A Cayley-Hamilton-type theorem

for locally finite polynomial endomorphisms

Contents

1	Introduction	1
2	Locally finite polynomial endomorphisms	3
3	A characteristic polynomial for LFPE's	5

1 Introduction

The following theorem is well-known from linear algebra.

Theorem 1. [Cayley-Hamilton][1] Let ℓ be a linear endomorphism of a finite dimensional vector space, and $\mathcal{X}_{\ell}(T) = \det(TI - \ell)$ its characteristic polynomial. Then \mathcal{X}_{ℓ} vanishes when applied to ℓ itself: $\mathcal{X}_{\ell}(\ell) = 0$.

The characteristic polynomial of ℓ thus provides us with a relation of the form $\ell^n = a_0 + a_1 \cdot \ell + \ldots + a_{n-1} \cdot \ell^{n-1}$. This relation is useful, eg. for finding the inverse of ℓ , or calculating high powers of ℓ .

In this thesis, we will look at polynomial endomorphisms of $\mathbb{C}[x_1, \ldots, x_N]$.

Definition 2. A polynomial endomorphism of $\mathbb{C}[x_1, \ldots, x_N]$ is a map F: $\mathbb{C}^N \to \mathbb{C}^N$ that is an N-tuple of functions: $F = (F_1, \ldots, F_N)$, where every $F_i \in \mathbb{C}[x_1, \ldots, x_N]$. The F_i are called coordinate functions. Thus,

$$F:(x_1,\ldots,x_N)\mapsto (F_1(x_1,\ldots,x_N),\ldots,F_N(x_1,\ldots,x_N)).$$

The identity mapping, which maps (x_1, \ldots, x_N) to (x_1, \ldots, x_N) , is denoted by *I*. We define deg *F* as $\max_{1 \le i \le N} \deg F_i$ and $F^i = \underbrace{F \circ F \circ \ldots \circ F}_{i}$.

For some polynomial endomorphisms of $\mathbb{C}[x_1, \ldots, x_N]$, it is easy to see that there also exists a relation of the form $F^n = a_0 + \ldots + a_{n-1} \cdot F^{n-1}$.

For example, let

$$F(x,y) = (x+y^2,y).$$

Then

$$F^{2}(x,y) = (x+2y^{2},y),$$

and we see that

$$(F^2 - 2 \cdot F + I)(x, y) = (0, 0)$$

From now on the all zero vector will be denoted by 0.

Ì

Another example of a polynomial endomorphism is the Nagata automorphism [2], defined as

$$F(x, y, z) = (x - 2y\Delta - z\Delta^2, y + z\Delta, z)$$
, where $\Delta = xz + y^2$.

Then

$$F^{2}(x, y, z) = (x - 4y\Delta - 4z\Delta^{2}, y + 2z\Delta, z),$$

$$F^{3}(x, y, z) = (x - 6y\Delta - 9z\Delta^{2}, y + 3z\Delta, z).$$

This leads to the relation

$$(-F^3 + 3F^2 - 3F + I)(x, y, z) = 0.$$

The question arises, how to find such a non-trivial relation for an arbitrary polynomial endomorphism, if it exists, without having to try a lot of possibilities. In the case of a linear endomorphism ℓ , the relation is easily obtained from the characteristic polynomial, which depends only on the eigenvalues of ℓ . If a polynomial endomorphism F satisfies such a relation, one would expect that, in a way similar to the linear case, there would exist a closed formula depending only on the eigenvalues of the linear part of F. Thus, we want to find a formula $p \in \mathbb{C}[T]$, $p(T) = \sum_{i=0}^{m} p_i \cdot T^i$, such that $\sum_{i=0}^{m} p_i \cdot F^i = 0$.

In [3], a closed formula for a vanishing polynomial of F is discussed, for F a locally finite polynomial endomorphism (LFPE, see definition 5), with F(0) = 0. This closed formula turns out to depend on the eigenvalues of the linear part of F, and on $\sup_{n \in \mathbb{N}} \deg F^n$. This thesis comprises a proof that this closed formula (see proposition 18), being

$$p(T) = \prod_{|\alpha| \le \sup_{n \in \mathbb{N}} \deg F^n} (T - \lambda^{\alpha}),$$

with λ_i the eigenvalues of the linear part of F, is a vanishing polynomial for F. This means that $p(F) = \sum_{i=0}^{m} p_i \cdot F^i = 0$.

