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Abstract: Let K be an algebraically closed field of characteristic zero. Let A be a finitely
generated algebra over the field K, then any locally finite derivation [ of A admits a
decomposition D + Dy , where Dy is semisimple, Dy is locally nilpotent, and D commutes
with Dy . The ring of generalized constants of a locally finite derivation of A is finitely
generated. The ring of constants of a locally nilpotent homogeneous (non trivial) derivation
of K[x,y,z| is a ring of polynomials in two variables. If 1) has at least two fixed points,
then D anihilates a non-constant polynomial. In case A = K[x{....,xp], the rank ¢ of the
spectrum of a locally finite derivation is less than the height of the ideal V generated by
{Dx1,., Dxy ).

Introduction.

In 1958, M. Nagata |N| settled in the negative the problem of finite generacy
of the ring of invariants of a group action on polynomial rings. Nagata exhibited an
example of a subgroup G of the group of automorphisms of k|xj,....x32| with k a
sufficiently big field, of any characteristic, such that ring R of invariants under the action of
G is not finitely generated.

A closely related problem is the problem of deciding whether the ring of
constants R(D) of a derivation /) of the ring k[x{,....xp| is finitely generated. Recently H.
Derksen showed that Nagata's example can be cast in the form R(D) for some derivation [,
thus for a general derivation D the ring of constants R(1)) need not be finitely generated.

There are some positive results in low dimension:
if n=1 and D=0, then R(D)=k,

* This research was partially supported by NSERC grant OGP0105871.

Mathematical subject classification: 16W25 ( 13N99, 12H20) .



v(olovr

it n=2 and D). then R(D) is finitely generated (Zak], [E[,
if n=3, and charact(k)=0, then R(D) is finitely generated | Zar]|.

We are interested in a distinguished class of derivations, namely the class of
locally finite derivations. In the case of K= —the field of complex numbers— locally finite
derivations of T[x{...,xy] are in one to one correspondence with smooth morphisms from
T to Aut(T|x1,...xn]) |CZ], [VvdE]. It is of interest to consider the ring of constants for this
type of derivations. The goal of this work is to present some result about the ring of
constants of a locally nilpotent homogeneous (non trivial) derivation of T[x,y,z]. We will
show that any such ring of constants is a ring of polynomials in two variables. This is a
step towards extending results of [R] to three dimensional space. We will also present other

useful results about locally finite derivations of finitely generated rings.

Definitions, notation:

Let A be an algebra over a field K (we will consider only commutative
algebras with unit). Let D:A —A be a K-derivation (K-linear, satisfying Leibnitz's rule).
The linearity of D allows us to endow A with the structure of a K|D{-module.

We say that D is locally finite iff A is a torsion K|D|-module, i.e.. for any P e
K[x1,...xpl, there exist a "differential operator” 0 # f(D) = D" + kD1 4.+ k, € K|D|
such that f(D)P=0. We say D is locally nilpotent iff every element of A is annihilated by a
power of D.

The set Ker(D) consisting of — () and of — eigenvwatt®s of D corresponding to
the eigenvalue 0 is a subring of A. It is called the ring of constants of D. 1t will be denoted
by R(D). By extension, the set Uyz Ker( D1) will be called the set of generalized

constants of 1.

T The spectrum o(D) of D as a K-linear map is a groupoid of the additive group
(K,+) [CZ]. Let ¢ be the rank of the subgroup generated by o(D) in (K,+). We will call 7
the rank of o(D).

Let m be a maximal ideal of A. We will say that w is a fixed point of the

derivation [ if and only if Df € m_for all f € A. Thus, in case A = K|x{....,x,).m = { f

f(ag,..ay) =0} with (ay....ap) € KM, and Dxj = Vi(x1....xy) for i=1,..,n we have: m is

a fixed point of D iff Vi(ay,..,ap) =0 fori=1...,n.
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Results.
Let K be an algebraically closed field of characteristic . We will prove the

following facts. )
W.

Theorem 1: (Jordan decomposition) Let A be an aﬁ__’ebru over K, let D:A —A bea

locally finite K-derivation, then there exists a unique decomposition D =D+ Dy, , where
Dy is semisimple, Dn is locally nilpotent, and Dy, Dy | = 0. Furthermore, for all A € K,
Ker(Dg —A) = Up>1 Ker( (D =) ).

Theorem 2: Let D:A —A be a locally finite derivation, A finitely generated as K-
algebra, then there exists n, and a derivation J: K[x;,...x,] — K[x1,..,x,] such that
i) 7 is locally finite,

ii) A is a homomorphic image of K[x1....x,],

iii) the following diagram commutes:

Kix{,..xy] ——— KIxi....x,]
i}
l i
A — A
D

Theorem 3: Let D:A —A be a locally finite derivation, with A a finitely generated K-

algebra, then the ring of generalized constants of D is finitely generated.

Theorem 4: If D, Dy : K| x1,...xp] = K[x]...,xp] are non-trivial derivations, /) is

locally finite, and D = F(x|...,xy) Uy for some non-constant polynomial F, then [, is

locally nilpotent, and DyF € K. !
NP g

Theorem 5: If D:K[x.y.z] — K[x,y.z| is a locally nilpotent derivation, D # (), D
homogeneous with respect to a weight w ( with w(x), w(y), w(z) > (1), then the ring of

constants of [ is of the form K[A,B] with A, B algebraically independent.

Theorem 6: Let D:K[x|....xn] = K|x1,...xp] be a locally finite derivation. Then the runk
¢ of (D) is not gfater than the height of the ideal V generated by {Dx1,.., Dx, }.le: £ <
ht(V).
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Theorem 7: Let :A — A be a locally finite derivation, with A a finitely generated K-

algebra. If D has at least two fixed points, then ) annihilates an element of A\K.

Proof of theorem 1. Since D is locally ﬁniteMA is a K[D]-torsion module, this
implies the existence of a decomposition A = : e@o My , where o c K is the set of

eigenvalues of D (as linear map), M), is the set of elements of A that are annihilated by a

power of (D-A) , i.e. My, = Upz| Ker((D-A)M). Furthermore o, which is the spectrum of

D, is closed under addition. Moreover: My, My c My 4 forany A, pe o.See |CZ|.
Define Dgas Dy(P) = % APy, ifP= EL Py, . Clearly Dy is a derivation of A.

Since D(My) € My, for all A, it follows that DD¢= DD = AD on My , and so D commutes
with D. The derivation g is locally finite, because if an element P is writen asP=_ X _

e F

Py, with F a finite set, then ) f'lF (Dg—A) P=0.The derivation Dg is semisimple in the
(=

sense that the ring A admits a direct sum decomposition A = N EGLJG My . and for each

A, My = Ker( D, — A).

