The Commuting Derivations Conjecture

Stefan Maubach

October 5, 2001

DEPARTMENT OF MATHEMATICS UNIVERSITY OF NIJMEGEN

The Netherlands
email: stefanm@sci.kun.nl

Abstract

This paper proves the Commuting Derivations Conjecture in dimension three: if D_{1} and D_{2} are two locally nilpotent derivations which are linearly independent and satisfy $\left[D_{1}, D_{2}\right]=0$ then the intersection of the kernels, $A^{D_{1}} \cap A^{D_{2}}$ equals $\mathbb{C}[f]$ where f is a coordinate. As a consequence, it is shown that $p(X) Y+Q(X, Z, T)$ is a coordinate if and only if $Q(a, Z, T)$ is a coordinate for every zero a of $p(X)$. Next to that, it is shown that if the Commuting Derivations Conjecture in dimension n, and the Cancellation Problem and Abhyankar-Sataye Conjecture in dimension n-1, all have an affirmative answer, then we can similarly describe all coordinates of the form $p(X) Y+q\left(X, Z_{1}, \ldots, Z_{n-1}\right)$. Also, conjectures about possible generalisations of the concept of "coordinate" for elements of general rings are made.

1 Introduction

In this article we will discuss the Commuting Derivations Conjecture ($\mathrm{CD}(\mathrm{n})$) and its consequences. In short, the conjecture states that if one has $n-1$ independent commuting locally nilpotent derivations of $\mathbb{C}^{[n]}$, then the intersections of the kernels is generated by a coordinate. This conjecture is comparable to and connected with the Cancellation Problem ($\mathrm{CP}(\mathrm{n})$) and the Abhyankar-Sataye Conjecture ($\mathrm{AS}(\mathrm{n})$). This paper will show that if $\mathrm{CP}(\mathrm{n}-1), \mathrm{AS}(\mathrm{n}-1)$ and $\mathrm{CD}(\mathrm{n})$ are all true, then we can describe all coordinates of the form $p(X) Y+q\left(X, Z_{1}, \ldots, Z_{n-1}\right)$. Ingredients in the proof of this last statement are a recent result of Edo-Vénéreau in [3] (see 2.5 below) and an idea of Derksen-Essen-Rossum in [2]. The main result of this paper is the proof of $\mathrm{CD}(3)$, which uses a recent result of Kaliman in [7]. Since $\mathrm{CP}(2)$ and $\mathrm{AS}(2)$ are true we can, as a consequence, describe all coordinates of the form $p(X) Y+q\left(X, Z_{1}, Z_{2}\right)$. A more general result by Kaliman-Vénéreau-Zaidenberg [9] on when $p\left(X, Z_{1}\right) Y+q\left(X, Z_{1}, Z_{2}\right)$ is a coordinate was achieved simultaneously to this article. The problem of recognising and characterising coordinates is of crucial importance for various questions in algebraic geometry, see for example [10], [16], [17], [18], [11], [8], [5].

Finally, at the end of this paper we discuss some possible definitions of the notion of coordinate in quotients of polynomial rings.

2 Preliminaries

Notations: In this article, $\mathbb{C}^{[n]}$ will denote a ring isomorphic over \mathbb{C} to a polynomial ring in n variables. $L N D\left(\mathbb{C}^{[n]}\right)$ will be the set of all locally nilpotent \mathbb{C}-derivations on $\mathbb{C}^{[n]}$, i.e. the set of all \mathbb{C}-linear maps $D: \mathbb{C}^{[n]} \longrightarrow \mathbb{C}^{[n]}$ satisfying the Leibnitz rule $D(a b)=D(a) b+a D(b)$ for all $a, b \in \mathbb{C}^{[n]}$ and for all $a \in \mathbb{C}^{[n]}$ there exists an integer $n \in \mathbb{N}$ such that $D^{n}(a)=0$. If A is some ring, A^{*} will be the set of invertible elements.
Definition 2.1. We say $F \in \mathbb{C}^{[n]}$ is a coordinate in $\mathbb{C}^{[n]}$ if there exist $F_{2}, \ldots, F_{n} \in \mathbb{C}^{[n]}$ such that $\mathbb{C}\left[F, F_{2}, \ldots, F_{n}\right]=\mathbb{C}^{[n]}$. Similarly, we say that $F \in \mathbb{C}^{[n]}$ is a stable coordinate (in $\mathbb{C}^{[n]}$) if there exist $m \in \mathbb{N}$ such that F is a coordinate in $\mathbb{C}^{[n+m]}$.

Not every polynomial is a coordinate, as can be seen by several examples. One can deduce the following:
Lemma 2.2. If $F \in \mathbb{C}^{[n]}$ is a coordinate, then
(i). F is irreducible, even $F+\alpha$ is irreducible for all $\alpha \in \mathbb{C}$,
(ii). $\left(\frac{\partial F}{\partial X_{1}}, \ldots, \frac{\partial F}{\partial X_{n}}\right)=(1)$,
(iii). $\mathbb{C}^{[n]} /(F) \cong \mathbb{C}^{[n-1]}$,
(iv). There exists a subring $A \subset \mathbb{C}^{[n]}$ such that F is algebraically independent over A, $A[F]=\mathbb{C}^{[n]}$, and $A \cong \mathbb{C}^{[n-1]}$.

