Constructing (almost) rigid rings and a UFD having infinitely generated Derksen and Makar-Limanov invariant

David Finston
New Mexico State University
Las Cruces, NM 88003
dfinston@nmsu.edu
Stefan Maubach*
Radboud University Nijmegen
Toernooiveld 1, The Netherlands
s.maubach@math.ru.nl

January 9, 2007

Abstract

An example is given of a UFD which has infinitely generated Derksen invariant. The ring is "almost rigid" meaning that the Derksen invariant is equal to the Makar-Limanov invariant. Techniques to show that a ring is (almost) rigid are discussed, among which is a generalization of Mason's abc-theorem.

1 Introduction and tools

The Derksen invariant and Makar-Limanov invariant are useful tools to distinguish nonisomorphic algebras. They have been applied extensively in the context of affine algebraic varieties. Both invariants rely on locally nilpotent derivations: for R a commutative ring and A a commutative R-algebra, an R-linear mapping $D: A \rightarrow A$

[^0]is an R-derivation if D satisfies the Leibniz rule: $D(a b)=a D(b)+b D(a)$. The derivation D is locally nilpotent if for each $a \in A$ there is some $n \in \mathbb{N}$ such that $D^{n}(a)=0$. When k is a field of characteristic 0 a locally nilpotent k-derivation D of the k-algebra A gives rise to an algebraic action of the additive group of $k, G_{a}(k)$, on A via:
$$
\exp (t D)(a) \equiv \sum_{i=0}^{\infty} \frac{t^{i}}{i!} d^{i}(a)
$$
for $t \in k, a \in A$. Conversely, an algebraic action σ of $G_{a}(k)$ on A yields a locally nilpotent derivation via:
$$
\left.\frac{\sigma(t, a)-a}{t}\right|_{t=0}
$$

In this case, the kernel of D denoted by A^{D} coincides with the ring of $G_{a}(k)$ invariants in A.

The Makar-Limanov invariant of the R-algebra A, denoted $M L_{R}(A)$, is defined as the intersection of the kernels of all locally nilpotent R-derivations of A, while the Derksen invariant, $D_{R}(A)$ is defined as the smallest algebra containing the kernels of all nonzero locally nilpotent R-derivations of A. The subscript R will be suppressed when it is clear from the context.

In [9] the question was posed of whether the Derksen invariant of a finitely generated algebra over a field could be infinitely generated. In [14] an example is given of an infinitely generated Derksen invariant of a finitely generated \mathbb{C}-algebra. In fact, this example is of a form described in this paper as an "almost-rigid ring": a ring for which the Derksen invariant is equal to the Makar-Limanov invariant. Despite its simplicity and the simplicity of the argument, this example has a significant drawback in that it is not a UFD. In this paper we provide a UFD example having infinitely generated invariants (it is again an almost-rigid ring).

The paper is organized as follows. Section 1 consists of basic notions and examples associated with rigidity and almost rigidity. In section 2 , the focus is on rigid and almost rigid rings, with techniques to prove rigidity or almost rigidity. In section 3 , certain rings are shown to be UFDs, and these are used in section 4 to give the UFD examples having infinitely generated Makar-Limanov and Derksen invariants.

Notations: If R is a ring, then $R^{[n]}$ denotes the polynomial ring in n variables over R and R^{*} denotes the group of units of R. The R module of R-derivations of an R-algebra A is denoted by $\operatorname{Der}_{R}(A)$ and the set of locally nilpotent R-derivations by $L N D_{R}(A)$ (the R will be suppressed when it is clear from the context). We will use the letter k for a field of characteristic zero, and K for an algebraic closure. The symbol ∂_{X} denotes the derivative with respect to X. When the context is clear, x, y, z, \ldots will represent residue classes of elements X, Y, Z, \ldots modulo an ideal.

Let A be an R-algebra which is an integral domain. Well-known facts that we need are included in the following:

Lemma 1.1. Let $D \in L N D_{R}(A)$.
(1) Then $D\left(A^{*}\right)=0$.
(2) If $D(a b)=0$ where a, b are both nonzero, then $D(a)=D(b)=0$.
(3) If $\tilde{D} \in \operatorname{Der}_{R}(A)$ and $f \in A$ satisfy $f \tilde{D} \in L N D_{R}(A)$, then $\tilde{D} \in L N D_{R}(A)$ and $f \in A^{\tilde{D}}$.