2 Locally finite polynomial endomorphisms

Recall from definition 2 that a polynomial endomorphism of \mathbb{C}^N is a map $F: \mathbb{C}^N \to \mathbb{C}^N$ that is an N-tuple of coordinate functions: $F = (F_1, \ldots, F_N)$, where every $F_i \in \mathbb{C}[x_1, \ldots, x_N]$. From now on, we denote the polynomial endomorphism (x_1, x_2, \ldots, x_N) by X. The set of all polynomial endomorphisms of \mathbb{C}^N is denoted by $\operatorname{End}(\mathbb{C}^N)$.

For each $F \in \text{End}(\mathbb{C}^N)$, we define $F^{\#}$ to be the map

$$F^{\#}: \quad \mathbb{C}[x_1, \dots, x_N] \to \mathbb{C}[x_1, \dots, x_N],$$
$$r \mapsto r \circ F.$$

This means that for every $i \in \{1, \ldots, N\}$, $F^{\#}$ replaces every occurrence of x_i in r by the *i*-th coordinate function of F. The map $F^{\#}$ is a \mathbb{C} -linear endomorphism of the vector space $\mathbb{C}[x_1, \ldots, x_N]$, since it clearly holds that $F^{\#}(r+s) = F^{\#}(r) + F^{\#}(s)$, for all $r, s \in \mathbb{C}[x_1, \ldots, x_N]$, and $F^{\#}(a \cdot r) = a \cdot F^{\#}(r)$, for all $a \in \mathbb{C}$. Notice that $F^{\#}(G^{\#}(r)) = r \circ G(F)$ and thus $(F^{\#})^m = (F^m)^{\#}$. The set of all linear endomorphisms of a vector space V is denoted by $\mathcal{L}(V)$.

Definition 3. A linear endomorphism $\ell \in \mathcal{L}(\mathbb{C}[x_1, \ldots, x_N])$ is called locally finite if for all $r \in \mathbb{C}[x_1, \ldots, x_N]$ holds that dim $\operatorname{Span}_{n \in \mathbb{N}} \ell^n(r) < +\infty$.

For $F \in \text{End}(\mathbb{C}^N)$, and $p \in \mathbb{C}[T]$, $p = \sum_{i=0}^m p_i \cdot T^i$, we denote $\sum_{i=0}^m p_i \cdot F^i$ by p(F). We define $\mathcal{I}_F := \{p \in \mathbb{C}[T] \mid p(F) = 0\}.$

Proposition 4. For a polynomial endomorphism F, the following conditions are equivalent.

- i) $\mathcal{I}_F \neq \{0\},\$
- ii) $\sup_{n\in\mathbb{N}} \deg F^n < +\infty$,
- iii) $F^{\#}$ is locally finite.

Proof. i) \Rightarrow ii): Since $\mathcal{I}_F = \{ p \in \mathbb{C}[T] \mid p(F) = 0 \} \neq \{ 0 \}$, there exists a $p \in \mathbb{C}[T]$ such that $p \neq 0$ and p(F) = 0. Let *m* be the degree of *p*, then $p(F) = \sum_{i=0}^{m} p_i \cdot F^i$, thus

$$F^m = -\sum_{i=0}^{m-1} p_i \cdot F^i.$$

Hence, $F^m \in \text{Span}(F^0, F^1, \dots, F^{m-1})$. By induction, it follows that $F^n \in \text{Span}(F^0, F^1, \dots, F^{m-1})$, for every $n \in \mathbb{N}$. Thus,

$$\sup_{n \in \mathbb{N}} \deg F^n \le \max_{0 \le k \le m-1} \deg F^k < +\infty.$$

ii) \Rightarrow iii):