Let Dyy =D — Dg. Clearly Dy, is a derivation of A , and Dy commutes with D).
Moreover, if P e My then DyP = DP— DgP = (D —L)P, and so D; P=(D-AM"P=0if

n is sufficiently big.
Since every element of A is a finite sum of elements in some of the My s, it follows that
every element of A is annihilated by a power of DT] . Thus Dﬂ is locally nilpotent.

Note that Ker(Dg—A) = My, = Ups Ker( (D = )1 ).

Finally, we show uniqueness. Assume that D =\o(D \s\up6(~))s +
ﬁﬂ . with |/js,/jn| =0, [i; semisimple and Bﬂ locally niM}\ , and
suppose (D — AP =0, /ji"] P=0.

Since D and Dﬂ commute, then

(Dg - Mk p=(H A [y ik p = n+k
|

D = (0, n+k-h p
O<h<n+k Cho " (-y)

=1{)

because in each term of the last sum either h > n or n+k—h > k. But [ has simple

eigenvalues, so (D~ AP = 0. Thus, O = D on My, for all A, and so g = D , and [7]] =



Dy. This shows the uniqueness of the decomposition of 7).

Proof of theorem 2. Let aj..., ax be generators of A as K algebra. Since D is locally

finite, there exists m such that DMa;j= ¥ Olij Dia; fori=1,. k.
0<)<m

In the ring K| {xjj: 1 <1<k, 0 <j<m}]| of polynomials in kxm variables

consider the derivation [} whose action on the generators is given by
Xiv+l if v+l<m ,

Dxiv = .
()s§<mai~i xjj if v+l=m.

Let m: K[(xjj)] — A be the K-algebra homomorphism such that T(Xjj) = Diu; .

Clearly n D =D n. [ is locally finite since it is linear in (xij)ij-

Proof of theorem 3. If A = 16690 My, is the decomposition induced by [, then from

theorem 1, the ring of generalized constants is My = Ker(Dy). Thus without loss of
generality we may assume D = Dg . Let my, be the projection of A onto My . Let x.... X,
be generators of A as algebra over K, and let x; = % xj» be the decomposition of x;j as

sum of eigenvectors of D. Note that in these sums the index A can be restricted to be in a

finite set F. Each monomial in x;,..,x, can be written as

v kix
xV=T1x" =% ¢ T x21
P kYA

where v denotes a multi-index of non-negative integers: v = (vy...,vp), k also denotes a

multi-index of non-negative integers k = (kix)1<i<n. Ae F » and cky is a natural number

depending upon k and v. But _f{ x:(ki7k is an eigenvector of [ corresponding to the
i,
eigenvalue 2);\ kix A, therefore
1.

ki ‘

T(xV)y= X cCky [l x.
) kes Vi i

where S = { (ki) : % kixn A = 0}.
1,

For each multi-index k € S, let Py = q x:(ki}‘. Since for each monomial xV,
1,

T(xV) is a linear combination of the Py's, then the ring of generalized constants My is
spanned, as vector space over K, by the set {Px : k € S }. Theorem 3 will be proved if we

can show that there exists a finite subset G of S with the property that forany k € S, kisa



linear combination of the elements of G with non-negative integer coefficients, i.e.: k =

- . . - 1‘1(1
Y ng g, withng 20, integer. Indeed, if that is the case, then Px= Il P ®, and so
ge G °© = ge G E

M= C|{Py: g€ G }|. Thus, we look at the set
S =1 (kin)1<i<n, AeF ¢ % kin A =0}
i,

Let Aq... Ay, be elements of F, linearly independent over the rationals, with h maximal. so

that any other element of F can be written as a linear combination of A;,..Ay, with rational
coefficients. Then the equation Zk ki A =0 that defines S is equivalent to h linear
L,

homogeneous equations in (kjy), with rational coefficients. Upon multiplying these
equations by a common multiple of the denominators of the coefficients, we may assume
the coefficients are integer. Hence we are in position to apply the following lemma, and

that concludes the proof of theorem 3.

Lemma 1( existence of generators for integer linear programming homogeneous

problems, or Gordan's lemma) Let L: Z" — 7™M be a linear map. Let S = { x=(xj....xp)!
)

e Z": Lx =0, xj=0foralli }. Then there exist s,.., sy € S such that S = { 'Zl njsj:
j=

nje Z,njz0 }.

Proof lemma 1. Let W ={ xe R": Lx =0, x; 20 forall i, Zxj=1}. W is a compact

convex polyhedral set. If W=  then S = { 0 }, and there is nothing else to prove.

Assume W = . Then W is a convex polygon, and as such, W is the convex hull of a

finite set : W = convex hull of { W], ey v\(/k }. We claim that the vertices of W have rationul

coordinates. Indeed, let v = (vy,..,vy,)l € W be a vertex. We proceed by induction on n. If

n=1,then W = {1}, and the claim follows immediately. Let then n> 1. Assume first that

vi >0 forall i, then we claim that v is the unique solution of the equations LX =0, [<21<"
SIS

xj = 1. which have rational coefficients, hence v have rational entries. To justify our last
claim, assume LX =0, Z xj =1 and consider v +&(Xx — v),and v —g(X — v). Ife >0 is
sufficiently small, then all entries of v £ &(X — v) are positive, and so these two vectors
are in W, but v lies on the segment with end-points v £ &(x — v) . Since v is a vertex of
W it follows that X — v =0,

Assume next that vj = () for some i, then applying the inductive assumption to
the intersection of W with the hyperplane x;j = (), we conclude that the remaining

coordinates of v are rational.



Letsi=mwj fori= 1, k, where mis a positive integer, big enough so that

X _ . .
— & W, hence it 1s a convex combination of

1<1<n

sie Z". Let x € S, x#0. Then

k
w,..,Wk. Therefore, x can be written as x = z Hi sj with g = 0. We split g as the
i=1
sum of its integer part and a real number in the interval [0,1): pj = |yj] + 6j, 0 < 0j <
k k
I.Then x - X [Wilsi = 9. 0; s
i=1 i

=1
k
is in S, and has norm bounded above by ¥ lisill . But the elements of S have non-negative
i=1

integer coefficients, thus there is only a finite number of points in S with norm less than ¥
f

lsill , say Sk41,...sr. It follows that x = ¥ njsj for suitable non-negative integers
=1

Ny,..., Nf.
Proof of theorem 4. We will show a more general version of theorem 4. We will show:
Theorem 4': Let K be an algebraically closed field of characteristic zero, A an algebra

over K without zero djvisors, D and D, K-derivations of A, D # (0, D =F D, for some F
e A, 0 Fi A =0.1f D is locally finite then:
120

i) DF = oF for some 0. € K,

ii) the spectrum (D) of D is Nyoe =1 0, o, 20, 30t ...},

iii) if o0 =0, then D and Dy, are locally nilpotent,

1v) if o # 0, then
a) all eigenvalues of D are simple, i.e. Ker(D — A)2 = Ker(D — A) forall A e K.
b} A = R|F|, where R = Ker(D) is the ring of constants of D,
¢) D is locally nilpotent.

