A Cayley-Hamilton-type theorem

 for locally finite polynomial endomorphismsA Bachelor thesis by
Lorijn van Rooijen
Under supervision of
Dr. Stefan Maubach

March 25, 2009

Contents

1 Introduction 1
2 Locally finite polynomial endomorphisms 3
3 A characteristic polynomial for LFPE's 5

1 Introduction

The following theorem is well-known from linear algebra.
Theorem 1. [Cayley-Hamilton] [1] Let ℓ be a linear endomorphism of a finite dimensional vector space, and $\mathcal{X}_{\ell}(T)=\operatorname{det}(T I-\ell)$ its characteristic polynomial. Then \mathcal{X}_{ℓ} vanishes when applied to ℓ itself: $\mathcal{X}_{\ell}(\ell)=0$.

The characteristic polynomial of ℓ thus provides us with a relation of the form $\ell^{n}=a_{0}+a_{1} \cdot \ell+\ldots+a_{n-1} \cdot \ell^{n-1}$. This relation is useful, eg. for finding the inverse of ℓ, or calculating high powers of ℓ.

In this thesis, we will look at polynomial endomorphisms of $\mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$.
Definition 2. A polynomial endomorphism of $\mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$ is a map F : $\mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$ that is an N-tuple of functions: $F=\left(F_{1}, \ldots, F_{N}\right)$, where every $F_{i} \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$. The F_{i} are called coordinate functions. Thus,

$$
F:\left(x_{1}, \ldots, x_{N}\right) \mapsto\left(F_{1}\left(x_{1}, \ldots, x_{N}\right), \ldots, F_{N}\left(x_{1}, \ldots, x_{N}\right)\right)
$$

The identity mapping, which maps $\left(x_{1}, \ldots, x_{N}\right)$ to $\left(x_{1}, \ldots, x_{N}\right)$, is denoted by I. We define $\operatorname{deg} F$ as $\max _{1 \leq i \leq N} \operatorname{deg} F_{i}$ and $F^{i}=\underbrace{F \circ F \circ \ldots \circ F}_{i}$.

For some polynomial endomorphisms of $\mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$, it is easy to see that there also exists a relation of the form $F^{n}=a_{0}+\ldots+a_{n-1} \cdot F^{n-1}$.

For example, let

$$
F(x, y)=\left(x+y^{2}, y\right)
$$

Then

$$
F^{2}(x, y)=\left(x+2 y^{2}, y\right)
$$

and we see that

$$
\left(F^{2}-2 \cdot F+I\right)(x, y)=(0,0)
$$

From now on the all zero vector will be denoted by 0 .

Another example of a polynomial endomorphism is the Nagata automorphism [2], defined as

$$
F(x, y, z)=\left(x-2 y \Delta-z \Delta^{2}, y+z \Delta, z\right), \text { where } \Delta=x z+y^{2} .
$$

Then

$$
\begin{aligned}
& F^{2}(x, y, z)=\left(x-4 y \Delta-4 z \Delta^{2}, y+2 z \Delta, z\right) \\
& F^{3}(x, y, z)=\left(x-6 y \Delta-9 z \Delta^{2}, y+3 z \Delta, z\right)
\end{aligned}
$$

This leads to the relation

$$
\left(-F^{3}+3 F^{2}-3 F+I\right)(x, y, z)=0
$$

The question arises, how to find such a non-trivial relation for an arbitrary polynomial endomorphism, if it exists, without having to try a lot of possibilities. In the case of a linear endomorphism ℓ, the relation is easily obtained from the characteristic polynomial, which depends only on the eigenvalues of ℓ. If a polynomial endomorphism F satisfies such a relation, one would expect that, in a way similar to the linear case, there would exist a closed formula depending only on the eigenvalues of the linear part of F. Thus, we want to find a formula $p \in \mathbb{C}[T], p(T)=\sum_{i=0}^{m} p_{i} \cdot T^{i}$, such that $\sum_{i=0}^{m} p_{i} \cdot F^{i}=0$.