It is an important question to be able to decide whether some polynomial is a coordinate. The question arises whether there exist sufficient properties which imply "coordinate". (i) and (ii) are by no means sufficient: take $F=X Y+Z T+Z+T$, which satisfies both (i) and (ii) and is no coordinate (by corollary 4.2). Whether (iii) is sufficient, is still open for $n \geq 3$:

Abhyankar-Sathaye Conjecture $(\mathbf{A S}(\mathbf{n}))$: If $f \in \mathbb{C}^{[n]}$ and $\mathbb{C}^{[n]} /(f) \cong_{\mathbb{C}} \mathbb{C}^{[n-1]}$ then f is a coordinate.

AS(2) was proved by Abhyankar and Moh in [1].
Part (iv) of lemma 2.2 gives rise to the following problem:
Cancellation Problem $(\mathbf{C P}(\mathbf{n}))$: If $\mathbb{C}^{[n]}=A[T]$ then $A \cong_{\mathbb{C}} \mathbb{C}^{[n-1]}$.
This problem had been answered affirmatively for $n=2([14])$ and $n=3$ ([6]). The following conjecture is a new one. In the rest of the article its significance will become clear.

Commuting Derivations Conjecture (CD(n)) : If $D_{1}, \ldots, D_{n-1} \in L N D\left(\mathbb{C}^{[n]}\right)$ linearly independent over $\mathbb{C}^{[n]}$ such that $\left[D_{i}, D_{j}\right]=0$ for all $1 \leq i, j \leq n-1$ (i.e. they all commute) then

$$
\bigcap_{i=1}^{n-1} \operatorname{ker}\left(D_{i}\right)=\mathbb{C}[f]
$$

where f is a coordinate in $\mathbb{C}^{[n]}$.

The following lemma we will need in the next section.
Lemma 2.3. Let R be a domain, and $r \in R$ such that $r R$ is a prime ideal. Then r is irreducible in R.

Proof. Let $I:=r R$. Suppose r is reducible, i.e. $r=a b$ for some $a, b \in R$ not invertible. Since $a b \in I$, a prime ideal, we have a or b in I. We may assume $a \in I$, thus $a=r s$ for some $s \in R$, and thus $r s b=a b=r$ and since R is a domain we get $s b=1$, which means b is invertible, a contradiction. Hence r must be irreducible.

The following theorem is a special case of the main theorem in [7].
Theorem 2.4. Let $f \in \mathbb{C}[X, Y, Z]$ such that $\mathbb{C}[X, Y, Z] /(f-\lambda) \cong \mathbb{C}^{[2]}$ for all but finitely many $\lambda \in \mathbb{C}$. Then f is a coordinate.

Proof. In the main theorem in [7] take $X^{\prime}=\mathbb{C}^{3}, U:=\left\{\lambda \mid \mathbb{C}[X, Y, Z] /(f-\lambda) \cong \mathbb{C}^{[2]}\right\}$, $Z:=f^{-1}(U), p=f$. Then this theorem states p is a coordinate.

The following is theorem 7 in [3]. $\eta(R)$ is the nilradical of some ring R.
Theorem 2.5. Let A be a ring and let $p \in A^{*}$. Let $a \in A, G, F \in A[X]$ such that F is a coordinate in $A[X]$, a $\bmod (p A)$ invertible, and $G(X) \bmod (p A) \in \eta((A / p A)[X])$. Then $a F(X)+G(X)+p Y$ is a coordinate in $A[X, Y]$.

3 Proof of CD(3)

In the following lemma, the derivation δ_{i} (the restriction of D_{i} to $A^{D_{n}}$) is well-defined: for all $a \in A^{D_{n}}$ we have $0=D_{i}\left(D_{n}(a)\right)=D_{n}\left(D_{i}(a)\right)$, hence $D_{i}\left(A^{D_{n}}\right) \subseteq A^{D_{n}}$. We say that a \mathbb{C}-domain is a \mathbb{C}-algebra which is a domain.
Lemma 3.1. Let A be $a \mathbb{C}$-domain and D_{1}, \ldots, D_{n} be commuting locally nilpotent derivations which are linearly independent over A. Let $\delta_{i}:=\left.D_{i}\right|_{A^{D_{n}}}$. Then $\delta_{1}, \ldots, \delta_{n-1}$ are linearly independent over $A^{D_{n}}$.

Proof. Suppose that $\sum a_{i} \delta_{i}=0$ for some $a_{i} \in A^{D_{n}}$. Since D_{n} is nonzero there exists a preslice $p \in A$ for D_{n}, i.e. an element p which satisfies $d:=D_{n}(p) \neq 0$ and $D_{n}^{2}(p)=0$ (i.e. $d \in A^{D_{n}}$). Let $s:=p d^{-1} \in A\left[d^{-1}\right]$. Then $D_{n}(s)=1$. Furthermore, by [4] pages $27-28, A\left[d^{-1}\right]=A^{D_{n}}\left[d^{-1}\right][s]$. Let $a:=\sum a_{i} D_{i}(s) \in A\left[d^{-1}\right]$, say $\tilde{a}:=d^{m} a \in A$. So

$$
\left(\sum_{i=1}^{n-1} a_{i} d^{m} D_{i}\right)(s)=d^{m} a=\tilde{a}=\tilde{a} D_{n}(s)
$$

Also by our hypothesis

$$
\sum_{i=1}^{n-1} a_{i} d^{m} D_{i}-\tilde{a} D_{n}=0
$$

on $A^{D_{n}}$. Since $A \subset A^{D_{n}}\left[d^{-1}\right][s]$ it follows that $\sum a_{i} d^{m} D_{i}=\tilde{a} D_{n}$. From the linear independence of the D_{i} over A we deduce that $d^{m} a_{i}=0$ for all i, whence $a_{i}=0$ for all i.