Proof: Assume first that D F = (). then DF = OF, so 1) holds with o = (). Assume next that
DoF#0. Let A = N E@G My, be the decomposition of A induced by D. LetPe A,P=X

Py, .The support of P is the set supp(P)={Ae K:Py#0 }.
We claim that supp(D,F) = {0}. This claim follows immediately from the next

lemma, which is a mere reformulation of a result due to J.F. Ritt. [Zur, section 7.3].



Lemma 2: Let K be an algebraically closed field of characteristic zero, A an algebra over
K without zero divisors, F and B in the torsion part of A as K[D}-module, DF=FB # ().
Then supp(B) = {0}.

[ Proof of lemma 2. Suppose supp(B) # 0. Since B # (), then its support is not empty,
therefore there exists a Q-linear map f: K— Q, such that f assumes a positive value on
supp(B). Let A € supp(B) and p € supp(F) be such that f(A) = maximum f(supp(B)) > 0,
and f(i) = maximum f(supp(F)).

Note that F =F, + (terms supported where f <), B = B), + (terms supported
where f <)), hence FB = F; By, + (terms supported where f < p+4), and since A has no
divisors of zero then Fy By # 0, so u+A = max f(supp(FB)). But

Fy By, = part of FB supported at i + A = part of DF supported at i + A = DFjj4 =0,
since f(lL+A) > f(U) , so W+A ¢ supp(F).

Proof of theorem 4'(continuation). If F = Le . 2|;7p(F) Fy, , then equating terms with

like support on both members of DF = FDF, we get DFj = Fy DyF for all A e supp(F),
and so (D~ MFy = (DoF =M Fy. A s‘traightforward induction shows that for all k > ()

Qu (*) (D —Mk+IFy = G K DI(DGF = 1) (D = MK=Fy, .
o)
g.c\
cA s Nezfa, ?’Tdke o € supp(F), so that Fy # (. Fy is annihilated by a power of (D — o). Let a be such
Y
0’“"‘“6 o = = —
€7 Y:‘ that (D — )2 Fg # 0, but (D —o)a* 1 Fy = 0. If DoF — o0 # (), from lemma 2 we deduce

. that there exists an integer b = 0 such that DP(DF — o) # 0, but Db”(DOF —o)=0.
Taking k = a+b and A = oL in (*), we get () = (‘l+h) Db(DF — a) DAF which is absurd,

since neither DP(D,F — o) nor DaF, is zero, and A has no zero divisors. Therefore [),F -
= (. This shows i). ~evds Fpe o Gl et
We show next that o(D) =N, o . Let A € o(D). Then, there exists Pe AP

# (), such that DP = AP. Since ]Q) FI A = (), then vt;(;’uln fm%%__m%‘ﬂmdl su$h that F N:“ pe (F}

divides P in A, i.e.: P = Fi B for some B € A, j maximal. From DP=AP ,and DF = o
we get FD(FIB) = A FI B, hence Fi+l1 DB = (A — jo)Fi B = (A — jou) P. Thus, if A # jor
then we deduce that Fi+! divides P in A, contradicting the choice of j. Therefore A = jar.
and so (D) < Ng 0. The other inclusion is immediate, since D Fi = joe Fi | so N, 0.
o(D).

From o(D) = N, o it follows that if o = 0, then the only eigenvalue of D is (),



so D is locally nilpotent. Moreover if o, = () then Dk = Fk .Df‘; for all k , thus if an element
of A is annihilated by DK, then it is annihilated by D("; as well. Since in case o = () each

element of A is annihilated by some power of D, it follows that Dy, is locally nilpotent.

Finally, we show iv). Assume o # (). We claim that Ker(D — jo) = FI R,
Clearly any element of A of the form Fi B , with B € R = Ker(D) satisfies (D —jo)Fi B =
0. Conversely, if (D — jo)P = 0, write P as P = FK B, with k maximal. Then 0 = (D — jo)P
= (k - j)o Fk B + Fk+1D B, thus if k=j then Fk+1 divides FKB, contradicting the
maximality of k. Hence k = j, DB=0), and so P € FiR.

Now we can show that all eigenvalues of D are simple. If (D —jo)2 P = () and
(D —jo)P =0, then (D — joyP is in Ker(D — jor), and so (D — jo)P = FIB for some B#(), B
e R. Write P as P = F C, with m maximal. Then FIB = (D —jo)P = (D —jo) F"C | s0
FIB = (m — j)aFMC + Fm+1)) /C. F does not divide B, indeed B € R, so supp(B) = {0},
whereas for any H € A the element FH is supported at o + ho., for some integer h > 0. It
follows that j > m. But if j > m, then F"*1 divides P = F"C, which is absurd. If j = m,
then B = F D,C, hence F divides B, which is absurd as well. Therefore (D — jo)P = 0.

The last two paragraphs imply that any element of A whose support is {jo} is
in FIR. But every element of A is a finite sum of elements with support of the form {jor} (c-()
for some j, hence A = R|F]. ot DoF = F

Dy, annihilates all elements in R, and Dﬁ FI =0 for all k > J. Therefore any

element of A is annihilated by some power of Dy, or in other words: Dy, is locally nilpotent.

W

A g A \
v W

Proof of theorem 4 (conclusion). Let{ K be an algebraic closure of K. We extend ) and
D to derivations of K[x1...,xn} as K-linear derivations. Since there exists f € KID] <
K|[D]| such that f(D)xj =0 fori=1....n, and f# 0, then D is a locally finite derivation of A

= K|[x1,...xp]. We may apply theorem 4" and conclude that DF = 0. F for some oo e K,
but F and D have coefficients in K, so o =pF—F e K(xy...xy) n K = K. Furthermore. D,
is a locally nilpotent derivation of K|xj...,.xp]. In particular, any P € K|[xj,...xp] 18

anilated by a power of Dy,. Thus, 1), is a locally nilpotent derivation of K|x|,...Xul.

Proof of theorem 5. First we explain the notation and statement of the theorem. By a

10



weight in K[x,y.z| we mean a function w: K|x,y,z] = Z U {-e=} defined as follows:
w( ¢ xlyizK) = ai + Bj +yk

for all non-zero monomials ¢ xlyizK (a, B, y are given integers. ¢ e K\{0}),
w(0)) = -eo,

and if P = X ajj xiyzk, then
w(P) = ni]i'?(x w(ajjk xlyizK) .

A polynomial P is said to be w-homogeneous iff there exists o such that P =

.2 ajjk xlyizk and in that case we will say that P is w-homogeneous of weight w.
oi+Bj+vk=m

A map L: K[x,y,z] = K|x,y,z] is said to be w-homogeneous of weight @ iff

B WD)

for every n, L maps w-homogeneous elements of weight n into w-homogeneous elements %"’('1?”“"“'( k
—

of weight ® + n. We will write in this case w(L) = w.

