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generated algebra over the field K, then any locally finite derivation D of A admits a

decompo.sition Os + D^ , where Os is semisimple, Dr| is locally nilpotent, and Os commutes
with DT| . The ring of generalized constants of a locally finite derivation of A is finitely
generated. The ring of constants of a locally nilpotent homogeneous (non trivial) derivation

of K[x,y,z| is a ring ofpolynomials in two variables. If D has at least two fixed points,
then D anihilates a non-constant polynomial. In case A = K[xi,...,Xn|, the rank f. of the
spectrum of a locally finite cierivation is less than the height of the ideal V generated by
(Dxi,.,Dxn (.

Introduction.

In 195S, M. Nagata |N| settled in the negative the problem of finite generacy
of the ring of invariants of a group action on polynomial rings. Nagata exhibited an
example of a subgroup G of the group ofautomorphisms ofk|x|,...,X32l with k a
sufficiently big field, of any characteristic, such that ring R of invariants under the action of
G is not finitely generated.

A closely related problem is the problem of deciding whether the ring of
constants R(0) of a derivation 0 of the ring k|xi,...,x,i| is finitely generated. Recently H.
Derksen showed that Nugata's example can be cast in the form R(0) for some derivution D

thus for a general derivation D the ring of constants R(D) need not be finitely generated.
There are some positive results in low dimension:

if n=l and D^), then R(D)=k,
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if n=2 and D?s<), then R(/J) is finitely generated |Zak|, |E|,
ifn=3, and charact(kM), then R(D) is finitely generated [ZarJ.

We are interested in a distinguished class of derivations, namely the class of
locally finite derivations. In the case of K=(E -the field of complex numbers- locally finite
derivations of C|x),..,Xn| are in one to one correspondence with smooth morphisms from
CE toAut((E|x|,..,x,i|) |CZ|, |vdE|. It is of interest to consider the ring of constants for this
type ofderivations. The goal of this work is to present some result about the ring of
constants of a locally nilpotent homogeneous (non trivial) derivation of (C|x,y,z|. We will
show that any such ring of constants is a ring ofpolynomials in two variables. This is a
step towards extending results of [R| to three dimensional space. We will also present other
useful results about locally finite derivutions offinitely generated rings.

V^cluv?

Definitions, notation:

Let A be an algebra over a field K (we will consider only commutative
algebras with unit). Let D:A ->A be a K-derivation (K-linear, satisfying Leibnitz's rule).
The linearity of D allows us to endow A with the structure of a K|D 1-module.

We say that D is locally finite iff A is a torsion K|D|-module, i.e., for any P <=
K|X),..,X,)|, there exist a "differential operator" 0 i=- f(D) = D11 + k)Dn-1 +...+ k,, e K|D|

such that f(D)P=(). We say D is locally nilpotent iff every element of A is annihilated by a
power of D.

The set Ker(D) consisting of - 0 and of - eigenwritie^ of D corresponding to
the eigenvalue 0 is a subring of A. It is called the ring of constants of D. It will be denoted
by R(D). By extension, the set U,)>i Ker( D") will be called the set of ^eiwalized
constants ofb.

The spectrum o(D) of D as a K-linear map is a groupoicl of the additive group
(K,+) |CZ|. Let / be the rank of the subgroup generated by o(D) in (.K,+). We will call /
the rank ofo(D).

Let m be a maxima! ideal of A. We will say that m is a fixed point of the
dmvution D if and only if Dfem for_alH^_A. Thus, in case A = K|XI..,.,X,)|. m = ( f
: f(a],..,a,i) = 0 ( with (a|,..,an) e K", and D\\ = Vi(xi,..,\p) for i=l,,.,n we have: m is

a fixed point of D iff Vi(ai,..,an) = 0 for i=l,..,n.



Results

Let K be an algebmically closed field of characteristic 0. We will prove the
following facts.

t^o*?.
Theurem 1: (Jordan decomposition) Let A be an algebra over K, let D:A -^A be a

locally finite K-derivation, then there exists a unique decomposition D = Ds + D)-) , where
Ds is semisimple, D^ is locally nilpotent, and [Ds, ^ | = 0. Furthermore, for all ^ e K,

Ker(Ds ^) = ^n>l Ker( (D - X)" ).

Theurem 2: Let D :A ->A be a locally finite derivation. A finitely generated as K-
algebra, then there exists n, and a derivationZ5: K[xi,..,xJ -> K|xi,..,x,i] such that
i) Jj is locally finite,

ii) A is a homomorphic image of K|xi,..,x,ll,

iii) the following diagram commutes:

K|xi,..,x,,| ->
D

^
A

K|x ,..,x,,|

i
A

D

^ve-n"

Theorem 3: Let D :A -^A be a locally finite derivation, with A a finitely generated K-

algebra, then the ring of generalized constants of D is finitely generated.

Theurem 4: If D, /)" : K|x|,..,-\n| -> K[x],..,Xn| are non-trivial derivations, D is

locally finite, and D = F(XI,..,X||) rJo for some non-constant polynomial F, then D() is
locally nilpotent, and D()F e K.

Theorem 5: lfD:K|x,y,z| -> K|x,y,z| is a locally nilpotent derivation, D ^0, D

homogeneous with respect to a weight w ( with w(x), w(y), w(z) > 0 ), then the rin.g of

constants of D is of the form K[A,B| with A, B algebraically independent.

Theurem 6: Let D:K|X|,..,X|)| -> K|XI,..,X|)| be a locally finite derivation. Then the runk
(. of o(D) is notg^iter than the height of the ideal V generated by (DX),.., Dx,, }. i.e.: ( <
ht(V)



Theorem 7: Let D:A -> A be a locally finite derivation, with A a finitely generated K-
algebra. If D has at least two fixed points, then D annihilates an element of A \ K.

&

Pruuf uftheurein 1 Since D is locally finite JA ?TA is a K[D]-torsion module, this
implies the existence of a decomposition A = , @_ M\ , where a c K is the set of

7- E 0

eigenvalues of D (as linear map), M^ is the set of elements of A that are annihilated by a
power of (D-'k), i.e. M^ = Un>i Ker((D-X)n). Furthermore o, which is the spectrum of

D, is closed under addition. Moreover: M^. M^i c M^ + ^ for any -\, \i e o.See |CZ|.
Define Ds as Ds(P) = ^ ^ ifP = ^ PX. Clearly Ds is a derivation of A.

Since D(M^) c M^ for all \, it follows that DDs= DsO = ^D on M\, and so D.s commutes
with D. The derivation 0<, is locally finite, because if an element P is writen as P = , £

X <= t-'

P\, with F a finite set, then flp (Ds - ^) P = 0 . The derivation Ds is semisimple in the
sense that the ring A admits a direct sum decomposition A = ^ ®_ M^ , and for each

^ £ CT

^, M^=Ker(Ds-^).

Let OT] = D - Os. Clearly D^ is a derivation of A , and D^ commutes with D.
Moreover, if P e M?, then D^P = DP - D.sP = (D - X)P, and so D^ P = (D - \)n P = 0 if

n is sufficiently big.