Proposition 3.2. Let A be a \mathbb{C}-domain with $\operatorname{trdeg}_{\mathbb{C}} Q(A)=n(\geq 1)$. Let D_{1}, \ldots, D_{n} be commuting locally nilpotent \mathbb{C}-derivations on A which are linearly independent over A. Then
(i). There exist s_{i} in A such that $D_{i} s_{j}=\delta_{i j}$ for all i, j and
(ii). $A=\mathbb{C}\left[s_{1}, \ldots, s_{n}\right]$ a polynomial ring in s_{1}, \ldots, s_{n} over \mathbb{C}.

Proof. We use induction on n. The case $n=1$ is well-known (cor. 1.3.33 [4]). So let $n \geq 2 . \operatorname{trde} g_{\mathbb{C}}\left(A^{D_{n}}\right)=n-1$ and according to lemma 3.1 the derivations $\delta_{i}:=\left.D_{i}\right|_{A^{D_{n}}}$ $1 \leq i \leq n-1$ satisfy the hypothesis of the proposition. So by induction there exist $s_{i} \in A^{D_{n}}$ such that $\delta_{i} s_{j}=\delta_{i j}$ and $A^{D_{n}}=\mathbb{C}\left[s_{1}, \ldots, s_{n-1}\right]$. So the first $n-1$ derivations have a slice in A. Similarly D_{n} has a slice s_{n} in $A^{D_{1}} \subset A$. Then from $A=A^{D_{n}}\left[s_{n}\right]$ the result follows.

Lemma 3.3. Let A be a \mathbb{C}-domain with $\operatorname{trdeg}_{\mathbb{C}}(Q(A))=n$. If D_{1}, \ldots, D_{p} are commuting locally nilpotent \mathbb{C}-derivations which are linearly independent over A, then $\operatorname{trdeg}_{\mathbb{C}} Q\left(A^{D_{1}} \cap \ldots \cap A^{D_{p}}\right)=n-p$.

Proof. The case $p=1$ is well-known. Let $B:=A^{D_{p}}$. By lemma 3.1 the derivations $\delta_{i}:=\left.D_{i}\right|_{B}$ for all $1 \leq i \leq p-1$ are linearly independent over B. Hence by induction $\operatorname{trdeg}_{\mathbb{C}} Q\left(B^{\delta_{1}} \cap \ldots \cap B^{\delta_{p-1}}\right)=\operatorname{trdeg}_{\mathbb{C}} Q(B)-(p-1)=n-1-(p-1)=n-p$. Since $B^{\delta_{1}} \cap \ldots \cap B^{\delta_{p-1}}=A^{D_{1}} \cap \ldots \cap A^{D_{p-1}} \cap A^{D_{p}}$ the result follows.

Proposition 3.4. Let A be an affine \mathbb{C}-domain such that $\operatorname{trde} g_{\mathbb{C}} Q(A)=n$ and $A^{*}=$ \mathbb{C}^{*}. If A is a UFD and D_{1}, \ldots, D_{n-1} are commuting locally nilpotent \mathbb{C}-derivations on A which are linearly independent over A, then $\cap A^{D_{i}}=\mathbb{C}[g]$ for some $g \in A$ which satisfies $g-c$ is irreducible in A for all $c \in \mathbb{C}$.

Proof. Put $B:=\cap A^{D_{i}}$. By lemma 3.3 we have $\operatorname{trdeg}_{\mathbb{C}} B=n-(n-1)=1$. Also B is a UFD (see [4] cor. 1.3.36) and $B=A \cap Q(B)$. Since $\operatorname{trdeg}_{\mathbb{C}} Q(B)=1$ it follows from special case of Hilbert 14 (using B is normal since it is a UFD) that B is a finitely generated \mathbb{C}-algebra. So B is an affine domain of krull dimension one. It is a wellknown result that if $B^{*}=\mathbb{C}^{*}, B$ is a UFD and B is an affine domain of krull dimension one, that $B=\mathbb{C}[g] \cong_{\mathbb{C}} \mathbb{C}^{[1]}$. (See for example [13].) Since $g-c$ is irreducible in $\mathbb{C}[g]$ for all $c \in \mathbb{C}$ and B is factorially closed in A it follows that $g-c$ is also irreducible in A (see [4] exercise $6,1.3$).

Proposition 3.5. Let D_{1}, D_{2} be two linearly independent (over $\mathbb{C}[X, Y, Z]$) commuting locally nilpotent \mathbb{C}-derivations. Then there exists $g \in \mathbb{C}[X, Y, Z] \backslash \mathbb{C}$ such that
(i). $\mathbb{C}[X, Y, Z]^{D_{1}, D_{2}}=\mathbb{C}[g]$
(ii). $\mathbb{C}[X, Y, Z]_{b(g)}=\mathbb{C}[f, g, p]_{b(g)}$ for some $f, p \in \mathbb{C}[X, Y, Z]$ and $b(g) \in \mathbb{C}[g] \backslash\{0\}$
(iii). $\mathbb{C}[X, Y, Z] /(g-\lambda) \cong_{\mathbb{C}} \mathbb{C}^{[2]}$ for all $\lambda \in \mathbb{C}$ with $b(\lambda) \neq 0$.