In [3], a closed formula for a vanishing polynomial of F is discusssed, for F a locally finite polynomial endomorphism (LFPE, see definition 5), with $F(0)=0$. This closed formula turns out to depend on the eigenvalues of the linear part of F, and on $\sup _{n \in \mathbb{N}} \operatorname{deg} F^{n}$. This thesis comprises a proof that this closed formula (see proposition 18), being

$$
p(T)=\prod_{|\alpha| \leq \sup _{n \in \mathbb{N}} \operatorname{deg} F^{n}}\left(T-\lambda^{\alpha}\right)
$$

with λ_{i} the eigenvalues of the linear part of F, is a vanishing polynomial for F. This means that $p(F)=\sum_{i=0}^{m} p_{i} \cdot F^{i}=0$.

2 Locally finite polynomial endomorphisms

Recall from definition 2 that a polynomial endomorphism of \mathbb{C}^{N} is a map $F: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$ that is an N-tuple of coordinate functions: $F=\left(F_{1}, \ldots, F_{N}\right)$, where every $F_{i} \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$. From now on, we denote the polynomial endomorphism $\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ by X. The set of all polynomial endomorphisms of \mathbb{C}^{N} is denoted by $\operatorname{End}\left(\mathbb{C}^{N}\right)$.

For each $F \in \operatorname{End}\left(\mathbb{C}^{N}\right)$, we define $F^{\#}$ to be the map

$$
\begin{aligned}
F^{\#}: & \mathbb{C}\left[x_{1}, \ldots, x_{N}\right] \rightarrow \mathbb{C}\left[x_{1}, \ldots, x_{N}\right], \\
& r \mapsto r \circ F .
\end{aligned}
$$

This means that for every $i \in\{1, \ldots, N\}, F^{\#}$ replaces every occurrence of x_{i} in r by the i-th coordinate function of F. The map $F^{\#}$ is a \mathbb{C}-linear endomorphism of the vector space $\mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$, since it clearly holds that $F^{\#}(r+s)=F^{\#}(r)+F^{\#}(s)$, for all $r, s \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$, and $F^{\#}(a \cdot r)=$ $a \cdot F^{\#}(r)$, for all $a \in \mathbb{C}$. Notice that $F^{\#}\left(G^{\#}(r)\right)=r \circ G(F)$ and thus $\left(F^{\#}\right)^{m}=\left(F^{m}\right)^{\#}$. The set of all linear endomorphisms of a vector space V is denoted by $\mathcal{L}(V)$.

Definition 3. A linear endomorphism $\ell \in \mathcal{L}\left(\mathbb{C}\left[x_{1}, \ldots, x_{N}\right]\right)$ is called locally finite if for all $r \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$ holds that $\operatorname{dim} \operatorname{Span}_{n \in \mathbb{N}} \ell^{n}(r)<+\infty$.

For $F \in \operatorname{End}\left(\mathbb{C}^{N}\right)$, and $p \in \mathbb{C}[T], p=\sum_{i=0}^{m} p_{i} \cdot T^{i}$, we denote $\sum_{i=0}^{m} p_{i} \cdot F^{i}$ by $p(F)$. We define $\mathcal{I}_{F}:=\{p \in \mathbb{C}[T] \mid p(F)=0\}$.

Proposition 4. For a polynomial endomorphism F, the following conditions are equivalent.
i) $\mathcal{I}_{F} \neq\{0\}$,
ii) $\sup _{n \in \mathbb{N}} \operatorname{deg} F^{n}<+\infty$,
iii) $F^{\#}$ is locally finite.

Proof. i) \Rightarrow ii):
Since $\mathcal{I}_{F}=\{p \in \mathbb{C}[T] \mid p(F)=0\} \neq\{0\}$, there exists a $p \in \mathbb{C}[T]$ such that
$p \neq 0$ and $p(F)=0$. Let m be the degree of p, then $p(F)=\sum_{i=0}^{m} p_{i} \cdot F^{i}$, thus

$$
F^{m}=-\sum_{i=0}^{m-1} p_{i} \cdot F^{i}
$$

Hence, $F^{m} \in \operatorname{Span}\left(F^{0}, F^{1}, \ldots, F^{m-1}\right)$. By induction, it follows that $F^{n} \in$ $\operatorname{Span}\left(F^{0}, F^{1}, \ldots, F^{m-1}\right)$, for every $n \in \mathbb{N}$. Thus,

$$
\sup _{n \in \mathbb{N}} \operatorname{deg} F^{n} \leq \max _{0 \leq k \leq m-1} \operatorname{deg} F^{k}<+\infty
$$

ii) \Rightarrow iii):

