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1 Introduction

The following theorem is well-known from linear algebra.

Theorem 1. [Cayley-Hamilton][1] Let ℓ be a linear endomorphism of a fi-

nite dimensional vector space, and Xℓ(T ) = det(TI − ℓ) its characteristic

polynomial. Then Xℓ vanishes when applied to ℓ itself: Xℓ(ℓ) = 0.

The characteristic polynomial of ℓ thus provides us with a relation of the

form ℓn = a0 + a1 · ℓ+ . . .+ an−1 · ℓ
n−1. This relation is useful, eg. for finding

the inverse of ℓ, or calculating high powers of ℓ.

In this thesis, we will look at polynomial endomorphisms of C[x1, . . . , xN ].

Definition 2. A polynomial endomorphism of C[x1, . . . , xN ] is a map F :

CN → CN that is an N -tuple of functions: F = (F1, . . . , FN), where every

Fi ∈ C[x1, . . . , xN ]. The Fi are called coordinate functions. Thus,

F : (x1, . . . , xN) 7→ (F1(x1, . . . , xN ), . . . , FN (x1, . . . , xN)).

The identity mapping, which maps (x1, . . . , xN ) to (x1, . . . , xN), is denoted

by I. We define deg F as max1≤i≤N deg Fi and F i = F ◦ F ◦ . . . ◦ F
︸ ︷︷ ︸

i

.

For some polynomial endomorphisms of C[x1, . . . , xN ], it is easy to see

that there also exists a relation of the form F n = a0 + . . . + an−1 · F
n−1.

For example, let

F (x, y) = (x + y2, y).

Then

F 2(x, y) = (x + 2y2, y),

and we see that

(F 2 − 2 · F + I)(x, y) = (0, 0)

From now on the all zero vector will be denoted by 0.

Another example of a polynomial endomorphism is the Nagata automor-

phism [2], defined as

F (x, y, z) = (x − 2y∆ − z∆2, y + z∆, z), where ∆ = xz + y2.
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Then

F 2(x, y, z) = (x − 4y∆ − 4z∆2, y + 2z∆, z),

F 3(x, y, z) = (x − 6y∆ − 9z∆2, y + 3z∆, z).

This leads to the relation

(−F 3 + 3F 2 − 3F + I)(x, y, z) = 0.

The question arises, how to find such a non-trivial relation for an arbi-

trary polynomial endomorphism, if it exists, without having to try a lot of

possibilities. In the case of a linear endomorphism ℓ, the relation is eas-

ily obtained from the characteristic polynomial, which depends only on the

eigenvalues of ℓ. If a polynomial endomorphism F satisfies such a relation,

one would expect that, in a way similar to the linear case, there would exist

a closed formula depending only on the eigenvalues of the linear part of F .

Thus, we want to find a formula p ∈ C[T ], p(T ) =
∑m

i=0 pi · T
i, such that

∑m
i=0 pi · F

i = 0.

In [3], a closed formula for a vanishing polynomial of F is discusssed, for

F a locally finite polynomial endomorphism (LFPE, see definition 5), with

F (0) = 0. This closed formula turns out to depend on the eigenvalues of the

linear part of F , and on supn∈N
deg F n. This thesis comprises a proof that

this closed formula (see proposition 18), being

p(T ) =
∏

|α|≤supn∈N deg F n

(T − λα),

with λi the eigenvalues of the linear part of F , is a vanishing polynomial for

F . This means that p(F ) =
∑m

i=0 pi · F
i = 0.
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2 Locally finite polynomial endomorphisms

Recall from definition 2 that a polynomial endomorphism of CN is a map

F : CN → CN that is an N -tuple of coordinate functions: F = (F1, . . . , FN),

where every Fi ∈ C[x1, . . . , xN ]. From now on, we denote the polynomial

endomorphism (x1, x2, . . . , xN) by X. The set of all polynomial endomor-

phisms of CN is denoted by End(CN).