Proof. (i) $\mathbb{C}[X, Y, Z]^{D_{1}}=\mathbb{C}[f, g]$ and $\mathbb{C}[X, Y, Z]^{D_{2}}=\mathbb{C}[p, q]$ by [12]. Since D_{1}, D_{2} commute we have $D_{2}(\mathbb{C}[f, g]) \subseteq \mathbb{C}[f, g]$. Write $d_{2}:=\left.D_{2}\right|_{\mathbb{C}[f, g]}$. By lemma 3.1 it follows
that $d_{2} \neq 0$ on $\mathbb{C}[f, g]$. So by Rentschler's theorem we may assume that $d_{2}=a(g) \frac{\partial}{\partial f}$ i.e. $D_{2}(g)=0$ and $D_{2}(f)=a(g) \neq 0$. So $\mathbb{C}[X, Y, Z]^{D_{1}, D_{2}}=\mathbb{C}[f, g]^{d_{2}}=\mathbb{C}[g]$ i.e.

$$
\begin{equation*}
\mathbb{C}[X, Y, Z]^{D_{1}, D_{2}}=\mathbb{C}[g] \tag{1}
\end{equation*}
$$

Similarly we get $D_{1}(\mathbb{C}[p, q]) \subset \mathbb{C}[p, q]$ and putting $d_{1}:=\left.D_{1}\right|_{\mathbb{C}[p, q]}$ this gives by Rentschler that we may assume $d_{1}=b(q) \frac{\partial}{\partial p}$ for some $b(q) \neq 0$. So

$$
\begin{equation*}
\mathbb{C}[X, Y, Z]^{D_{1}, D_{2}}=\mathbb{C}[p, q]^{d_{1}}=\mathbb{C}[q] . \tag{2}
\end{equation*}
$$

From (1) and (2) we deduce that $\mathbb{C}[g]=\mathbb{C}[p]$, whence $g=\lambda q+\mu$ form some $\lambda \in \mathbb{C}^{*}$ and $\mu \in \mathbb{C}$. Replacing q by g (and hence $b(q)=b\left(\lambda^{-1}(g-\mu)=\tilde{b}(g)\right.$ by $\tilde{b}(g)$ we get that we may assume the following

$$
\begin{aligned}
& \mathbb{C}[X, Y, Z]^{D_{1}}=\mathbb{C}[f, g], D_{1} f=D_{1} g=0, D_{1} p=b(g) \neq 0 \\
& \mathbb{C}[X, Y, Z]^{D_{2}}=\mathbb{C}[p, g], D_{2} f=a(g) \neq 0, D_{2} g=D_{2} p=0 .
\end{aligned}
$$

(ii) Also $\mathbb{C}[f, g, p] \cong_{\mathbb{C}} \mathbb{C}^{[3]}$ (for if p depends on $\mathbb{C}[f, g]$ then $D_{1} p=0$, contradiction). Observe that $D_{1} p=b(g) \neq 0$ and $D_{1}^{2} p=D_{1} b(g)=0$, so $s:=p / b(g) \in \mathbb{C}[X, Y, Z]_{b(g)}$ satisfies $D_{1} s=1$, whence $\mathbb{C}[X, Y, Z]_{b(g)}=\mathbb{C}[f, g]_{b(g)}[s]=\mathbb{C}[f, g, p]_{b(g)}$.
(iii) It remains to show the last statement. Since $g-\lambda$ is irreducible in $\mathbb{C}[f, g]$, for all $\lambda \in \mathbb{C}$ and since $\mathbb{C}[f, g]=\mathbb{C}[X, Y, Z]^{D_{1}}$ is factorially closed in $\mathbb{C}[X, Y, Z]$, it follows that $g-\lambda$ is irreducible in $\mathbb{C}[X, Y, Z]$ for all $\lambda \in \mathbb{C}$. Now assume $b(\lambda) \neq 0$ i.e. $(g-\lambda)$ does not divide $b(g)$. We will show that $A:=\mathbb{C}[X, Y, Z] /(g-\lambda) \cong_{\mathbb{C}} \mathbb{C}^{[2]}$. According to 3.2 it suffices to show that \bar{D}_{1} and \bar{D}_{2} are linearly independent derivations over A. Suppose that $a_{1}, a_{2} \in \mathbb{C}[X, Y, Z]$ are such that $\bar{a}_{1} \bar{D}_{1}+\bar{a}_{2} \bar{D}_{2}=0$. (" " " means $\bmod (g-\lambda)$.$) Then \left(a_{1} D_{1}+a_{2} D_{2}\right)(\mathbb{C}[X, Y, Z]) \subset(g-\lambda) \mathbb{C}[X, Y, Z]$. In particular, $a_{1}(X, Y, Z) b(g)+0=a_{1} D_{1}(p)+a_{2} D_{2}(p) \in(g-\lambda)$. Since $g-\lambda$ is irreducible in $\mathbb{C}[X, Y, Z]$ and $g-\lambda \mid b(g)$ it follows that $(g-\lambda) \mid a_{1}$ i.e. $\bar{a}_{1}=0$. So $\bar{a}_{2} \bar{D}_{2}=0$ i.e. $a_{2} D_{2}(\mathbb{C}[X, T, Z]) \subset(g-\lambda)$. If $(g-\lambda) \backslash a_{2}$, then $g-\lambda \mid D_{2}(X), D_{2}(Y), D_{2}(Z)$. In this case let $(g-\lambda)^{e} \mid D_{2}(X), D_{2}(Y), D_{2}(Z), e \geq 1$ maximal. Then replace D_{2} by $\tilde{D}_{2}:=$ $(g-\lambda)^{-e} D_{2}$. It then follows that \bar{D}_{1} and $\tilde{\tilde{D}}_{2}$ are independent over A. Obviously D_{1}, \tilde{D}_{2} have the same properties as the pair D_{1}, D_{2} and $\mathbb{C}[X, Y, Z]^{D_{1}, D_{2}}=\mathbb{C}[X, Y, Z]^{D_{1}, \tilde{D}_{2}}$ which concludes the proof.