2 (Almost) rigid rings

As defined in [8] page 196, [3], or [2], a rigid ring is a ring which has no locally nilpotent derivations except the zero derivation. Examples include the rings $R:=$ $\mathbb{C}[X, Y, Z] /\left(X^{a}+Y^{b}+Z^{c}\right)$ with $a, b, c \geq 2$ and pairwise relatively prime [6], and coordinate rings of Platonic \mathbb{C}^{*} fiber spaces [13]. We define an almost rigid ring here as a ring whose set of locally nilpotent derivations is, in some sense, one-dimensional.

Definition 2.1. An R-algebra A is called almost-rigid if there is a nonzero $D \in$ $L N D(A)$ such that $L N D(A)=A^{D} D$.

For a field F any derivation D of $F[X]$ has the form $D=f(X) \partial_{X}$. Thus the simplest almost-rigid algebra is $F[X]$. Other examples include the algebras

$$
\mathbb{C}[X, Y, Z, U, V] /\left(X^{a}+Y^{b}+Z^{c}, X^{m} V-Y^{n} U-1\right)
$$

with a, b, c pairwise relatively prime given in [6] as counterexamples to a cancellation problem. Clearly an almost-rigid algebra has its Derksen invariant equal to its Makar-Limanov invariant. The following lemma is useful in determining rigidity.

Lemma 2.2. Let D be a nonzero locally nilpotent derivation on a domain A containing \mathbb{Q}. Then A embeds into $K[S]$ where K is some algebraically closed field of characteristic zero, in such a way that $D=\partial_{S}$ on $K[S]$.

Proof. The proof uses some well-known facts about locally nilpotent derivations. Since $D \neq 0$ is locally nilpotent, we can find an element p such that $D^{2}(p)=$ $0, D(p) \neq 0$. Set $q:=D(p)$ (and thus $q \in A^{D}$) and observe that D extends uniquely to a locally nilpotent derivation \tilde{D} of $\tilde{A}:=A\left[q^{-1}\right]$. Since \tilde{D} has the slice $s:=p / q$ (a slice is an element s such that $\tilde{D}(s)=1$) we have (see prop.1.3.21 in [5]) $\tilde{A}=\tilde{A}^{\tilde{D}}[s]$ and $\tilde{D}=\partial_{s}$. Denote by k the quotient field of $\tilde{A} \frac{\partial}{\partial s}$ ($=$ quotient field of A^{D}) noting that D extends uniquely to $k[s]$. One can embed k into its algebraic closure K, and the derivation ∂_{s} on $K[s]$, restricted to $A \subseteq K[s]$, equals D.

As an application, we have
Example 2.3. Let $R:=\mathbb{C}[x, y]=\mathbb{C}[X, Y] /\left(X^{a}+Y^{b}+1\right)$ where $a, b \geq 2$. Then R is rigid.

Proof. Suppose $D \in L N D(R), D \neq 0$. Using lemma 2.2, we see D as ∂_{S} on $K[S] \supseteq R$. Now the following lemma ("mini-Mason's") shows that x, y both must be constant polynomials in S. But that means $D(x)=D(y)=0$, so D is the zero
derivation, contradiction. So the only derivation on R is the zero derivation, i.e. R is rigid.

Versions of the following lemma can be found as lemma 9.2 in [8], and lemma 2 in [11]. Here we give it the appellation "mini-Mason's" as it can be seen as a very special case of Mason's very useful original theorem. (Note that Mason's theorem is the case $n=3$ of theorem 2.5.)

Lemma 2.4. (Mini-Mason) Let $f, g \in K[S]$ where K is algebraically closed and of characteristic zero. Suppose that $f^{a}+g^{b} \in K^{*}$ where $a, b \geq 2$. Then $f, g \in K$.

Proof. Note that $\operatorname{gcd}(f, g)=1$. Taking derivative with respect toNo S gives $a f^{\prime a-1}=$ $-b g^{\prime b-1}$. So f divides $g g^{\prime}$, so f divides g^{\prime}. Same reason, g divides f^{\prime}. This can only be if $f^{\prime}=g^{\prime}=0$.