Since every element of A is a finite sum of elements in some of the M^'s, it follows that

every element of A is annihilated by a power of D^ . Thus Dy, is locally nilpotent.
Note that Ker(0, - ?i) = M\ = Un>i Ker(. (D - ^)n ).

Finally, we show uniqueness. Assume that D =\o(D,\s\up6(~))s +

F\ , with l^s^nl = () , ^s semisimple and D^ locally nilpotent. LeFPeM^ , and
suppose (D - ^)"P = 0, 0k P = 0.
Since D and D^ commute, then

.n+k,(^, - ^)"+k p = ^j _ ^ ^ )n+k p = _^ , (11;K) (D - \)h (-Dn)n+k-h P
()<h<n+k

=0

because in each term of the last sum either h ^ n or n+k-h ^ k. But Ds has simple

eigenvalues, so (^.s 'k)P = 0. Thus, ^ = Os on M\ for all ^, and so ^s = Os , and HI-) =



OT|. This shows the uniqueness of the decomposition of D.

Pruuf uf theurem 2. Let ai,.., ak be generators of A as K algebra. Since D is locally
finite, there exists m such that Dmai = .. £ a,; OJa, for i = 1,... k.

0<J<in ~"'J " "' "" ' '""

In the ring K| f x,j: 1 < i < k, 0 <:] < in} | of polynomials in kxm variables
consider the derivation D whose action on the generators is given by

x; v+1 if v+ 1 <m ,

oxiv=u,^x"ifv+l=m'
Let Ji: K|(xij)| -> A be the K-algebra homomorphism such that 7T(,xjj) = D.la;

Clearly K^ =D TC. C is locally finite since it is linear in (xy)ij.

Prouf uf theurem 3. If A = , ©_ M^ is the decomposition induced by D, then from
G 0

theorem 1, the ring of generalized constants is M() = Ker(Ds). Thus without loss of

generality we may assume D = D,s. Let K^ be the projection of A onto M\. Let \i,.., x,i

be generators of A as algebra over K, and let x; = ^ x^ be the decompo.sition of xj as

sum ofeigenvectors of D. Note that in these sums the index /^ can be restricted to be in a

finite set F. Each monomial in x[,..,Xp can be written as

xv = n xvi = Z CRv n xkix
1 i .a "^

where v denotes a multi-index of non-negative integers: v = (vi,..,Vn), k also denotes u

multi-inclex of non-negative integers k = (ki^)i^i^n, ^gp . ai'i(l ^kv '^ 'd natural number

depending upon k and v. But H x^l/l is an eigenvector of D corresponding to the
i,^

eigenvalue £ kj^A,, therefore
i.A.

Ttn(xV) = J^ ckv H xk^
keS '" i.^

where S= { (k^) : £ k,^X=()l.
i.^-

^\\For each multi-index k e S, let Pk = H x^lA. Since for each monomial xv,
iA

7l;o(xv) is a linear combination of the P^'s, then the ring of generalized constants M() is
spanned, as vector space over K, by the set {Pk : k <= S }. Theorem 3 will be proved if we

can show that there exists a finite subset G of S with the property that for any k e S, k is u



linear combination of the elements of G with non-negative integer coefficients, i.e.: k =

£ fig g , with iig > 0, integer. Indeed, if that is the case. then Pk = n P(,g , and so
geU geG l~

M()=C|{P^ : ge G }[ . Thus, we look at the set
S = ( (ki^)l<i<n, XeF : S ki^ ?i = 0}

i,^

Let X,i,..Xt, be elements of F, linearly independent over the rationals, with hmaxinial. so
that any other element of F can be written as a linear combination of />ii,..Xh with rational
coeffidents. Then the equation £ k^ \ = 0 that defines S is equivalent to h linear

i.^

homogeneous equations in (k;^,), with rational coefficients. Upon multiplying these

equations by a common multiple of the denominators of the coefficients, we may assume

the coefficients are integer. Hence we are in position to apply the following lemma, and

that concludes the proof of theorem 3.

Lemma 1( existence of generators for integer linear programming homogeneous
problems, or Gordan's lemma) Let L: Z" -^ Zm be a linear map. Let S = [ x=(x|....Xn)1

r

e Z" : Lx = 0, x; > 0 for all i ). Then there exist si,.., S| e S such that S = ( ^ nj sj .
J=l

nje Z, nj >() }.

Pruuf lemma 1. Let W = { x e R" : Lx = 0 , x; ^ 0 for all i, £ x; = 1} W is a compact

convex polyhedral set. If W =0 , then S ={ 0 }, and there is nothing else to prove.

Assume W ^ 0. Then W is a convex polygon, and as such, W is the convex hull of a

finite set: W = convex hull of { YV], .., w^. }. We claim that the vertices of W have rational

coordinates. Indeed, let v = (vi,..,Vii)1 e W be a vertex. We proceed by induction on n. If

n = 1, then W =(1(,and the claim follows immediately. Let then n > 1. Assume first that
v; > 0 for all i, then we claim that v is the unique .solution of the eciuations Lx = 0 , . ^

t<i<n

xj = 1, which have rational coef'ficients, hence v have rational entries. To justify our last
claim, assume Lx =0, £ x; = 1 and consider v +e(x - v), and v -e(x - v). lfE>() is

sufficiently small, then all entries of v±E(x - v) are positive, and so these two vectors

are in W, but v lies on the segment with end-points v ±e(x- v) . Since v is a vertex of
W it follows that x - v =0.

Assume next that \'j = 0 for some i, then applying the inductive assumption to

the intersection of W with the hyperplane x; = 0, we conclude that the remaining
coordinates of v are rational.



Let sj = in v/j for i = l,..,k, where m is a positive integer, big enough so that
si e Z". Let x e S. x ^ 0. Then

Ks<nxi
e W,hence it is a convex combination of

wl,..,wk. Therefore, x can be written as x = ^ [i\ s; with [i\ > 0 . We split [l\ as the
i=l

sum of its integer part and a real number in the interval |(U ): 4; = |(J.i| + 9;, 0 <: 6; <
k k

l.Then x- ^ \^\ s; = ^ 9; Sj
i=l i=l

k
is in S, and has norm bounded above by ^ llsjll. But the elements of S have non-ne.eative

i=l

integer coefficients, thus there is only a finite number of points in S with norm less than £
f

llsjll , say Sk+|,...sr It follows that x= ^ n; s; for suitable non-negative integers
1=1

HI,..., nr

Pruuf of theurem 4. We will show a more general version of theorem 4. We will show

"̂cy "o'

Theorem 4 : Let K be an algebraically closed field of characteristic zero, A an algebra

over K without zero divisors, D and D^ K-derivations of A, D ^{),D = F Do t'or some F

e A, g FJ A = 0. If D is locally finite then:
<<s? i) DF = a.F for some a e K,

ii) the spectrum cy(D) of D is No(x = { 0, ex, 2a, 3a ,...},

iii) if a = 0, then D and /)" are locally nilpotent,
iv) if a?" 0, then

a) all eigenvalue.s of D are simple, i.e. Ker(D - X)2 = Ker(D - X) for all X e K,

b) A = R|F| , where R = Ker(D) is the ring of constants of 0,

c) D() is locally nilpotent.

