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Abstract

If k is a field, C is a k-algebra, then A ⊂ C is called a maximal
k-subring of C if there exists no k-subalgebra B of A such that A (
B ( C. We give several examples of maximal C-subrings and we
classify all the maximal C-subrings of C[x] up to automorphisms of
C[x]. Later we classify a large number of maximal C-subrings of the
maximal C-subrings of C[x].

1 Introduction

If A and B are rings, we say that B is a maximal subring of A if B ( A
and there is no ring C such that B ( C ( A. Even though there are good
reasons to study the maximal subrings of a ring there are cases where it is
very difficult to find all the maximal subrings. Such a case is C[x]. For this
reason we constrict ourselves only to those subrings that contain a copy of
C. There are several motivations to know the maximal subrings. It can be
expected that rings and their maximal subrings share many properties. Sec-
ond some extensions B ⊂ A may be decomposed into a chain of consecutive
maximal subrings B ⊂ B1 ⊂ · · · ⊂ Bn ⊂ A.

In this paper we classify all maximal C-subrings of C[x] up to automor-
phisms. We also classify a big class of maximal C-subrings of the maximal
C-subrings of C[x]. That classification is not complete.
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2 Basic Examples

Definition 1. If S ⊆ R is an extension of rings, then the conductor ideal of
this extension is c = {x ∈ R|Rx ⊆ S}, that is the largest ideal of R that is
contained in S.

Definition 2. If k is a field, C is a k-algebra, then A ⊂ C is called a maximal
k-subring of C if there exists no k-subalgebra B of A such that A ( B ( C.

Lemma 2.1. If f : G 7→ H is an epimorphism of groups, then the assignment
K 7→ f(K) defines a one-to-one correspondence between the set Sf (G) of all
subgroups K of G which contain ker f and the set S(H) of all sugroups of
H.

Proof. The assignment K 7→ f(K) defines a function φ : Sf (G) 7→ S(H) and
f−1(J) is a subgroup of G for every subgroup J < H. Since f−1(J) < H
implies ker f < f−1(J) and f(f−1(J)) = J , φ is surjective. On the other
hand f−1(f(K)) = K if and only if kerπ < K. It follows that φ is injective.
With this the one-to-one correspondence is established.

Corollary 2.2. If N is a normal subgroup of a group G, then every subgroup
of G/N is of the form K/N where K is a subgroup of G that contains N .

Proof. Consider the canonical epimorphism π : G 7→ G/N . Let H < G/N .
From 2.1 we have that there exists K < G such that π(K) = H. Clearly
N = ker π < K and H = π(K) = K/N as required.

Corollary 2.3. If I is an ideal of the ring R, then every subring of R/I is
of the form S/I where S is a subring of R that contains I.

Proof. There are three things to observe. Firstly, a ring is a commuta-
tive group with respect to each of its operations. Secondly, ring homomor-
phisms are group homomorphisms when considering either of the operations.
Thirdly, a subset of a ring R that is a subgroup of both (R,+) and (R, ·) is
a subring of R (and conversely).
Now consider the canonical epimorphism π : R 7→ R/I and a subring
S ′ < R/I. From 2.1 the set S = π−1(S ′) is a subgroup of both (R,+)
and (R, ·). Hence S is a subring of R. Furthermore, because I C (R,+) we
have that S ′ = S/I from 2.2.

Proposition 2.4. Let c be the conductor of S ⊆ R. Then S ∈M(R) if and
only if S/c ∈M(R/c).
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Proof. Consider the canonical epimorphism π : R 7→ R/c. 2.1 and 2.3 imply
that the map π : R 7→ R/c induces an inclusion preserving bijection φ :
Sc(R) 7→ S(R/c) between the set Sc(R) of all subgroups H of R which contain
c(= Ker π) and the set S(R/c) of all subgroups of R/c. Hence:

S ( H ( R if and only if φ(S) ( φ(H) ( φ(R)

which is equivalent to:

S ( H ( R if and only if S/c ( H/c ( R/c

This immediately implies that S ∈ M(R) if and only if S/c ∈ M(R/c) as
required.

