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Abstract

A new class of counterexamples to a generalized cancellation problem
for a¢ ne varieties is presented. Each member of the class is an a¢ ne
factorial complex threefold admitting a locally trivial action of the additive
group, i.e. the total space for a principal Ga bundle over a quasia¢ ne base.
The automorphism groups for these varieties are also determined.

1 Introduction

A well known cancellation problem asks, for complex a¢ ne varieties X and Y;
whether an isomorphism X � C �=Y � C implies that X �= Y: For X and Y of
dimension 1 a positive answer is given by [1] and for X and Y of dimension 2
counterexamples are provided by the Danielewski surfaces [2] [10] [8] [5]. On the
other hand, for X � C �= C3; Fujita and Miyanishi-Sugie proved that X �= C2:
The Danielewski surfaces can be realized as total spaces for principal bundles for
Ga; the additive group of complex numbers, over the a¢ ne line with two origins.
They are therefore smooth surfaces, but nonfactorial, i.e. their coordinate rings
lack the unique factorization property. It is natural then to ask whether the
cancellation problem has a positive solution for factorial a¢ ne varieties, or for
a¢ ne total spaces of principalGa bundles over quasia¢ ne varieties. We produce
families of three dimensional counterexamples.
To point out the role played by principal Ga bundles, let Y be a scheme

over C; and X1; X2 total spaces for principal Ga bundles over Y: Then each Xi
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is represented by a one cocycle in H1(Y;OY ); and we can represent the base
extension X1 �Y X2 by elements of H1(X1; OX1) (and H

1(X2; OX2): If the Xi
are a¢ ne then H1(Xi; OXi

) = 0 and therefore X1 � C �= X1 �Y X2 �= X2 � C.
In particular, a¢ ne total spaces for principal Ga bundles is a natural context in
which to seek potential counterexamples to the cancellation problem.
In the case of the Danielewski surfaces, not only are the bundles inequiva-

lent, the total spaces are not homeomorphic in the natural (complex) topology
on C3, let alone isomorphic as varieties. For a complex quasiprojective base
however, a principal Ga bundle is necessarily trivial in the natural topology
[20]. Thus algebraic methods are necessary to distinguish the total spaces. The
Makar-Limanov invariant, which for an a¢ ne k�domain A is the intersection
of the kernels of all locally nilpotent k�derivations of A, provides the necessary
algebraic tool enabling the determination of the automorphism groups of certain
a¢ ne threefolds, all obtained as total spaces for principal Ga bundles over the
spectrum of singular but factorial complex surfaces punctured at the singular
point. A class of these threefolds yield the desired counterexamples:

Example 1 Let Xn;m � C5 be the a¢ ne variety de�ned by

Xa + Y b + Zc; XmU � Y nV � 1

with m;n positive integers and a; b; c pairwise relatively prime positive integers
satisfying 1

a +
1
b +

1
c < 1: Then Xn;m is factorial,

Xn;m � C �= Xn0;m0 � C

for all (m;n); (m0; n0); but Xn;m �= Xn0;m0 implies that (m;n) = (m0; n0):

We suspect that the condition 1
a +

1
b +

1
c < 1 can be weakened.

Principal Ga bundles with a¢ ne total space X arise from locally trivial
algebraic Ga actions on X. The local triviality implies that the quotient X=Ga
exists as an algebraic scheme, and gives X the structure of a principal Ga
bundle over X=Ga: If X is in addition factorial, then X=Ga has the structure
of a quasia¢ ne variety. The Makar-Limanov invariant enters the picture since
every algebraic Ga action on an a¢ ne X arises as the exponential of a locally
nilpotent derivation D of C[X]: If X is factorial, then the action is locally trivial
if and only if ker(D) \ im(D) generates the unit ideal in C[X] [4]. An action
is equivariantly trivial, i.e. X is Ga isomorphic to Y � C with Ga acting by
addition on the second component, if and only if D(s) = 1 for some s 2 C[X]:
Such an s is called a slice.
One can see easily that no two dimensional UFD can give rise to a coun-

terexample to generalized cancellation via non trivial Ga bundles.