From $\sup_{n\in\mathbb{N}} \deg F^n < +\infty$ follows that there exists a $C \in \mathbb{N}$ such that for every $n \in \mathbb{N} \deg F^n \leq C$. For $r \in \mathbb{C}[x_1, \ldots, x_N], r \circ F^n$ is obtained by replacing every occurrence of x_i by the *i*-th coordinate function of F^n (denoted by $(F^n)_i$), for every $i \in \{1, \ldots, N\}$. The degree of $r \circ F^n$ is equal to the degree in the case that a coordinate function $(F^n)_i$, for which $\deg(F^n)_i =$ $\deg F^n$, is used in a monomial with degree $\deg r$. So,

$$\deg r \circ F^n = \deg r \cdot \deg F^n \leq \deg r \cdot C \ \Rightarrow \ \dim \operatorname{Span}_{n \in \mathbb{N}} r \circ F^n < +\infty,$$

hence $F^{\#}$ is locally finite.

iii) \Rightarrow i):

Note that dim $\operatorname{Span}_{n\in\mathbb{N}} r \circ F^n < +\infty$, for every $r \in \mathbb{C}[x_1, \ldots, x_N]$, implies that dim $\operatorname{Span}_{n\in\mathbb{N}} F^n < +\infty$. Therefore, there exists a finite set I, such that for every $j \in \mathbb{N}$: there exist coefficients $a_i \in \mathbb{C}$ with $F^j = \sum_{i\in I} a_i \cdot F^i$. Now fix $j \in \mathbb{N} \setminus I$ and fix the a_i 's such that $F^j = \sum_{i\in I} a_i \cdot F^i$. Define

$$p(T) := \left(\sum_{i \in I} a_i \cdot T^i\right) - T^j.$$

Then

$$p(F) = \sum_{i \in I} a_i \cdot F^i - F^j = 0 \Rightarrow p \in \mathcal{I}_F.$$

Since $j \notin I$, $\sum_{i \in I} a_i \cdot T^i \neq T^j$, so $p \neq 0$. This implies that $\mathcal{I}_F \neq \{0\}$.

Definition 5. A polynomial endomorphism $F \in \text{End}(\mathbb{C}^N)$ is called locally finite if F satisfies the conditions in proposition 4.

3 A characteristic polynomial for LFPE's

As mentioned before, we want to find a way to produce for every locally finite polynomial endomorphism F, with F(0) = 0, a vanishing polynomial. It turns out that the characteristic polynomial of $F^{\#}$, restricted to a certain vector space W is such a vanishing polynomial for F. We will first define this vector space W.

Definition 6. For $F \in \text{End}(\mathbb{C}^N)$, define $W^i := \text{Span}_{n \in \mathbb{N}}((F^{\#})^n(x_i))$, and $W := W^1 + \ldots + W^N$.

Definition 7. For a linear endomorphism $\ell \in \mathcal{L}(\mathbb{C}[x_1, \ldots, x_N]), \mathcal{F}(\ell)$ denotes the set of finite dimensional subspaces U of $\mathbb{C}[x_1, \ldots, x_N]$ for which $\ell(U) \subseteq U$.

We will use the following two lemmas while proving that $F^{\#}_{|W}$ is a vanishing polynomial of F.

Lemma 8. Let $F \in \text{End}(\mathbb{C}^N)$ be locally finite. Then $W \in \mathcal{F}(F^{\#})$.

Proof. By proposition 4, the fact that F is locally finite means that $F^{\#}$ is locally finite. By definition 3, this implies that

$$\forall r \in \mathbb{C}[x_1, \dots, x_N] : \dim \operatorname{Span}_{n \in \mathbb{N}} (F^{\#})^n(r) < +\infty.$$

In particular, for every $i \in \{1, \ldots, N\}$, dim $W^i = \dim \operatorname{Span}_{n \in \mathbb{N}} ((F^{\#})^n(x_i)) < +\infty$. From this follows that dim $W \leq \sum_{1 \leq i \leq N} \dim W^i < +\infty$. Together with the fact that $F^{\#}(W) \subseteq W$, this implies that $W \in \mathcal{F}(F^{\#})$.

Lemma 9. Let $F \in \text{End}(\mathbb{C}^N)$ be such that $\forall i \in \{1, \ldots, N\} : F^{\#}(x_i) = 0$. Then F = 0.

Proof. For every *i*-th coordinate function of F, we have $F_i = x_i \circ F = F^{\#}(x_i) = 0$. Thus all coordinate functions of F are zero, i.e. F = 0.