Remark 2.5. In the proposition above the condition c is the conductor ideal
can be relaxed. Indeed the proof above only required that c is an ideal of both
S and R. So the statement of the proposition holds true for the more general
case where I is any ideal of R which is contained in S.

Let us give some examples of maximal subrings of polynomial rings over
C.

Example 1. C[x] is a maximal subring of C[x, x−1].

Indeed if C[x] is not a maximal subring there exists a subring S (
C[x, x−1] such that S \ C[x] 6= ∅. So there exists an n ∈ N such that
x−n ∈ S. Consider the subring T which is generated by x−n and notice that
T [x] ⊆ S and T [x] = C[x, x−1] which is not possible.

Example 2. A := C[x, y]− Cx is a maximal subring of C[x, y].

The conductor obviously contains x2 and y. In fact c = (x2, y) and we
get A/c = C and C[x, y]/c = C[x]/(x2). Clearly C ∈ M(C[x]/(x2)). Indeed
suppose there is a subring R that properly contains C, ie. ax ∈ R for some
a ∈ C. Let c1 + c2x ∈ C[x]/(x2). Then c1 + c2

a
ax ∈ C + CR ⊂ R which

implies that C[x]/(x2) ⊂ R. Thus C[x]/(x2) = R. Now using proposition 2.4
it follows that A ∈M(C[x, y]).

Example 3. A := C[x] + (1 + xy)C[x, y] is a maximal subring of C[x, y].

The conductor is c = (1 + xy) and obviously we get A/c ∼= C[x]. On the
other hand C[x, y]/c ∼= C[x, x−1] because 1 + xy = 0 ⇒ y = − 1

x
. But from

example 1 it follows that A/c ∈ M(C[x, y]/c). This result and proposition
2.4 give us A ∈M(C[x, y]).
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Proposition 2.6. All maximal subrings of Q are the localizations of Z at
the prime ideals, ie. M(Q) = {Z(p)|p is prime}.

Proof. We will prove that there is a an inclusion-reversing bijection be-
tween P the power set of the prime numbers and S(Q) the set of the sub-
rings of Q. Define the map φ : P 7→ S(Q) so that φ(P ) = S−1

P Z where
SP = {a ∈ Z | a =

∏n
i=1 pi where pi ∈ P, n ∈ N}. Clearly φ is well defined.

Surjectivity:

Let R ∈ S(Q). Consider PR = {p|p−1 ∈ R} ∈ P . Define SR as follows:

SR =

{
a ∈ Z | a =

n∏
i=1

pi where pi ∈ PR, n ∈ N

}

Clearly SR and PR are in a one-to-one correspondence. Let’s show that
S−1
R Z = R. By the definition of S−1

R Z we can write:

S−1
R Z =

{a
b
∈ Q | (a, b) = 1 and b ∈ SR

}
Take a

b
∈ S−1

R Z. We have that 1
b

= 1∏n
i=1 pi

=
∏

1
pi
∈ R. So

a

b
= a︸︷︷︸

∈R

· 1

b︸︷︷︸
∈R

∈ R⇒ S−1
R Z ⊆ R

Now we only have to prove S−1
R Z ⊇ R. Suppose by contradiction that we

can find an element a
b
∈ R \ S−1

R Z with a, b ∈ Z. There must be some prime
q such that q | b, q - a and q 6∈ S. Let b = xq for some x ∈ Z. Then we have:

a

q
=
xa

xq
= x · a

xq
= x︸︷︷︸

∈R

· a

b︸︷︷︸
∈R

∈ R (1)

Since (a, q) = 1 we can pick u, v ∈ Z such that ua + vq = 1. From (1) we
have a

q
∈ R. Hence q−1 = u · a

q
+ v ∈ R. We just deduced that q ∈ SR, a

contradiction. So R\S−1
R Z = ∅ which implies that R = S−1

R Z as required. We
just proved the surjectivity of φ because we found PR such that φ(PR) = R.
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Injectivity is trivial. So the map φ : P 7→ S(Q) is bijective. Furthermore, by
the way it is defined, φ is inclusion-reversing. Indeed:

PR1 ( PR2 ( PR3 ⇔ S−1
R1
Z ) S−1

R2
Z ) S−1

R3
Z⇔ R1 ) R2 ) R3

Hence R = S−1
R Z ∈ M(Q) if and only if PR contains all but one prime

number. But in this case R = Z(p) for a prime number p.

