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Abstract

This paper proves the Commuting Derivations Conjecture in dimension three: if D1 and D2

are two locally nilpotent derivations which are linearly independent and satisfy [D1, D2] = 0

then the intersection of the kernels, AD1 ∩ AD2 equals C[f ] where f is a coordinate. As a

consequence, it is shown that p(X)Y + Q(X, Z, T ) is a coordinate if and only if Q(a, Z, T )

is a coordinate for every zero a of p(X). Next to that, it is shown that if the Commuting

Derivations Conjecture in dimension n, and the Cancellation Problem and Abhyankar-Sataye

Conjecture in dimension n-1, all have an affirmative answer, then we can similarly describe

all coordinates of the form p(X)Y + q(X, Z1, . . . , Zn−1). Also, conjectures about possible

generalisations of the concept of “coordinate” for elements of general rings are made.

1 Introduction

In this article we will discuss the Commuting Derivations Conjecture (CD(n)) and
its consequences. In short, the conjecture states that if one has n − 1 independent
commuting locally nilpotent derivations of C[n], then the intersections of the kernels is
generated by a coordinate. This conjecture is comparable to and connected with the
Cancellation Problem (CP(n)) and the Abhyankar-Sataye Conjecture (AS(n)). This
paper will show that if CP(n-1), AS(n-1) and CD(n) are all true, then we can describe
all coordinates of the form p(X)Y +q(X, Z1, . . . , Zn−1). Ingredients in the proof of this
last statement are a recent result of Edo-Vénéreau in [3] (see 2.5 below) and an idea
of Derksen-Essen-Rossum in [2]. The main result of this paper is the proof of CD(3),
which uses a recent result of Kaliman in [7]. Since CP(2) and AS(2) are true we can,
as a consequence, describe all coordinates of the form p(X)Y + q(X, Z1, Z2). A more
general result by Kaliman-Vénéreau-Zaidenberg [9] on when p(X, Z1)Y + q(X,Z1, Z2)
is a coordinate was achieved simultaneously to this article. The problem of recognising
and characterising coordinates is of crucial importance for various questions in algebraic
geometry, see for example [10], [16], [17], [18], [11], [8], [5].

Finally, at the end of this paper we discuss some possible definitions of the notion
of coordinate in quotients of polynomial rings.
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2 Preliminaries

Notations: In this article, C[n] will denote a ring isomorphic over C to a polynomial
ring in n variables. LND(C[n]) will be the set of all locally nilpotent C-derivations
on C[n], i.e. the set of all C-linear maps D : C[n] −→ C[n] satisfying the Leibnitz rule
D(ab) = D(a)b + aD(b) for all a, b ∈ C[n] and for all a ∈ C[n] there exists an integer
n ∈ N such that Dn(a) = 0. If A is some ring, A∗ will be the set of invertible elements.

Definition 2.1. We say F ∈ C[n] is a coordinate in C[n] if there exist F2, . . . , Fn ∈ C[n]

such that C[F, F2, . . . , Fn] = C[n]. Similarly, we say that F ∈ C[n] is a stable coordinate
(in C[n]) if there exist m ∈ N such that F is a coordinate in C[n+m].

Not every polynomial is a coordinate, as can be seen by several examples. One can
deduce the following:

Lemma 2.2. If F ∈ C[n] is a coordinate, then

(i). F is irreducible, even F + α is irreducible for all α ∈ C,

(ii). ( ∂F
∂X1

, . . . , ∂F
∂Xn

) = (1),

(iii). C[n]/(F ) ∼= C[n−1],

(iv). There exists a subring A ⊂ C[n] such that F is algebraically independent over A,
A[F ] = C[n], and A ∼= C[n−1].

It is an important question to be able to decide whether some polynomial is a co-
ordinate. The question arises whether there exist sufficient properties which imply
“coordinate”. (i) and (ii) are by no means sufficient: take F = XY + ZT + Z + T ,
which satisfies both (i) and (ii) and is no coordinate (by corollary 4.2). Whether (iii)
is sufficient, is still open for n ≥ 3:

Abhyankar-Sathaye Conjecture (AS(n)): If f ∈ C[n] and C[n]/(f) ∼=C C[n−1]

then f is a coordinate.

AS(2) was proved by Abhyankar and Moh in [1].
Part (iv) of lemma 2.2 gives rise to the following problem:

Cancellation Problem (CP(n)): If C[n] = A[T ] then A ∼=C C[n−1].