Lemma 10. Let $F \in \text{End}(\mathbb{C}^N)$. Then $\mathcal{X}_{(F^{\#},W)}$, the characteristic polynomial of $F^{\#}_{|W}$, is a vanishing polynomial of F.

Proof. Consider the linear map $F^{\#}_{|W} : W \to W$. Theorem 1 states that $\mathcal{X}_{(F^{\#},W)} = \sum_{i=0}^{m} a_i \cdot T^i$ is a vanishing polynomial for $F^{\#}_{|W}$, hence

$$\begin{aligned} \mathcal{X}_{(F^{\#},W)}(F^{\#}|_{W}) &= 0\\ \Rightarrow \quad W \subseteq \ker(\mathcal{X}_{(F^{\#},W)}(F^{\#}))\\ \Rightarrow \quad (\mathcal{X}_{(F^{\#},W)}(F^{\#}))(x_{j}) = 0, \forall j \in \{1,\ldots,N\} \end{aligned}$$

By definition of $F^{\#}$,

$$0 = (\mathcal{X}_{(F^{\#},W)}(F^{\#}))(x_j) = \sum_{i=0}^m a_i \cdot (F^{\#})^i(x_j) = \sum_{i=0}^m a_i \cdot (x_j \circ F^i),$$

which is the *j*-th coordinate function of $\sum_{i=0}^{m} a_i \cdot F^i$, and thus is equal to $x_j \circ \mathcal{X}_{(F^{\#},W)}(F)$. From lemma 9, it follows that $\mathcal{X}_{(F^{\#},W)}(F) = 0$, hence $\mathcal{X}_{(F^{\#},W)}$ is a vanishing polynomial of F.

Now that we have found that $\mathcal{X}_{(F^{\#},W)}(F) = 0$, we will use this in order to find a closed formula giving a vanishing polynomial of F.

We define \mathcal{M} as the linear subspace of $\mathbb{C}[x_1, \ldots, x_N]$ such that $\mathcal{M} = \{r \in \mathbb{C}[x_1, \ldots, x_N] \mid r(0) = 0\}$. More generally, \mathcal{M}^k is the linear subspace of $\mathbb{C}[x_1, \ldots, x_N]$ containing only those polynomials $r \in \mathbb{C}[x_1, \ldots, x_N]$ for which every monomial has degree at least k.

For $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_N) \in \mathbb{N}^N$, we define $F^{\alpha} := F_1^{\alpha_1} F_2^{\alpha_2} \cdots F_N^{\alpha_N}$, and $|\alpha| := \alpha_1 + \alpha_2 + \ldots + \alpha_N$.

Lemma 11. Let $F \in \text{End}(\mathbb{C}^N)$ be such that F(0) = 0, then $\forall k \ge 0$: $F^{\#}(\mathcal{M}^k) \subseteq \mathcal{M}^k$.

Proof. Since F(0) = 0, we have $F_i(0) = 0$, for all $i, 1 \le i \le N$. So every $F_i \in \mathcal{M}$. Let r be in \mathcal{M}^k , then

$$r = \sum_{\alpha \in \mathbb{N}^N, \ |\alpha| \ge k} r_{\alpha} \cdot X^{\alpha},$$

with $r_{\alpha} \in \mathbb{C}$. Then

$$F^{\#}(r) = r \circ F = \sum_{\alpha \in \mathbb{N}^{N}, \ |\alpha| \ge k} r_{\alpha} \cdot F^{\alpha}.$$

From $F^{\alpha} = F_1^{\alpha_1} F_2^{\alpha_2} \cdots F_N^{\alpha_N}$, $|\alpha| \ge k$, and the fact that every $F_i \in \mathcal{M}$, we see that F^{α} is a product of at least k elements of \mathcal{M} , and thus $F^{\alpha} \in \mathcal{M}^k$. Since \mathcal{M}^k is closed under addition, it follows that $F^{\#}(r) \in \mathcal{M}^k$, hence $F^{\#}(\mathcal{M}^k) \subseteq \mathcal{M}^k$.