Occasionally we will consider more general maps: the weight w induces a
grading on the ring K|x,y,z], and so it makes sense to talk about w-graded K[x,y,z]-
modules, and w-homogeneous maps between such modules. For example we can consider
the exterior algebra A"K|x,y.z|. In this case, since x,y,z are w-homogeneous, we may
extend the weight w to A*K|[x,y.z]) in such a way that the exterior derivative d is w-

homogeneous.

Now we present the proof of theorem 5. Without loss of generality we may
assume that w(x), w(y), and w(z) have no common factors. Note that /) and w extend to
the field K(x,y.z) ( w is to be extended according to w(N/G) = w(N) — w(G) ). We will
say that a fraction r € K(x,y,z) is w-homogeneous iff r can be written as r = N/G, with N

and G w-homogeneous.

We consider separately the cases w(D) < (), and w(D) = (). 09 ]() - (0 ab
CIWIS a
e (ryhz 0
Case w(D) < 0. Without loss of generality, we may assume that (} < w(x) < w(y) <
w(z). If we let Vi =Dx, Vo =Dy, and V3 =Dz, then V| is homogeneous of weight w(D) +

w(x) < w(x), hence V[ must be a constant, i.e., V| must be of the form V| =c¢. Vo is

homogeneous of weight w(D) + w(y) < w(y), hence Vo must be of the form Vo = f(x). V3

is homogeneous of weight w(D) + w(z) < w(z), hence V3 must be of the form V3 = g(x.y).

Sub-case Vi # 0. If V| # () we may rescale x and assume V| = 1, then 0 = w(Dx) =
w(D) + w(x), so w(x) =—w(D) > 0. f(x) is either O or a w-homogeneous polynomial of

weight w(D) + w(y) = w(y) — w(x), hence { is of the form f(x) = ¢ x" , with

— W
’b-—a”’f‘q_ll a'j+3(»l‘7/a?_ .



_ W(y)-wx)

w(x)

n and ¢; a constant (possibly equal to ().

We look at the flow corresponding to D:
x'=1, yi=cx",  z'=gxy).
This system can be integrated. If d(x,y,z,t) denotes the solution at time t that is at (x,y,z)
when t = (), then

t

(x+t)n+1 — xn+l ‘ . (x+s)n+1 — xn+l ,
s ,Z+  |g(x+s,y + ¢ o ) ds

0

D(x,y,z,t) = (X +t, y + ¢7

A polynomial P is constant with respect to D iff for all t P(x.y.z) =

P(®d(x,y,z,t)). In particular, taking t = —x we get that for any P constant with respect to .
X
n+l

an+l _oyn+
Pix,y,z) = P(0, y -cg):l—H—, z+ fg(x+s, y + cz(x+5) a
0

n+1

yds ) € K|A.BJ.

4
xh+1

: an+l _ yn+l
with A=y—cy—r and B= z+ fg(x+s, y + ¢ (2+5) 2
0

n+l

n+1 ds .

D =99, Dw Dz Vi 9zl (x,\n
Sub-case Vi =0,Dy = 0. If Vi = 0. and f(x) = 0, from D # 0 we deduce g(x.y) # 0.
We find that the flow corresponding to D is ®(x,y,z.t) = (x,y, z + g(x,y)t). Therefore, if

P is constant with respect to D and we sett = — in P(x,y,z) = P(d(x,y,z,t)) we

g(x,y)
deduce that P(x,y.z) = P(x,y,00). Hence the ring of constants of D is K[x,y]|.

D = ({2()7 +6(n,5l 0,
Sub-case Vi =0,Dy = 0. If V| =0, and f(x) # 0, we can also find the flow

corresponding to D. If G(x,y) is defined by the conditions G(x,()) = 0, %g(x,y) = g(xX.y),

then the flow is

Dlxy,zt) = (x,y +tf(x), z + OCYHI) =Gley) y

f(x)
Therefore, if P is constant with respect to D and we set t = —f():(_) in P(x.y,z) =
P(d(x,y.z.t)) we deduce that P(x.y,z) = P(x.0, z —%{%ﬂ ).
N G(x,y)
Let G(x,y)= Z g4(x) y§ . Cancelling common factors in x, we write—f‘('j)L
s=1 ’

12



N
Z g.(x) ys N
s=1

= ——— . Then, the polynomial B = zf(x) + 2 g (x)y$ isirreducible in
f(x) s=1

KIx,y,z|. Note that DB = (). We claim that in this sub-case, the ring of constants of [ is
K|x,B]. We justify our claim by induction on degree of P with respect to z:

Let P e Ker(D), P ¢ K. If deg; P =0, then P(x,y,z) = P(x, 0}, z — %ﬂ ) =

P(x,0,0) since P does not depend on z, thus P € C[x.B].

If deg, P > (), then we write P(x,y,z) as P = P(x,0,0) + U(x.y,z), with
U(x,0,0) = 0. Since Dx = (), then P(x,0,0), and consequently U, is in Ker()). Moreover
deg,U =deg, P. Thus, to show that P is in K[x,B] it is enough to consider the case
P(x,0,0) = 0. Assume then that P(x,0,z) = z H(x, y, z) for some polynomial H. It follows
that

P(x.,y,z) = P(x,0, z - (—Jf(—x)ﬂ ) = P(x,0, —B.— )= L H(x, 0, —B—) . hence B divides P
(x; T(x) T(x) T(x)

in K(x)|y,z], but B is irreducible in K|x,y,z|, so B divides P in K|x,y,z], i.e: P(x,y.z) =
B(x,y,z) L(x,y.z). Since P and B are in Ker(D), then so is L. Furthermore, deg,L = deg,P
1. hence by induction we conclude that L € K[x,B], and therefore P € K|x.B].

This tukes care of theorem 5 in case w(D) < (.

o )
Case\w(D) > 0. Let W={fe K(x,y.z) : Df =0} ,H={fe K(x,y,z) : Df =0 and f is
w-homogeneous}. = heeV | £ w-%myoﬂ

We can apply the "t+e+£" theorem [Zur, section 8]. Since D is locally

nilpotent, then ¢ = (). Since D # ), then there exists g € K(x,y,z) suchthat Dg # 0. If k > 1
k-1g
is such that Dk+lg = (02 DKg then [)( D}j—k&) =1, s0 € = 1. Therefore for t =
4

(transcendence degree of W over K) we have t=n — (e+¢) =3 - (1) = 2.