3 Classification of the maximal C-subrings of

C[x]
In this section we classify all the maximal subrings of C[x] up to automor-
phisms of C[x]. We conclude that there are only two maximal subrings up
to automorphisms of C[x] and they are C[x2, x3] and C[x2, x3 − x]. At the
beginning we find two special sets of maximal subrings and then prove that
they are indeed the only ones.

Proposition 3.1. Let A be a k-algebra and B ⊂ A a sub-k-algebra such that
dimk(A/B) = 1. Then B is a maximal k-subring.

Proof. Suppose by contradiction that B is not a maximal k-subring of A. In
this case we have that there exists V a k-subring of A such that B ( V (
A. But that means that dimk(A/B) > dimk(V/B) ≥ 1 which implies that
dimk(A/B) > 1 which is a contradiction.

Restricting 3.1 to our particular case A = C[x] we have:

Corollary 3.2. If T is a C-subring of C[x] such that codimT = 1 then T is
a maximal C-subring of C[x].

Lemma 3.3. Let a, b ∈ C, a 6= b and define the sets Fa,b = {p ∈ C[x] : p(a) =
p(b)}. Then Fa,b is a maximal C-subring of C[x].

Proof. Consider the linear functional f : C[x]→ C so that f(p) = p(a)−p(b).
Clearly Fa,b = ker f . Furthermore Im f = C. So:

codim(ker f) = dimC(C[x]/ ker f) = dimC(Im f) = dimCC = 1

Since codimFa,b = 1, from 3.2 we have that Fa,b is a maximal C-subring of
C[x].
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Lemma 3.4. Let a, b ∈ C and Φ ∈ AutC(C[x]). Then Φ(Fa,b) = FΦ−1(a),Φ−1(b).
In particular Fa,b ∼= F−1,1.

Proof. The only polynomials in C[x] that have an inverse in the composition
sense are the linear polynomials. In other words, the automorphism group of
the polynomial ring in one variable is the group of affine maps x 7→ cx + d.
Let Φ ∈ AutC(C[x]) and consider g ∈ Φ(Fa,b). There exists p ∈ Fa,b such
that g = Φ(p). Furthermore:

g(Φ−1(a)) = Φ(p)(Φ−1(a)) = p(ΦΦ−1(a)) = p(a) = p(b) = g(Φ−1(b))

Thus g ∈ FΦ−1(a),Φ−1(b) =⇒ Φ(Fa,b) ⊂ FΦ−1(a),Φ−1(b). But from lemma
3.3 both Φ(Fa,b) and FΦ−1(a),Φ−1(b) are maximal C-subrings (because Φ is
an automorphism and isomorphisms preserve maximality) so the inclusion
cannot be strict. Hence Φ(Fa,b) = FΦ−1(a),Φ−1(b) which means that Fa,b ∼=
FΦ−1(a),Φ−1(b) as required. For the last bit Fa,b ∼= F−1,1, we just take Φ∗(x) =
b−a

2
· x+ a+b

2
and verify that Φ∗(−1) = a and Φ∗(1) = b. Indeed:

Φ∗(−1) =
b− a

2
· (−1) +

a+ b

2
=
a− b

2
+
a+ b

2
= a

Φ∗(1) =
b− a

2
· 1 +

a+ b

2
=
b− a

2
+
a+ b

2
= b

With this the proof is finished.

Lemma 3.5. Let a ∈ C and define the set Fa = {p ∈ C[x] : p
′
(a) = 0}.

Then Fa is a maximal C-subring of C[x].

Proof. Consider the linear functional f : C[x] → C so that f(p) = p′(a).
Clearly Fa = ker f . Furthermore Im f = C. So:

codim(ker f) = dimC(C[x]/ ker f) = dimC(Im f) = dimCC = 1

Since codimFa = 1, from 3.2 we have that Fa is a maximal C-subring of
C[x].