Mason's theorem provides a very useful technique in constructing rigid rings (see [6] for an example). With appropriate care, a generalization of Mason's theorem provides more examples. In this paper, we will use [1, Theorem 2.1], which is a corollary of a generalization of Mason's theorem (see [1, Theorem 1.5]).

Theorem 2.5. Let $f_{1}, f_{2}, \ldots, f_{n} \in K[S]$ where K is an algebraically closed field containing \mathbb{Q}. Assume

$$
f_{1}^{d_{1}}+f_{2}^{d_{2}}+\ldots+f_{n}^{d_{n}}=0
$$

Additionally, assume that for every $1 \leq i_{1}<i_{2}<\ldots<i_{s} \leq n$,

$$
f_{i_{1}}^{d_{i_{1}}}+f_{i_{2}}^{d_{i_{2}}}+\ldots+f_{i_{s}}^{d_{i_{s}}}=0 \longrightarrow g c d\left\{f_{i_{1}}, f_{i_{2}}, \ldots, f_{i_{s}}\right\}=1
$$

Then

$$
\sum_{i=1}^{n} \frac{1}{d_{i}} \leq \frac{1}{n-2}
$$

implies that all f_{i} are constant.
Example 2.6. Let $R:=\mathbb{C}\left[X_{1}, X_{2}, \ldots, X_{n}\right] /\left(X_{1}^{d_{1}}+X_{2}^{d_{2}}+\ldots+X_{n}^{d_{n}}\right)$ where $d_{1}^{-1}+$ $d_{2}^{-1}+\ldots+d_{n}^{-1} \leq \frac{1}{n-2}$. Then R is a rigid ring.

The proof will follow from the more general
Lemma 2.7. Let A be a finitely generated \mathbb{Q} domain. Consider a subset $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{m}\right\}$ of A and postive integers $d_{1}, \ldots d_{n}$ satisfying: 1) $P:=F_{1}^{d_{1}}+F_{2}^{d_{2}}+\ldots+F_{m}^{d_{m}}$ is a prime element of A and 2) No nontrivial subsum of $F_{1}^{d_{1}}, F_{2}^{d_{2}}, \ldots, F_{m}^{d_{m}}$ lies in (P) (e.g. the F_{i} are linearly independent). Additionally, assume that

$$
d_{1}^{-1}+d_{2}^{-1}+\ldots+d_{n}^{-1} \leq \frac{1}{n-2}
$$

Set $R:=A /(P)$ and let $D \in L N D(R)$. With $f_{i} \in R$ equal to the residue class of F_{i}, we have $D\left(f_{i}\right)=0$ for all $1 \leq i \leq n$.

Proof. Suppose $D \in L N D(R)$ where $D \neq 0$. Using lemma 2.2 with K an algebraic closure of the quotient field of R^{D}, we realize D as ∂_{S} on $K[S] \supseteq R$. In particular, $f_{1}(S)^{d_{1}}+f_{2}(S)^{d_{2}}+\ldots+f_{m}(S)^{d_{m}}=0$. By hypothesis there cannot be a subsum $f_{i_{1}}^{d_{i_{1}}}+f_{i_{2}}^{d_{i_{2}}}+\ldots+f_{i_{s}}^{d_{i_{s}}}=0$. Applying the above theorem 2.5 , we find that all f_{i} are constant.

This lemma also helps in constructing almost-rigid rings not of the form $R^{[1]}$ with R rigid.

Example 2.8. [14] Define

$$
R:=\mathbb{C}[a, b]=\mathbb{C}[A, B] /\left(A^{3}-B^{2}\right)
$$

and

$$
S:=R[X, Y, Z] /\left(Z^{2}-a^{2}(a X+b Y)^{2}-1\right)
$$

Then $L N D(S)=S^{D} D$ where $D:=b \partial_{X}-a \partial_{Y}$.
The following is an example of a rigid unique factorization domain. The proof of UFD property is deferred to the next section.