Lemma 1 Let A be a two dimensional �nitely generated C algebra which is a
UFD. If A admits a nonzero LND, then A is isomorphic to a one variable
polynomial ring over a UFD subring.
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Proof. Suppose that D 2 Der(A) is locally nilpotent: Denote by F the set of
�xed points of the Ga action on Spec A generated by D: By assumption, either
F is empty, in which case D has a slice [7], or the dimension of F is equal to
one [17]. In the latter case, F the support of a principal divisor D = (f) for
some f 2 AD; and D(A) � fA. Thus D0 := f�1D is again locally nilpotent
generating a �xed point free Ga action with a slice.
That the generalized cancellation problem has an a¢ rmative solution for a

polynomial ring in one variable over a one dimensional UFD follows from the
results in [1] or [15, Theorem 2.9].
Since a singular point of a factorial surface is isolated, such a surface cannot

be isomorphic to the product of a curve with a line. Thus

Corollary 1 A singular factorial surface admits no nontrivial locally nilpotent
dervartions:

2 The Makar-Limanov Invariant.

The condition on the exponents a; b; c in the above example will enable us to use
Mason�s theorem, stated here as Theorem 1. Let k be a �eld of characteristic
0 and, for f 2 k[T ], denote by N(f) the number of distinct zeroes of f in an
algebraic closure of k .

Theorem 1 (e.g. [19]) Let f; g 2 k[T ] and let h = f + g. Assume that f; g; h
are relatively prime of positive degree. Then

maxfdeg(f); deg(g); deg(h)g < N(fgh):

Two corollaries apply to the problem at hand.

Corollary 2 Let P (X;Y; Z) = Xa + Y b + Zc where a; b; c 2 N satisfy

1

a
+
1

b
+
1

c
� 1:

If f; g; h 2 k[T ] satisfy

1. P (f; g; h) = 0 and

2. f; g; h are relatively prime.

Then at least one of f; g; h must be constant.
Proof. It is enough to consider the case that k is algebraically closed. Assume
that none of f; g; h is constant. Applying Mason�s theorem, the fact that
fa + gb + hc = 0 yields:

max(a � deg(f); b � deg(g); c � deg(h)) < N(fa) +N(gb) +N(hc)
= N(f) +N(g) +N(h)
� deg(f) + deg(g) + deg(h):
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Suppose

a � deg(f) � b � deg(g); a � deg(f) � c � deg(h) > 0:

Then deg g
deg f �

a
b ;

deg h
deg f �

a
c so that

a � deg(f) = max(a � deg(f); b � deg(g); c � deg(h))
< deg(f) + deg(g) + deg(h)
� deg(f)(1 + a

b +
a
c ):

Thus 1 < 1
a +

1
b +

1
c , which exactly contradicts the assumption.

The cases where b � deg(g) or c � deg(h) is the largest go equivalently.

Corollary 3 Let P (X;Y; Z) = Xa + Y b + Zc + � where � 2 k, and a; b; c 2
Nnf0; 1; 2; 3g satisfy 1

a�3 +
1
b�3 +

1
c�3 �

1
2 . If f; g; h 2 k[T ] satisfy

1. P (f; g; h) = 0 and

2. f; g; h are relatively prime.

Then at least one of f; g; h must be constant.

Proof. Again it is enough to consider the case that k is algebraically closed.
We will arrive at a contradiction from the assumption that fa+ gb+hc = � for
some nonconstant f; g; h. Taking derivatives with respect to T yields afa�1f 0+
bgb�1g0+ chc�1h0 = 0. Now we cannot apply Mason�s theorem directly as there
may be common factors in ff 0; gg0; hh0. De�ne w := gcd(fa�1f 0; gb�1g0; hc�1h0).
Using the fact that gcd(xy; z) divides gcd(x; z)gcd(y; z) repeatedly we see that w
divides gcd(f 0; gb�1g0; hc�1h0)�gcd(fa�1; g0; hc�1h0)�gcd(fa�1; gb�1; h0)�gcd(fa�1; gb�1; hc�1)
and since gcd(f; g; h) = 1, we see that deg(w) � deg(f 0) + deg(g0) + deg(h0) =
deg(f) + deg(g) + deg(h)� 3. One can apply Mason�s theorem to

a
1

w
fa�1f 0 + b

1

w
gb�1g0 + c

1

w
hc�1h0 = 0;

which, together with some calculus, yields

2(deg(f) + deg(g) + deg(h))
� N(ff 0gg0hh0)
� N(ff 0 1wgg

0 1
whh

0 1
w )