From $\sup _{n \in \mathbb{N}} \operatorname{deg} F^{n}<+\infty$ follows that there exists a $C \in \mathbb{N}$ such that for every $n \in \mathbb{N} \operatorname{deg} F^{n} \leq C$. For $r \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right], r \circ F^{n}$ is obtained by replacing every occurrence of x_{i} by the i-th coordinate function of F^{n} (denoted by $\left(F^{n}\right)_{i}$), for every $i \in\{1, \ldots, N\}$. The degree of $r \circ F^{n}$ is equal to the degree in the case that a coordinate function $\left(F^{n}\right)_{i}$, for which $\operatorname{deg}\left(F^{n}\right)_{i}=$ $\operatorname{deg} F^{n}$, is used in a monomial with degree $\operatorname{deg} r$. So,

$$
\operatorname{deg} r \circ F^{n}=\operatorname{deg} r \cdot \operatorname{deg} F^{n} \leq \operatorname{deg} r \cdot C \Rightarrow \operatorname{dim} \operatorname{Span}_{n \in \mathbb{N}} r \circ F^{n}<+\infty
$$

hence $F^{\#}$ is locally finite.

$$
\text { iii) } \Rightarrow \text { i): }
$$

Note that dim $\operatorname{Span}_{n \in \mathbb{N}} r \circ F^{n}<+\infty$, for every $r \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$, implies that $\operatorname{dim} \operatorname{Span}_{n \in \mathbb{N}} F^{n}<+\infty$. Therefore, there exists a finite set I, such that for every $j \in \mathbb{N}$: there exist coefficients $a_{i} \in \mathbb{C}$ with $F^{j}=\sum_{i \in I} a_{i} \cdot F^{i}$. Now fix $j \in \mathbb{N} \backslash I$ and fix the a_{i} 's such that $F^{j}=\sum_{i \in I} a_{i} \cdot F^{i}$. Define

$$
p(T):=\left(\sum_{i \in I} a_{i} \cdot T^{i}\right)-T^{j} .
$$

Then

$$
p(F)=\sum_{i \in I} a_{i} \cdot F^{i}-F^{j}=0 \Rightarrow p \in \mathcal{I}_{F}
$$

Since $j \notin I, \sum_{i \in I} a_{i} \cdot T^{i} \neq T^{j}$, so $p \neq 0$. This implies that $\mathcal{I}_{F} \neq\{0\}$.

Definition 5. A polynomial endomorphism $F \in \operatorname{End}\left(\mathbb{C}^{N}\right)$ is called locally finite if F satisfies the conditions in proposition 4 .

3 A characteristic polynomial for LFPE's

As mentioned before, we want to find a way to produce for every locally finite polynomial endomorphism F, with $F(0)=0$, a vanishing polynomial. It turns out that the characteristic polynomial of $F^{\#}$, restricted to a certain vector space W is such a vanishing polynomial for F. We will first define this vector space W.

Definition 6. For $F \in \operatorname{End}\left(\mathbb{C}^{N}\right)$, define $W^{i}:=\operatorname{Span}_{n \in \mathbb{N}}\left(\left(F^{\#}\right)^{n}\left(x_{i}\right)\right)$, and $W:=W^{1}+\ldots+W^{N}$.

Definition 7. For a linear endomorphism $\ell \in \mathcal{L}\left(\mathbb{C}\left[x_{1}, \ldots, x_{N}\right]\right), \mathcal{F}(\ell)$ denotes the set of finite dimensional subspaces U of $\mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$ for which $\ell(U) \subseteq U$.

We will use the following two lemmas while proving that $F^{\#}{ }_{\mid W}$ is a vanishing polynomial of F.