This problem had been answered affirmatively for n = 2 ([14]) and n = 3 ([6]). The
following conjecture is a new one. In the rest of the article its significance will become
clear.

Commuting Derivations Conjecture (CD(n)) : If D1, . . . , Dn−1 ∈ LND(C[n])
linearly independent over C[n] such that [Di, Dj ] = 0 for all 1 ≤ i, j ≤ n− 1 (i.e. they
all commute) then

n−1⋂

i=1

ker(Di) = C[f ]
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where f is a coordinate in C[n].

The following lemma we will need in the next section.

Lemma 2.3. Let R be a domain, and r ∈ R such that rR is a prime ideal. Then r is
irreducible in R.

Proof. Let I := rR. Suppose r is reducible, i.e. r = ab for some a, b ∈ R not invertible.
Since ab ∈ I, a prime ideal, we have a or b in I. We may assume a ∈ I, thus a = rs

for some s ∈ R, and thus rsb = ab = r and since R is a domain we get sb = 1, which
means b is invertible, a contradiction. Hence r must be irreducible.

The following theorem is a special case of the main theorem in [7].

Theorem 2.4. Let f ∈ C[X, Y, Z] such that C[X,Y, Z]/(f − λ) ∼= C[2] for all but
finitely many λ ∈ C. Then f is a coordinate.

Proof. In the main theorem in [7] take X ′ = C3, U := {λ | C[X,Y, Z]/(f − λ) ∼= C[2]},
Z := f−1(U), p = f . Then this theorem states p is a coordinate.

The following is theorem 7 in [3]. η(R) is the nilradical of some ring R.

Theorem 2.5. Let A be a ring and let p ∈ A∗. Let a ∈ A,G, F ∈ A[X] such that F is
a coordinate in A[X], a mod (pA) invertible, and G(X) mod (pA) ∈ η((A/pA)[X]) .
Then aF (X) + G(X) + pY is a coordinate in A[X, Y ].

3 Proof of CD(3)

In the following lemma, the derivation δi (the restriction of Di to ADn) is well-defined:
for all a ∈ ADn we have 0 = Di(Dn(a)) = Dn(Di(a)), hence Di(ADn) ⊆ ADn . We say
that a C-domain is a C-algebra which is a domain.

Lemma 3.1. Let A be a C-domain and D1, . . . , Dn be commuting locally nilpotent
derivations which are linearly independent over A. Let δi := Di|ADn . Then δ1, . . . , δn−1

are linearly independent over ADn .

Proof. Suppose that
∑

aiδi = 0 for some ai ∈ ADn . Since Dn is nonzero there exists a
preslice p ∈ A for Dn, i.e. an element p which satisfies d := Dn(p) 6= 0 and D2

n(p) = 0
(i.e. d ∈ ADn). Let s := pd−1 ∈ A[d−1]. Then Dn(s) = 1. Furthermore, by [4] pages
27-28, A[d−1] = ADn [d−1][s]. Let a :=

∑
aiDi(s) ∈ A[d−1], say ã := dma ∈ A. So

(
n−1∑

i=1

aid
mDi)(s) = dma = ã = ãDn(s).

Also by our hypothesis
n−1∑

i=1

aid
mDi − ãDn = 0

on ADn . Since A ⊂ ADn [d−1][s] it follows that
∑

aid
mDi = ãDn. From the linear

independence of the Di over A we deduce that dmai = 0 for all i, whence ai = 0 for all
i.

3



Proposition 3.2. Let A be a C-domain with trdegCQ(A) = n(≥ 1). Let D1, . . . , Dn

be commuting locally nilpotent C-derivations on A which are linearly independent over
A. Then

(i). There exist si in A such that Disj = δij for all i, j and

(ii). A = C[s1, . . . , sn] a polynomial ring in s1, . . . , sn over C.

Proof. We use induction on n. The case n = 1 is well-known (cor. 1.3.33 [4]). So let
n ≥ 2. trdegC(ADn) = n− 1 and according to lemma 3.1 the derivations δi := Di|ADn

1 ≤ i ≤ n − 1 satisfy the hypothesis of the proposition. So by induction there exist
si ∈ ADn such that δisj = δij and ADn = C[s1, . . . , sn−1]. So the first n−1 derivations
have a slice in A. Similarly Dn has a slice sn in AD1 ⊂ A. Then from A = ADn [sn] the
result follows.