Theorem 3.6. $C D(3)$ is true, i.e. let D_{1}, D_{2} be two linearly independent (over $\mathbb{C}[X, Y, Z]$) commuting locally nilpotent \mathbb{C}-derivations, then $A^{D_{1}, D_{2}}=\mathbb{C}[g]$ and g is a coordinate in $\mathbb{C}[X, Y, Z]$.

Proof. Combining 3.5 and 2.4 gives exactly this result.

4 Coordinates

Theorem 4.1. Assume $A S(n-1), C D(n)$ and $C P(n-1)$. Let $F:=p(X) Y+q\left(X, Z_{1}, \ldots, Z_{n-1}\right)$ where $p(X) \neq 0$. Then equivalent are:
(i). F is a coordinate in $\mathbb{C}\left[X, Y, Z_{1}, \ldots, Z_{n-1}\right]$
(ii). $\mathbb{C}\left[X, Y, Z_{1}, \ldots, Z_{n-1}\right] /(F) \cong_{\mathbb{C}} \mathbb{C}^{[n]}$
(iii). $q\left(a, Z_{1}, \ldots, Z_{n-1}\right)$ is a coordinate in $\mathbb{C}\left[Z_{1}, \ldots, Z_{n-1}\right]$ for every zero a of $P(X)$.
(iv). F is a coordinate over $\mathbb{C}[X]$ in $\mathbb{C}\left[X, Y, Z_{1}, \ldots, Z_{n-1}\right]$

Proof. (of theorem 4.1)
From 4.5 we have $(i i i) \Longrightarrow(i v)$. (iv) $\Longrightarrow(i)$ and $(i) \Longrightarrow(i i)$ follow since they are weaker statements in general. (ii) \Longrightarrow (iii) follows from 4.7.

From the fact that $\mathrm{AS}(2), \mathrm{CP}(2)$ and $\mathrm{CD}(3)$ (see 3.6) are true, we can deduce the following corollaries:

Corollary 4.2. The above equivalences hold for $F=p(X) Y+q\left(X, Z_{1}, Z_{2}\right)$.
Corollary 4.3. $A S(4)$ is true if restricted to polynomials of the form $p(X) Y+q(X, Z, T)$.
Lemma 4.4. Let $q\left(Z_{1}, \ldots, Z_{n-1}\right) \in \mathbb{C}\left[Z_{1}, \ldots, Z_{n-1}\right]$. Suppose $A S(n-1)$ and $C P(n-1)$ are true. If $\mathbb{C}\left[Z_{1}, \ldots, Z_{n-1}, Y\right] /(q) \cong_{\mathbb{C}} \mathbb{C}^{[n-1]}$ then q is a coordinate in $\mathbb{C}^{[n-1]}$.

Proof. $\mathbb{C}\left[Z_{1}, \ldots, Z_{n-1}\right] /(q)[Y] \cong_{\mathbb{C}} \mathbb{C}^{[n-1]}$ so by $\mathrm{CP}(\mathrm{n}-1)$ we have $\mathbb{C}\left[Z_{1}, \ldots, Z_{n-1}\right] /(q) \cong_{\mathbb{C}}$ $\mathbb{C}^{[n-1]}$ and by $\operatorname{AS}(\mathrm{n}-1)$ we have q is a coordinate in $\mathbb{C}^{[n-1]}$.

Write

$$
p(X)=\Pi_{i=1}^{r}\left(X-\alpha_{i}\right)^{e_{i}}
$$

for some $e_{i} \in \mathbb{N}$, and $F:=p(X) Y+q\left(X, Z_{1}, \ldots, Z_{n-1}\right)$ for some $q \in \mathbb{C}\left[X, Z_{1}, \ldots, Z_{n-1}\right]$.

Theorem 4.5. Let $q\left(X, Z_{1}, \ldots, Z_{n-1}\right)$ be such that $q\left(\alpha_{i}, Z_{1}, \ldots, Z_{n-1}\right)$ is a coordinate in $\mathbb{C}\left[Z_{1}, \ldots, Z_{n-1}\right]$ for every $1 \leq i \leq r$. Then $F:=p(X) Y+q\left(X, Z_{1}, \ldots, Z_{n}\right)$ is a coordinate in $\mathbb{C}\left[X, Y, Z_{1}, \ldots, Z_{n-1}\right]$ over $\mathbb{C}[X]$.