Recall that $W = \operatorname{Span}_{n \in \mathbb{N}} ((F^{\#})^n(x_i))_{1 \leq i \leq N}$ and $d = \sup_{n \in \mathbb{N}} \deg F^n$. For $1 \leq k \leq d+1$, we define $W_k := W \cap \mathcal{M}^k$.

Lemma 12. Let $F \in \text{End}(\mathbb{C}^N)$ be such that F(0) = 0, then $F^{\#}(W_k) \subseteq W_k, \forall k \geq 0$.

Proof. Note that $F^{\#}(W_k) = F^{\#}(W \cap \mathcal{M}^k) \subseteq F^{\#}(\mathcal{M}^k)$. By lemma 11, we have $F^{\#}(\mathcal{M}^k) \subseteq \mathcal{M}^k, \forall k \ge 0$. Also, it is obvious that $F^{\#}(W_k) \subseteq F^{\#}(W) \subseteq W$. Thus, $F^{\#}(W_k) \subseteq W \cap M^k = W_k, \forall k \ge 0$.

Lemma 13. Let $F \in \operatorname{End}(\mathbb{C}^N)$ be such that F(0) = 0, and such that $d = \sup_{n \in \mathbb{N}} \deg F^n < \infty$. Let W_k be defined as above. Then $W = W_1 \supseteq W_2 \supseteq \ldots \supseteq W_{d+1} = \{0\}$.

Proof. Since \mathcal{M}^k is the set of polynomials $r \in \mathbb{C}[x_1, \ldots, x_N]$ for which every monomial has degree at least k, we have that $\mathcal{M}^k \supseteq \mathcal{M}^{k+1}$, for $1 \leq k \leq d$. By definition of W_k , it follows that $W_1 \supseteq W_2 \supseteq \ldots \supseteq W_{d+1}$.

Recall that $x_i \circ F^n$ is the *i*-th coordinate function of F^n . Since F(0) = 0, we have $\deg(x_i \circ F^n) \ge 1$, for $1 \le i \le N$ and every $n \in \mathbb{N}$. The set $\{x_i \circ F^n \mid n \in \mathbb{N}, 1 \le i \le N\}$ is a spanning set for W. Thus, every element of W is in \mathcal{M}^1 , and thus $W \subseteq \mathcal{M}^1$. From this, it follows that $W = W \cap \mathcal{M}^1 = W_1$. For $1 \le i \le N$, and every $n \in \mathbb{N}$,

$$\deg(x_i \circ F^n) \le \max_{1 \le j \le N} \deg(x_j \circ F^n) = \deg F^n < d+1,$$

since $d = \sup_{n \in \mathbb{N}} \deg F^n$. Thus, every basis element of W has degree less than d + 1. This implies that every polynomial in W consists of monomials of degree less than d + 1, except for 0, hence $W_{d+1} = \{0\}$.

As we will see in lemma 15, the characteristic polynomial $\mathcal{X}_{(F^{\#},W)}$ can be written as a product of other characteristic polynomials. We will use these characteristic polynomials in our search for a closed formula that vanishes for F. Therefore, the following endomorphisms are needed.

Definition 14. For the linear map $F^{\#}_{|W}$, and $i \in \{1, \ldots, d\}$, we define L_i to be the endomorphism induced by $F^{\#}_{|W}$ on W_i/W_{i+1} , that is:

$$L_{i}: W_{i}/W_{i+1} \to W_{i}/W_{i+1}$$
$$w_{i} + W_{i+1} \mapsto F^{\#}(w_{i}) + W_{i+1},$$

where $w_i \in W_i$.

The map L_i is well defined: Let $b \in \overline{a}$. Then $L_i(\overline{b}) = F^{\#}(b) + W_{i+1}$. Since $F^{\#}$ is linear, this equals $F^{\#}(b-a) + F^{\#}(a) + W_{i+1}$. Using that $b-a \in W_{i+1}$, lemma 12 implies that $F^{\#}(b-a) \in W_{i+1}$, and thus $L_i(\overline{b}) = F^{\#}(a) + W_{i+1} = L_i(\overline{a})$. This makes L_i independent of the choice of representatives.