(Mason�s) > max
�
deg(fa�1f 0 1w ); deg(g

b�1g0 1w ); deg(h
c�1h0 1w )

�
= max

�
deg(fa�1f 0); deg(gb�1g0

�
; deg(hc�1h0)

�
� deg(w)

� max
�
deg(fa�1f 0); deg(gb�1g0); deg(hc�1h0)

�
� deg(f)� deg(g)� deg(h) + 3

= max
�
adeg(f)� 1; bdeg(g)� 1; cdeg(h)� 1

�
� deg(f)� deg(g)� deg(h) + 3

� max
�
(a� 3)deg(f); (b� 3)deg(g); (c� 3)deg(h)

�
+ 2

> max
�
(a� 3)deg(f); (b� 3)deg(g); (c� 3)deg(h)

�
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Assuming that max((a� 3)deg(f); (b� 3)deg(g); (c� 3)deg(h)) = (a� 3)deg(f)
(the other cases go similarly) then will yield (a � 3)deg(f) < 2(1 + a�3

b�3 +
a�3
c�3 )deg(f) which exactly contradicts the assumption

1
a�3 +

1
b�3 +

1
c�3 �

1
2 .

De�nition 1 1. For a k-domain B, LND(B) is the set of locally nilpotent
k derivations of B:

2. Given D 2 LND(B), s 2 B is a slice for D if D(s) = 1:

3. Given D 2 LND(B); an element p of B is called a preslice if 0 = D2(p) 6=
D(p):

Remark 1 A preslice always exists for a nonzero locally nilpotent derivation
D: Indeed, by local nilpotency, for b 2 B �ker(D), there is a positive integer n
for which 0 6= Dn+1(b) 2 ker(D): Then p = Dn(b) is a preslice. If D admits
a slice s, then B = BD[s], where BD denotes ker(D); and therefore D = @

@s [3]:

Lemma 2 Let A be a C-domain and x; y; z 2 Anf0g. Let P = xa+ yb+ zc+ �
for some a; b; c 2 Nnf0; 1g, � 2 C. Let B := A=(P ), and assume that B is a
domain (i.e. P is a prime element of A ). If either
i) � = 0 and 1

a +
1
b +

1
c � 1, or

ii) a; b; c � 4 and 1
a�3 +

1
b�3 +

1
c�3 �

1
2 ,

then D 2 LND(B) implies D(x) = D(y) = D(z) = 0.

Proof. Since B is a domain, and D is locally nilpotent, a preslice p exists.
Set q := D(p) (and thus q 2 BD) and observe that D extends uniquely to a
locally nilpotent derivation ~D of ~B := B[q�1]. Since ~D has the slice s := p=q
we have ~B = ~BD[s]. We can identify ~D with @

@s . Denote by K the quotient
�eld of ~B

@
@s (= quotient �eld of BD) noting that D extends uniquely to @

@s on
K[s]. Write x; y; z 2 K[s], as x = f(s); y = g(s); z = h(s) for some polynomials
f; g; h 2 K[s]. If k = gcd(f; g) then k divides h as well. Writing

f = k bf; g = kbg; h = kbh
we obtain

(kbc bf)a + (kacbg)b + (kabbh)c = 0
and therefore bfa + bgb + bhc = 0
with bf; bg;bh pairwise relatively prime.
In case i) we can use corollary 2, to conclude that k and at least one of bf; bg;bh

lie in K, so that one of x; y; z lies in ker(D): But if, for instance, D(x) = 0; then
0 = D(yb + zc) then by the following lemma we see that D(y) = D(z) = 0.
Similarly in case ii) we can use corollary 3 to conclude that at least one of

x; y; z must lie in ker(D) . Suppose it is x. Then again D(yb + zc) = 0 where
b; c � 2.
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Lemma 3 (Makar-Limanov [11, Lemma 2] ) Let A be a domain and let n;m 2
N satisfying n;m � 2. If D 2 LND(A) and D(c1an+c2bm) = 0 where a; b 2 A,
c1; c2 2 AD, and c1an + c2bm 6= 0 . Then D(a) = D(b) = 0.