% is the quotient field of the ring of constants of D in K[x.,y,z], because if &
e W. £=A/B,then A=E& B, and since & is constant with respect to D, then DKA =&
DB for all k. Take k > 0, maximal such that DKB # (), then Dk+IB = (), and so Dk+1A = ().
Therefore DKB, and DKA are in R = % M K|x,y.z| = ring of constants of D in K{x.y.z|.
But € = DA fie
DkB

For future reference, note that if £ is w-homogeneous, and £ € W, then & can

, 50 % = quotient field of R . P e H

be written as quotient of two w-homogeneous elements in R. Indeed, if € is w-

13



homogeneous, then in the previous argument we can take A and B w-homogeneous. Since
DA
o I8
DkB
—_—

D is itself homogeneous, then DKA, DKB are w-homogeneous for all k. Thus & =

quotient of w-homogeneous elements of R.

. M . .
Also for future reference, note that R is a homogeneous subring of K|x,y,z|.

in the sense that if A € R decomposes in K|[x,y,z] as A =¥ Aj with A; w-homogeneous,

then Aj € R for all i, because D is w-homogeneous, so DA =0 =X DA, , hence each
ﬁ———_—\' gt T,

homogeneous component must vanish: DA; = 0 for all i.

Lemma 3: H is a subfield of W of transcendence degree 1 over K.

Proof: Since % has transcendence degree 2 over K, there exist E, e W ,and N €
K(x,y,z) such that £, m and N are algebraically independent. Consider the derivation of
K(x,y,z) given by
o HEM. .
e )
JENMN)

: : : . d(a,b,c
(here and elsewhere, J(a,b,c) = jacobian of a,b,c with respect to x, y, z = o )

d(X,y.z)

). This
derivation coincides with D on &1, and N. Therefore
g, .
p-pNtEN)

1En.N)
In particular, J(E.n, .) # 0, or alternatively, dEAdn = 0.

. . . ! ) A B .
Since % is the quotient field of R, we can write E= G’ n= G for some

1AAdB .
A.B.G in R. But déadn = (—(/;\2( - - aB§ dAAdG + % dBAdG  # 0, hence either

dAAdB, dAAdG, or dBAJG is not zero. Without loss of generality we may assume that

dAAdB # 0. Butd is a w-homogeneous operation, so by decomposing A and B as sum of

w-homogeneous polynomials and using the linearity of d and A we find that there exist

U.V € R, w-homogeneous and such that dUAdV # (), or equivalently, U,V algebraically
independent. If w(U) =0, then Ue H. If w(V)=0,then Ve H. If w(U) #0 or w(V) %

w(V)
0, then % € H\K. In either case, there is f € H\K, so transcendence degree H/K >

1.
If £ e % \H is algebraic over H then w(£) = 0. Indeed, otherwise we may

assume without loss of generality that w(E) > 0 (replace & by £-1 if necessary). If £

14



n-1
satisfies EN = ; ¢j &, with ¢je H. Then nw(f) = w(EM) = w(Z ¢j &) < mjax w(cj &l <
J=t

(n—1)w(E), which is absurd. We claim that transcendence degree W/H > 1. From the
previous observation it is enough to find an element of W of non-zero weight. But this is
easy: because w2(), w#(), so there is some homogeneous polynomial A with w(A) > (). Let
k >0 be such that DKA = () = DK+1A | then DKA € W, and w(DKA) = kw(D) + w(A) =
w(A) > ().

Finally 2 = trans.deg W /K = trans.deg % /H + trans.deg H/K > 1+ 1, so
trans.deg H/K = 1.

Corollary: H = K(§) for some £ € H\K.

Proof of corollary: K ¢ H < K(x,y,z), and trans.deg H/K = 1. The conclusion
follows from Liiroth theorem.

auitho
Proof of theorem 5 (continuation): Let &£ = N/G with N, G € R = Ker(D), w-

a\"‘“w woon

homogeneous. Any common factor of N and G in K|x,y,z| must be w-homogeneous, and

must be in R, hence we may assume that N and G have no common factors in K[x,y.z|.

R is a subring of K|x,y,z], hence a domain. Moreover, since an element is

irreducible in R iff it is irreducible in K[x,y,z], then R is a unique factorization domain. We

look next at the irreducible elements of R, since the generators of R must lie among them.

Lemma 4: with the notation just introduced, setting m = w(N):
i) for every irreducible w-homogeneous P € R, there exists a natural number A, and .3 €
K such that P*=oN + BG,

11) each of N and G has one and only one irreducible factor, i.e: there are A, B irreducible

w-homogeneous elements of R, such that N = AP, and G = B4 for some p,q = 1,
integers,

1) p and ¢ in ii) are relatively prime,

iv) let A = g.c.d(w(A),w(B)). then for every irreducible w-homogeneous P € R\ K[A.B] .
the exponent A such that PA = ()'.Nmal factor of A. Different

irreducibles have relatively prime corresponding exponents.
v) if 11 1s any generator of H, then the weight of the numerator of 1 (when 1) is written as

quotient of two polynomials without common factors) is &3 = w(N).
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vi) the exponent A corresponding to a w-homogeneous irreducible element P € R
according to i) is given by A = wiP) and so it is independent of the choice of generators

of H.

Proof of lemma 4.

w(G)
i) If P e R\Kis an irreducible polynomial, then EW(P) e H, hence it can be written as
D ¢ TTE =By =¢GN IT(N =BG for s i€ Z. and some ¢, Pj € K
Gwp) — ¢ (& -PBpMi =c¢ (N —BiG)M for some n, nj € £, and some ¢, Bj € K.

Therefore, P¥(G) = ¢ Gm [T (N - BiG)Mi  where m = n + w(P). Since N and G have no
common factors, then G, N — 31G, N - ,G,... have no common factors if Bi# B2, etc.
Therefore at most one of m, ny,no, etc. is different from zero. [6"'”’"‘/? "VV'O”'“LI{./)
Note w(G) > 0. Indeed: G is a polynomial, and w(x),w(y),w(z) > 0, so w(G)
2 0. If w(G) =0, then w(N) =0, because £ € H, so £ is w-homogeneous of weight (.
Thus N, G € K, contradicting the fact that H = K(E) has transcendence degree 1 over K.
From the last remark, P%(G) ¢ K, and so either m or some n;j is different from
zero. Thus, P¥(G) = (aN + BG)k for some o, B, k. But P is irreducible, so the only
possible irreducible factor of oN + BG is P, i.e., P = oN + BG for some A > 1.
s ool \em/
ii) As we mentioned in i) w(G) > 0. It follows that G has at least one irreducible factor B. (T et g }
Fromi) B4 = aN + BG for some constants o, B, and q=1. If o # (), then B divides N as
well as G, which is absurd, since N, G have no common factors. Thus o = 0, and after
rescaling B we get G = B4 .
A similar argument shows that N = AP for some irreducible polynomial A.
— - i t—:‘\LA
iii) If p=pdand g={q d, then §=g= (ﬂ)d . Letm _ AP . Clearly 1 is w-
Bd Bad

homogeneous of weight (), constant with respect to 1, thusn e H. AlsoK(n) c H =
K(&) < KMm), so H = K(m). Therefore d = |[KM):K(E)| = |H:H| =1, i.e. p and q are

relatively prime.

iv) Let P e R\KJ|A,B] be an irreducible, w-homogeneous polynomial. From i) we know
that PA = oN + BG = 0.AP + BBY .. Since P ¢ K[A,B], then A > 1, and off # (. Note that

pA Ny —
o~ 05+ P p VB;J%)*@

AR =t

ﬂ"\ GBIA'!
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-h QD

&
od
AV
#C)  generates H. Then the argument ir@ applied to PA/ B4 implies that A and g are relatively
prime. Similarly, A and p are relatively prime. But A w(P) = w(@N + fG) = qw(B) =
pw(A), hence A divides w(A) and w(B), i.e., A divides A.