Proof. Using theorems 2.1.1 part 4 and 3.7.11 from [15], we see that it suffices to prove that F is a coordinate in $\mathbb{C}[X]_{\mathfrak{m}}\left[Y, Z_{1}, \ldots, Z_{n-1}\right]$ over $\mathbb{C}[X]_{\mathfrak{m}}$ for every maximal ideal $\mathfrak{m} \subset \mathbb{C}[X]$. Let $\mathfrak{m}=(X-\alpha)$ for some $\alpha \in \mathbb{C}$. Notice that if $a(X) \in \mathbb{C}[X]$ we have $a \in \mathbb{C}[X]_{\mathfrak{m}}^{*}$ if and only if $a(\alpha) \neq 0$. In case $\alpha \neq \alpha_{i}$ we have $p(\alpha) \neq 0$ and hence F is a coordinate in $\mathbb{C}[X]_{\mathfrak{m}}\left[Y, Z_{1}, \ldots, Z_{n-1}\right]$. Left to prove the case $\alpha=\alpha_{1}\left(\alpha=\alpha_{i}\right.$ has the same proof). Let $q_{1}\left(Z_{1}, \ldots, Z_{n-1}\right):=q\left(\alpha, Z_{1}, \ldots, Z_{n-1}\right)$ (hence a coordinate in $\mathbb{C}^{[n-1]}$), and define

$$
\tilde{p}:=\Pi_{i=2}^{r}\left(X-\alpha_{i}\right)^{e_{i}}=p(X)(X-\alpha)^{-e_{1}} .
$$

Now

$$
F=(X-\alpha)^{e_{1}} \tilde{p}(X) Y+q_{1}+(X-\alpha) h\left(X, Z_{1}, \ldots, Z_{n-1}\right)
$$

for some h. Notice $\tilde{p} \in \mathbb{C}[X]_{\mathfrak{m}}^{*}$. But now, using 2.5 we have F is a coordinate in $\mathbb{C}[X]_{\mathfrak{m}}\left[Y, Z_{1}, \ldots, Z_{n-1}\right]$.

Lemma 4.6. Let $F=p(X) Y+q\left(X, Z_{1}, \ldots, Z_{n-1}\right)$ irreducible. Then there exists $\lambda \in \mathbb{C}$ such that $X-\lambda \bmod (F)$ is irreducible in $\mathbb{C}\left[X, Y, Z_{1}, \ldots, Z_{n-1}\right] /(F)$.

Proof. Take λ such that $p(\lambda) \neq 0$. Then

$$
\mathbb{C}\left[X, Y, Z_{1}, \ldots, Z_{n-1}\right] /(F, X-\lambda)=\mathbb{C}\left[Y, Z_{1}, \ldots, Z_{n-1}\right] /\left(p(\lambda) Y+q\left(\lambda, Z_{1}, \ldots, Z_{n-1}\right)\right) \cong_{\mathbb{C}} \mathbb{C}^{[n-1]}
$$

which is a domain: hence $(X-\lambda, F)$ is prime, and thus $X-\lambda \bmod F$ is irreducible by lemma 2.3 .

Lemma 4.7. Assume $C D(n), C P(n-1)$ and $A S(n-1)$. Let $F:=p(X) Y+q\left(X, Z_{1}, \ldots, Z_{n-1}\right)$ and assume $\mathbb{C}^{[n+1]} /(F) \cong_{\mathbb{C}} \mathbb{C}^{[n]}$. Then $q\left(a, Z_{1}, \ldots, Z_{n-1}\right)$ is a coordinate in $\mathbb{C}\left[Z_{1}, \ldots, Z_{n-1}\right]$ for all zeros a of $p(X)$.

Proof. Let

$$
D_{i}:=\frac{\partial q}{\partial Z_{i}} \frac{\partial}{\partial Y}-p \frac{\partial}{\partial Z_{i}}
$$

for all $1 \leq i \leq n-1$. These derivations are triangular derivations since

$$
\begin{aligned}
D(Y) & \in \mathbb{C}\left[Z_{1}, \ldots, Z_{n}, X\right] \\
D\left(Z_{i}\right) & \in \mathbb{C}\left[Z_{i+1}, \ldots, Z_{n}, X\right] \\
& \text { and } D(X) \in \mathbb{C}
\end{aligned}
$$

and it is not difficult to see that a triangular derivation is locally nilpotent (see for example [4], corollary 1.3.17). It is clear that $\left[D_{i}, D_{j}\right]=0$, and that the D_{i} are linearly independent over $\mathbb{C}\left[X, Y, Z_{1}, \ldots, Z_{n-1}\right]$. Now we know

$$
\mathbb{C}^{[n+1]} /(F) \cong_{\mathbb{C}} \mathbb{C}^{[n]}
$$

Furthermore $D_{i}(F) \subset(F)$, so the derivations $\bar{D}_{i}:=D_{i} \bmod (F)$ are well-defined on $\mathbb{C}^{[n+1]} /(F) \cong \mathbb{C}^{[n]}$. Also they are independent over $\mathbb{C}^{[n+1]} /(F)$. Since we assumed $\mathrm{CD}(\mathrm{n})$ we have

$$
\bigcap_{i=1}^{n-1} \operatorname{ker}\left(\bar{D}_{i}\right)=\mathbb{C}[g]
$$