Lemma 15. The characteristic polynomial $\mathcal{X}_{(F^{\#},W)}$ of $F^{\#}|_{W}$ can be found using the characteristic polynomials of the linear maps L_i defined above, in the following way:

$$\mathcal{X}_{(F^{\#},W)} = \mathcal{X}_{L_1} \cdot \mathcal{X}_{L_2} \cdots \mathcal{X}_{L_d}$$

Proof. Note that lemma 13 implies that $W \cong W_1/W_2 \oplus \ldots \oplus W_d/W_{d+1} =: V$. There is an isomorphism

$$\phi: \quad W \to V$$
$$w \mapsto (\overline{w_1}, \dots, \overline{w_d})$$

where $\overline{w_i}$ is the coset of w in W_i/W_{i+1} . Define a linear endomorphism L on V, such that $L_{|W_i/W_{i+1}} = L_i$, for every $i \in \{1, \ldots, d\}$. By definition of the L_i , we then have $\phi^{-1} F^{\#}_{|W} \phi = L$. Now $\mathcal{X}_{L_i} \mid \mathcal{X}_L$, and deg $\mathcal{X}_{L_i} = \dim W_i/W_{i+1}$, thus

$$\deg(\prod_{i=1}^{d} \mathcal{X}_{L_i}) = \dim(\prod_{i=1}^{d} W_i/W_{i+1}) = \dim W = \dim V = \deg \mathcal{X}_L.$$

Since characteristic polynomials are monic, this means that $\prod_{i=1}^{d} \mathcal{X}_{L_i} = \mathcal{X}_L = \mathcal{X}_{F^{\#}|_W}$.

Now, we let $F^{\#}_{|\mathcal{M}|}$ induce endomorphisms on the spaces $\mathcal{M}^i/\mathcal{M}^{i+1}$, in a way similar to how $F^{\#}_{|W}$ induced L_i on W_i/W_{i+1} .

Definition 16. The linear map $F^{\#}_{|\mathcal{M}|}$ induces an endomorphism K_i on $\mathcal{M}^i/\mathcal{M}^{i+1}$, in the following way:

$$K_i: \quad \mathcal{M}^i/\mathcal{M}^{i+1} \to \mathcal{M}^i/\mathcal{M}^{i+1}$$
$$m_i + \mathcal{M}^{i+1} \mapsto F^{\#}(m_i) + \mathcal{M}^{i+1},$$

where $m_i \in \mathcal{M}^i$.

Similar to definition 14, using lemma 11 we find that the K_i are well defined. Furthermore, definition 16 ensures that $K_{i|W_i/W_{i+1}} = L_i$.

By $\mathcal{L}(F_i)$, we denote the linear part of $F_i \in \mathbb{C}[x_1, \ldots, x_N]$. Also, we call $(\mathcal{L}(F_1), \ldots, \mathcal{L}(F_N))$ the linear part of a polynomial endomorphism F, and denote this by $\mathcal{L}(F)$.

We are now able to show how the characteristic polynomial \mathcal{X}_{K_i} depends on the eigenvalues of F.

Lemma 17. Let the K_i be defined as above, with $F \in \text{End}(\mathbb{C}^N)$ such that F(0) = 0. Let $\alpha \in \mathbb{N}^N$, and $\lambda^{\alpha} = \lambda_1^{\alpha_1} \cdots \lambda_N^{\alpha_N}$, where λ_i is the eigenvalue of the linear part of F_i . Then, for the characteristic polynomial \mathcal{X}_{K_i} , the following holds

$$\mathcal{X}_{K_i} = \prod_{|\alpha|=i} (T - \lambda^{\alpha}).$$

Proof. Assume that $\mathcal{L}(F)$ is represented by a diagonal matrix. The canonical basis for $\mathcal{M}^i/\mathcal{M}^{i+1}$ is

$$\{X^{\alpha} + \mathcal{M}^{i+1} \mid |\alpha| = i\}.$$

For these basis elements,

$$K_i(X^{\alpha} + \mathcal{M}^{i+1}) = F^{\#}(X^{\alpha}) + \mathcal{M}^{i+1} = F^{\alpha} + \mathcal{M}^{i+1}.$$