Fix P (X;Y; Z) := Xa + Y b + Zc + � in C[X;Y; Z] and assume that P is
irreducible, i.e. that a; b; c are pairwise relatively prime.

Notation 1 For the remainder of the paper, R := C[X;Y; Z]=(P ), and x; y; z
denote the images of X;Y; Z in R: Set An;m := R[U; V ]=(xmU�ynV �1) where
m;n 2 N, m;n � 2. The images of U; V in An;m will be denoted by u; v:

Proposition 1 If gcd(a; b) = gcd(a; c) = gcd(b; c) = 1, then An;m is a UFD.

Proof. That R is a UFD in case � = 0 is a well known result of Samuel. A
slight modi�cation of the argument in [18] yields the result for � 6= 0: De�ne
an R derivation D of An;m by setting D(v) = xm; D(u) = yn): Clearly D is
locally nilpotent and generates a locally trivial Ga action on the smooth variety
Xn;m � Spec An;m . The quotient Xn;m=Ga is isomorphic to the complement
of a �nite but nonempty subset of SpecR: The quotient mapXn;m ! Xn;m=Ga
is a Zariski �bration with both the base and �ber having trivial Picard group.
By [9] we conclude that Pic(Xn;m) is also trivial and therefore An;m is a UFD.
In case � = 0 one can argue directly that An;m is a UFD using Nagata�s

theorem [13, Theorem 20.2] . Note that x is a prime element in An;m :

An;m=(x) �= C[Y;Z; U; V ]=(Y nV + 1)

�= C[Y;Z; U ][
1

Y
]

a domain, and

An;m [x
�1] �= C[X;Y; Z]=(Xa + Y b + Zc)[x�1][U ]

is a UFD.
The following is a consequence of Lemma 1. 2

Corollary 4 If D 2 LND(An;m) then D(x) = D(y) = D(z) = 0.

Lemma 4 Let D 2 LND(An;m) and assume D 6= 0. Then ADn;m = C[x; y; z].

Proof. xmD(u)� ynD(v) = D(xmu� ynv) = D(1) = 0. Since An;m is a UFD
we see that D(u) = cyn for some c. Thus D(v) = xmc. Thus D is equivalent to
the locally nilpotent derivation D0 = yn@u + x

m@v in particular they have the
same kernel. An easy application of the algorithm in [6] reveals that ker(D0) =
C[x; y; z].

Theorem 2 ML(An;m) = R:
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3 The Automorphism Group

In this section we take R := C[X;Y; Z]=(Xa + Y b + Zc) with a; b; c pairwise
relatively prime satisfying

1

a
+
1

b
+
1

c
< 1;

and An;m as before. The derivation

E := yn@u + x
m@v 2 DerC(An;m):

plays a special role.

Lemma 5 Let B be a k-domain , and ' 2 Aut(B). Then '�1LND(B)' =
LND(B). Also, '(ML(B)) =ML(B).

Proof. If D is LND, then '�1D' is also LND. So '�1LND(B)' � LND(B)
for any automorphism '. Then

'�1('LND(B)'�1)' � '�1LND(B)';

which proves the converse inclusion.
It follows moreover that

'(ML(B)) = '
� \
D2LND(B)

ker(D)
�

=
\

D2LND(B)

'(BD)

=
\

D2LND(B)

B'D'
�1

which is equal to ML(B) since 'LND(B)'�1 = LND(B).

Corollary 5 Let ' 2 AutC(An;m). Then '�1E' = �E where � 2 C�.