Lemma 3.6. Let a ∈ C and Φ ∈ AutC(C[x]). Then Φ(Fa) = FΦ−1(a). In
particular Fa ∼= F0.
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Proof. The proof is similar to the proof of lemma 3.4. Let Φ ∈ AutC(C[x])
and consider g ∈ Φ(Fa). There exists p ∈ Fa such that g = Φ(p). Further-
more:

d

dx

∣∣∣
x=a

g(Φ−1(x)) =
d

dx

∣∣∣
x=a

p(x) = 0

Thus g ∈ FΦ−1(a) =⇒ Φ(Fa) ⊂ FΦ−1(a). But from lemma 3.3 both Φ(Fa)
and FΦ−1(a) are maximal C-subrings so the inclusion cannot be strict. Thus
Φ(Fa) ⊂ FΦ−1(a). For Fa ∼= F0 take Φ∗(x) = x+ a and we only need to check
that Φ∗(0) = a which is true.

Proposition 3.7. F−1,1 = C[x2, x3 − x] and F0 = C[x2, x3].

Proof. Consider F−1,1. We have x2 ∈ F−1,1 and x3 − x ∈ F−1,1. Thus
C[x2, x3−x] ⊆ F−1,1. But codim(C[x2, x3−x]) = dimC(C[x]/C[x2, x3−x]) =
dimCCx̄ = 1. So C[x2, x3 − x] = F−1,1.

Now let’s consider F0. We have x2, x3 ∈ F0 so C[x2, x3] ⊆ F0. Using
again the codim argument we get codim(C[x2, x3]) = dimC(C[x]/C[x2, x3]) =
dimC(Cx̄) = 1 = codim(F0). Thus C[x2, x3] = F0

Corollary 3.8. All the subrings Fa,b and Fa are isomorphic (with respect to
automorphisms of C[x]) with C[x2, x3 − x] and C[x2, x3] respectively.

Proof. This is a direct result of 3.4, 3.6 and 3.7.

Remark 3.9. In 3.8 we also have that C[x2, x3−x] and C[x2, x3] are maximal
C-subrings.

We have showed that C[x2, x3−x] and C[x2, x3] are maximal C-subrings of
C[x]. As claimed at the beginning of this section, these are the only maximal
C-subrings of C[x] up to automorphisms of C[x]. We only need to show that
there are no other.

Theorem 3.10. All C-subalgebras R of C[x] are finitely generated.

Proof. Let g1 ∈ R, deg(g1) ≥ 1 such that deg(g1) is as small as possible. Then
find g2 ∈ R C[g1] such that deg(g2) is as small as possible. We proceed induc-
tively and find gn ∈ R\C[g1, . . . , gn−1] such that deg gn is as small as possible.
If we show that this process stops at some point, ie. R \ C[g1, . . . , gN ] = ∅,
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we are done.
Denote deg(gi) = di for simplicity. We claim that:

dn 6= di(mod d1) for all i < n. (2)

Indeed, if this were not true there would exist k, l ∈ N such that dk =
dl(mod d1). So

dk = dl +md1 for some m ∈ N.
But this implies that gk = c · glgm1 +h for some c ∈ C and h ∈ C[x] such that
deg(h) < dk. This means that we can substitute gk with h ∈ C[g1, . . . , gk]
which contradicts our choice of generators with the smallest degrees possible.
So (2) must be true. But (2) cannot hold for infinitely many generators
because there are only finitely many (exactly d1) residues mod d1. This is
equivalent to what we wanted. So R is finitely generated.

Definition 3. Let R be a C-subalgebra of C[x]. We say that C[g1, . . . , gn]
is a minimal representation of R if R = C[g1, . . . , gn] and the generators
g1, . . . , gn are chosen with the smallest degrees possible as described in the
proof of theorem 3.10.

Corollary 3.11. Let R = C[g1, . . . , gn] be a minimal representation of R.
Then it is true that codimR ≥ deg(g1)− 1 ≥ n− 1.