Prouf: Assume first that DoF = 0. then OF = OF, so i) holds with a = 0. Assume next that

D()F ?t 0. Let A = ^ ©_ M^ be the clecomposition of A induced by D. Let P e A, P = £
£ 0

P\ .The support of P is the set supp(P) = { ^   K : P^ 0 }.

We claim that supp(DoF) ={()). This claim follows immediately from the next

lemma, which is a mere reformuiation of a result due to J.F. Ritt. fZur, section 7.3)



Lemma 2: Let K be an algebraically closed field of characteristic zero. A an algebra over

K without zero divisor.s, F and B in the torsion part of A as K|0 |-module, OF = F B ^ 0

Then supp(B) = {()).

Proof uf lemma 2. Suppose supp(B) ^ 0. Since B -t- 0, then its support is not empty,
therefore there exists a Q-linear map f: K-> Q , such that f assumes a positive value on

supp(B). Let 'k e supp(B) and |LI <= supp(F) be such that f(X) = maximum f(supp(B)) > 0.

and f(|J.) = maximum f(.supp(F)).

Note that F = F|^ + (terms supported where f < [i), B = Q\ + (terms supported

where f < X), hence FB = F^ B\ + (terms supported where f < \l+'k), and since A has no
divisors of zero then Fjj B^ ^ 0, so |Ll+/\. = max f(supp(FB)). But

F|-I B^ = part of FB supported at |J. + A. = part of DF supported at [l + X = DF^ = 0.
since f(,|-t+X,) > f(|j.) , so [l+'k e. supp(F).

Proof uf theurem 4'(continuation). If F = , £ _. F-\., then equating terms with
-\,e supp(F)

like support on both members of DF = FDoF, we get DF^ = F^ D(-)F for all ^ e supp(F),

and so (D X,)F^ = (DoF - ^) F^. A straightforward induction shows that for all k > 0

(:':) (D -  'F?, = ^ (k) DJ(DoF - ^) (D - ^)k-JF^
, ^^ffk v ^ "^ "" r ~ ()^k. vj' '^r"1

cA*'>^p;^«.^?^Takeaesupp(F), so that Fa ?'= 0. F()> is annihilated by a power of(D - a). Let a be such
^^ ->^ that (D - a)a For ^ 0,but (D - cx)a+l Foe = 0. If DoF - a ^ 0, from lemma 2 we deduce

that there^xists^an integer b S 0 such that Db(DnF - a) ^ 0. but Db+l(DoF - a) = 0.

Taking k = a+b and ^ = a in (*), we get 0 = (a^b) Ob(OoF - a) D'dFa which is absurd,
since neither /_)b(/JoF - a) nor D;IF()( is zero, and A has no zero divisors. Therefore DoF -
a. = 0. This shows i). -<*F^ ^.^^^fc-

We show next that o(D) = N« a . Let X, <= o(D). Then, there exists P e A, P
^ 0, such that DP = XP. Since n F.I A = (), then we can find j maximal s.u^h that FJ

j'xi '.' /l ~ "' lI'""^^^^y='Fl)l,{IF)^r ^t<- ^^^ -iP<;'
divides P in A, i.e,: P == F.I B for some Be A, j maximal. From DP = XP , and DoF = a

we get F Do(F-iB) = \ F.i B, hence FJ+1 OoB = (X -ja)F.i B = (X -ja) P. Thus, if ?i ^ja

then we deduce that FJ+1 divides P in A, contradictiny, the choice of j. Therefore ^ = ja.

and so o(7)) c No a.. The other inclusion is immediate, since D FJ =jaFJ, so No a c

CT(D).

From o(D )= No a it follows that if a = U, then the only eigenvalue of D is 0,



so D is locally nilpotent. Moreover if a = 0 then Dk = Fk /JK for all k . thus if an element

of A is annihilated by Ok, then it is annihilated by D^ as well. Since in case a = 0 each

element of A is annihilated by some power of D, it follows that D() is locally nilpotent.
Finally, we show iv). Assume a ^ 0. We claim that Ker(0 - ja) = FJ R.

Clearly any element of A of the form F.l B , with B s R = Ker(D) satisfies (D -ja)F.l B =

0. Conversely, if (D -ja)P = 0, write P as P=Fk B, with k maximal. Then 0 = (D -joc)P
= (k -j)a Fk B + Fk+l^oB, thus ifk^j then pk+1 divides FkB, contradicting the
maximality of k. Hence k = j, DB=(), and so P e FJR.

Now we can show that all eigenvalues of D are simple. If (D -ja)2 P = 0 and

(D -ja)P ^ 0, then (D -ja.)P is in Ker(D -ja), and so (D -ja)P = FJB for some B^(), B

e R. Write P as P = Fln C, with m maxima). Then FJB = (D -ja.)P = (D -jo0 FlnC , so

FJB = (m -j)a.FmC + Fm+VJoC. F does not divide B, indeed B e R, so supp(B) ={()},
whereas for any He A the element FH is supported at a + ha, for some integer h > 0. It

follows that j ^ m. But if j > m, then Fm+1 divides P = FlnC, which is absurd. If j = m,
then B = F DoC, hence F divides B, which is absurd as well. Therefore (D -ja)P = 0.

The last two paragraphs imply that any element of A whose support is {ja( is

in FJR. But every element of A is a finite sum of elements with support of the form {ja( /,"

for some j, hence A = R|F|. ^^J<^>^7*

D() annihilates all elements in R, and D^ FJ = 0 for all k > j. Therefore any

element of A is annihilated by some power of Do. or in other words: Oo i's locally nilpotent.

.\.^
.^fV /r; \ _ _ _ /=>

^V'>vh Proof of theurem 4 (conclusion). Let^K^e an algebraic closure of K. We extend ,0 and
Oo to derivations of K|xi,..,Xn| as K -linear derivations. Since there exists f e K|D| (T

K |D| such that f(D)xj = 0 for i=l,..,n , and f^ 0, then D is a locally finite derivation of A
= K |xi,..,xn|. We may apply theorem 4' and conclude that DF = a F for some a e K,

but F and D have coefficients in K, so a = --^- e K(XI,..,X|)) n K = K. Furthermore. D^

is a locally nilpotentderivation of K|X|,..,X[)|. In particular, any P <= K|x],..,Xp| is

anilatecl by a power ofDo. Thus, D() is a locally nilpotent derivation of K|xi,..,x,,|

.wjv

Prouf of theorem 5. First we explain the notation and statement of the theorem. By a

0



weight in K|x,y,z| we mean a function w: K|x,y,z] -^ Zu {-^} defined as follows:

w( c xiy.izk) = ai + Pj +7k
for all non-zero monomials c xiy.izk (a, |3, y are given integers. c e K\(()}J.

w(0) = -°°,

and if P = £ a;jk xiyJzk, then
w(P) = max w(a;jk xiyJzk) ,

i.Jk

A polynomial P is said to be w-homogeneous iff there exists co such that P =

^ijk xiyJzk, and in that case we will say that P is w-homogeneous of weight co.