Proof. LND(An;m) = C[x; y; z]E, so by Lemma 5 '(E) = �E for some
� 2 C[x; y; z]� = C�.
Let S � T � B be domains, T an S-algebra, and B a T -algebra. Suppose

that for any ' 2 AutSB we have '(T ) = T . Then restriction to T de�nes
a group homomorphism � :AutSB ! AutST and AutSB is an extension of
AutTB by the image of �. For S = C; T = R;B = An;m we will show that � is
surjective, and determine AutCR and AutRAn;m:
The following proposition may be well known. It can be deduced from several

results in [12] which are summarized in the proof.

Proposition 2 AutCR �= C� where, for � 2 C�; � (x; y; z) = (�bcx; �acy; �abz):
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Proof. Let eX be the quasihomogeneous factorial a¢ ne surface with coordinate
ring R (whose unique singular point is the origin 0) and X � eX � f0g: Note
that Aut(X) �= Aut( eX ). That the mapping

Gm �X ! X

(� ; (x; y; z)) 7! (�bcx; �acy; �abz)

gives an action is clear. The quotient mapping � : X ! B, (B � X=G) is an
A1� �bration, i.e. all � �bers are geometrically C�, and there are precisely three
singular �bers Fa; Fb; Fc;of multiplicity a; b; c respectively. In fact B �= P1;
and any automorphism ' : X ! X preserves the �bration, i.e. yields a group
homomorphism

f : Aut(X)! Aut(P1):

However, relative primeness of a; b; c forces ' to stabilize the singular �bers
and moreover Fa = ��1(�(Fa)); Fb = ��1(�(Fb)); Fc = ��1(�(Fc)): Thus
�(Fa); �(Fb); �(Fc) are �xed by f('); and we see that f is the trivial homo-
morphism [12, Cor. 4.6]. Theorem 6.2 of [12] gives the exact sequence

0! Gm ! Aut(X)! im(f)

as asserted.

Lemma 6 The restriction homomorphism AutCAn;m ! AutCR is surjective.

Proof. Let Xn;m be the a¢ ne variety with coordinate ring An;m: Observe that
the mapping

Gm �Xn;m ! Xn;m

(�; (x; y; z; u; v)) 7! (�bcx; �acy; �abz; ��mbcu; ��nacv)

is an action inducing the Gm action on X given above.

Lemma 7 ' 2 AutRAn;m if and only if ' is an R-homomorphism satisfying
'(u; v) = (f(x; y; z)yn + u; f(x; y; z)xm + v) for some f 2 C[x; y; z]. Conse-
quently, AutRAn;m �=< R;+ > as groups.

Proof. We know by corollary 5 that '�1(E)' = �E for some � 2 C�. De�ne
(F;G) := '(u; v). Also, '(x; y; z) = (x; y; z). So now

(�yn; �xm) = '(�yn; �xm)
= '�E(u; v)
= '('�1E')(u; v)
= E(F;G)
= (ynFu + x

mFv; y
nGu + x

mGv)

where the subscript denotes partial derivative.
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Let us consider the �rst equation,

�yn = ynFu + x
mFv:

De�ning H := F � �u, we see that �ynHu = xmHv. By the following lemma
8 we see that H 2 R, so

F = p(x; y; z) + �u:

The second equation yields �xm = ynGu+xmGv. De�ning H := G��v, yields
�xmHv = ynHu, which by the following lemma 8 yields H = q(x; y; z) and thus
G = q(x; y; z) + �v. Now

0 = '(xmu� ynv � 1)
= xm'(u)� yn'(v)� 1
= xmF � ynG� 1
= xm(p+ �u)� yn(q + �v)� 1
= xmp� ynq + �(xmu� ynv)� 1
= xmp� ynq + �� 1:

Thus � = 1 and p = ynf(x; y; z) and q = xmf(x; y; z) for some f . It is not
di¢ cult to check that the constructed objects are well-de�ned homomorphisms
which are isomorphisms.

Lemma 8 If H 2 An;m such that �ynHu = xmHv, then H 2 R.