for some coordinate g. Since $\operatorname{ker}\left(\bar{D}_{i}\right) \supset \mathbb{C}[X]$ we see $\mathbb{C}[g] \supset \mathbb{C}[X]$. By lemma 4.6 we see that $X-a$ is irreducible in $\mathbb{C}^{[n+1]} /(F)$ for some $a \in \mathbb{C}$. Now $X-a=Q(g)$ for some polynomial $Q(T) \in \mathbb{C}[T]$. Decomposing $Q(T)$ into linear factors $T-\lambda_{i}$ and observing that $g-\lambda_{i}$ is irreducible in $\mathbb{C}^{[n+1]} /(F)$ (since g is a coordinate in it), it follows that $g-\lambda_{i}$ divides the irreducible element $X-a$. So $X-a=b g+c$ for some $b \in \mathbb{C}^{*}, c \in \mathbb{C}$. Thus $\mathbb{C}[g]=\mathbb{C}[X]$, and $X-\alpha$ is a coordinate in $\mathbb{C}^{[n+1]} /(F) \cong_{\mathbb{C}} \mathbb{C}^{[n]}$ for every $\alpha \in \mathbb{C}$. So

$$
\mathbb{C}^{[n-1]} \cong_{\mathbb{C}} \mathbb{C}^{[n+1]} /(F, X-\alpha) \text { for all } \alpha \in \mathbb{C}
$$

In case $p(\alpha)=0$ we have

$$
\mathbb{C}^{[n-1]} \cong_{\mathbb{C}} \mathbb{C}\left[Y, Z_{1}, \ldots, Z_{n-1}\right] /\left(q\left(\alpha, Z_{1}, \ldots, Z_{n-1}\right)\right.
$$

and thus by $\mathrm{CP}(\mathrm{n}-1)$ and $\mathrm{AS}(\mathrm{n}-1)$ and lemma 4.4 we have $q\left(\alpha, Z_{1}, \ldots, Z_{n-1}\right)$ is a coordinate in $\mathbb{C}\left[Z_{1}, \ldots, Z_{n-1}\right]$.

5 An extension of the concept of coordinate

This section deals with a lot of conjectures, and an attempt to generalise the concept of stable coordinate for elements in a quotient ring of a polynomial ring.
Definition 5.1. Let $I=\left(f_{1}, \ldots, f_{m}\right)$ be an ideal in $\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]=\mathbb{C}^{[n]}$. Let $r \in \mathbb{C}^{[n]}$. Define $r+(I) \in \mathbb{C}^{[n]} / I$ is a generalised coordinate in $\mathbb{C}^{[n]} / I$ if $f_{1} Y_{1}+\ldots+f_{m} Y_{m}+r \in$ $\mathbb{C}^{[n+m]}$ is a stable coordinate.

The definition does not depend on the generators of I as can be seen from
Lemma 5.2. Let $I=\left(f_{1}, \ldots, f_{m}\right)=\left(g_{1}, \ldots, g_{l}\right)$ be an ideal in $\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]=\mathbb{C}^{[n]}$. Let $r \in \mathbb{C}^{[n]}$. Then $f_{1} Y_{1}+\ldots+f_{m} Y_{m}+r \in \mathbb{C}^{[n+m]}$ can be mapped to $g_{1} Z_{1}+\ldots+g_{l} Z_{l}+r$ by an automorphism of $\mathbb{C}[X, Y, Z]=\mathbb{C}^{[n+m+l]}$.

Proof. Let $F:=f_{1} Y_{1}+\ldots+f_{m} Y_{m}+r$ and $G:=g_{1} Z_{1}+\ldots+g_{l} Z_{l}+r$. We will show that there is an automorphism of $\mathbb{C}[X, Y, Z]$ sending F to G. Since $\left(g_{1}, \ldots, g_{l}\right)=$ $\left(f_{1}, \ldots, f_{m}\right)$ in $\mathbb{C}[X]$ we have $g_{i}=a_{i 1} f_{1}+\ldots+a_{i m} f_{m}$ for some $a_{i j} \in \mathbb{C}[X]$. Let $L_{j}:=a_{1 j} Z_{1}+\ldots+a_{l j} Z_{l}$ for $1 \leq j \leq m$. Notice that

$$
G=f_{1} L_{1}+\ldots+f_{m} L_{m}+r .
$$

Now let φ be the elementary automorphism sending Y_{j} to $Y_{j}+L_{j}$ for each j and leaving other variables invariant. Then

$$
\begin{aligned}
\varphi(F) & =f_{1} \varphi\left(Y_{1}\right)+\ldots+f_{m} \varphi\left(Y_{m}\right)+r \\
& =f_{1}\left(Y_{1}+L_{1}\right)+\ldots+f_{m}\left(Y_{m}+L_{m}\right)+r \\
& =F+f_{1} L_{1}+\ldots+f_{m} L_{m} \\
& =F+G-r
\end{aligned}
$$

In the same way we can make an automorphism τ sending G to $G+F-r$, so F can be mapped to G by $\tau^{-1} \varphi$.

Conjecture 5.3. "Generalised coordinate" is an extension of the concept of "stable coordinate". In other words, if I is an ideal in $\mathbb{C}^{[n+m]}$ and if $r \in \mathbb{C}^{[n+m]} / I$ is a generalised coordinate, and $\mathbb{C}^{[n+m]} / I \cong_{\mathbb{C}} \mathbb{C}^{[n]}$ then r is a stable coordinate.

Examining polynomials of the form $P\left(X_{1}, \ldots, X_{n}\right) Y+Q\left(X_{1}, \ldots, X_{n}\right)$ might be a good idea in combination with the next question:

Question: Is there an algorithm which decides of (lots of) $F \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ if there exists a ringautomorphism φ such that $\varphi(F)$ is linear in X_{n} ?