Proof. From the proof of theorem 3.10 we have that n ≤ deg(g1). On the
other hand because C[g1, . . . , gn] is a minimal representation or R we have
that x, x2, . . . , xdeg(g1)−1 /∈ R. Thus Cx,Cx2, . . . ,Cxdeg(g1)−1 ⊂ C[x]/R. This
implies codimR = dimC(C[x]/R) ≥ deg(g1)−1 which is what we wanted.

Let R = C[g1, . . . , gn] be a minimal representation of the C-subalgebra
R. Define the polynomial map φ(g1,...,gn) : C 7→ Cn so that φ(g1,...,gn)(t) =
(g1(t), . . . , gn(t)). We call this map the corresponding polynomial map of R.
Clearly R has many minimal representations. Nevertheles changing between
minimal representations and therefore between polynomial maps leaves some
properties of its polynomial curves intact, like injectivity and smoothness.
The injectivity and smoothness of these polynomial maps is of particular
interest to us because it seems to have the property that if the C-subalgebra
C[g1, . . . , gn] is a maximal C-subring then the curve φ(g1,...,gn)(t) has cusps and
self-intersecting points, ie. φ(g1,...,gn) is not smooth or not injective. Indeed
this is true in the case of C[x] as we will show below. This property is true
even in the other cases in this paper but we will not prove it.
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Figure 1: For the case of the maximal C-subring F−1,1 = C[x2, x3 − x] the poly-
nomial map t 7→ (t2, t3 − t) is not injective. The curve is self-intersecting at the
points t = −1 and t = 1.

Figure 2: For the case of the maximal C-subring F0 = C[x2, x3] the polynomial
map t 7→ (t2, t3) is not smooth. The curve has a cusp at the point t = 0.

Theorem 3.12. Let R be a maximal C-subring of C[x] and C[g1, . . . , gn] be a

minimal representation of R. Consider t
φ−→ (g1(t), . . . , gn(t)). The following
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are true:

1. If φ is not injective then R is isomorphic to C[x2, x3 − x] up to auto-
morphisms of C[x].

2. If φ is not smooth then R is isomorphic to C[x2, x3] up to automor-
phisms of C[x].

Proof. Let’s prove the first part of the theorem. Suppose φ is not injective.
Then there exist a, b ∈ C such that (g1(a), . . . , gn(a)) = (g1(b), . . . , gn(b)).
But this implies that g1, . . . , gn ∈ Fa,b. Thus R = C[g1, . . . , gn] ⊂ Fa,b and
since both R and Fa,b are maximal C-subrings it follows that R = Fa,b. Now
using corollary 3.8 we get what we want.

For the second part suppose that φ is not smooth. This means that
(g′1, . . . , g

′
n) = (1) which is equivalent to g′1(a) = · · · = g′n(a) = 0 for some

a ∈ C. But this implies that g1, . . . , gn ∈ Fa. Proceeding as above we show
that R = Fa and from corollary 3.8 it follows that R is isomorphic to C[x2, x3]
up to automorphisms of C[x] as required.

The only other possibility for the map φ, which is not covered in theorem
3.12, is the case when φ is both injective and smooth. The proof for this part
is from Arno van den Essen.

Let k denote an algebraically closed field and f := (f1(t), ..., fn(t)) : k →
kn is a polynomial mapping. By f ∗ denote the induced ring homomorphism
from k[x1, ..., xn] to k[t] given by f ∗(g) = g ◦ f . The image of f ∗ we denote
by R. So R = k[f1(t), ..., fn(t)].

Theorem 3.13. If f is injective and f ′(c) 6= 0 for all c ∈ k, then f ∗ is onto.

Proof. Since fj(t) /∈ k for some j, t is a zero of the non-zero polynomial
fj(T )− fj(t), hence t is integral over R. So k[t] is finite over R and hence so
is M := k[t]/R. Furthermore R is noetherian. This implies that its radical,
denoted rad(R), equals

⋂s
i=1 mi for some maximal ideals mi of R. In the

lemma below we show that M ⊆ mM for every maximal ideal m of R. It
follows that M ⊆ m1...msM and hence M ⊆ rad(R)M . So by Nakayama’s
lemma M = 0. i.e. k[t] = R , so f ∗ is onto.