Lemma 8. Let $F \in \operatorname{End}\left(\mathbb{C}^{N}\right)$ be locally finite. Then $W \in \mathcal{F}\left(F^{\#}\right)$.
Proof. By proposition (4) the fact that F is locally finite means that $F^{\#}$ is locally finite. By definition 3, this implies that

$$
\forall r \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]: \operatorname{dim} \operatorname{Span}_{n \in \mathbb{N}}\left(F^{\#}\right)^{n}(r)<+\infty
$$

In particular, for every $i \in\{1, \ldots, N\}, \operatorname{dim} W^{i}=\operatorname{dim} \operatorname{Span}_{n \in \mathbb{N}}\left(\left(F^{\#}\right)^{n}\left(x_{i}\right)\right)<$ $+\infty$. From this follows that $\operatorname{dim} W \leq \sum_{1 \leq i \leq N} \operatorname{dim} W^{i}<+\infty$. Together with the fact that $F^{\#}(W) \subseteq W$, this implies that $W \in \mathcal{F}\left(F^{\#}\right)$.

Lemma 9. Let $F \in \operatorname{End}\left(\mathbb{C}^{N}\right)$ be such that $\forall i \in\{1, \ldots, N\}: F^{\#}\left(x_{i}\right)=0$. Then $F=0$.

Proof. For every i-th coordinate function of F, we have $F_{i}=x_{i} \circ F=$ $F^{\#}\left(x_{i}\right)=0$. Thus all coordinate functions of F are zero, i.e. $F=0$.

Lemma 10. Let $F \in \operatorname{End}\left(\mathbb{C}^{N}\right)$. Then $\mathcal{X}_{\left(F^{\#}, W\right)}$, the characteristic polynomial of $F^{\#}{ }_{\mid W}$, is a vanishing polynomial of F.

Proof. Consider the linear map $F^{\#}{ }_{\mid W}: W \rightarrow W$. Theorem 1 states that $\mathcal{X}_{\left(F^{\#}, W\right)}=\sum_{i=0}^{m} a_{i} \cdot T^{i}$ is a vanishing polynomial for $F^{\#}{ }_{\mid W}$, hence

$$
\begin{aligned}
& \mathcal{X}_{\left(F^{\#, W)}\right.}\left(F^{\#}{ }_{\mid W}\right)=0 \\
\Rightarrow & W \subseteq \operatorname{ker}\left(\mathcal{X}_{\left(F^{\#, W)}\right.}\left(F^{\#}\right)\right) \\
\Rightarrow & \left(\mathcal{X}_{(F \#, W)}\left(F^{\#}\right)\right)\left(x_{j}\right)=0, \forall j \in\{1, \ldots, N\} .
\end{aligned}
$$

By definition of $F^{\#}$,

$$
0=\left(\mathcal{X}_{(F \#, W)}\left(F^{\#}\right)\right)\left(x_{j}\right)=\sum_{i=0}^{m} a_{i} \cdot\left(F^{\#}\right)^{i}\left(x_{j}\right)=\sum_{i=0}^{m} a_{i} \cdot\left(x_{j} \circ F^{i}\right)
$$

which is the j-th coordinate function of $\sum_{i=0}^{m} a_{i} \cdot F^{i}$, and thus is equal to $x_{j} \circ \mathcal{X}_{(F \#, W)}(F)$. From lemma [9, it follows that $\mathcal{X}_{(F \#, W)}(F)=0$, hence $\mathcal{X}_{(F \#, W)}$ is a vanishing polynomial of F.

Now that we have found that $\mathcal{X}_{(F, W)}(F)=0$, we will use this in order to find a closed formula giving a vanishing polynomial of F.

We define \mathcal{M} as the linear subspace of $\mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$ such that $\mathcal{M}=$ $\left\{r \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right] \mid r(0)=0\right\}$. More generally, \mathcal{M}^{k} is the linear subspace of $\mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$ containing only those polynomials $r \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$ for which every monomial has degree at least k.