Lemma 3.3. Let A be a C-domain with trdegC(Q(A)) = n. If D1, . . . , Dp are com-
muting locally nilpotent C-derivations which are linearly independent over A , then
trdegCQ(AD1 ∩ . . . ∩ADp) = n− p.

Proof. The case p = 1 is well-known. Let B := ADp . By lemma 3.1 the derivations
δi := Di|B for all 1 ≤ i ≤ p − 1 are linearly independent over B. Hence by induction
trdegCQ(Bδ1 ∩ . . . ∩ Bδp−1) = trdegCQ(B) − (p − 1) = n− 1 − (p− 1) = n− p. Since
Bδ1 ∩ . . . ∩Bδp−1 = AD1 ∩ . . . ∩ADp−1 ∩ADp the result follows.

Proposition 3.4. Let A be an affine C-domain such that trdegCQ(A) = n and A∗ =
C∗. If A is a ufd and D1, . . . , Dn−1 are commuting locally nilpotent C-derivations on
A which are linearly independent over A, then ∩ADi = C[g] for some g ∈ A which
satisfies g − c is irreducible in A for all c ∈ C.

Proof. Put B := ∩ADi . By lemma 3.3 we have trdegCB = n − (n − 1) = 1. Also B

is a ufd (see [4] cor. 1.3.36) and B = A ∩ Q(B). Since trdegCQ(B) = 1 it follows
from special case of Hilbert 14 (using B is normal since it is a ufd) that B is a finitely
generated C-algebra. So B is an affine domain of krull dimension one. It is a well-
known result that if B∗ = C∗, B is a UFD and B is an affine domain of krull dimension
one, that B = C[g] ∼=C C[1]. (See for example [13].) Since g − c is irreducible in C[g]
for all c ∈ C and B is factorially closed in A it follows that g − c is also irreducible in
A (see [4] exercise 6, 1.3).

Proposition 3.5. Let D1, D2 be two linearly independent (over C[X,Y, Z]) commuting
locally nilpotent C-derivations. Then there exists g ∈ C[X, Y, Z]\C such that

(i). C[X, Y, Z]D1,D2 = C[g]

(ii). C[X, Y, Z]b(g) = C[f, g, p]b(g) for some f, p ∈ C[X, Y, Z] and b(g) ∈ C[g]\{0}
(iii). C[X, Y, Z]/(g − λ) ∼=C C[2] for all λ ∈ C with b(λ) 6= 0.

Proof. (i) C[X,Y, Z]D1 = C[f, g] and C[X,Y, Z]D2 = C[p, q] by [12]. Since D1, D2

commute we have D2(C[f, g]) ⊆ C[f, g]. Write d2 := D2|C[f,g]. By lemma 3.1 it follows
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that d2 6= 0 on C[f, g]. So by Rentschler’s theorem we may assume that d2 = a(g) ∂
∂f

i.e. D2(g) = 0 and D2(f) = a(g) 6= 0. So C[X, Y, Z]D1,D2 = C[f, g]d2 = C[g] i.e.

C[X, Y, Z]D1,D2 = C[g]. (1)

Similarly we get D1(C[p, q]) ⊂ C[p, q] and putting d1 := D1|C[p,q] this gives by Rentschler
that we may assume d1 = b(q) ∂

∂p for some b(q) 6= 0. So

C[X,Y, Z]D1,D2 = C[p, q]d1 = C[q]. (2)

From (1) and (2) we deduce that C[g] = C[p], whence g = λq + µ form some λ ∈ C∗
and µ ∈ C. Replacing q by g (and hence b(q) = b(λ−1(g − µ) = b̃(g) by b̃(g) we get
that we may assume the following

C[X,Y, Z]D1 = C[f, g], D1f = D1g = 0, D1p = b(g) 6= 0
C[X,Y, Z]D2 = C[p, g], D2f = a(g) 6= 0, D2g = D2p = 0.