Example 2.9. Let $n \geq 3$, and in $\mathbb{C}\left[X_{1}, X_{2}, \ldots, X_{n}, Y_{1}, Y_{2}, \ldots, Y_{n}\right]$ set

$$
P:=X_{1}^{d_{1}}+X_{2}^{d_{2}}+\ldots+X_{n}^{d_{n}}+L_{2}^{e_{2}}+L_{3}^{e_{3}}+\ldots+L_{n}^{e_{n}}
$$

where $L_{i}:=X_{i} Y_{1}-X_{1} Y_{i}$ and

$$
d_{1}^{-1}+d_{2}^{-1}+\ldots+d_{n}^{-1}+e_{2}^{-1}+e_{3}^{-1}+\ldots+e_{n}^{-1} \leq 1 /(2 n-1-2) .
$$

Let

$$
R:=\mathbb{C}\left[X_{1}, X_{2}, \ldots, X_{n}, Y_{1}, Y_{2}, \ldots, Y_{n}\right] /(P)
$$

and denote by x_{i}, y_{i}, l_{i} the images of $X_{i}, Y_{i} L_{i}$ in R. Then R is an almost-rigid UFD, and $L N D(R)=R^{D} D$ where $D\left(x_{i}\right)=0, D\left(y_{i}\right)=x_{i}$.

Proof. An elementary argument shows that R is a domain: View

$$
P \in \mathbb{C}\left[X_{1}, X_{2}, \ldots, X_{n}, Y_{1}, Y_{2}, \ldots, Y_{n-1}\right]\left[Y_{n}\right]
$$

The residue of P modulo $\left(Y_{1}, Y_{2}, \ldots, Y_{n-1}\right)$ has the same degree in Y_{n} as P and is clearly irreducible.

That any $2 n-1$ element subset of $\left\{x_{i}^{d_{i}}, l_{i}^{e_{i}}: 1 \leq i \leq n\right\}$ is algebraically independent over \mathbb{Q} modulo (P) is also elementary: Suppose that $\sum_{i=1}^{n} X_{i}^{d_{i}}+\sum_{i=1}^{n-1} L_{i}^{e_{i}}$ is divisible by P. Lemma 2.7 yields that for any $E \in L N D(R)$ we have $E\left(x_{i}\right)=0$, and $E\left(l_{i}\right)=0$. So $x_{1} E\left(y_{i}\right)=x_{i} E\left(y_{1}\right)$. Since R is a UFD, we can write $E\left(y_{i}\right)=\alpha x_{i}$ for some $\alpha \in R$. So $E=\alpha D$ where D is as in the statement.

3 Factoriality of Brieskorn-Catalan-Fermat rings for $n \geq 5$

Because of their resemblance to rings arising in Fermat's last theorem, the Catalan conjecture, and to the coordinate rings of Brieskorn hypersurfaces, we will call the rings $\mathbb{C}\left[X_{1}, X_{2}, \ldots\right] /\left(X_{1}^{d_{1}}+X_{2}^{d_{2}}+\ldots+X_{n}^{d_{n}}\right)$ Brieskorn-Catalan-Fermat (BCF) rings. Our examples depend on the factoriality of certain BCF rings. While the next observation is undoubtedly well known, a proof is included since we could not find an explicit one in the literature.

Theorem 3.1. If $n \geq 5$ and $d_{i} \geq 2$ for all $1 \leq i \leq n$, then $\mathbb{C}\left[X_{1}, X_{2}, \ldots\right] /\left(X_{1}^{d_{1}}+\right.$ $\left.X_{2}^{d_{2}}+\ldots+X_{n}^{d_{n}}\right)$ is a UFD.

The result follows from the next two theorems:
Theorem 3.2. (Corollary 10.3 of [7]) Let $A=A_{0}+A_{1}+\ldots$ be a graded noetherian Krull domain such that A_{0} is a field. Let $\mathfrak{m}=A_{1}+A_{2}+\ldots$. Then $C l(A) \cong C l\left(A_{\mathfrak{m}}\right)$, where $C l$ is the class group.

Theorem 3.3. ([10]) A local noetherian ring (A, \mathfrak{m}) with characteristic $A / \mathfrak{m}=0$ and an isolated singularity is a UFD if its depth is ≥ 3 and the embedding codimension is $\leq \operatorname{dim}(A)-3$.