For each F ∈ End(CN ), we define F# to be the map

F# : C[x1, . . . , xN ] → C[x1, . . . , xN ],

r 7→ r ◦ F.

This means that for every i ∈ {1, . . . , N}, F# replaces every occurrence of

xi in r by the i-th coordinate function of F . The map F# is a C-linear

endomorphism of the vector space C[x1, . . . , xN ], since it clearly holds that

F#(r + s) = F#(r) + F#(s), for all r, s ∈ C[x1, . . . , xN ], and F#(a · r) =

a · F#(r), for all a ∈ C. Notice that F#(G#(r)) = r ◦ G(F ) and thus

(F#)m = (F m)#. The set of all linear endomorphisms of a vector space V is

denoted by L(V ).

Definition 3. A linear endomorphism ℓ ∈ L(C[x1, . . . , xN ]) is called locally

finite if for all r ∈ C[x1, . . . , xN ] holds that dim Spann∈N
ℓn(r) < +∞.

For F ∈ End(CN ), and p ∈ C[T ], p =
∑m

i=0 pi · T
i, we denote

∑m
i=0 pi · F

i

by p(F ). We define IF := {p ∈ C[T ]
∣
∣ p(F ) = 0}.

Proposition 4. For a polynomial endomorphism F , the following conditions

are equivalent.

i) IF 6= {0},

ii) supn∈N
deg F n < +∞,

iii) F# is locally finite.

Proof. i) ⇒ ii):

Since IF = {p ∈ C[T ]
∣
∣ p(F ) = 0} 6= {0}, there exists a p ∈ C[T ] such that
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p 6= 0 and p(F ) = 0. Let m be the degree of p, then p(F ) =
∑m

i=0 pi · F
i,

thus

F m = −

m−1∑

i=0

pi · F
i.

Hence, F m ∈ Span(F 0, F 1, . . . , F m−1). By induction, it follows that F n ∈

Span(F 0, F 1, . . . , F m−1), for every n ∈ N. Thus,

sup
n∈N

deg F n ≤ max
0≤k≤m−1

deg F k < +∞.

ii) ⇒ iii):

From supn∈N deg F n < +∞ follows that there exists a C ∈ N such that

for every n ∈ N deg F n ≤ C. For r ∈ C[x1, . . . , xN ], r ◦ F n is obtained

by replacing every occurrence of xi by the i-th coordinate function of F n

(denoted by (F n)i), for every i ∈ {1, . . . , N}. The degree of r ◦F n is equal to

the degree in the case that a coordinate function (F n)i, for which deg(F n)i =

deg F n, is used in a monomial with degree deg r. So,

deg r ◦ F n = deg r · deg F n ≤ deg r · C ⇒ dim Spann∈N
r ◦ F n < +∞,

hence F# is locally finite.

iii) ⇒ i):

Note that dim Spann∈N r ◦ F n < +∞, for every r ∈ C[x1, . . . , xN ], implies

that dim Spann∈N
F n < +∞. Therefore, there exists a finite set I, such that

for every j ∈ N: there exist coefficients ai ∈ C with F j =
∑

i∈I ai · F
i. Now

fix j ∈ N\I and fix the ai’s such that F j =
∑

i∈I ai · F
i. Define

p(T ) := (
∑

i∈I

ai · T
i) − T j.

Then

p(F ) =
∑

i∈I

ai · F
i − F j = 0 ⇒ p ∈ IF .

Since j /∈ I,
∑

i∈I ai · T
i 6= T j, so p 6= 0. This implies that IF 6= {0}.

Definition 5. A polynomial endomorphism F ∈ End(CN) is called locally

finite if F satisfies the conditions in proposition 4.
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3 A characteristic polynomial for LFPE’s

As mentioned before, we want to find a way to produce for every locally

finite polynomial endomorphism F , with F (0) = 0, a vanishing polynomial.

It turns out that the characteristic polynomial of F#, restricted to a certain

vector space W is such a vanishing polynomial for F . We will first define

this vector space W .