For $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right) \in \mathbb{N}^{N}$, we define $F^{\alpha}:=F_{1}^{\alpha_{1}} F_{2}^{\alpha_{2}} \cdots F_{N}^{\alpha_{N}}$, and $|\alpha|:=\alpha_{1}+\alpha_{2}+\ldots+\alpha_{N}$.

Lemma 11. Let $F \in \operatorname{End}\left(\mathbb{C}^{N}\right)$ be such that $F(0)=0$, then $\forall k \geq 0$: $F^{\#}\left(\mathcal{M}^{k}\right) \subseteq \mathcal{M}^{k}$.

Proof. Since $F(0)=0$, we have $F_{i}(0)=0$, for all $i, 1 \leq i \leq N$. So every $F_{i} \in \mathcal{M}$. Let r be in \mathcal{M}^{k}, then

$$
r=\sum_{\alpha \in \mathbb{N}^{N},|\alpha| \geq k} r_{\alpha} \cdot X^{\alpha}
$$

with $r_{\alpha} \in \mathbb{C}$. Then

$$
F^{\#}(r)=r \circ F=\sum_{\alpha \in \mathbb{N}^{N},|\alpha| \geq k} r_{\alpha} \cdot F^{\alpha} .
$$

From $F^{\alpha}=F_{1}^{\alpha_{1}} F_{2}^{\alpha_{2}} \cdots F_{N}^{\alpha_{N}},|\alpha| \geq k$, and the fact that every $F_{i} \in \mathcal{M}$, we see that F^{α} is a product of at least k elements of \mathcal{M}, and thus $F^{\alpha} \in \mathcal{M}^{k}$. Since \mathcal{M}^{k} is closed under addition, it follows that $F^{\#}(r) \in \mathcal{M}^{k}$, hence $F^{\#}\left(\mathcal{M}^{k}\right) \subseteq$ \mathcal{M}^{k}.

Recall that $W=\operatorname{Span}_{n \in \mathbb{N}}\left(\left(F^{\#}\right)^{n}\left(x_{i}\right)\right)_{1 \leq i \leq N}$ and $d=\sup _{n \in \mathbb{N}} \operatorname{deg} F^{n}$. For $1 \leq k \leq d+1$, we define $W_{k}:=W \cap \mathcal{M}^{k}$.

Lemma 12. Let $F \in \operatorname{End}\left(\mathbb{C}^{N}\right)$ be such that $F(0)=0$, then $F^{\#}\left(W_{k}\right) \subseteq$ $W_{k}, \forall k \geq 0$.

Proof. Note that $F^{\#}\left(W_{k}\right)=F^{\#}\left(W \cap \mathcal{M}^{k}\right) \subseteq F^{\#}\left(\mathcal{M}^{k}\right)$. By lemma 11, we have $F^{\#}\left(\mathcal{M}^{k}\right) \subseteq \mathcal{M}^{k}, \forall k \geq 0$. Also, it is obvious that $F^{\#}\left(W_{k}\right) \subseteq F^{\#}(W) \subseteq$ W. Thus, $F^{\#}\left(W_{k}\right) \subseteq W \cap M^{k}=W_{k}, \forall k \geq 0$.

Lemma 13. Let $F \in \operatorname{End}\left(\mathbb{C}^{N}\right)$ be such that $F(0)=0$, and such that $d=\sup _{n \in \mathbb{N}} \operatorname{deg} F^{n}<\infty$. Let W_{k} be defined as above. Then $W=W_{1} \supseteq$ $W_{2} \supseteq \ldots \supseteq W_{d+1}=\{0\}$.

Proof. Since \mathcal{M}^{k} is the set of polynomials $r \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$ for which every monomial has degree at least k, we have that $\mathcal{M}^{k} \supseteq \mathcal{M}^{k+1}$, for $1 \leq k \leq d$. By definition of W_{k}, it follows that $W_{1} \supseteq W_{2} \supseteq \ldots \supseteq W_{d+1}$.
Recall that $x_{i} \circ F^{n}$ is the i-th coordinate function of F^{n}. Since $F(0)=0$, we have $\operatorname{deg}\left(x_{i} \circ F^{n}\right) \geq 1$, for $1 \leq i \leq N$ and every $n \in \mathbb{N}$. The set $\left\{x_{i} \circ F^{n} \mid n \in\right.$ $\mathbb{N}, 1 \leq i \leq N\}$ is a spanning set for W. Thus, every element of W is in \mathcal{M}^{1}, and thus $W \subseteq \mathcal{M}^{1}$. From this, it follows that $W=W \cap \mathcal{M}^{1}=W_{1}$.
For $1 \leq i \leq N$, and every $n \in \mathbb{N}$,