(ii) Also C[f, g, p] ∼=C C[3] (for if p depends on C[f, g] then D1p = 0, contradiction).
Observe that D1p = b(g) 6= 0 and D2

1p = D1b(g) = 0, so s := p/b(g) ∈ C[X, Y, Z]b(g)

satisfies D1s = 1, whence C[X, Y, Z]b(g) = C[f, g]b(g)[s] = C[f, g, p]b(g).
(iii) It remains to show the last statement. Since g − λ is irreducible in C[f, g], for
all λ ∈ C and since C[f, g] = C[X,Y, Z]D1 is factorially closed in C[X, Y, Z], it follows
that g − λ is irreducible in C[X, Y, Z] for all λ ∈ C. Now assume b(λ) 6= 0 i.e. (g − λ)
does not divide b(g). We will show that A := C[X, Y, Z]/(g − λ) ∼=C C[2]. According
to 3.2 it suffices to show that D̄1 and D̄2 are linearly independent derivations over
A. Suppose that a1, a2 ∈ C[X,Y, Z] are such that ā1D̄1 + ā2D̄2 = 0. ( “ ¯ ” means
mod (g − λ) .) Then (a1D1 + a2D2)(C[X, Y, Z]) ⊂ (g − λ)C[X, Y, Z]. In particular,
a1(X, Y, Z)b(g) + 0 = a1D1(p) + a2D2(p) ∈ (g − λ). Since g − λ is irreducible in
C[X, Y, Z] and g − λ6 | b(g) it follows that (g − λ)|a1 i.e. ā1 = 0. So ā2D̄2 = 0 i.e.
a2D2(C[X, T, Z]) ⊂ (g − λ). If (g − λ)6 | a2 , then g − λ|D2(X), D2(Y ), D2(Z). In
this case let (g−λ)e|D2(X), D2(Y ), D2(Z), e ≥ 1 maximal. Then replace D2 by D̃2 :=
(g−λ)−eD2. It then follows that D̄1 and ¯̃D2 are independent over A. Obviously D1, D̃2

have the same properties as the pair D1, D2 and C[X, Y, Z]D1,D2 = C[X, Y, Z]D1,D̃2

which concludes the proof.

Theorem 3.6. CD(3) is true, i.e. let D1, D2 be two linearly independent (over C[X,Y, Z])
commuting locally nilpotent C-derivations, then AD1,D2 = C[g] and g is a coordinate in
C[X, Y, Z].

Proof. Combining 3.5 and 2.4 gives exactly this result.

4 Coordinates

Theorem 4.1. Assume AS(n-1), CD(n) and CP(n-1). Let F := p(X)Y +q(X, Z1, . . . , Zn−1)
where p(X) 6= 0. Then equivalent are:

(i). F is a coordinate in C[X,Y, Z1, . . . , Zn−1]
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(ii). C[X, Y, Z1, . . . , Zn−1]/(F ) ∼=C C[n]

(iii). q(a, Z1, . . . , Zn−1) is a coordinate in C[Z1, . . . , Zn−1] for every zero a of P (X).

(iv). F is a coordinate over C[X] in C[X,Y, Z1, . . . , Zn−1]

Proof. (of theorem 4.1)

From 4.5 we have (iii)=⇒(iv). (iv)=⇒(i) and (i)=⇒(ii) follow since they are weaker
statements in general. (ii)=⇒(iii) follows from 4.7.

From the fact that AS(2), CP(2) and CD(3) (see 3.6) are true, we can deduce the
following corollaries:

Corollary 4.2. The above equivalences hold for F = p(X)Y + q(X,Z1, Z2).

Corollary 4.3. AS(4) is true if restricted to polynomials of the form p(X)Y +q(X, Z, T ).

Lemma 4.4. Let q(Z1, . . . , Zn−1) ∈ C[Z1, . . . , Zn−1]. Suppose AS(n-1) and CP(n-1)
are true. If C[Z1, . . . , Zn−1, Y ]/(q) ∼=C C[n−1] then q is a coordinate in C[n−1].

Proof. C[Z1, . . . , Zn−1]/(q)[Y ] ∼=C C[n−1] so by CP(n-1) we have C[Z1, . . . , Zn−1]/(q) ∼=C
C[n−1] and by AS(n-1) we have q is a coordinate in C[n−1].

Write
p(X) = Πr

i=1(X − αi)ei

for some ei ∈ N, and F := p(X)Y +q(X, Z1, . . . , Zn−1) for some q ∈ C[X, Z1, . . . , Zn−1].

Theorem 4.5. Let q(X,Z1, . . . , Zn−1) be such that q(αi, Z1, . . . , Zn−1) is a coordinate
in C[Z1, . . . , Zn−1] for every 1 ≤ i ≤ r. Then F := p(X)Y + q(X,Z1, . . . , Zn) is a
coordinate in C[X, Y, Z1, . . . , Zn−1] over C[X].