Definition 6. For F ∈ End(CN), define W i := Spann∈N
((F#)n(xi)), and

W := W 1 + . . . + W N .

Definition 7. For a linear endomorphism ℓ ∈ L(C[x1, . . . , xN ]),F(ℓ) denotes

the set of finite dimensional subspaces U of C[x1, . . . , xN ] for which ℓ(U) ⊆ U .

We will use the following two lemmas while proving that F#
|W is a van-

ishing polynomial of F .

Lemma 8. Let F ∈ End(CN) be locally finite. Then W ∈ F(F#).

Proof. By proposition 4, the fact that F is locally finite means that F# is

locally finite. By definition 3, this implies that

∀r ∈ C[x1, . . . , xN ] : dim Spann∈N
(F#)n(r) < +∞.

In particular, for every i ∈ {1, . . . , N}, dim W i = dim Spann∈N
((F#)n(xi)) <

+∞. From this follows that dim W ≤
∑

1≤i≤N dim W i < +∞. Together with

the fact that F#(W ) ⊆ W , this implies that W ∈ F(F#).

Lemma 9. Let F ∈ End(CN ) be such that ∀i ∈ {1, . . . , N} : F#(xi) = 0.

Then F = 0.

Proof. For every i-th coordinate function of F , we have Fi = xi ◦ F =

F#(xi) = 0. Thus all coordinate functions of F are zero, i.e. F = 0.

Lemma 10. Let F ∈ End(CN). Then X(F#,W ), the characteristic polynomial

of F#
|W , is a vanishing polynomial of F .
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Proof. Consider the linear map F#
|W : W → W . Theorem 1 states that

X(F#,W ) =
∑m

i=0 ai · T
i is a vanishing polynomial for F#

|W , hence

X(F#,W )(F
#
|W ) = 0

⇒ W ⊆ ker(X(F#,W )(F
#))

⇒ (X(F#,W )(F
#))(xj) = 0, ∀j ∈ {1, . . . , N}.

By definition of F#,

0 = (X(F#,W )(F
#))(xj) =

m∑

i=0

ai · (F
#)i(xj) =

m∑

i=0

ai · (xj ◦ F i),

which is the j-th coordinate function of
∑m

i=0 ai · F i, and thus is equal to

xj ◦ X(F#,W )(F ). From lemma 9, it follows that X(F#,W )(F ) = 0, hence

X(F#,W ) is a vanishing polynomial of F .

Now that we have found that X(F#,W )(F ) = 0, we will use this in order

to find a closed formula giving a vanishing polynomial of F .

We define M as the linear subspace of C[x1, . . . , xN ] such that M =

{r ∈ C[x1, . . . , xN ]
∣
∣ r(0) = 0}. More generally, Mk is the linear subspace of

C[x1, . . . , xN ] containing only those polynomials r ∈ C[x1, . . . , xN ] for which

every monomial has degree at least k.

For α = (α1, α2, . . . , αN) ∈ N
N , we define F α := F α1

1 F α2

2 · · ·F αN

N , and

|α| := α1 + α2 + . . . + αN .

Lemma 11. Let F ∈ End(CN) be such that F (0) = 0, then ∀k ≥ 0 :

F#(Mk) ⊆ Mk.

Proof. Since F (0) = 0, we have Fi(0) = 0, for all i, 1 ≤ i ≤ N . So every

Fi ∈ M. Let r be in Mk, then

r =
∑

α∈NN , |α|≥k

rα · Xα,

with rα ∈ C. Then

F#(r) = r ◦ F =
∑

α∈NN , |α|≥k

rα · F α.
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From F α = F α1

1 F α2

2 · · ·F αN

N , |α| ≥ k, and the fact that every Fi ∈ M, we see

that F α is a product of at least k elements of M, and thus F α ∈ Mk. Since

Mk is closed under addition, it follows that F#(r) ∈ Mk, hence F#(Mk) ⊆

Mk.

Recall that W = Spann∈N((F#)n(xi))1≤i≤N and d = supn∈N deg F n. For

1 ≤ k ≤ d + 1, we define Wk := W ∩Mk.