P

If P and T are distinct irreducible w-homogeneous elements of R, P not a

A
constant multiple of T, then we can write PA = aN + BG, and TH = yN + 8G, thus L.

™
of +
Y€ + &
y e : P .
W} generates H. The argument of par@applled to T implies that A, i have no common
factors.

A
v) If 1 is any generator of H, then fromii) 1 = % for some w-homogeneous irreducibles

P, T. From i), P> = oN + BG, and TH = yN + &G, for suitable constants «.etc. But N and

G are w-homogeneous of the same weight, so w(P*) = w(oN + BG) = w(N).
vi) This is obvious.
Proof of theorem 5 (continuation): From lemma 4 it follows that most irreducible w-

homogeneous elements of R are of the form aN + BG, and so they have weight @ = w(N),

but there may be some "exceptional” w-homogeneous irreducibles whose weights are

proper factors of . The last part of lemma 4 implies that the number of distinct (imod the

relation P = AP for A € KX) such "exceptional” irreducibles is finite, actually it is less than

the number of distinct prime factors of the integer .

—

Lemma 5: The number of distinct "exceptional” w-homogeneous irreducibles is at most 3.

Proof of lemma 5: suppose there at least three exceptional w-homogeneous irreducibles

. . . w 6V w
T,U,V. We will show that their corresponding exponents w(D) * wU) *~ WiV must be

2,3, and 5. Hence no other w-homogeneous irreducible could exist because if it did then

first: by part iv) of lemma 4, its corresponding exponent would have to be relatively prime
to 2, 3, and 5, and second: applying the first part of this lemma to T,U, and the fourth
ireducible, the corresponding exponent of the later would have to be one of 2, 3, or 5.

Let t, u, v be the corresponding exponents of T,U,V.Then T!/ UY isa
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generator of H, and so V¥ = 0Tt + BUY . Thus, after rescaling T and U, we may assume
that
TL+UY + VY =0).

We take exterior derivative of this identity, and so we obtain the system:

Tt
[th TR {U"'l} =0.

yv-1
dT dU dv T TU VY _
If t = T Uy VY then Uu W L are constants, which is absurd since eithex
of them generates H. Thus we may assume for example that
T U \Y
tTy uly vVy

has rank 2 ( working over the fieid K(x,y,z) ). We solve the system
Tt-1
T U V
~1 _
tTx ulUyx vVy ] [SS_J =0

by the usual method and find that T-1,Uu-1 V¥-1 are proportional to vUCy — uVUy , tVTy
—vTVy,and uTUy — tUTy respectively, i.e.:

Tt! vUVy — uVUy
Y-l :% (VTx = vTV,4
vl uTUy — tUTy ,

with LM € K|x,y,z| relatively prime. It follows that L divides T+1,Ut-1 Vv=1 which

have no common factor, hence we may take L = 1. Therefore M Tt-1 = vUV, —uVUy ,

and so Seadd 4w, *‘77 & AT M, Vot ol vnd o 8ot
‘ -
o /\J(.T )‘t w\l s
(=D = () W) = WOMTED) = WUV~ 0VUy) = w(U) + w(Y) i) <
SwlU)+w(V)-1= % + % ~ 1, from where we deduce
l | | 1
(*) I+ < =+ +-
O t u \Y

At this point recall that t,u,v > 2, since T, U, V are exceptional irreducibles.

Also t, u, v are pairwise relatively prime (lemma 4, iv)). Assume for the sake of the

X ] | |
argument that 2 <t<u<v. [ft>3, thenu>4,v>5, and 50 T + m + 7 < | .

making (*) impossible. Therefore t = 2.

o —
If u>3,thenu =5 (u, and t = 2 have no common factors!), and v = 7. 50
again

i + L]l + \]/ < 1, which is absurd. Therefore u = 3.
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If v >5thenv 27, and once again % + % + ‘1—/ < 1. Therefore v = 5.

- w | >
oo V) morsderd ] o )4 CT) Tt s DA

Proof of theofem 5 (continuation): Assume first that there is only one exceptional w-
homogeneous irreducible element of R , say T. Then any other w-homogeneous irreducible
has weight @. In particular either A or B has weight w. Therefore we can find U w- X
homogeneous irreducible of weight ®. Then T/ U is a generator of H, where A = o / & 'T') U

Zol T4

w(T). If P is any w-homogeneous irreducible, then P is a multiple of T ( the onl L P Cuslp ghc,ﬂg’
>
exceptional irreducible) or P = oTA + BU, since P not a multi implies w(P) = . x_ B l% J
. . 1} — \%_‘."_ . . ~
{ Any element of R is a finite sum of w-homogeneous elements, which in turn are producMrH’n): J
w-homogeneous irreducible elements. But the later are in K[T,U|. Therefore R = K| T,U]|. :,Ms___ 4
Assume next that there are exactly two exceptional w-homogeneous irreducible S pellT, &)

{  elementof R, say T and V, then T/ VM is a generator of H, where A = o / w(T) and

=/ w(V) . Moreover, any other w-homogeneous irreducible element of R is either a

multiple of T, of V, or a linear combination of TA, and VH. In either case, any w-
homogeneous irreducible element of R is in K|T,V]. Thus R = K|T,V].

The proof will be finished once we show that there cannot be three exceptional
- ——— ey

——

irreducibles in R.

Lemma 6: There cannot be three exceptional w-homogeneous irreducible elements in R.