A map L: K[x,y,z| -^ K|x,y,z| is said to be w-homogeneous of weight co iff -^v^D)
foi_every_n^L maps w-homogeneous elements of weight n into w-homogeneous elements cvo(tfPi*yuu/
of weight co + n. We will write in this case w(L) = co.

Occasionally we will consider more general maps: the weight w induces a
grading on the ring K|x,y,z], and so it makes sense to talk about w-graded K[x,y,z|-
modules, and w-homogeneous maps between such modules. For example we can considei-

the exterior algebra A K|x,y,z|. In this case, since x,y,z are w-homogeneous, we may
extend the weight w to AWK[x,y,z|) in such a way that the exterior derivative d is w-

homogeneous.

Now we present the proof of theorem 5. Without loss of generality we may
assume that w(x), w(y), and w(z) have no common factors. Note that D and w extend to

the field K(x,y,z) ( w is to be extended according to w(N/G) = w(N) - w(G) ). We will
say that_ajraction r e K(x,y,z) is w-homogeneous iff r can be written as r = N/G, with N

and G w-homogeneous.

We consider separately the cases w(D) < 0, and w(D) ^ 0. ,..('") 7 \C\ -?r-»(^ A
A>./~>(^ t3 z
/~ {¥^'7°

Case w(D) < 0. Without loss of generality, we may assume that 0 < w(x) ^ w(y) ^
w^z). If we let V| = Dx, Vz = Dy, and ¥3 =Dz, then V) is homogeneous of weight w(D) +
w(x) < w(x), hence V| must be a constant, i.e., V] must be of the form V) = c . V2 is

homogeneous of weight w(D) + w(y) < w(y), hence ¥3 must be of the form V'^ = f(x). V^

is homogeneous of weight w(D) + w(z) < w(z). hence V3 must be of the form ¥3 = g(x,y).

Sub-case V] ^ 0. If Y] ^ 0 we may rescale x and assume YI = 1, then 0 = w(Dx) =

w(D) + w(x), so w(x) = -w(D) > 0. f(x) is either 0 or a w-homogeneous polynomial of
/ weight w(D) + w(y) = w(y) - w(x), hence f is of the form f(x) = 02 xn , with
l/.

^>^\^^3^+^^i^



w(y)-w(x) ,
n = -^--- and 03 a c-onstant (possibly equal to 0).

w(x)

We look at the flow corresponding to D:

x' = 1, y' =C2 xn , z' = g(x,y).
This system can be integrated. lf(&(x,y,z,t) denotes the solution at time t that is at (x,y,z)

when t = 0, then

1

-xn+1 r (x+s)n+1 - x"+1
(D(x,y,z,t) = (x + t, y + c-/x+lr^\- x'"1 , z + jg(x+s, y + ^x+sr^^ d.s

).

^)=

A polynomial P is constant with respect to D ifffor all t P(x,y,z) =
P(0(x,y,z,t)). In particular, taking t = -x we get that for any P constant with respect to D

-X

11+1 C I v -i-v\^+ I _ vll+ I

P(x,y,z) = P((), y C2^i- , z + ] g(x+s. y + C2VA--q-A- ) (is ) 6 K A,B|
0

-X

x"+l ._ C (x+s)n+l - x"+1
with A = y - c.r,;^- and B = z + |g(x+s, y + 03 '"' "' ,^, - ) d,s

(I

^ ^z- ^^sw'^vt^vp
Sub-case Vi = 0, Dy = 0. If Vi = 0, and f(x) = 0, from D ^ 0 we deduce g(x.y) ^ 0.
We find that the flow corresponding to D is  >(x,y,z,t) = (x,y, z + g(x,y)t). Therefore, if

P is constant with respect to /-) and we set t = - ^ ^ in P(x,y,z) = P(<I)(x,y,z,t)) we

deduce that P(x,y,z) = P(x,y,0). Hence the ring of constants of D is K|x,y|.

«11^ ^(^1 ^
.Sub-case Vi = 0, Oy ^ 0. If V) = 0, and t'(x) ^ 0, we can also find the flow

corresponding to D. lfG(x,y) is defined by the conditions G(x,0) = 0, ^77<x,y) = g(x,y),

then the flow is

OXx.y.z.t) = (x, y . , nx), z . OC<,y^ - G(x,y) ,
Therefore, if P is constant with respect to D and we set t = - p^-y in P(x,y,z) =

P(d)(x,y,z,t)) we deduce that P(x,y,z) = P(x,(), z - G,(x,'y) )
N

Let G(x,y) = ^ g,,(x) ys . Cancelling common factors in x,
,s=l

G(x,'
we write -p^y-
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N

I
s=l

g»(x) y?

. Then, the polynomial B = zt'(x) +

N

I. (x) ys is irreducible in
7(xj . ' ' ^~T

K| x,y,z|. Note that DB = 0. We claim that in this sub-case, the ring of constants of D is

K|x,B|. We justify our claim by induction on degree of P with respect to z:

Let P e Ker(D), P ^ K. If deg^ P = 0, then P(x,y,z) = P(x, 0, z - G^l) ) =
P(x,0,0) since P does not depend on z, thus P <= C[x.B|.

If degy, P > 0, then we write P(x,y,z) as P = P(x,0,0) + U(x,y,z), with

U(x,(),0) = 0. Since Ox = 0, then P(x,(),0), and consequently U, is in KerCD). Moreovei-

deg/.U = deg/ P. Thus, to show that P is in K|x,B| it is enough to consider the case

P(x,(),0) = 0. Assume then that P(x,(),z) = z H(x, y, z) for some polynomial H. It follows

that

P(x,y,z) = P(x,(), z - Gj^y) ) = P(x,(), ^B-
T(x)

H(x, 0, ^- } , hence B divides F
T(x) ' T(x)

in K(x)|y,z|, but B is irreducible in K|x.y,z|, so B divides P in K|x,y,zj, i.e: P(x,y,z) =

B(x,y,z) L(x,y,z). Since P and B are in Ker(/)), then so is L. Furthermore, deg,,L = deg/P
- 1. hence by induction we conclude that L e K[x,B], and therefore P e K|x,B|.

This takes care of theorem 5 in case w(0) < 0.
.^ ^\'

Case\w(0)^O.LetY=(fe K(x,y,z) : Df=()( , IH = ( fe K(x,y,z) : Of=()andfis

w-hoiliogeneous}. ^ U<V I f \^-^^y^\
We can apply the "t+e+/:" theorem [Zur, section S|. Since D is locally

nilpotent, then (. = 0. Since D ^ 0, then there exists g e K(x,y,z) such that Dg ^ (I. If k ^ 1

is such that Dk+'g = 0 ^ Dkg, then D( ^-&) = 1, so e = 1. Therefore for t =
s

(transcendence degree of V over K) we have t = n - (e+f.) = 3 - (1) = 2.

^/ is the quotient field of the ring of constants of D in K|x,y,z|, because if i;

6 V, ^ = A/B, then A = E, B, and since ^ is constant with respect to 0, then DkA = E,

DkB for all k. Take k > 0, maximal such that OkB ^ U, then Dk+lB = 0, and so Dk+'A = 0.