Lemma 12. Let F ∈ End(CN) be such that F (0) = 0, then F#(Wk) ⊆

Wk, ∀k ≥ 0.

Proof. Note that F#(Wk) = F#(W ∩ Mk) ⊆ F#(Mk). By lemma 11, we

have F#(Mk) ⊆ Mk, ∀k ≥ 0. Also, it is obvious that F#(Wk) ⊆ F#(W ) ⊆

W . Thus, F#(Wk) ⊆ W ∩ Mk = Wk, ∀k ≥ 0.

Lemma 13. Let F ∈ End(CN) be such that F (0) = 0, and such that

d = supn∈N
deg F n < ∞. Let Wk be defined as above. Then W = W1 ⊇

W2 ⊇ . . . ⊇ Wd+1 = {0}.

Proof. Since Mk is the set of polynomials r ∈ C[x1, . . . , xN ] for which every

monomial has degree at least k, we have that Mk ⊇ Mk+1, for 1 ≤ k ≤ d.

By definition of Wk, it follows that W1 ⊇ W2 ⊇ . . . ⊇ Wd+1.

Recall that xi ◦F n is the i-th coordinate function of F n. Since F (0) = 0, we

have deg(xi ◦F n) ≥ 1, for 1 ≤ i ≤ N and every n ∈ N. The set {xi ◦F n
∣
∣ n ∈

N, 1 ≤ i ≤ N} is a spanning set for W . Thus, every element of W is in M1,

and thus W ⊆ M1. From this, it follows that W = W ∩M1 = W1.

For 1 ≤ i ≤ N , and every n ∈ N,

deg(xi ◦ F n) ≤ max
1≤j≤N

deg(xj ◦ F n) = deg F n < d + 1,

since d = supn∈N
deg F n. Thus, every basis element of W has degree less

than d + 1. This implies that every polynomial in W consists of monomials

of degree less than d + 1, except for 0, hence Wd+1 = {0}.
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As we will see in lemma 15, the characteristic polynomial X(F#,W ) can be

written as a product of other characteristic polynomials. We will use these

characteristic polynomials in our search for a closed formula that vanishes

for F . Therefore, the following endomorphisms are needed.

Definition 14. For the linear map F#
|W , and i ∈ {1, . . . , d}, we define Li

to be the endomorphism induced by F#
|W on Wi/Wi+1, that is:

Li : Wi/Wi+1 → Wi/Wi+1

wi + Wi+1 7→ F#(wi) + Wi+1,

where wi ∈ Wi.

The map Li is well defined: Let b ∈ a. Then Li(b) = F#(b)+Wi+1. Since

F# is linear, this equals F#(b−a)+F#(a)+Wi+1. Using that b−a ∈ Wi+1,

lemma 12 implies that F#(b− a) ∈ Wi+1, and thus Li(b) = F#(a) + Wi+1 =

Li(a). This makes Li independent of the choice of representatives.

Lemma 15. The characteristic polynomial X(F#,W ) of F#
|W can be found

using the characteristic polynomials of the linear maps Li defined above, in

the following way:

X(F#,W ) = XL1
· XL2

· · · XLd

Proof. Note that lemma 13 implies that W ∼= W1/W2⊕ . . .⊕Wd/Wd+1 =: V .

There is an isomorphism

φ : W → V

w 7→ (w1, . . . , wd),

where wi is the coset of w in Wi/Wi+1. Define a linear endomorphism L on

V , such that L|Wi/Wi+1
= Li, for every i ∈ {1, . . . , d}. By definition of the Li,

we then have φ−1 F#
|W φ = L. Now XLi

∣
∣ XL, and degXLi

= dim Wi/Wi+1,

thus

deg(

d∏

i=1

XLi
) = dim(

d∏

i=1

Wi/Wi+1) = dim W = dim V = degXL.