Proof of lemma 6: If there are three exceptional irreducibles, then as shown in the proof

=

of lemma 5, we may assume that they satisfy T2 + U3 + V5 = (). In this case T2 U3
generates H, and R = K[T,U,V].
We go back to the idea in the proof of lemma 5, and consider the system
r
T U A% 2l
[24T 3aU sav {34] =0. +u vV ‘)

/\/\/\ LT 4 TV wod ‘56"("‘/("“ W
\ 1

We claim that rank\b\bc\ (aNalN\co3\s9(T ,U |V 2Ty, 3Ux,5Vy)) = 2.

if 2 Iri =3 %1 =5 % then Ul ?/% , and m are independent of X. Since T,U are
irreducibles in K|x.y,z], it follows that T,U are themselves independent of x. Moreover

t\j T,U are algebraically independent. Let/ble K{x,y,z] be such that J(T,U,N) £ Then as . "o
: - gl “
in the proof of lemma 3, we deduce alr W2 95 ) T e K

noopn JTU) AT 19 ~*Tlgt:
oy aud B HT,UN) = d(y,z) JT,UN) dx ~ o od U 94 A
daycp) =K i

- ) 44 ol

@ < .y Wz0
3 ¢, Ak ¥ 253

oy V

=1 &
Ple vt M

qqﬂ 19
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Hence R = Ker(D) = Ker(—a%) =Kly,z] . But R = K[x.y.z]/<x2+y3+z5> , which is not

isomorphic to the ring of polynomials in two variables. Thus. rank [FZFTX %JUX ;/V‘( ] =
2, as we had claimed,
e . T U Vv o T U V
In a similar way we deduce rank [2Ty 3Uy 5V, ] =rank [2T7. 3U, 5V, ]

=2 . Asinlemma 5, this implies that

T 5UV, — 3VU,
U2 |=—| 2vT, - 5TV,
VA "L 3TU, - 2UTy

for some polynomial My, and similar equations with derivatives with respect to y. and z.
Also as in lemma 5, considering the weight w , from M; T =5UV, —3VU, we obtain
( ¥ wMp) + w(T) <w(U) + w(V) — w(x) and similar equations for y, and z.
We claim that @ = 30 (See lemma 4)

Justification of the claim w = 30. Since 2, 3, and 5 are factors of ®, then 30 divides
®. Let @ =30 A. Then from lemma 4,vi) we deduce that A divides the weight of T,U,V,

and of any other w-homogeneous irreducible element of R. Therefore A divides the weight

of any w-homogeneous element of % = quotient field of R. The claim will be justified if

we show that there exists a w-homogeneous element of W of weight 1. We post-pone this

step for later. We state the required result for future reference.

Lemma 7: Under the assumptions of theorem 5, and the assumption R = K|T,U,V| =
K|x,y,z|/<x2+y3+25>, there exists a rational w-homogeneous function, in the kernel D, of

weight 1. AV o
P~ T f
iy
From ® = 30, and w(T) = w/2 , etc., we(ggtvﬂMl) +15<10+6 - w(x), or
wiM() <1 —w(x). But w(x) 2 1, w(My) 2 0, thus w(x) = 1, and w(M}) = 0, and similar
~— equation for y, and z, so w(y) = w(z) = I, and w(M2) = w(M3) =0, i.e.: w = degree, and
f\_,/\,(—\__—-
M1, M2, My are scalars.
We can rewrite the system giving T,U,V in terms of M;, etc. as
T 5UdV — 3vdU
(Midx + Mady + M3dz)| U2 [=| 2VdT - 5TdV
\ 3TdU - 2UdT

We make now a linear change of coordinates, taking X = Mix + Moy + M3z as
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one of the coordinates. If 7 is a coordinate different from X, then the differential system

above gives:

T 0Z 0z
0= v2|o| avei_spoY |
7 va oz 0z
- 0z 0z
hence
B R
u3: vs> an U3

are independent of Z. But we have showed in the first part of lemma 6 that indepence of
these quotients with respect to Z would imply R is the algebra of polynomials in X and ¥,
contradicting the assumption that R = K[x,y,z]/<x2+y3+z5> . Thus there cannot be three

exceptional w-homogeneous irreducible polynomials in R. This ends the proof of lemma 6.

Proof of theorem 5 (conclusion). There remains only one step to finish the proof of the
theorem.

Proof of lemma 7: We will use the flow defined by D. We will write xj, x2, x3 instead
of X, y, z. Let Vi = Dx; . Let ®(x],x2.x3,t) = (P,dy,D3) be the solution of the system of

ordinary differential equations:

dd;
d—t‘ = Vi(®|. D, d3)  i=123,
with initial condition  ®(x1,x2,x3,0)) = (x1,X2,X3).
Ixy
Since D is locally nilpotent, then ®j(a,b,c.t) = E() Dj'XI tl, where the
J_ .

polynomials Dix; are evaluated at (a,b,¢). The fact that x; and D are w-homogeneous
implies that Dix; is w-homogeneous of weight jw(D) + w(xj).

Let N e K|x},x2.x3] be w-homogenous, irreducible, such that G = DN # (),
but D2N = (). Letrq, 12, 13 € K(x,y,z) be defined as the coordinates of &, where

N
DPo(x1.x2,X3) = (11, 12, 13) = D(X1.X2.X3, ~ 5 ) -
* : N . N
Since N is w-homogeneous, then G s w-homogeneous, and w( G)=

w(D). Thus, each rj is a finite sum of w-homogeneous rational functions, all of the same

weight equal to w(x;). Therefore r; is w-homogeneous of weight w(x;).
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Claim 1: 1y, r, r3 are constants with respect to D/ < N
Proof: By definition, for any polynomial P € K|¥,y.z], [} P((I)(‘q X2,X3,t)) = Nr@ 3 -6
DP(d(x1,x2,x3,t)). Therefore, N(®(x1,x2,x3,t)) = N(xl,xz,xg) + G(x1,x2,x3) t, and  //
G(d(x1,x2,x3,t)) = G(x,Xx2.x3). In particular Ni(ry, 12, rq)w v (_Q(n‘ y, ]()7 g

Do(D(x1,%2,x3,t)) = D(D(x],x2.X3.1), — ((I)(x1 X2,X3,0))) = D(x1,x2,X3,t —
%(Cb(xmz,xz,t))) = D(x1,X2,X3, — g(Xsz,X})) = dg(x1,x2,X3), hence D, is constant

with respect to D.

Claim 2: R = K[x,x2,x3] N K|rf, 12, 13] .

Proof: If P € K|xy,x2,x3] ™ K][r[, 12, 13] , then P is a polynomial, and P is constant with
respect to D, hence P € R. Reciprocally, if P e R, then certainly P € K[x,y,z], also
P(x[,x2,Xx3) = P((I)(xl x9,x3,t)) for all t, in particular for t = —g Lthus P=P(r|, 12, 13) €

e ‘l‘r“? (Pn \'\')g

Kiry, mp, 3] . N
I, 12, I \_“a”.)vz?

Claim 3: Set A = w/30, then A = g.c.d{ w(h) : he W, h#0, h is w-homogeneous}.
Proof: R is generated by T, U, V,and w(T) = w/2 = 15 A, w(U) = /3 = 10 A, w(V) =
/5 = 6 A. Any other w-homogeneous irreducible polynomial in R has weight ® =30 A. It

follows that the weight of any w-homogeneous element of % is a multiple of A.