Therefore DkB, and DkA are in R = ^/ n K|x,y,z| = ring of constants of D in K|x,y,z|

But ^ = ^k^ , so V = qaotient field of R . ^ ^^-^T
For future reference, note that if ^ is w-homogeneous, and £, e ^, then ^ caii

be written as quotient of two w-homogeneous elements in R. Indeed, if ^ is w-
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homogeneous, then in the previous argument we can take A and B w-homogeneou.s. Since

D is itself homogeneous, then DkA, DkB are w-homogeneous for allk. Thus ^ = DkA .
DkB

IS

quotient of w-homogeneous elements of R.
Also for future reference, note that R is a homogeneous subring of K|x,y,z|,

in the sense th-dt\f_Aj= R deuxnpose.s in K|x,y,z) as A =£ A; with A; w-homogeneo'us,
then Aj e R for all i, because D is w-homogeneous, so OA =0 = £ DA;, hence each

homogeneous component must vanish: OA| = 0 for all i.

Lemma 3: IH is a subfield of V of transcendence degree 1 over K.

Proof: Since V has transcendence degree 2 over K, there exist ^, r\ e V , and N e
K(x,y,z) such that ^, T| and N are algebraically independent. Consider the derivation of
K(x,y,z) given by

ON-^-1
J(^H,N)

(here and elsewhere, J(a,b,c) =jacobian ofa,b,c with respect to x, y, z =^,(a ;^, ). This

derivation coincides with D on ^,r|, and N. Therefore

D=DNJ(^-)
J(^n,N)

In particular, J(^T|, .) ^ 0, or alternatively, d^Adr) ?.= U.

Since V is the quotient field of R, we can write E, = ^, r\ = -^ for some

A,B,G in R. But d^Adn =
ciAAdB

C,2
B ,/-, A

^ dAAdG + ^ dBAciG ^ 0, hence either

dAAdB, clAAciG, or dBAdG is not zero. Without loss of generality we may assume that
dAAcfB ^ 0. But d is a w-homogeneous operation, so by decomposing A and B as sum of

w-homogeneous polynomial.s and using the linearity of d and A we find that there exist

U,VeR_^w_hon^o^ene^us and such that dUAdV ^ 0, or equivalently. U.V algebraically

independent. If w(U)= 0, then U <= H. If w(V) = 0, then V e H. If w(U) ^ 0 or w(V) ^
\jw(V)

0, then ^[j)- e H\K. In either case, there is f <= H\K, so transcendence degree H/K ^

1

If i; e V \]H is algebraic over H then w(^) = 0. Indeed, otherwise we may
assume without loss of generality that w(^) > 0 (replace E, by ^-1 if necessary). If E,
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11-1

A
<?^v^h

satisfies ^" = ^ c, ^J, with cj e H Then nw(^) = w(£n) = w(£ cj ^J) ^ mpx w(cj ^J) ^
j^T) ' " - - j

(n-1 )w(E,), which is absurd. We claim that transcendence degree V/H > 1. From the

previous observation it is enough to find an element of ^ of non-zero weight. But this is

easy: because w>.(), w^.), so there is some homogeneous polynomial A with w(A) > 0. Let
k > 0 be such that DkA ^ 0 = Ok+'A, then DkA e V, and w(DkAj = kw(D) + w(A) ^

w(A) > 0.

Finally 2 = trans.deg V/K = trans.deg V/H + trans.deg H/K ^ 1 + 1, so
trans.deg H/K = 1.

Corollary: IH = K(^) for some ^ e H\K.

Proof uf curullar}': K c H c K(x,y,z), and tj-ans.deg H/K = 1. The conclusion

follows from Luroth theorem. ^
^ ^^OJ*^

Pruuf uf theurem 5 (continuation): Let £, = N/G with N, G   R = Ker(D), w-

homogeneous. Any common factor of N and G in K[x,y,z| must be w-homogeneous, and

must be in R, hence we may assume^ that_N and G have no common factors in K[x,y,z|.

R is a subring of K|x,y,z|, hence a domain. Moreover, since an element is

irredudble in R iff it is irreducible in K[x,y,z], then R is a unique factorization domain. We

look next at the irreducible elements of R, since the senerators of R must lie among them.

Lemma 4: with the notation just introduced, setting co = w(N):

i) for every irreducible w-homogeneous P e R, there exists a natural number ^, and a,|3 <=

K such that Px = aN + |3G,

ii) each of N and G has one and only one irreducible factor, i.e: there are A, B irreducible

w-homogeneous elements of R, such that N = AP, and G = Bcl for some p,q > 1,

integers,

iii) p and q in ii) are relatively prime,

iv) let A = g.c.d(w(A),w(B)). then for every irreducible w-hpmogeneou.s P e R\ K|A,B| ,

theexponent A_such that Px = a.N + (3G is a non-U-ivial t'actor of A. Different
irreducibles have relatively prime corresponding exponents.

v) if r| is any generator of H, then the weight of the numerator of r| (when r\ is written as

quotient of two polynomials without common factors) is co = w(N).
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vi) the exponent X corresponding to a w-homogeneous irreducible element P e R

according to i) is given by X = -^-p^ , and so it is independent of the choice of generators
ofH

Pruuf uf lemma 4.

i) If P <= R \ K is an irreducible polynomial, then

pw(G)

pw(G)
QW(P)

6 H, hence it can be written as

^py = c n (^ - p,)"i = c G" n (N - PiG)"i for some n, n; e 2, and some c, |3; e K.
Therefore, PW<G) = c Gm H (N - (3iG)"i where in = n + w(P). Since N and G have no

common factors, then G, N - |3|G, N - pzG,... have no common factors if (3|^ p2< etc.

Therefore at most one of m, n 1,112, etc. is different from zero. (e^l,wv^C^ 'iWfeft^.ifll
Note w(G) > 0. Indeed: G is a polynomial, and w(x),w(y),w(z) > 0, so w(G)

^ 0. If w(G) = 0, then w(N) = 0, because ^ e H, so ^ is w-homogeneous of weight 0.

Thus N, G <= K, contradicting the fact that H = K(^) has transcendence degree 1 over K.

From the last remark, PW(G) g K, and so either m or some n; is different from

zero. Thus, PW(G) = (aN + pG)k for some a, (3, k. But P is irreducible, so the only
possible irreducible factor of aN + (30 is P, i.e., P^ = aN + |3G for some ^ ^ 1.

_^5^COM^ ^ew
ii) As we mentioned in i) w(G) > 0. It follows that G has at least one in-educible factor B. ("P ^ ^
From i) Bcl = aN + (30 for some constants a, R, and q^l. If a ^ 0, then B divides N as
well as G, which is absurd, since N, G have no common factors. Thus a = 0, and after

rescaling B we get G = Bll.

A similar argument shows that N = AP for some in-educible polynomial A.