Another possible different approach of extending the concept of (stable) coordinate to a more general ring is looking for (stable) slices in such a ring:

Definition 5.4.

(i). Let R be a finitely generated \mathbb{C}-algebra. Say $s \in R$ is a slice in R if there exists a locally nilpotent \mathbb{C}-derivation on R such that $D(s)=1$.
(ii). Let R be a finitely generated \mathbb{C}-algebra. Say $s \in R$ is a stable slice in R if there exists some $n \in \mathbb{N}$ and a locally nilpotent \mathbb{C}-derivation on $R\left[T_{1}, \ldots, T_{n}\right]$ such that $D(s)=1$.
"Slice" and "stable slice" are extensions of the concept of coordinate, since every coordinate over a polynomial ring induces a locally nilpotent derivation having the coordinate as slice. Compare also lemma 2.2 part 4 . So we can ask the same question for "stable slice" as we did for "generalised coordinate" (conjecture 5.3):

Conjecture 5.5. "Stable slice" is an extension of the concept of "stable coordinate". In other words: let $\left(f_{1}, \ldots, f_{m}\right)=I \subset \mathbb{C}^{[n]}$ be an ideal. Let $s \in \mathbb{C}^{[n]}$. Then s is a stable slice in $\mathbb{C}^{[n]} / I$ if and only if $s+f_{1} T_{1}+\ldots+f_{m} T_{m}$ is a stable coordinate in $\mathbb{C}^{[n+m]}$.

Independently of the conjectures 5.3 and 5.5 one can make the following (two) conjecture(s):

Conjecture 5.6. Let $s \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$. Then
(i). s is a stable slice $\Longrightarrow s$ is a generalised coordinate.
(ii). s is a generalised coordinate $\Longrightarrow s$ is a stable slice.

6 Acknowledgements

The author would like to express his deepest gratitude to:
Leonid Makar-Limanov for his help on the research resulting in this paper, in particular in stating the conjecture $\mathrm{CD}(\mathrm{n})$, and for inviting the author for a pleasant stay in the USA.
Arno van den Essen and Peter van Rossum for their help (especially on section 4).
Professor Kaliman, for sending his article [7] which simplified certain proofs quite a lot. The Netherlands Organization for Scientific Research (NWO) for financing a three month stay of the author at Wayne State University.

References

[1] S. Abhyankar and T. Moh, Embeddings of the line in the plane, J. Reine Angew. math. 276(1975), 148-166
[2] H. Derksen, A. van den Essen, P. van Rossum, The cancellation problem in dimension four, Report No. 0022, University of Nijmegen (2000).
[3] E. Edo and S. Vénéreau, Length 2 variables of $A[X, Y]$ and transfer, proceedings of Krakow conference on polynomial automorphisms, Annales Polonici Mathematici LXXVI. 1-2 (2001)
[4] A. van den Essen, Polynomial Automorphisms and the Jacobian Conjecture, in Progress of Math. Vol. 190, Birkhäuser, Verlag, (2000).
[5] A. van den Essen and P. van Rossum, Triangular derivations related to problems on affine n-space, Report No. 0005, University of Nijmegen (2000).
[6] T. Fujita, On Zariski problem, Proc. japan Acad. Ser. A, Math. Sci 55 (1979), 106-110
[7] S. Kaliman, Polynomials with general \mathbb{C}^{2}-fibers are variables, preprint (2001)
[8] S. Kaliman, M. Koras, L. Makar-Limanov and P. Russell, \mathbb{C}^{*}-actions on \mathbb{C}^{3} are linearizable, Electronic Research Announcements of the A.M.S. 3(1997), 63-71
[9] S. Kaliman, S. Vénéreau, M. Zaidenberg, Simple birational extensions of the polynomial ring $\mathbb{C}^{[3]}$, preprint (2001).
[10] H. Kraft, Challenging problems on affine n-space, Sém. Bourbaki, 17ème année 802 p 295-317 (1994-1995)
[11] L. Makar-Limanov, On the hypersurface $x+x^{2} y+z^{2}+t^{3}=0$ in \mathbb{C}^{4} or a \mathbb{C}^{3}-like threefold which is not \mathbb{C}^{3}, Israel J. Math., 96(1996), 419-429
[12] M. Miyanishi, Normal affine subalgebras of a polynomial ring, Algebraic and Topological theories- to the memory of Dr. Takehiko Miyata, Kinokuniya, Tokyo (1995), 37-51
[13] M. Myanishi, Curves on rational and unirational surfaces, Tata Institute of Fundamental Research 60, Tata Institute, 1978
[14] R. Rentschler, Opérations du groupe additif sur le plan, C.R.Acad.Sci.Paris, 267 p.384-387 (1968)
[15] P. van Rossum, Tackling Probles on Affine Space with Locally Nilpotent Derivations on Polynomial Rings, PHD thesis, University of Nijmegen (2001).
[16] P. Russell, Simple birational extensions of two dimensional affine rational domains, Compositio Mathematica, 33 (1976), 197-208
[17] A. Sathaye, On linear planes, Proceedings of the American Mathematical Society, 56(1976), 1-7
[18] D. Wright, Cancellation of variables of the form $b T^{n}-a$, J. Algebra 52 (1978), 94-100