Proof. (of theorem 3.1) Write

$$
\begin{aligned}
A & :=\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right] \\
& =\mathbb{C}\left[X_{1}, X_{2}, \ldots\right] /\left(X_{1}^{d_{1}}+X_{2}^{d_{2}}+\ldots+X_{n}^{d_{n}}\right)
\end{aligned}
$$

Note that by giving appropriate positive weights to the X_{i}, the ring A is graded, and $\mathfrak{m}:=A_{1}+A_{2}+\ldots=\left(x_{1}, x_{2}, \ldots, x_{n}\right), A_{0}=\mathbb{C}$. A now satisfies the requirements of 3.2 , so it is equivalent to show that A_{m} is a UFD (note that " A ia a UFD" is equivalent to " $C l(A)=\{0\}$ "). Now $A_{\mathfrak{m}}$ has only one singularity, namely at the point \mathfrak{m}. The ring A is defined by one homogeneous equiation, and therefore, by definition, a complete intersection. Being a complete intersection implies that the $\operatorname{ring} A$ is Cohen-Macauley and that its depth is the same as its Krull dimension. So, the depth of A is $n-1$ which is ≥ 3 since $n \geq 5$. Now, one can see A as a subring of the polynomial ring localized at the maximal ideal $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$. A has codimension 1 in this ring, so its embedding codimension is $1 . \operatorname{dim}(A)-3=n-4$, so, if $n \geq 5$, we have that the embedding codimension of A equals $1 \leq \operatorname{dim}(A)-3$. So, if $n \geq 5$, the criteria of 3.3 are met, and $A_{\mathfrak{m}}$ is a UFD.

The following lemma of Nagata is a very useful tool in proving factoriality.
Lemma 3.4. (Nagata) Let A be a domain, and $x \in A$ is prime. If $A\left[x^{-1}\right]$ is a UFD, then A is a UFD.

Lemma 3.5. R as in example 2.9 is a UFD.

Proof. Note that $X_{2}^{d_{2}}+X_{3}^{d_{3}}+\ldots+X_{n}^{d_{n}}+\left(X_{2} Y_{1}\right)^{e_{2}}+\left(X_{3} Y_{1}\right)^{e_{3}}+\ldots+\left(X_{n} Y_{1}\right)^{e_{n}}$ is irreducible for any $d_{i} \geq 1, e_{i} \geq 1$, so $R /\left(x_{1}\right)$ is a domain. Using 3.4 it is enough to show that $R\left[x_{1}^{-1}\right]$ is a UFD. Define $m_{i}:=y_{i}-\frac{x_{i}}{x_{1}} y_{1}$ for $2 \leq i \leq n$, and

$$
S:=\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}, m_{2}, m_{3}, \ldots, m_{n}\right]
$$

Then $R\left[x^{-1}\right]=S\left[x_{1}^{-1}\right]\left[Y_{1}\right]$ where Y_{1} is algebraically independent over $S\left[x_{1}^{-1}\right]$. It is now enough to prove that S is a UFD. But this follows from theorem 3.1 since $n \geq 3$.

4 A UFD having infinitely generated invariants

4.1 Definitions

Definition 4.1. In $\mathbb{C}^{[7]}=\mathbb{C}[X, Y, Z, S, T, U, V]$, let $L_{1}:=Y^{3} S-X^{3} T, L_{2}:=Z^{3} S-$ $X^{3} U, L_{3}:=Y^{2} Z^{2} S-X V$. Define $P:=X^{d_{1}}+Y^{d_{2}}+Z^{d_{3}}+L_{1}^{d_{4}}+L_{2}^{d_{5}}+L_{3}^{d_{6}}$ where the $d_{i} \geq 2$ are integers. Set

$$
A:=\mathbb{C}[x, y, z, s, t, u, v]=\mathbb{C}[X, Y, Z, S, T, U, V] /(P)
$$

and let R be the subring $\mathbb{C}[x, y, z]$.
The elements s, t, u, v in A form a regular sequence; in particular they are algebraically independent.

Definition 4.2.

$$
E:=X^{3} \partial_{S}+Y^{3} \partial_{T}+Z^{3} \partial_{U}+X^{2} Y^{2} Z^{2} \partial_{V}
$$

Note that E is locally nilpotent and $P \in \operatorname{ker}(E)$. Thus E induces a well defined element of $L N D(A)$ denoted by D.

