∈ JA. Let M = maxk(Mk). Then DN+M (a) = DM (
∑t

k=0 ikbk) =∑t
k=0 ikDM (bk) ∈ IJA.

3 Divergence zero derivations

Throughout this section let A = R[X, Y ] and D a non-zero R-derivation on A with
divergence zero. Then it is well-known that D = PY ∂X − PX∂Y for some P ∈ A
(where PX = ∂X(P ), PY = ∂Y (P ) are the derivatives of P ) which is unique if one
assumes P (0, 0) = 0. We denote this element by P (D). We say that R has property
B(R) if and only if the following holds:

B(R) Any locally nilpotent derivation D on A with div(D) = 0 and
1 ∈ (D(X), D(Y )) has a slice and satisfies AD = R[P (D)].

The main aim of this section is to show that B(R) holds for any Q-algebra R
(Theorem 3.7). We first reduce to the case that R is Noetherian. Therefore let R′

be the Q-subalgebra of R generated by the coefficients of the polynomials P, a and b
where a, b are such that 1 = aPX + bPY . Notice that R′ is noetherian, regardless of
R. Write A′ = R′[X, Y ], D′ the restriction of D to A′.

Lemma 3.1. If D′ has a slice and A′D′
= R′[P ] then D has a slice and AD = R[P ].

Proof. Let S ∈ A′ such that D′(S) = 1. Then since A′ ⊆ A we have S ∈ A and
D(S) = D′(S) = 1. So let A′D′

= R′[P ]. In general for any locally nilpotent
derivation having a slice S one has R[X] = R[X]D[S]. Hence R′[X, Y ] = A′ =
A′D′

[S] = R′[P, S]. So there exist F,G ∈ R′[X, Y ] such that F (P, S) = X and
G(P, S) = Y . But since all is contained in R[X, Y ] we have

R[X, Y ] = R[F (P, S), G(P, S)] ⊆ R[P, S] ⊆ R[X, Y ].

Hence AD = R[P, S]D = R[P ].

To prove B(R) for Noetherian domains containing Q , we first need a lemma from
[1]
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Lemma 3.2. Let R be a domain containing Q and P ∈ R[X, Y ] such that 1 ∈
(PX , PY ). Then K[P ] ∩R[X, Y ] = R[P ], where K = Q(R), its field of fractions.

Proof. If K[P ] ∩R[X, Y ] 6⊆ R[P ], then there exists an F ∈ K[T ] \R[T ] with F (P ) ∈
R[X, Y ]. Choose one of minimal degree. Observe that F (P ) ∈ R[X, Y ] implies that
F ′(P )FX and F ′(P )FY belong to R[X, Y ].
Since there are g, h ∈ R[X, Y ] with PXg +PY h = 1, we deduce F ′(P ) = F ′(P )PXg +
F ′(P )PY h ∈ R[X, Y ]. So F ′(T ) ∈ K[T ] and F ′(P ) ∈ R[X, Y ], thus by minimality of
the degree of F we must conclude, that F ′ ∈ R[T ]. Now write F =

∑d
i=0 fiT

i, then
F ′ ∈ R[T ] implies (since R is a Q-algebra) that fi ∈ R for all i ≥ 1, thus yielding
f0 = F (P ) −

∑d
i=1 fiP

i ∈ R[X, Y ] ∩ K = R, contradicting the assumption, that
F 6∈ R[T ].

Now we can prove the next theorem :

Theorem 3.3. Let R be a Noetherian domain containing Q, K = Q(R), and let D
be a locally nilpotent derivation on R[X, Y ] with 1 ∈ (D(X), D(Y )).
Then R[X, Y ]D = R[P ] for some P ∈ R[X, Y ] and D has a slice t ∈ R[X, Y ].

Proof. Extend D to K[X, Y ] the natural way. We know by [3] (Th.1.2.25) or [5] that
there is a Q ∈ K[X, Y ] with K[X, Y ]D = K[Q]. Because D is locally nilpotent, we
know that div(D) = 0, so there is a P ∈ R[X, Y ] with D(X) = PY and D(Y ) = −PX .
This means that D(P ) = 0, and, as a consequence, P ∈ K[X, Y ]D = K[Q]. So write
P = g(Q) with g ∈ K[T ]. We now have PX = g′(Q)QX and PY = g′(Q)QY .
Notice that (PY , PX) = (D(X), D(Y )) = (1) (also in K[X, Y ]), which means that
g′(Q) ∈ K∗. Then there are λ, µ ∈ K, λ 6= 0 satisfying P = g(Q) = λQ + µ,
yielding K[P ] = K[Q]. By the previous lemma, R[X, Y ]D = K[X, Y ]D ∩ R[X, Y ] =
K[P ] ∩R[X, Y ] = R[P ].
Hence we proved our first claim. Now we can use Theorem 4.7 in [4] to conclude that

R[X, Y ] = R[P ][s] for some s ∈ R[X, Y ] (1)

This means that f : R[X, Y ] −→ R[X, Y ] defined by f(X) = P (X, Y ) and f(Y ) =
s(X, Y ) satisfies f ∈ AutRR[X, Y ]. A well-known consequence is that

det JF (X) ∈ R[X, Y ]∗ = R∗ (2)

But this determinant is equal to −PY sX + PXsY = −D(s). So D(s) ∈ R∗, whence
t := s/D(s) satisfies D(t) = 1 and we are done.