Moreover, W(QTK) =(10+6-15A,s0A=gcd{ wh):he %W, h#0, h w-

homogeneous}.

Claim4: r;y=0fori=1,2,3.
Proof: Assume ry = 0. Then rp # 0, otherwise R < K(r3), but then W, which equals the

quotient field of R, would be contained in K(r3) , contradicting the fact that transcendence
degree % /K = 2. Likewise. if r; = () then r3 # 0. Let A = g.c.d.{w(x2),w(x3)}. If A =

npw(xs) + n3w(xz) , then r'2]2 r'%” is w-homogeneous of weight A;. But A = g.c.d{ w(h) :
he %, h#0, h w-homogeneous}. Therefore A divides A = (1)(rnz r'ﬂ:2 ) . Conversely,

—_’————-—h
since we are assuming ry= (), then for any P € R, P(x.y,z) = P((,r3,r3) . It in addition P is
w-homogeneous, then P is a w-homogeneous polynomial in ry, r3 . Therefore w(P) is a

linear combination with integer coefficients of w(rj) = w(x;) (i=2, 3 ). Hence w(P) is a
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multiple of A(. This implies that A; divides A, 50 A=A).
T T e e TN

As in the proof of lemma 6, before the claim w = 3(), we have

T 5UV, - 3VU,

U2 |=-_| 2vr, - 5TV,
2

V4 3TUy - 2UT,

for some polynomial My, and similar equations for the derivative with respect to z. Also as
in lemma 5 , considering the weight w , from MoT =5UVy —3VUy  we obtain  w(Mp) +
w(T) <w(U) + w(V) —w(y) and a similar mequahty for z. In particular : w(My) + 15A <
I0A+6A- w(/) so w(Mjy) £ A —w(y), but w(y) 1€ a multiple of A, thus w(M»,) =0,
and w(y) = A. Likewise w(M3) =0, and w(z) = A. But if M,, M3 have weight 0, then they

are in K®. We consider the following w-homogeneous change of coordinates X = x, y =

A J_ 193 139
Myy+M;z,andZ =M3zz .Then,g_mga_W2W .

sy LY gy LU
ad; aa\f UV, 3L, | [3UVy -3V,
2V SST = | VT STV. | - ] 2VTy - STV | =
"l 3TU, - 2uUT, 3TUy - 2UT,
A PITL
B 07 0z
T T
=|U2| |u?| =0.
va] Lv4

This implies that \L/J—: , and \T/—;
they must be independent of Z as well. In the first part of lemma 6 we showed that this
would imply R = K[X,¥| contradicting the fact that R = K|x,y,z]/<x2+y3+25>, Thus | #
(0. In a similar way, rp # 0 # r_:td T /(“’50;;:&“&
Now vmnish the\proof of lemma 7. w(rj) = w(x;) for i=1,2,3.
Moreover, {w(Xj)}i=1.2.3 have no common factors, hence 1 = np w(x() + np w(x2) + n3
n, N,

w(x3) for some integers n; . Then rr r? is a w-homogeneous element of %, of

are independent of Z. But T, U, and V are irreducible, so

weight 1. Therefore w/30 = A = g.c.df w(h) : he ¥, h#0, h w-homogeneous} divides 1,
so w = 3().
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Proof of theorem 6. We will show a more general version of theorem 6. In order to
state the stronger version we introduce some notation. Let K[xi,..,.xp] = \ E@G My be

the decomposition induced by the locally finite derivation ) = &; V; dj. Let V be the ideal
generated by Vy,.., Vy,. Consider the following tower of fields:
K “9 q(R) T) a(Mp) = K(x1,...xp),
{ L

where R = Ker(D) , My = Upx0 Ker(D1) | q(.) = quotient field of ().
Let t; = transcendence degree q(R) / K,
ty = transcendence degree (M) / q(R)
¢ =rank of the spectrum of [,

e :{1 if there exists T € K(x{,..,xp) such that DT = 1;
0 otherwise.

It is shown in |Zur| thatt; + to + €+ ¢ = n.
Theorem 6': With the notation introduced above, t) + ¢ < ht(V).

Lemma 8. With the notation as above, tr.deg.q(Mg) / g(R) <e.
Proof. If € = (), then R = My). Indeed, if Di+1f = 0 Dif with j > 1, then g = Dif € R,
Di-tf

Dif
J = 1. Hence My = R, tr.deg.q(My)/q(R) = 0.

If e =1, and tr.deg.q(My)/q(R) = 0, then there is nothing to prove.

If € = 1, and tr.deg. q(M)/q(R) 2 1, then let T € K(x},..,xp) be such that DT
= 1. A straightforward argument shows that My < q(R)(T) , hence tr.deg. q(Mg)/q(R) =
1.

andso T = is such that DT = 1, contradicting € = (). This shows Ker(DJ) = Ker(D) for

Corollary. Krull dimension Mg < ¢ + t;.

Proof. From Theorem 3 we know that My is a noetherian ring. Moreover, Mg contains the
field K, and it is of finite transcendence dimension over K. Therefore, Krull dimension My

= tr.deg. ¢(M)/K = tr.deg. q(Mp)/q(R) + tr.deg. q(R)/K <& +1y.
[—
A L
Proof of theorem 6'. Let P be a prime ideal of K|x1,..,xp] ,P DV , with ht(P) =

ht(¥). Then, n = Krull dim K|xj,...xq] = Krull dim(K[x1...,xy]/P) + ht(P). Butif A # 0
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then My < P, because My c D(My) cV < P. Therefore, K{x[,...xg}/P = My/ (Mg N
P),and so Krull dim(K[xy,...xp}/P) < Krull dim My <& +t;. Thus, tj+tp +e+ f=n<e
+ t1 + ht(P), from where we get tp + ¢ <ht(V).

Proof of theorem 7. Suppose -4 and B are fixed points of D. Let J=-4 "B . Let A
=, E@ng be the decomposition of A induced by D. Since whenever A # () we have M,

c D(My) < J, it follows that A/T = Mo/ Mg J ). But A/J =KxK .

We claim that if R =K, then M=K as well. Indeed, if R = K, and Mg # K,
then there exists some element f € A such that D2f =0 # Df, hence Df e R=K. Then T =
(Dfy1fe A,and DT = 1. But D admits fixed points A and B ,s0 1 =DT e D(A) =4
B , contradicting maximality of -4 and B. Therefore if R = K, it follows that My = K. In
particular, if R = K, then My/ (My nJ ) is either 0 or K, neither of which is isomorphic
to KxK as ring. Hence, KxK = A/J = My/ (MynJ ) implies R # K. In other words, it
D admits at least two fixed points then D annihilates some element of A other than those
elements in K.
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