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Abstract

In this paper, we give an example of a finitely generated C-algebra which
has infinitely generated Derksen invariant as well as Makar-Limaonv invariant.

1 Introduction and tools

The Derksen invariant and Makar-Limanov invariant are useful tools to recognize
if two varieties or rings are not isomorphic. Both invariants use locally nilpotent
derivations: if A is a commutative k-algebra (where k is a field of characteristic
zero), then D is a derivation if D is k-linear and satisfies the Leibniz rule: D(ab) =
aD(b) + bD(a). A derivation is locally nilpotent if for each a ∈ A we can find some
n ∈ N such that Dn(a) = 0. The kernel of a derivation, denoted by AD, is the set of
all elements that are mapped to zero under the derivation D. The Makar-Limanov
invariant is defined as the intersection of all kernels of locally nilpotent derivations,
while the Derksen invariant is defined as the smallest algebra containing the kernels
of all nonzero locally nilpotent derivations.

In the paper [3] the question was posed if the Derksen invariant could be infinitely
generated. In this paper we give an example of an infinitely generated Derksen
invariant of a finitely generated C-algebra. It will be at the same time an example
of an infinitely generated Makar-Limanov invariant, as in this example, the Derksen
invariant is equal to the Makar-Limanov invariant. By now, there are many examples
of cases of “nice” subrings that are not finitely generated [1, 2, 4, 5, 6]. In regard
of this, the author would like to remark that it will pay off to consider theorems as
general as possible (with respect to not restricting to finitely generated algebras).

Notations: If R is a ring, then R[n] denotes the polynomial ring in n variables
over R. We will use the letter k for a field of characteristic zero, and K for its
algebraic closure. Denote by ∂x the derivative with respect to x. By LND(A) we
will denote the set of all locally nilpotent derivations on a ring A.
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The technique used for constructing this example, is based on the following
general idea: grab a locally nilpotent derivation D on a polynomial ring K [n] having
the required properties (non-finitely generated kernel). Then construct an equation
f (or several equations fi) which forces A := K [n]/(f) (or A := K [n]/(f1, . . . , fm))
to be a ring that has only one locally nilpotent derivation (up to multiplication with
an element of A), namely D mod (f1, . . . , fm). Hopefully it still has the required
properties (infinitely generated kernel).

Well-known facts that we need are the following:

Lemma 1.1. Let D ∈ LND(A) where A is a domain.
(1) Then D(A∗) = 0.
(2) If D(ab) = 0 with a, b both nonzero, then D(a) = D(b) = 0.
(3) If fD ∈ LND(A) where f 6= 0 then D(f) = 0 and D ∈ LND(A).

2 The example

This example is inspired by the example of Bhatwadekar and Dutta in [1]. We will
write small letters for capital letters modulo a relation: for example, a below is
defined as A + (A3 − B2).

Define R := C[A, B]/(A3 − B2) = C[a, b] ∼= C[T 2, T 3] ⊆ C[T ]. Define S :=
R[X, Y, Z]/(Z2−a2(aX + bY )2−1) = R[X, Y ][z]. We leave it to the reader to check
that S is a domain. We will first try to find all locally nilpotent derivations on this
ring.

Lemma 2.1. Let D ∈ LND(S). Then D(a) = D(b) = D(aX + bY ) = D(z) = 0.

Proof. Since (z−a2X−abY )(z+a2X +abY ) = 1, we have by lemma 1.1 part 1 that
D(z − a2X − abY ) = D(z + a2X + abY ) = 0, and thus since D is C-linear, D(z) =
D(a2X +abY ) = 0. Because of lemma 1.1 part 2, we have D(a) = D(aX + bY ) = 0.
Since 0 = 3a2D(a) = D(a3) = D(b2) = 2bD(b) we have D(b) = 0.

Lemma 2.2. LND(S) = SD · D where D := b∂X − a∂Y .

Proof. Let D ∈ LND(S). Then aD(X) = −bD(Y ) by lemma 2.1. Seeing S as a
subring of B := C ⊕ Cz̄ = C[Z]/(Z2 − T 8(X + TY )2 − 1) where C := C[T ][X, Y ],
we write D(X) = f0 + z̄f1, D(Y ) = g0 + z̄g1 where f0, f1, g0, g1 ∈ C. Since D(X) =
−TD(Y ) we see that T divides f0 and f1. But since both are in C[T 2, T 3, X, Y ] we
know that even T 2 divides them. So, D(X) = T 2h0 + T 2z̄h1 where hi := fiT

−2.
But now T (h0 +h1z̄) = −g0 − g1z̄, so T divides the gi. Again, we have that even T 2

divides gi, which then gives that T divides hi. In the end, T 3 divides D(X) and T 2

divides D(Y ). Write D(X) = T 3f = T 3f0 + T 3zf1, D(Y ) = T 2g = T 2g0 + T 2zg1.
Then T 3f = D(X) = −TD(Y ) = −T 3g so f0 = −g0, f1 = −g1, and thus f = −g,
and D(X) = bf, D(Y ) = af . Since D(z) = D(a) = D(b) = 0, D = f(b∂X − a∂Y ).
By lemma 1.1 we have that f ∈ SD and so we are done.

2



Proposition 2.3. Let D := T 3∂X − T 2∂Y on S as before. Then SD is not finitely
generated as a C-algebra.

Proof. Examining the natural extension of D on B := C[T ][X, Y ][z] it is easy to
determine that BD = C[T, z, X +TY ]. Now SD = BD ∩S, as can be easily checked.
Defining P := X + TY , we are done if we show that C[T, z, P ] ∩ C[T 2, T 3, z, X, Y ]
is not finitely generated. We will do this by writing elements in a unique way in a
representant system.
claim: If F ∈ SD\C[T, z], then F ∈ (T 2, T 3)S.
proof of claim: SD mod (T 2, T 3) = C[T, X+TY, z]/(T 2, z2−1)∩C[z, X, Y ]/(z2−
1). If F ∈ SD is nonzero, then

F mod (T 2) =
n∑

i=0

fi(T̄ , z̄)(X + T̄ Y )i =
n∑

i=0

fi(T̄ , z̄)(X i + iT̄X i−1Y )

where fn 6= 0. But since F mod (T 2, T 3)S ∈ C[z̄, X, Y ], this implies n = 0. So
F ∈ C[T, z] + (T 2, T 3)S, which proves the claim.

If SD is finitely generated, then SD = C[T 2, T 3, z, F1, . . . , Fn] where Fi ∈ (T 2)B
(by the claim). Let d be the maximum of the X, Y -degree of the Fi. Take T 2P d+1,
which is in SD. Write T 2P d+1 = f(F1, . . . , Fn) where f has coefficients in C[T 2, T 3]⊕
C[T 2, T 3]z. Computing modulo (T 4)B (or (T 4, T 5, T 6)S) we see that T 2P d+1 =
f0 + f1F1 + . . . + fnFn mod T 4 where fi ∈ C[T̄ 2, T̄ 3]⊕C[T̄ 2, T̄ 3]z̄, as FiFj ∈ (T 4)B
for all i, j. Now comparing the X, Y -degree from the right hand side (which is
at most d) to the X, Y degree on the left hand side (which is d + 1) we get a
contradiction, showing that the assumption “SD is finitely generated” is wrong.
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