$$
\operatorname{deg}\left(x_{i} \circ F^{n}\right) \leq \max _{1 \leq j \leq N} \operatorname{deg}\left(x_{j} \circ F^{n}\right)=\operatorname{deg} F^{n}<d+1
$$

since $d=\sup _{n \in \mathbb{N}} \operatorname{deg} F^{n}$. Thus, every basis element of W has degree less than $d+1$. This implies that every polynomial in W consists of monomials of degree less than $d+1$, except for 0 , hence $W_{d+1}=\{0\}$.

As we will see in lemma 15, the characteristic polynomial $\mathcal{X}_{\left(F^{\#}, W\right)}$ can be written as a product of other characteristic polynomials. We will use these characteristic polynomials in our search for a closed formula that vanishes for F. Therefore, the following endomorphisms are needed.

Definition 14. For the linear map $F^{\#}{ }_{\mid W}$, and $i \in\{1, \ldots, d\}$, we define L_{i} to be the endomorphism induced by $F^{\#}{ }_{\mid W}$ on W_{i} / W_{i+1}, that is:

$$
\begin{aligned}
L_{i}: & W_{i} / W_{i+1} \rightarrow W_{i} / W_{i+1} \\
& w_{i}+W_{i+1} \mapsto F^{\#}\left(w_{i}\right)+W_{i+1},
\end{aligned}
$$

where $w_{i} \in W_{i}$.
The map L_{i} is well defined: Let $b \in \bar{a}$. Then $L_{i}(\bar{b})=F^{\#}(b)+W_{i+1}$. Since $F^{\#}$ is linear, this equals $F^{\#}(b-a)+F^{\#}(a)+W_{i+1}$. Using that $b-a \in W_{i+1}$, lemma 12 implies that $F^{\#}(b-a) \in W_{i+1}$, and thus $L_{i}(\bar{b})=F^{\#}(a)+W_{i+1}=$ $L_{i}(\bar{a})$. This makes L_{i} independent of the choice of representatives.

Lemma 15. The characteristic polynomial $\mathcal{X}_{\left(F^{\#, W)}\right.}$ of $F^{\#}{ }_{\mid W}$ can be found using the characteristic polynomials of the linear maps L_{i} defined above, in the following way:

$$
\mathcal{X}_{(F, W)}^{\#, W}=\mathcal{X}_{L_{1}} \cdot \mathcal{X}_{L_{2}} \cdots \mathcal{X}_{L_{d}}
$$

Proof. Note that lemma 13 implies that $W \cong W_{1} / W_{2} \oplus \ldots \oplus W_{d} / W_{d+1}=: V$. There is an isomorphism

$$
\begin{aligned}
\phi: & W \rightarrow V \\
& w \mapsto\left(\overline{w_{1}}, \ldots, \overline{w_{d}}\right),
\end{aligned}
$$

where $\overline{w_{i}}$ is the coset of w in W_{i} / W_{i+1}. Define a linear endomorphism L on V, such that $L_{\mid W_{i} / W_{i+1}}=L_{i}$, for every $i \in\{1, \ldots, d\}$. By definition of the L_{i}, we then have $\phi^{-1} F^{\#}{ }_{\mid W} \phi=L$. Now $\mathcal{X}_{L_{i}} \mid \mathcal{X}_{L}$, and $\operatorname{deg} \mathcal{X}_{L_{i}}=\operatorname{dim} W_{i} / W_{i+1}$, thus

$$
\operatorname{deg}\left(\prod_{i=1}^{d} \mathcal{X}_{L_{i}}\right)=\operatorname{dim}\left(\prod_{i=1}^{d} W_{i} / W_{i+1}\right)=\operatorname{dim} W=\operatorname{dim} V=\operatorname{deg} \mathcal{X}_{L}
$$

Since characteristic polynomials are monic, this means that $\prod_{i=1}^{d} \mathcal{X}_{L_{i}}=\mathcal{X}_{L}=$ $\mathcal{X}_{F{ }^{\#}{ }_{\mid W}}$.