.v^
iii) If p = p d and q = q d, then ^ = 7^ = (-:) . Let r\ = -- , Clearly T| is w-

B(T Bfl

homogeneous of weight 0, constant with respect to D, thus r| <= H. Also K(T|) c H =

K(^) c K(r|), so Gi = K(n). Therefore d = |K(T|):K(^)| = |H:H| = 1, i.e. p and q are
relatively prime.

iv) Let P e R\ K|A,B] be an in-educible, w-homogeneous polynomial. From i) we know

that P^ = a.N + pG = aAP + pBtl Since P ^ K[A,B], then ?i> 1, and a?^ 0. Note that

|^a.^p ^^.^^
f \ .c? -^

Bcl

^ ^
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^
^A^

^a) generates H. Then the argument it^fi) applied to PA-/Bll implies that X and q are relatively
prime. Similarly, Xjmdj) are relativel'^prime. But ^ \v(P) = w(aN + pG) = qw(B) =
pw(A), hence X divides w(A) and w(B), i.e., ^ divides A.

If P and T are distinct irreducible w-homogeneous elements of R, P not a

constant multiple of T, then we can write P^ = aN + pG, and T4 = yN + 5G, thus -- =

o^+P
y^+5

:;.! TTT ^, . /^. P^
generates H. The argument of parf iT^applied to ^7 implies that X, (J. have no common

T4

factors.

p\
v) Ifr| is any generator of H then from ii) T| = -,7 for some w-homogeneous in-educibles

P, T. From i), P^= aN + (3G, and T^ = yN + 50, for suitable constants a,etc. But N and
G are w-homogeneous of the same weight, so w(P/>l) = w(aN + |3G) = w(N).

vi) This is obvious.

Proof of theurem 5 (continuation): From lemma 4 it follows that most irreducible w-

homogeneous elements of R are of the form aN + (3G, and so they have weight co = w(N),

but there may be some '^ext^eEtkliiaL^wJiomogeneous irreducibles whose weights are

proper factors of co. The las^irt of lemmajt implies that the number of distinct (mod the

relation P -= X.P for X e Kx) such "exceptional" irreducibles is finite, actually it is less than

the number of distinct prime factors of the integer co.

Lemma 5: The number of distinct "exceptional" w-homogeneous in-educibles is at most 3.

Proufof lemma 5: suppose there at least three exceptional w-hpmoseneous irreducibles

T,U,V. We will show that their corresponding exponents ^ , ^,, , ^^ must be

2,3, and 5. Hence no other w-homogeneous irreducible could exist because if it did then

first: by part iv) oflemma 4, its corresponding exponent would have to be relatively prime

to 2, 3, and 5, and second: applying the first part of this lemma to T,U, and the fourth

in-educible, the corresponding exponent of the later would have to be one of 2, 3, or 5

Let t, u, v be the corresponding exponents ofT,U,V.Then T( / Uu is a
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generator of H, and so Vv = a.Tt + RU" . Thus, after rescaling T and U, we may assume

that

Tt+LIU+VV=().

We take exterior derivative of this identity, and so we obtain the system:
t-1

-T U V
.tdT udU vdV (JU-1

yv-1
=0

dT ,dU ,dV "_._ T» T[ Vv .,._,__ _,_,,__,_.,_.,,,,,_,.,,__,
t-F- = U ^y- = V ^7- then .'". ,/", ,.',.. are constants, which is absurd since eitherT

of them generates H. Thus we may assume for example that
FT U V
LtT, uU, vV,

has rank 2 ( working over the field K(x,y,z)). We solve the system
t-1

"T U V
_tTx uUx vV, u"-1 =0

yv-1

by the usual method and find that T'-1,UU-1,VV-1 are proportional to vUCx-uVUx . tVTx

- vTVx , and uTUx - tUTx respectively, i.e.:
vUVx-uVUx

tVT^-vTV,
uTUx-tUTx J

with L,M e K|x,y,z| relatively prime. It follows that L divides Tt-l,UU-l,VV-1 , which

have no common factor, hence we may take L = 1. Therefore M Tt-1 = vLJV^ uVUx ,
a,^l so JT^ ^^.^ ^ ^^^^UU^^

-rpt-l

Uu-1

yv-1

L
M

0)
^^ M^&if^^JLf

(t-1) -= (t-1) w(T) ^ w(MTt-1) = w(vUVx - uVUx) = w(U) + w(V) - w(x) <

<. w(U) + w(V) - 1 = '-+- 1 , from where we deduce

(*) + - ^ 7 + ^ +
CO - t U V

At this point recall that t,u,v ^ 2, since T, U, V are e^L£ptional irreducibles.

Also t, u, v are pairwise relatively prime (lemma 4, iv)). Assume for the sake of the

argument that 2 < t < u < v . If t ^ 3, then u ^4, v ^5, and so 7 + -^ + -, < 1

making (*) impossible. Therefore t = 2.

If u > 3, then u ^ 5 (u, and t = 2 have no common factors!), and v ^ 7, so

again

+ .'. + .'. < 1, which is absurd. Therefore u = 3.



If v > 5 then v ^ 7, and once again 7- + ^ + :- < 1 Therefore v = 5.

.^^^ ^^--^ ^^(^ ci^-J^^'^^^^^
Proof of theu/'em 5 (continuation): Assume first that there is only one exceptional w-

homogeneou^ irreducible element of R , say T. Then any other w-homogeneous irreducible
has weight co. In particular either A or B has weight co. Therefore we can find U w- ^

^t-1 ^/*1
homogeneous in-educible of weight co. Then TA/ U is a generator of H, where ^ = (0 /

w(T). If P is any w-homogeneous irreducible, then P is a multiple of T (the only--^ "^ <y.^.)
exceptional irreducible) or P = aT?l + (3U, since P not a multiuLe-e^F-tmpHes w(P) = co. \ ^-^ I ^

Any element of R is a finite sum of w-homogeneous elements, which in turn are product^' <^- ff't->cr)-:
w-homogeneous irreducible elements. But the later are in K|T,U|. Therefore R = K|T.U|. ~^' tj,_

Assume next that there are exactly two exceptional w-homogeneous in'educible
element^of R , say T and V, then T'k I V^ is a generator of H, where X, = co / w(T) and p.
= (0 / w(V) . Moreover, any other w-homogeneous irreducible element of R is either a

multiple of T, of V, or a linear combination of T\ and V^. In either case, any w-
homogeneous irreducible element of R is in K|T,V]. Thus R = K|T,V|.

The proof will be finished once we show that there cannot be three exceptional
irreducibles in R.

Lemma 6: There cannot be three exceptional w-homogeneous in-educible elements in R.

c/-^-1

^-TeltCTi^

Proof uf lemma 6: If there are three exceptional irreducibles, then as shown in the proof

of lemma 5, we may assume that they satisfy T2 + U3 + V5 = 0. In this case T2 U-3
generates H, and R = K[T,U,V|.

We go back to the idea in the proof of lemma 5, and consider the system

-T u v i r,-
_2dT 3dU 5dV U2

V4.

T.