4.2 The factoriality of A

For a 5 -tuple of positive integers $\mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{5}\right)$, define $Q(\mathbf{d}):=Y^{d_{2}}+Z^{d_{3}}+$ $\left(Y^{3} S\right)^{d_{4}}+\left(Z^{3} S\right)^{d_{5}}+\left(Y^{2} Z^{2} S\right)^{d_{6}}$

Proposition 4.3. If $Q(\mathbf{d})$ is irreducible in $\mathbb{C}[Y, Z, S]$ then A is a UFD.
Proof. Assume that $Q(\mathbf{d})$ is irreducible. Note that $A /(x) \cong \mathbb{C}[Y, Z, S, T, U, V] /(Q(\mathbf{d}))$ so that x is prime. By Nagata's lemma 3.4, it is enough to show that $A\left[x^{-1}\right]$ is a UFD. Now define

$$
M_{1}:=T-\frac{Y^{3}}{X^{3}} S, M_{2}:=U-\frac{Z^{3}}{X^{3}} S, M_{3}:=V-\frac{Y^{2} Z^{2}}{X} S
$$

write m_{i} for the image of M_{i} in $A\left[x^{-1}\right]$, and let

$$
B=\mathbb{C}\left[x, y, z, m_{1}, m_{2}, m_{3}\right]\left[x^{-1}\right]
$$

Since $D(s)=x^{3}, \frac{s}{x^{3}}$ is a slice for the extension of D to $A\left[x^{-1}\right]=B[s]$, with s transcendental over B. Consider $C:=\mathbb{C}\left[X, Y, Z, M_{1}, M_{2}, M_{3}\right] /\left(X^{d_{1}}+Y^{d_{2}}+Z^{d_{3}}+\right.$ $\left.M_{1}^{d_{4}}+M_{2}^{d_{5}}+M_{3}^{d_{6}}\right)$. This ring is a UFD by theorem 3.1 , so $C\left[x^{-1}\right]=B$ is also a UFD, from which we deduce that $B[s]=A\left[x^{-1}\right]$ is a UFD.

The polynomial $Q(\mathbf{d})$ is irreducible for infinitely many positive integer choices of the d_{i}; take for example $\operatorname{gcd}\left(d_{2}, d_{3}\right)=1$ and $d_{2} \geq \max \left(3 d_{4}, 2 d_{6}\right)$.

4.3 A is not finitely generated

In this section, we assume that d_{1}, \ldots, d_{6} are such that $Q(\mathbf{d})$ is irreducible (i.e. A is a UFD), and such that $d_{1}+d_{2}+\ldots+d_{6} \leq \frac{1}{4}$ (note that by neccessity $d_{1}, d_{2}, d_{3} \geq 4$). The following lemma shows that A is an almost-rigid ring.

Lemma 4.4. Any locally nilpotent derivation on A is a multiple of D.
Proof. Let \triangle be a nonzero LND on A. By lemma 2.7, since we assumed $\sum_{i=1}^{6} d_{i} \leq \frac{1}{4}$, we see that $x, y, z, l_{1}, l_{2}, l_{3}$ must be in A^{\triangle}. So $\triangle\left(l_{1}\right)=0$, so $x^{3} \triangle(t)=y^{3} \triangle(s)$, and thus $\triangle(S)=x^{3} \alpha$ for some $\alpha \in A$ (since A is a UFD). Using $\triangle\left(l_{1}\right)=\triangle\left(l_{2}\right)=$ $\triangle\left(l_{3}\right)=0$ this yields $\triangle(T)=y^{3} \alpha, \triangle(U)=z^{3} \alpha, \triangle(V)=x^{2} y^{2} z^{2} \alpha$, i.e. $\triangle=\alpha D$.

Lemma 4.5. $A^{D} \subseteq(x, y, z) A+R$.
Proof. Let

$$
\begin{aligned}
\mathcal{J} & :=\left(X^{3}, Y^{3}, Z^{3}, X^{2} Y^{2} Z^{2}\right)(X, Y, Z) \mathbb{C}^{[7]} \\
H & :=(x, y, z) A \supseteq J:=\left(x^{3}, y^{3}, z^{3}, x^{2} y^{2} z^{2}\right) H
\end{aligned}
$$

Both J and H are D stable ideals of A. Denote by \bar{D} the locally nilpotent derivation induced by D on $\bar{A}:=A / J, \bar{H}:=H / J$, and \bar{R} the image of R in \bar{A}. Note that $\bar{D}(\bar{H})=0$. We will prove that $\bar{A}^{\bar{D}} \subseteq \bar{H}+\bar{R}$, which will imply that $A^{D}+J \subseteq$ $H+J+R$, and the required result then follows since $J \subseteq H$.