Proof. Using theorems 2.1.1 part 4 and 3.7.11 from [15], we see that it suffices to prove
that F is a coordinate in C[X]m[Y, Z1, . . . , Zn−1] over C[X]m for every maximal ideal
m ⊂ C[X]. Let m = (X − α) for some α ∈ C. Notice that if a(X) ∈ C[X] we have
a ∈ C[X]∗m if and only if a(α) 6= 0. In case α 6= αi we have p(α) 6= 0 and hence F

is a coordinate in C[X]m[Y, Z1, . . . , Zn−1]. Left to prove the case α = α1 (α = αi has
the same proof). Let q1(Z1, . . . , Zn−1) := q(α, Z1, . . . , Zn−1) (hence a coordinate in
C[n−1]), and define

p̃ := Πr
i=2(X − αi)ei = p(X)(X − α)−e1 .

Now
F = (X − α)e1 p̃(X)Y + q1 + (X − α)h(X,Z1, . . . , Zn−1)

for some h. Notice p̃ ∈ C[X]∗m. But now, using 2.5 we have F is a coordinate in
C[X]m[Y,Z1, . . . , Zn−1].

Lemma 4.6. Let F = p(X)Y +q(X,Z1, . . . , Zn−1) irreducible. Then there exists λ ∈ C
such that X − λ mod (F ) is irreducible in C[X,Y, Z1, . . . , Zn−1]/(F ).
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Proof. Take λ such that p(λ) 6= 0. Then

C[X, Y, Z1, . . . , Zn−1]/(F, X−λ) = C[Y, Z1, . . . , Zn−1]/(p(λ)Y +q(λ,Z1, . . . , Zn−1)) ∼=C C[n−1]

which is a domain: hence (X − λ, F ) is prime, and thus X − λ mod F is irreducible
by lemma 2.3.

Lemma 4.7. Assume CD(n), CP(n-1) and AS(n-1). Let F := p(X)Y +q(X, Z1, . . . , Zn−1)
and assume C[n+1]/(F ) ∼=C C[n]. Then q(a, Z1, . . . , Zn−1) is a coordinate in C[Z1, . . . , Zn−1]
for all zeros a of p(X).

Proof. Let

Di :=
∂q

∂Zi

∂

∂Y
− p

∂

∂Zi

for all 1 ≤ i ≤ n− 1. These derivations are triangular derivations since

D(Y ) ∈ C[Z1, . . . , Zn, X],
D(Zi) ∈ C[Zi+1, . . . , Zn, X]

and D(X) ∈ C

and it is not difficult to see that a triangular derivation is locally nilpotent (see for
example [4], corollary 1.3.17). It is clear that [Di, Dj ] = 0, and that the Di are linearly
independent over C[X, Y, Z1, . . . , Zn−1]. Now we know

C[n+1]/(F ) ∼=C C[n].

Furthermore Di(F ) ⊂ (F ), so the derivations D̄i := Di mod (F ) are well-defined on
C[n+1]/(F ) ∼= C[n]. Also they are independent over C[n+1]/(F ). Since we assumed
CD(n) we have

n−1⋂

i=1

ker(D̄i) = C[g]

for some coordinate g. Since ker(D̄i) ⊃ C[X] we see C[g] ⊃ C[X]. By lemma 4.6 we
see that X−a is irreducible in C[n+1]/(F ) for some a ∈ C. Now X−a = Q(g) for some
polynomial Q(T ) ∈ C[T ]. Decomposing Q(T ) into linear factors T − λi and observing
that g − λi is irreducible in C[n+1]/(F ) (since g is a coordinate in it), it follows that
g−λi divides the irreducible element X − a. So X − a = bg + c for some b ∈ C∗, c ∈ C.
Thus C[g] = C[X], and X − α is a coordinate in C[n+1]/(F ) ∼=C C[n] for every α ∈ C.
So

C[n−1] ∼=C C[n+1]/(F,X − α) for all α ∈ C.

In case p(α) = 0 we have

C[n−1] ∼=C C[Y, Z1, . . . , Zn−1]/(q(α,Z1, . . . , Zn−1)

and thus by CP(n-1) and AS(n-1) and lemma 4.4 we have q(α,Z1, . . . , Zn−1) is a
coordinate in C[Z1, . . . , Zn−1].
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5 An extension of the concept of coordinate

This section deals with a lot of conjectures, and an attempt to generalise the concept
of stable coordinate for elements in a quotient ring of a polynomial ring.