Now, we let $F^{\#}{ }_{\mid \mathcal{M}}$ induce endomorphisms on the spaces $\mathcal{M}^{i} / \mathcal{M}^{i+1}$, in a way similar to how $F^{\#}{ }_{\mid W}$ induced L_{i} on W_{i} / W_{i+1}.

Definition 16. The linear map $F^{\#}{ }_{\mid \mathcal{M}}$ induces an endomorphism K_{i} on $\mathcal{M}^{i} / \mathcal{M}^{i+1}$, in the following way:

$$
\begin{aligned}
K_{i}: & \mathcal{M}^{i} / \mathcal{M}^{i+1} \rightarrow \mathcal{M}^{i} / \mathcal{M}^{i+1} \\
& m_{i}+\mathcal{M}^{i+1} \mapsto F^{\#}\left(m_{i}\right)+\mathcal{M}^{i+1}
\end{aligned}
$$

where $m_{i} \in \mathcal{M}^{i}$.
Similar to definition 14, using lemma 11 we find that the K_{i} are well defined. Furthermore, definition 16 ensures that $K_{i \mid W_{i} / W_{i+1}}=L_{i}$.

By $\mathcal{L}\left(F_{i}\right)$, we denote the linear part of $F_{i} \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$. Also, we call $\left(\mathcal{L}\left(F_{1}\right), \ldots, \mathcal{L}\left(F_{N}\right)\right)$ the linear part of a polynomial endomorphism F, and denote this by $\mathcal{L}(F)$.

We are now able to show how the characteristic polynomial $\mathcal{X}_{K_{i}}$ depends on the eigenvalues of F.

Lemma 17. Let the K_{i} be defined as above, with $F \in \operatorname{End}\left(\mathbb{C}^{N}\right)$ such that $F(0)=0$. Let $\alpha \in \mathbb{N}^{N}$, and $\lambda^{\alpha}=\lambda_{1}^{\alpha_{1}} \cdots \lambda_{N}^{\alpha_{N}}$, where λ_{i} is the eigenvalue of the linear part of F_{i}. Then, for the characteristic polynomial $\mathcal{X}_{K_{i}}$, the following holds

$$
\mathcal{X}_{K_{i}}=\prod_{|\alpha|=i}\left(T-\lambda^{\alpha}\right)
$$

Proof. Assume that $\mathcal{L}(F)$ is represented by a diagonal matrix. The canonical basis for $\mathcal{M}^{i} / \mathcal{M}^{i+1}$ is

$$
\left\{X^{\alpha}+\mathcal{M}^{i+1}| | \alpha \mid=i\right\}
$$

For these basis elements,

$$
K_{i}\left(X^{\alpha}+\mathcal{M}^{i+1}\right)=F^{\#}\left(X^{\alpha}\right)+\mathcal{M}^{i+1}=F^{\alpha}+\mathcal{M}^{i+1} .
$$

We can write

$$
F^{\alpha}=\left(\mathcal{L}\left(F_{1}\right)+H_{1}\right)^{\alpha_{1}} \cdots\left(\mathcal{L}\left(F_{N}\right)+H_{N}\right)^{\alpha_{N}},
$$

where $H_{i}=F_{i}-\mathcal{L}\left(F_{i}\right)$, the higher order part of F_{i}. Notice that $|\alpha|=i$ implies that the terms containing higher order parts will end up in \mathcal{M}^{i+1}. Hence

$$
F^{\alpha}=\mathcal{L}\left(F_{1}\right)^{\alpha_{1}} \cdots \mathcal{L}\left(F_{N}\right)^{\alpha_{N}}+\mathcal{M}^{i+1}
$$

and

$$
K_{i}\left(X^{\alpha}+\mathcal{M}^{i+1}\right)=\mathcal{L}(F)^{\alpha}+\mathcal{M}^{i+1}
$$