To that end assume there exists $h \in \bar{A}^{\bar{D}}$ with $h \notin \bar{H}+\bar{R}$. Note that since $P \in \mathcal{J}$ we have

$$
\bar{A} \cong\left(\mathbb{C}^{[7]} /(P)\right) /(\mathcal{J} /(P)) \cong \mathbb{C}^{[7]} / \mathcal{J}
$$

With $\bar{x}, \bar{y}, \bar{z}, \bar{s}, \bar{t}, \bar{u}, \bar{v}$ denoting as usual the images of S, T, U, V in \bar{A}, we have $\bar{A}=$ $\bar{R}[\bar{s}, \bar{t}, \bar{u}, \bar{v}]$, a polynomial ring over \bar{R}.

Assign degree 0 to elements of \bar{R}, weights $w t(\bar{v}) \gg w t(\bar{u}) \gg w t(\bar{t}) \gg w t(\bar{s})$, and well order monomials $\bar{s}^{a} \bar{t}^{b} \bar{u}^{c} \bar{v}^{d}$ in \bar{A} lexicographically. By assumption there exists a monomial M of lowest order appearing in h which is not in $\bar{H}+\bar{R}$. Say $M:=\overline{r s} \bar{t}^{a} \bar{t}^{c} \bar{v}^{d}$ where $r \in \bar{R} \backslash \bar{H}$.

First assume $d \neq 0$. Since $\bar{D}(h)=0$, the nonzero monomial $d \bar{x}^{2} \bar{y}^{2} \bar{z}^{2} r \bar{s}^{a} \bar{t}^{b} \bar{u}^{c} \bar{v}^{d-1}$ must appear in the \bar{D}-derivative of at least one other monomial N occurring in h. Notice that then N must also have \bar{R}-coefficient not in \bar{H}, as otherwise $\bar{D}(N)=0$ (since $\bar{D}(\bar{H})=0$). Since $\bar{D} N$ contains the monomial $d \bar{x}^{2} \bar{y}^{2} \bar{z}^{2} r \bar{s}^{a} \bar{t}^{b} \bar{u}^{c} \bar{v}^{d-1}, \bar{D} N$ has degree $a+b+c+d-1$. But the derivation \bar{D} decreases degree by exactly one, so that N must have degree $a+b+c+d$. Since M was the lowest degree polynomial with lowest possible lexicographic ordering, N then must have a higher lexicographic ordering than $\bar{s}^{a} \bar{t}^{b} \bar{u}^{c} \bar{v}^{d}$. But then all (four) terms in $\bar{D}(N)$ will have higher lexicographic ordering than $\bar{s}^{a} \bar{t}^{b} \bar{u}^{c} \bar{v}^{d-1}$. So, such a monomial N will not exist, which is a contradiction for this case.

The cases where $d=0, c \neq 0$, and $d=c=0, b \neq 0$, and $d=c=b=0, a \neq 0$ go similarly, leading to a contradiction. $(d=c=b=a=0$ implies $M \in \bar{R}$, which we excluded). So, the assumption that $h \notin \bar{H}+\bar{R}$, was wrong. Thus $h \in \bar{H}+\bar{R}$ as claimed.

Lemma 4.6. For each $n \in \mathbb{N}$, there exists $F_{n} \in A^{D}$ which satisfies $F_{n}=x V^{n}+f_{n}$ where $f_{n} \in \sum_{i=0}^{n-1} R[s, t, u] v^{i} \subset A$.

Proof. It is shown in several places, for example [12], [4], or page 231 of [5], that already on $\mathbb{C}^{[7]}$ there exist such \tilde{F}_{n} which are in the kernel of the derivation E (they are key to the proof that the kernel of E is not finitely generated as a \mathbb{C}-algebra, and therefore yields a counterexample to Hilbert's 14 th problem). By taking for F_{n} the image of \tilde{F}_{n} in A we obtain the desired kernel elements.