Proof. We can �nd polynomials pi(v) 2R[v] = C[x; y; z][v] such that H =Pd
i=0 piu

i for some d 2 N. Requiring degz(pi) < c for each i 2 N�, and
degx(pi) < m for each i 2 N�; i 6= 1, then the pi are unique (because of the
equality xmu = ynv + 1 and zc = �xa � yb). The equation �ynHu = xmHv
yields

d�1X
i=0

�(i+ 1)ynpi+1ui =
dX
i=0

xmpi;vu
i

where pi;v � @pi
@v : Substitute y

nv+1 for xmu to obtain a unique representation:Pd�1
i=0 �(i+ 1)ynpi+1ui = xmp0;v +

Pd�1
i=0 (y

nv + 1)pi+1;vu
i;

so
�ynp1 = xmp0;v + (y

nv + 1)p1;v

and
�(i+ 1)ynpi+1 = (ynv + 1)pi+1;v

for each i � 1.
Let i � 1 and assume that pi+1 has degree k with respect to v. Let �(x; y; z)

be the top coe¢ cient of pi+1, seen as a polynomial in v. Then �(i + 1)yn� =
ynk�, but that gives a contradiction. So for each i � 1 : pi+1 = 0. This leaves
the equation 0 = xmp0;v which means that p0 2 C[x; y; z]. Thus H = p0u

0 2
C[x; y; z].
We conclude this section with a statement of the theorem just proved:
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Theorem 3 AutCAn;m is generated by the maps

1. (x; y; z; u; v) 7! (x; y; z; f(x; y; z)yn + u; f(x; y; z)xm + v) for f 2 R;

2. (x; y; z; u; v) 7! (�bcx; �acy; �abz; ��mbcu; ��nacv) for � 2 C�.

Thus AutCAn;m �= C�n < R;+ > .
Note that AutCAn;m is nonabelian.

4 Examples

Example 2 Let R = C[X;Y; Z]=(Xa + Y b + Zc) where a; b; c are pairwise rel-
atively prime positive integers satisfying 1

a +
1
b +

1
c < 1: Then An;m � C �=

An0;m0 � C for all (n;m); (n0;m0) but An;m �= An0;m0 if and only if (n;m) =
(n0;m0): Hence the Xn;m � SpecAn;m are the desired counterexamples to the
generalized a¢ ne cancellation problem.

Proof. Since the SpecAn;m are all total spaces for principal Ga bundles over
SpecR � f(0; 0)g; the �rst assertion is clear. Write An;m = R[u; v] where
xmu�ynv = 1; and An0;m0 = R[u0; v0] where xm

0
u0�yn0v0 = 1:Since 1

a+
1
b +

1
c <

1, ML(An;m) = R and an isomorphism � : An;m �= An0;m0 will restrict to an
automorphism of R: Thus, possibly after a composition with an automorphism
of R,

�(x) = x; �(y) = y; �(z) = z:

Let D 2 LND(An;m) (resp. D0 2 LND(An0;m0)) satisfy

D : v 7! xm 7! 0; u 7! yn 7! 0

D0 : v0 7! xm
0
7! 0; u0 7! yn

0
7! 0:

Since LND(An;m) = RD and D;D0 are irreducible derivations, the locally
nilpotent derivation ��1D0� = rD for some r 2 R� = C�:
Set K = qf(R), identify K 
R An;m with K[v], K 
R An0;m0 = K[v0], and

note that K[�(v)] = K[v0]: Thus

�(v) = �v0 + � for some �; � 2 K:

A calculation reveals that

��1D0�(v) = ��1(�)xm
0
= rxm:

so that �xm
0
= rxm:

We obtain
�(v) = xm�m

0
v0 + �

10



from which we conclude that D02(�(v)) = 0: A symmetric argument yields that
D02(�(u)) = 0 as well. Thus

�(u) = r1u
0 + r2v

0 + r3

�(v) = s1u
0 + s2v

0 + s3

with ri; sj 2 R; and r1s2 � r2s1 2 R�:
If m > m0, then � 2 K \ An0;m0 = R, so that s1 2 xR; s2 = �0xm�m

0
; and

s3 = �: But in this case

r1s2 � r2s1 2 xR " R�:

Thus m � m0, but the identical argument with the roles of � and ��1reversed
will show m = m0; and the symmetric argument with the roles of u and v
reversed will show n = n0:
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