M V,
[^^^;

We claim that ranl^b\bc\|(\a\aN;o3\hs9CT ,U ,V ,2Tx,3Ux,5Vx)) = 2 ._
;a -r? - w£f

^__^_ _ C X t-L^.^ A A ..^/l v ...." :.^j^_^.^/j^^<-^^^'^o :^.._ n

i^ o^/fc^fcc. K.
yu^ \»^

if 2 -^2t = 3 -gx = 5 -^ then -^ , -^, and -j are independent of^Since T,U are K- rt (/r
>>»«-J- -r

\}C'^

irreducibles in K|x,y,z|, it follows that T,U are themselves independent o^x. Moreover
T,U are algebraically indeEgnctent. LetJ^e K|x,y,z| be such that J(T,U,N) ^kjhen as

/in the proof of leinina 3, we deduce
1 3

^-w^
^'^
"-ft"/I"";.,-^ t>.

D = ON J(T^;^DNC)(T'U) .J,.,:
J(T,U,N) " '-"' c>(y,z) J(T,U,N) 3x

iiwi-. ^ v'^
^'-v

^Tl=-9(%'l7u'
^Tl'^-T^
^ae^ C^^-A

c^ ^^



isomorphic to the ring of polynomials in two variables. Thus. rank ( ^ ^j ,-y | =

,^^'
Hence R = Ker(D) = Ker(^ ) = K|y,z] But R r K|x,y,z|/<x2+y3+z5> , which is not

-T U V
L2T,

2 , as we had claimed.

In a similar way we deduce rank j^rp ^j ^'y | = rank|

= 2 As in lemma 5, this implies that
5UV,-3VUx
2VTx 5TVx

L 3TUx 2UTx

3U, 5V, ]
~T

U2
LV4J

1
M,

for some polynomial MI, and similar equations with derivatives with respect to y. and z.

Also as in lemma 5 , considering the weight w , from M[ T = 5UVx - 3VUx we obtain

( ^) w(Mi) + w(T) <: w(U) + w(V) - w(x) and similar equations for y, and z.
We claim that a) = 30 (See lemma 4)

Justification of the claim co = 30. Since 2, 3, and 5 are factors of co, then 30 divides

0). Let co = 30 A. Then from lemma 4,vi) we deduce that A divides the weight ofT.U.V.

and of anyother w-homogeneous irreducible element of R. Therefore A divides the weight

of any w-homogeneous element of V = quotient field of R. The claim will be justified if

we show that there exists a w-homogeneous element of Y of weight 1. We post-pone this

step for later. We state the required result for future reference.

Lemma 7: Under the assumptions oftheorem 5, and the assumption R = K|T,U,V| ==

K|x,y,z|/<x2+y3+z5>, there exists a rational w-homogeneous function, in the kernel D, of

.^<,>'--^'
s^.W

From co = 30,and w(T) = co/2 , etc., we'g^V^'M]) +15^10+6- w(x), or

W(M])^ 1 -w(x). Butw(x)> 1, w(Mi)^(),thusw(x)= 1, and w(Mi) = 0, and similar

equation for y, and z, so w(y) = w(z) = 1, and w(M2) = w(M3) = 0, i.e.: w = degree, and
MI, MZ, MI are scalars.

We can rewrite the system giving T,U,V in terms of M;, etc. as
5UdV - 3VdU

(Miclx + M2dy+ M^dz) U2
LV4J

2VdT - 5TdV

L 3TdU - 2UdT J

We make now a linear change of coordinates, taking x = MIX + Mzy + M^z as

20



one of the coordinates. If ? is a coordinate different from xf, then the differential system
above gives:

hence

0=
3x
3z

'T

U2
LV4J

5U3^ -3V 3U

ry2 7-2
^'V5'and

3z-

2V"

3T3-^
3z

V-5
U3

5T

3z
3V
^

2U-^
3?

are independent of z. But we have showed in the first part of leinina 6 that indepence of

these quotients with respect to ? would imply R is the algebra of polynomials in x' and y,
contradicting the assumption that R = K[x,y,zj/<x2+y3+z5> . Thus there cannot be three

exceptional w-homogeneous irreducible polynomials in R. This ends the proof of lemma 6.

Prouf of theurem 5 (conclusion). There remains only one step to finish the proof of the
theorem.

Pruuf of lemma 7: We will use the flow defined by D. We will write X], \2, \3 instead
of x,y,z. Let V; = Dx;. Let <I)(xi,X2,X3,t) = (^\,^,^) be the solution of the system of

ordinary differential equations:
cic&i
dt =Vi(d)i,d)2,(I)3) i= 1,2,3,

with initial condition <l)(xi,X2,X3,()) = (x],X2,X3).
D-IX;

Since D is locally nilpotent, then <I)j(a,b,c,t) = £ ^r^t-i , where the

polynomials DJxj are evaluated at (a,b,c). The fact that x; and D are w-homogeneous

implies that /JJx, is w-homogeneous of weight jw(D) + w(x;).
Let N e K|xi,x2.x3| be w-homogenous, irreducible, such that G = DN ^ 0,

but 02N = 0. Let ri, r2, r? e K(x,y,z) be defined as the coordinates of c&y where
N

Oo(x],X2,x3) =(ri,r2,r3)=0(xi,X2,X3,-Q.) .

Since N is w-homogeneous, then -^ is w-homogeneous, and w( -^ ) =

w(D). Thus, each r; is a finite sum of w-homogeneous rational functions, all of the same

weight equal to w(xj). Therefore r; is w-homogeneous of weight wfx;).
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.-^

^^^
.^(y';T^
^'^^^'

Claim 1: ri, r^, 1-3 are constants with respect to O/ °^
Prouf: By definition, for any polynomial P e K|^,y,z|, ^ P((I>(xi,x2,X3,t)) = k. .0 -^ -

^ ul ^- -- -^ INT^' .^-^
OP(d)(xi,x2,x3,t)). Therefore, N(d)(xi,x2,x3,t)) = N(xi,x2,x3) + G(xi,X2,X3) t, and //

G(0(x],x2,X3,t))=G(xi,X2,X3). In particular N(ri, T^, T^^O. But^hen_ ^ ^ ^\\}t)7~1^)
(&o(<I)(x 1 ,X2,X3,t)) = Q(<I)(x | ,X2,X3,t), - g(<^(x i ,X2,X3,t))) = 0(x l,X2,X3,t

Q-((I>(x|,X2,X3,t))) = d)(x|,X2,X3, -Q-(xi,X2,X3)) = d>o(xi,x2,x3), hence <5?o is constant
with respect to D.

Claim 2: R = K|xi,X2,X3| n K|i-|, r2, r3| .

Pruuf: If P   K|xi,X2,X3] n K[ri, r2, r3l , then P is a polynomial, and P is constant with

respect to /), hence P e R. Redprocally, if P e R, then certainly P 6 K|x,y,z| , also

P(x|,X2,X3) = P(<I>(xi,X2,X3,t)) for all t, in particular for t = -^ , thus P = P{\-\, 1-2, 1-3) <=

K'r'-'- "^
Claim 3: Set A = co/30, then A = g.c.dj w(h) : h   V, h?'<), h is w-homogeneou.s}.

Prouf: R is generated by T, U, V, and w(T) = co/2 = 15 A, w(U) = co/3 = 10 A, w(V) =

(0/5 = 6 A. Any other w-homogeneous irreducible polynomial in R has weight (0 = 30 A. It

follows that the weight of any w-homogeneous element of V is a multiple of A.
,uv.