Corollary 4.7. A^{D} is not finitely generated as a \mathbb{C}-algebra.
Proof. Suppose $A^{D}=R\left[g_{1}, \ldots, g_{s}\right]$ for some $g_{i} \in A$. Since $A^{D} \subseteq R+(x, y, z)$ by lemma 4.5, we can assume that all $g_{i} \in(x, y, z)$. Define $\mathcal{F}_{n}(A):=\sum_{i=0}^{n-1} R[S, T, U] V^{i}$ which is a subset of A. Choose n such that $g_{i} \in \mathcal{F}_{n}(A)$ for all $1 \leq i \leq s$. Now $F_{n} \in \mathcal{F}_{n}(A) \cap A^{D}$. Then $F_{n}=P\left(g_{1}, \ldots, g_{s}\right)$ for some $P \in R^{[s]}$. Compute modulo $(x, y, z)^{2}$. Since each $g_{i} \in(x, y, z)$, we have

$$
P\left(g_{1}, \ldots, g_{n}\right) \equiv r_{1} g_{1}+\ldots+r_{n} g_{n} \bmod (x, y, z)^{2}
$$

for some $r_{i} \in R$. So $F_{n} \in R g_{1}+\ldots+R g_{n}+(x, y, z)^{2}$. In particular, $F_{n} \in \mathcal{F}_{n}(A)+$ $(x, y, z)^{2}$. Notice that $F_{n}-x V^{n} \in \mathcal{F}_{n}(A) \subseteq \mathcal{F}_{n}(A)+(x, y, z)^{2}$, so that $x V^{n} \in \mathcal{F}_{n}(A)+$ $(x, y, z)^{2}$. But this is obviously not the case, contradicting the the assumption that " $A^{D}=R\left[g_{1}, \ldots, g_{s}\right]$ for some $g_{i} \notin R$ ". Thus A^{D} is not finitely generated as an R-algebra, a fortiori as a \mathbb{C}-algebra.

Using lemma 4.4 we know that there is only one kernel of a nontrivial LND on A, so the following result is obvious.

Corollary 4.8. $M L(A)=\operatorname{Der}(A)=A^{D}$ is not finitely generated.

References

[1] M. de Bondt, Another generalisation of Mason's theorem, preprint.
[2] A. Crachiola, On the AK-invariant of certain domains, Ph-D. thesis, Wayne State University, may 2004.
[3] A. Crachiola and L. Makar-Limanov, On the rigidity of small domains, J. Algebra 284 (2005), no. 1, 1-12.
[4] J.K.Deveney, D.R.Finston, G_{a}-actions on \mathbb{C}^{3} and \mathbb{C}^{7}, Comm.Alg 22 (1994), 37-41
[5] A.van den Essen, Polynomial Automorphisms and the Jacobian Conjecture, volume 190 of in Progress in Mahtematics, Birkhäuser (2000)
[6] D.Finston, S.Maubach, The Automorphism Group of Certain Factorial Threefolds and a Cancellation Problem, to appear in Isr.J.of Math.
[7] R. Fossum, The Divisor Class Group of a Krull Domain, Springer-Verlag 1973.
[8] G. Freudenburg, Algebraic Theory of Locally Nilpotent Derivations, Encycl. Math. Sci., Inv.Theory and Alg.Tr.Groups VII, Springer Verlag.
[9] R. V. Gurjar, K. Masuda, M. Miyanishi, P. Russell, Affine lines on affine surfaces and the Makar-Limanov invariant, to appear in Cont.J.Math.
[10] R. Hartshorne and A. Ogus, On the factoriality of local rings of small embedding codimension, Comm. Algebra 1 (1974), 415-437.
[11] L. Makar-Limanov: Again $x+x^{2} y+z^{2}+t^{3}$. Contemporary Mathematics 369, 177-182. American Mathematical Society, Providence (2005)
[12] S.Maubach, Hilbert's 14 th problem and related topics, master's thesis, University of Nijmegen (1998).
[13] K. Masuda, M. Miyanishi: Etale endomorphisms of algebraic surfaces. Math. Ann. 319 (2001) 493-516.
[14] S. Maubach, Infinitely generated Derksen and Makar-Limanov invariant, preprint (2006).

[^0]: *Funded by Veni-grant of council for the physical sciences, Netherlands Organisation for scientific research (NWO)