Combining lemma 3.1 and theorem 3.3 we have

Theorem 3.4. Let R be any domain containing Q. Then B(R) holds.

Lemma 3.5. Let D be an R-derivation on A and I1, . . . , Ir ⊆ R ideals of R. Suppose
there exists P ∈ A such that R/Ii[X, Y ]DIi = R/Ii[PIi ] for all i. Then AD ⊆ R[P ] +
I1 · . . . · IrA

D.
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Proof. It is enough to prove the lemma for r = 2. So let I, J be ideals in R. We
know R/I[X, Y ]DI = R/I[PI ]. Hence AD ⊆ R[P ] + IAD. In the same way AD ⊆
R[P ] + JAD. Substituting the latter in the first we get

AD ⊆ R[P ] + IAD

⊆ R[P ] + I(R[P ] + JAD)
⊆ R[P ] + IJAD

Now we assume R to be a reduced ring, that is, its nilradical η equals (0). We will
prove B(R) for these rings.

Theorem 3.6. Let R be any reduced Q-algebra. Then B(R) holds.

Proof. Let D = PY ∂X − PX∂Y be an arbitrary locally nilpotent derivation having
div(D) = 0 and 1 ∈ (PX , PY ). We have to prove that D has a slice and that
AD = R[P ]. By lemma 3.1 we may assume R to be Noetherian. We know that for
any prime ideal p we have R/p is a domain. Hence by theorem 3.4 Dp has a slice
and A/pADp = R/p[X, Y ]Dp = R/p[Pp]. Since R is assumed to be Noetherian there
are finitely many minimal prime ideals p1, . . . , pn. Write q := p1 · . . . · pn. Now using
lemma 2.5 we see that Dq has a slice too and by lemma 3.5 we have A/qDq = A/q[Pq].
But since

q = p1 · . . . · pn ⊆ ∩n
i=1pi = η = (0)

we are done.

Now we do the main theorem:

Theorem 3.7. Let R be any Q-algebra. Then B(R) holds.

Proof. Let D = PY ∂X − PX∂Y be an arbitrary locally nilpotent derivation having
div(D) = 0 and 1 ∈ (PX , PY ). We have to prove that D has a slice and that
AD = R[P ]. By lemma 3.1 we may assume R to be noetherian. Hence ηN = 0 for some
N ∈ N. By theorem 3.6 we know Dη(sη) = 1 for some s ∈ A and A/ηDη = R/η[Pη].
Now using lemma 2.5 we see that DηN has a slice too and by lemma 3.5 we have
A/ηN DηN = A/ηN [PηN ]. But since ηN = 0 we are done.

Finally we consider surjective R-derivations on R[X, Y ] having divergence zero.
We say that a Q-algebra R satisfies property S(R) if and only if the following holds:

S(R) Any surjective R-derivation of R[X, Y ] having divergence zero is locally
nilpotent.

Theorem 3.8. S(R) holds for any Noetherian Q-algebra.

Proof. i) If R is a field the result was proved by Stein in [2]. One easily deduces that
S(R) holds for any domain R.
ii) Now assume that R is a reduced ring. So (0) = p1 ∩ . . . ∩ pr for some prime
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ideals pi. Let D be a surjective derivation on R[X, Y ] satisfying div(D) = 0. Then
each induced derivation Dpi

: R/pi[X, Y ] −→ R/pi[X, Y ] is surjective and satisfies
div(Dpi) = 0. So by i) each Dpi is locally nilpotent, hence by lemma 2.6 D is locally
nilpotent.
iii) Finally let R be any Noetherian Q-algebra. Let η be the nilradical. Since R is
Noetherian there exists some N ∈ N such that ηN = 0. Dη : R/η[X, Y ] −→ R/η[X, Y ]
is surjective and div(Dη) = 0. So by ii) Dη is locally nilpotent. Then it follows by
lemma 2.6 that D locally nilpotent.

Comment: Theorem 3.8 above is a special case of the Jacobian Conjecture,
namely the surjectivity of D certainly implies that 1 ∈ Im(D) i.e. D(s) = 1 for
some s ∈ R[X, Y ] or equivalently, writing D = PY ∂X − PX∂Y that detJ(s, P ) = 1.
So if the two-dimensional Jacobian Conjecture is true then apparently the condition
1 ∈ Im(D) is equivalent to the surjectivity of D. So in order to try to make the gap
between theorem 3.8 and the Jacobian Conjecture smaller one can pose the following
questions:

Question 1: Can one give a finite number of elements a1, . . . , am in R[X, Y ] such
that ai ∈ Im(D) for all i implies that D is surjective (of course assuming div(D) = 0)?

Or more concretely:

Question 2: Does {1, X, Y } ⊂ Im(D) imply that D is surjective?

If the answer to the first question is affirmative one can improve theorem 3.8 to
arbitrary Q-algebras (instead of Noetherian Q-algebras) using an argument similar to
the one used in the proof of lemma 3.1.
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