Moreover, w(^-) = (10 + 6 15) A , so A = g.c.d{ w(h) : h e V, h^O, h w-
homogeneous).

Claim 4: r; ^ 0 for i = 1, 2, 3.

Prouf: Assume rj = 0. Then \z ^ 0, otherwise R c K(r3), but then V, which equals the

quotient field of R, would be contained in K.(TT,) , contradicting the fact that transcendence
degree ^//K = 2. Likewise. if n =0 then r3 ^0. Let A i = g.c.d.(w(x2),w(X3)}. If A] =

n2w(\2) + n3w(x3) , then r,,2 r^ is w-homogeneous of weight AI . But A = g.c.d{ w(h)

h e "¥, h?t(), h w-homogeneou.s}. Therefore A divides A| = co(r!,12 r1^3 ) . Conversely,

since we are assuming 1-1= 0, then for any P <= R, P(x,y,z) = P((),r2,r3). If in addition P is

w-homogeneous, then P is a w-homogeneous polynomial in r^, TT, . Therefore w(P) is a

linear combination with integer coefficients of w(rj) = w(\i) (i =2, 3 ). Hence w(P)is a
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7
multiple of A|. This implies that A[ divides A, §p A = AI.

As in the proof of lemma 6, before the claim co = 30, we have
~T

U2

-V4J
MS

5UVy-3VUy
2VTy 5TVy

L 3TUv 2UT,

for some polynomial MZ, and similar equations for the derivative with respect to z. Also as

in lemma 5 , considering the weight w , from M^T =5UVy-3VUy we obtain w(M2) +
w(T) ^ w(U) + w(V) - w(y) and a similar inequality for z. In particular : w(Ms) + 15 A <

"7. °
^ 10 A + 6 A - w(^), so w(M2> < A - w(y), but w(y)'is a multiple of A, thus w(Mi) = 0 ,

and w(y) = A. Likewise w(M3) = 0, and w(z) = A. But if M2, M3 have weight 0, then they

* are in ]^. We consider the following w-homogeneous change of coordinates 'X = x, y =

M2y+M,z,andz =M3Z Then , ^=^ - j^By so

5U^ 3V 3^
c)z 3z'

2V3T-5Ta^
3z 3z'

3T3U
a?

2U"

~T

u2
LV4J

'T

U2
Lv4j

3z J

=0 .

M3

5UVz-3VUz
2VTy. - 5TVy,
3TU., - 2UT7, J

M2

5UVy-3VUy
2VTv 5TV,

L 3TUv - 2UTy J

V5 . V5
This implies that -^ , and ^y are independent of z. But T, U, and V are irreducible, so

they must be independent of z as well. In the first part of lemma 6 we showed that this
would imply R = K|x,y| contradicting the fact that R = K|x,y,zJ/<x2+y3+z5>. Thus r] ^
0. In a similar way, T^^^^TT, .

^^^^^s^-
Now \ve^an finish th^proof of lemina 7. w(ri) = w(x;) for i=l,2,3.

Moreover, {w(xi)| i=i,2.3 have no common factors, hence 1 = n\ w(xi) + n^ w(x2) + m,

w(\3) for some integers n; . Then r^11 r^2 r^3 is a w-homogeneous element of V, of

weight 1. Therefore co/30 = A = g.c.d) w(h) : h e V, h?t<), h w-homogeneous} divides 1
so OL) = 30.
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Proof of theurem 6. We will show a more general version of theorem 6. In order to
state the stronger version we introduce some notation. Let K|xi,..,Xn] = , 05_ M^ be

£ 0

the decomposition induced by the locally finite derivation D = £; V; 3;. Let V be the ideal

generated by YI,.., Vp. Consider the following tower of fields:

K^q(R)^q(M())^K(xi,..,Xn),
l( \

where R = Ker(D), M() = Un>o Ker(D"), q(.) = quotient field of (.).

Let ti = transcendence degree q(R) / K ,

t2 = transcendence degree q(M()) / q(R),

f. = rank of the spectrum of D,

g ^j 1 if there exists T 6 K(xi,..,Xp) such that /)T = 1;
[0 otherwise.

It is shown in |Zur| that t] + t2+ £ + f. = n.

Theorem 6': With the notation introduced above, tz + f. < ht(V).

Lemma S. With the notation as above, tr.deg.q(Mo) / q(R) ^ e.

Pruuf. If e = 0, then R = M(). Indeed, if OJ+ If = 0 ^ DJf with j ^ 1, then g = OJf e R,
/JJ-'f. . . ^_ . ... " _. . . " ^:

and so T = -^- is such that DT = 1, contradicting 6 = 0. This shows Ker(/)J) = Ker(D) for

j > 1. Hence M() = R, tr.deg.q(M())/q(R) = 0.
If£= 1, and tr.deg.q(M())/q(R) = 0, then there is nothing to prove.

Ife= 1, and tr.deg. q(Mo)/q(R) ^ 1, then let T <= K(xi,..,Xn) be such that /)T

= 1. A straightforward argument shows that M(J c q(R)(T), hence tr.deg. q(M())/q(R) =

Curullary. Krull dimension M() ^ e + t|.

Prouf. From Theorem 3 we know that M() is a noetherian ring. Moreover, M() contains the

field K, and it is of finite transcendence dimension over K. Therefore, Krull dimension M()

= tr.deg. q(M())/K = tr.deg. q(Mo)/q(R) + tr.deg. q(R)/K ^ £ + t|

.^ .... .^
Proof of theorem 6'. Let P be a prime ideal of K|xi,..,Xnj ,P 3 V , with ht(P) =

ht(V). Then, n = Krull dim K|x|,..,xJ = Krull dhn(K|xi,..,Xn]/P) + ht(P). But if ?. ^ 0
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^^
,^ ^
^\\\^

,^ c^^
^ rt/p.^

9 V^P>c!S^fn^ ^'\'-^'/ ^p>|
/ ^

thenM^cP, because M^cD(M^)cVc T. Therefore, K|xi,..,x,J/y - M()/(M() n

T),and so Krull dim(K|xi,..,Xn|/P) < Krull dim M() ^ E + ti. Thus, t] + t2 +e + f. = n < e

+ ti + ht(P), from where we get t2 + f. <: ht(f)

Proof of theurem 7. Suppose -A and fi are fixed points of D. Let J = ^ nfi Let A
© M^, be the decomposition of A induced by D Since whenever \ ^ 0 we have M^

c D(W c J , it follows that A/J - M()/ (M() n J ). But A/J = KxK .

We claim that if R = K, then M() = K as well. Indeed, if R = K, and M() ^ K,
then there exists some element f e A such that D2f = 0 -fc Df, hence Df e R = K. Then T =

(Df)-1 fe A, and OT= 1. But D admits fixed points -A and fi , so 1 = OT e D(A) c: A
n£ , contradicting maximality of ^4 and £. Therefore if R = K, it follows that M() = K. In

particular, if R = K, then M()/ (M() n J ) is either 0 or K, neither of which is isomorphic

to KxK as ring. Hence, KxK = \/J = M(J/ (M() n J ) implies R ^ K. In other words, if

D admits at least two fixed points then D annihilates some element of A other than those
elements in K.
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