We can write

$$F^{\alpha} = (\mathcal{L}(F_1) + H_1)^{\alpha_1} \cdots (\mathcal{L}(F_N) + H_N)^{\alpha_N},$$

where $H_i = F_i - \mathcal{L}(F_i)$, the higher order part of F_i . Notice that $|\alpha| = i$ implies that the terms containing higher order parts will end up in \mathcal{M}^{i+1} . Hence

$$F^{\alpha} = \mathcal{L}(F_1)^{\alpha_1} \cdots \mathcal{L}(F_N)^{\alpha_N} + \mathcal{M}^{i+1}$$

and

$$K_i(X^{\alpha} + \mathcal{M}^{i+1}) = \mathcal{L}(F)^{\alpha} + \mathcal{M}^{i+1}.$$

By assumption, $\mathcal{L}(F)$ is represented by a diagonal matrix. Thus, $\mathcal{L}(F) = (\lambda_1 X_1, \ldots, \lambda_N X_N)$ and

$$K_i(X^{\alpha} + \mathcal{M}^{i+1}) = \lambda_1^{\alpha_1} X_1^{\alpha_1} \cdots \lambda_N^{\alpha_N} X_N^{\alpha_N} + \mathcal{M}^{i+1} = \lambda^{\alpha} X^{\alpha} + \mathcal{M}^{i+1}.$$

In particular, $K_i : \overline{X^{\alpha}} \mapsto \lambda^{\alpha} \overline{X^{\alpha}}$, for every $\alpha \in \mathbb{N}^N$ with $|\alpha| = i$. Thus, the matrix of K_i in the canonical basis is a diagonal matrix with the λ^{α} 's on the diagonal. This yields $\prod_{|\alpha|=i} (T - \lambda^{\alpha})$ as the characteristic polynomial of K_i . When $\mathcal{L}(F)$ is not represented by a diagonal matrix, one can show with a bit more effort that K_i is conjugated to an upper triangular matrix, with the λ^{α} on the diagonal. This leads to the same conclusion.

The following proposition shows that for each locally finite polynomial endomorphism F, with F(0) = 0, a vanishing polynomial exists that depends only on the eigenvalues of F and on $\sup_{n \in \mathbb{N}} \deg F^n$.

Proposition 18. Let $F \in \text{End}(\mathbb{C}^N)$ be such that F(0) = 0 and $d = \sup_{n \in \mathbb{N}} \deg F^n < \infty$. Let λ_i denote the eigenvalues of the linear part of F. Then

$$\prod_{\alpha|\leq d} (T - \lambda^{\alpha})$$

is a vanishing polynomial of F.

Proof. Lemma 10 states that $\mathcal{X}_{(F^{\#},W)}$, the characteristic polynomial of $F^{\#}_{|W}$, is a vanishing polynomial of F. We will show that this polynomial divides the polynomial mentioned in the proposition. It follows from lemma 15 that

$$\mathcal{X}_{(F^{\#},W)} = \prod_{i=1}^{d} \mathcal{X}_{L_i}$$

Notice that, by definition of the K_i , we have that $K_{i|W_i/W_{i+1}} = L_i$. This implies that $\mathcal{X}_{L_i} \mid \mathcal{X}_{K_i}$, for every $i \in \{1, \ldots, d\}$. In lemma 17, we saw that

$$\mathcal{X}_{K_i} = \prod_{|\alpha|=i} (T - \lambda^{\alpha}).$$

Hence,

$$\prod_{i=1}^{d} \mathcal{X}_{L_i} \mid \prod_{i=1}^{d} \mathcal{X}_{K_i} = \prod_{i=1}^{d} \prod_{|\alpha|=i} (T - \lambda^{\alpha}).$$

This last expression is equal to $\prod_{|\alpha| \le d} (T - \lambda^{\alpha})$, which proves the proposition.

References

- [1] W. Bosma, *Lineaire Algebra 3 en 4*, Lecture notes, Radboud Universiteit, Nijmegen, 2006.
- [2] M. Nagata, On Automorphism Group of k[x, y], Department of Mathematics, Kyoto University, Lectures in Mathematics, No. 5. Kinokuniya Book-Store Co. Ltd., Tokyo, 1972.
- [3] J.-P. Furter and S. Maubach, Locally finite polynomial endomorphisms, J. Pure and Applied Algebra 211 (2007) 445–458.