Definition 5.1. Let I = (f1, . . . , fm) be an ideal in C[X1, . . . , Xn] = C[n]. Let r ∈ C[n].
Define r + (I) ∈ C[n]/I is a generalised coordinate in C[n]/I if f1Y1 + . . . + fmYm + r ∈
C[n+m] is a stable coordinate.

The definition does not depend on the generators of I as can be seen from

Lemma 5.2. Let I = (f1, . . . , fm) = (g1, . . . , gl) be an ideal in C[X1, . . . , Xn] = C[n].
Let r ∈ C[n]. Then f1Y1+. . .+fmYm+r ∈ C[n+m] can be mapped to g1Z1+. . .+glZl+r

by an automorphism of C[X,Y, Z] = C[n+m+l].

Proof. Let F := f1Y1 + . . . + fmYm + r and G := g1Z1 + . . . + glZl + r. We will
show that there is an automorphism of C[X,Y, Z] sending F to G. Since (g1, . . . , gl) =
(f1, . . . , fm) in C[X] we have gi = ai1f1 + . . . + aimfm for some aij ∈ C[X]. Let
Lj := a1jZ1 + . . . + aljZl for 1 ≤ j ≤ m.Notice that

G = f1L1 + . . . + fmLm + r.

Now let ϕ be the elementary automorphism sending Yj to Yj +Lj for each j and leaving
other variables invariant. Then

ϕ(F ) = f1ϕ(Y1) + . . . + fmϕ(Ym) + r

= f1(Y1 + L1) + . . . + fm(Ym + Lm) + r

= F + f1L1 + . . . + fmLm

= F + G− r

In the same way we can make an automorphism τ sending G to G + F − r, so F can
be mapped to G by τ−1ϕ.

Conjecture 5.3. “Generalised coordinate” is an extension of the concept of “stable
coordinate”. In other words, if I is an ideal in C[n+m] and if r ∈ C[n+m]/I is a
generalised coordinate, and C[n+m]/I ∼=C C[n] then r is a stable coordinate.

Examining polynomials of the form P (X1, . . . , Xn)Y + Q(X1, . . . , Xn) might be a
good idea in combination with the next question:

Question: Is there an algorithm which decides of (lots of) F ∈ C[X1, . . . , Xn] if
there exists a ringautomorphism ϕ such that ϕ(F ) is linear in Xn ?

Another possible different approach of extending the concept of (stable) coordinate
to a more general ring is looking for (stable) slices in such a ring:

Definition 5.4.

(i). Let R be a finitely generated C-algebra. Say s ∈ R is a slice in R if there exists a
locally nilpotent C-derivation on R such that D(s) = 1.
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(ii). Let R be a finitely generated C-algebra. Say s ∈ R is a stable slice in R if there
exists some n ∈ N and a locally nilpotent C-derivation on R[T1, . . . , Tn] such that
D(s) = 1.

“Slice” and “stable slice” are extensions of the concept of coordinate, since every
coordinate over a polynomial ring induces a locally nilpotent derivation having the
coordinate as slice. Compare also lemma 2.2 part 4. So we can ask the same question
for “stable slice” as we did for “generalised coordinate” (conjecture 5.3):

Conjecture 5.5. “Stable slice” is an extension of the concept of “stable coordinate”.
In other words: let (f1, . . . , fm) = I ⊂ C[n] be an ideal. Let s ∈ C[n]. Then s is a stable
slice in C[n]/I if and only if s + f1T1 + . . . + fmTm is a stable coordinate in C[n+m].

Independently of the conjectures 5.3 and 5.5 one can make the following (two)
conjecture(s):

Conjecture 5.6. Let s ∈ C[X1, . . . , Xn]. Then

(i). s is a stable slice =⇒ s is a generalised coordinate.

(ii). s is a generalised coordinate =⇒ s is a stable slice.
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[5] A. van den Essen and P. van Rossum, Triangular derivations related to problems
on affine n-space, Report No. 0005, University of Nijmegen (2000).

9



[6] T. Fujita, On Zariski problem, Proc. japan Acad. Ser. A, Math. Sci 55 (1979),
106-110

[7] S. Kaliman, Polynomials with general C2-fibers are variables, preprint (2001)

[8] S. Kaliman, M. Koras, L. Makar-Limanov and P. Russell, C∗ -actions on C3 are
linearizable, Electronic Research Announcements of the A.M.S. 3(1997), 63-71
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