Since characteristic polynomials are monic, this means that
∏d

i=1 XLi
= XL =

XF#
|W

.
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Now, we let F#
|M induce endomorphisms on the spaces Mi/Mi+1, in a

way similar to how F#
|W induced Li on Wi/Wi+1.

Definition 16. The linear map F#
|M induces an endomorphism Ki on

Mi/Mi+1, in the following way:

Ki : Mi/Mi+1 → Mi/Mi+1

mi + Mi+1 7→ F#(mi) + Mi+1,

where mi ∈ Mi.

Similar to definition 14, using lemma 11 we find that the Ki are well

defined. Furthermore, definition 16 ensures that Ki|Wi/Wi+1
= Li.

By L(Fi), we denote the linear part of Fi ∈ C[x1, . . . , xN ]. Also, we call

(L(F1), . . . ,L(FN)) the linear part of a polynomial endomorphism F , and

denote this by L(F ).

We are now able to show how the characteristic polynomial XKi
depends

on the eigenvalues of F .

Lemma 17. Let the Ki be defined as above, with F ∈ End(CN ) such that

F (0) = 0. Let α ∈ N
N , and λα = λα1

1 · · ·λαN

N , where λi is the eigenvalue

of the linear part of Fi. Then, for the characteristic polynomial XKi
, the

following holds

XKi
=

∏

|α|=i

(T − λα).

Proof. Assume that L(F ) is represented by a diagonal matrix. The canonical

basis for Mi/Mi+1 is

{Xα + Mi+1
∣
∣ |α| = i}.

For these basis elements,

Ki(X
α + Mi+1) = F#(Xα) + Mi+1 = F α + Mi+1.

We can write

F α = (L(F1) + H1)
α1 · · · (L(FN) + HN)αN ,
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where Hi = Fi − L(Fi), the higher order part of Fi. Notice that |α| = i

implies that the terms containing higher order parts will end up in Mi+1.

Hence

F α = L(F1)
α1 · · · L(FN)αN + Mi+1

and

Ki(X
α + Mi+1) = L(F )α + Mi+1.

By assumption, L(F ) is represented by a diagonal matrix. Thus, L(F ) =

(λ1X1, . . . , λNXN) and

Ki(X
α + Mi+1) = λα1

1 Xα1

1 · · ·λαN

N XαN

N + Mi+1 = λαXα + Mi+1.

In particular, Ki : Xα 7→ λαXα, for every α ∈ NN with |α| = i. Thus, the

matrix of Ki in the canonical basis is a diagonal matrix with the λα’s on the

diagonal. This yields
∏

|α|=i(T − λα) as the characteristic polynomial of Ki.

When L(F ) is not represented by a diagonal matrix, one can show with a bit

more effort that Ki is conjugated to an upper triangular matrix, with the λα

on the diagonal. This leads to the same conclusion.

The following proposition shows that for each locally finite polynomial

endomorphism F , with F (0) = 0, a vanishing polynomial exists that depends

only on the eigenvalues of F and on supn∈N deg F n.

Proposition 18. Let F ∈ End(CN) be such that F (0) = 0 and d =

supn∈N deg F n < ∞. Let λi denote the eigenvalues of the linear part of

F . Then
∏

|α|≤d

(T − λα)

is a vanishing polynomial of F .

Proof. Lemma 10 states that X(F#,W ), the characteristic polynomial of F#
|W ,

is a vanishing polynomial of F . We will show that this polynomial divides

the polynomial mentioned in the proposition. It follows from lemma 15 that

X(F#,W ) =

d∏

i=1

XLi
.
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Notice that, by definition of the Ki, we have that Ki|Wi/Wi+1
= Li. This

implies that XLi

∣
∣ XKi

, for every i ∈ {1, . . . , d}. In lemma 17, we saw that

XKi
=

∏

|α|=i

(T − λα).

Hence,
d∏

i=1

XLi

∣
∣
∣

d∏

i=1

XKi
=

d∏

i=1

∏

|α|=i

(T − λα).

This last expression is equal to
∏

|α|≤d(T −λα), which proves the proposition.
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