By assumption, $\mathcal{L}(F)$ is represented by a diagonal matrix. Thus, $\mathcal{L}(F)=$ $\left(\lambda_{1} X_{1}, \ldots, \lambda_{N} X_{N}\right)$ and

$$
K_{i}\left(X^{\alpha}+\mathcal{M}^{i+1}\right)=\lambda_{1}^{\alpha_{1}} X_{1}^{\alpha_{1}} \cdots \lambda_{N}^{\alpha_{N}} X_{N}^{\alpha_{N}}+\mathcal{M}^{i+1}=\lambda^{\alpha} X^{\alpha}+\mathcal{M}^{i+1}
$$

In particular, $K_{i}: \overline{X^{\alpha}} \mapsto \lambda^{\alpha} \overline{X^{\alpha}}$, for every $\alpha \in \mathbb{N}^{N}$ with $|\alpha|=i$. Thus, the matrix of K_{i} in the canonical basis is a diagonal matrix with the λ^{α} 's on the diagonal. This yields $\prod_{|\alpha|=i}\left(T-\lambda^{\alpha}\right)$ as the characteristic polynomial of K_{i}. When $\mathcal{L}(F)$ is not represented by a diagonal matrix, one can show with a bit more effort that K_{i} is conjugated to an upper triangular matrix, with the λ^{α} on the diagonal. This leads to the same conclusion.

The following proposition shows that for each locally finite polynomial endomorphism F, with $F(0)=0$, a vanishing polynomial exists that depends only on the eigenvalues of F and on $\sup _{n \in \mathbb{N}} \operatorname{deg} F^{n}$.

Proposition 18. Let $F \in \operatorname{End}\left(\mathbb{C}^{N}\right)$ be such that $F(0)=0$ and $d=$ $\sup _{n \in \mathbb{N}} \operatorname{deg} F^{n}<\infty$. Let λ_{i} denote the eigenvalues of the linear part of F. Then

$$
\prod_{|\alpha| \leq d}\left(T-\lambda^{\alpha}\right)
$$

is a vanishing polynomial of F.
Proof. Lemma 10 states that $\mathcal{X}_{(F \#, W)}$, the characteristic polynomial of $F^{\#}{ }_{\mid W}$, is a vanishing polynomial of F. We will show that this polynomial divides the polynomial mentioned in the proposition. It follows from lemma 15 that

$$
\mathcal{X}_{\left(F^{\#}, W\right)}=\prod_{i=1}^{d} \mathcal{X}_{L_{i}} .
$$

Notice that, by definition of the K_{i}, we have that $K_{i \mid W_{i} / W_{i+1}}=L_{i}$. This implies that $\mathcal{X}_{L_{i}} \mid \mathcal{X}_{K_{i}}$, for every $i \in\{1, \ldots, d\}$. In lemma 17, we saw that

$$
\mathcal{X}_{K_{i}}=\prod_{|\alpha|=i}\left(T-\lambda^{\alpha}\right) .
$$

Hence,

$$
\prod_{i=1}^{d} \mathcal{X}_{L_{i}} \mid \prod_{i=1}^{d} \mathcal{X}_{K_{i}}=\prod_{i=1}^{d} \prod_{|\alpha|=i}\left(T-\lambda^{\alpha}\right)
$$

This last expression is equal to $\prod_{|\alpha| \leq d}\left(T-\lambda^{\alpha}\right)$, which proves the proposition.

References

[1] W. Bosma, Lineaire Algebra 3 en 4, Lecture notes, Radboud Universiteit, Nijmegen, 2006.
[2] M. Nagata, On Automorphism Group of $k[x, y]$, Department of Mathematics, Kyoto University, Lectures in Mathematics, No. 5. Kinokuniya Book-Store Co. Ltd., Tokyo, 1972.
[3] J.-P. Furter and S. Maubach, Locally finite polynomial endomorphisms, J. Pure and Applied Algebra 211 (2007) 445-458.