Lemma 3.14. M/mM = 0 for every maximal ideal m of R.
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Proof. Let m be a maximal ideal of R. Since, as observed above R ⊆ k[t]
is an integral extension, the going-up theorem implies that there exists a
maximal ideal n of k[t] with n ∩ R = m. Since k is algebraically closed, n is
of the form k[t](t− c).

Claim: n = mk[t].
It then follows that k[t] ⊆ nk[t] + k ⊆ mk[t] +R i.e. M ⊆ mM as desidered.
To see the claim, observe that by hypothesis f ′i(c) is nonzero for some i.
Hence fi(t) − fi(c) = (t − c)u(t) for some u(t) in k[t] and u(c) is nonzero.
Let b1, ..., br be the different zeros of u(t), each of which is different from c.
Since f is injective, for each j the vector f(c) is different from f(bj). So for
some i, fi(c) is different from fi(bj). Hence fi(t) − fi(c) = (t − c)vj(t) for
some vj(t) in k[t] with vj(bj) nonzero. Obviously fi(t)− fi(c) is contained in
R, hence (t− c)vj(t) belongs to n∩R = m. By construction the polynomials
u(t), v1(t), .., vr(t) have no comon zero, hence they generate the unit ideal in
k[t]. Then (t−c)u(t), (t−c)v1(t), ..., (t−c)vr(t) generate the ideal (t−c)k[t]n.
Since each of these generators belongs to m we get that mk[t] = n, which
completes the proof of the claim.

4 Some maximal C-subrings of Fa and Fa,b.

Proposition 4.1. Let A be a k-algebra and S, T ⊂ A are k-subalgebras such
that codimS = 1 and S 6= T . Then S ∩ T is a maximal k-subring of T .

Proof. A is a vector space and S, T are vector subspaces of A. In other
words A is a k-module and S, T are k-submodules of A. From the Second
Isomorphism Theorem for modules we have that (T +S)/S and T/T ∩S are
isomorphic. But from the assumptions that dimk(A/S) = 1 and S 6= T it
follows that T+S = A. Thus A/S ∼= T/T∩S which implies that codim(T∩S)
in T is:

dimk(T/T ∩ S) = dimk(A/S) = codimS = 1

We only need to recall proposition 3.1 and we are done.

Corollary 4.2. The C-subalgebras Fa∩Fb, Fa∩Fb,c are maximal C-subrings
of Fa and Fa ∩ Fb,c, Fa,b ∩ Fc,d are maximal C-subrings of Fa,b.

Proof. We only need to notice that Fx, Fy,z are all different and codimFx =
codimFy,z = 1 for all indices. Now the hypothesis is a direct corollary of
proposition 4.1.
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Based on corollary 4.2 we will continue the classification of maximal C-
subrings as shown in the diagram. Clearly the C-subalgebras connected by
an arrow in the diagram are maximal C-subrings (from the bottom up) of
the corresponding C-algebra. In fact from proposition 4.1 we can go even
further by taking the intersections of the elements in the bottom row.

C[x, y]

zz $$
Fa

{{ $$

Fa,b

zz %%
Fa ∩ Fb Fa ∩ Fa,b Fa,b ∩ Fc,d

It is important to note that in this way we don’t exhaust all the possibilites
to find maximal C-subrings. Indeed C[x3, x4, x5] is not isomorphic (up to
automorphisms of C[x]) with any of the above.

4.1 The structure of Fa ∩ Fb
Lemma 4.3. Fa ∩ Fb = C[h1, h2, h3] where:

1. h1(x) = (x− a)2(2x+ (a− 3b))

2. h2(x) = (x− a)2(x2 + (a− 2b)b)

3. h3(x) = (x− a)2(2x3 + (3a− 5b)b2)

is a minimal representation of Fa ∩ Fb.
Proof. Let f(x) ∈ Fa ∩ Fb = {g ∈ C[x] : g′(a) = g′(b) = 0}. Define h(x) =
f(x)−f(a). Clearly h satisfies h(a) = h′(a) = 0 and h′(b) = 0 and h ∈ Fa∩Fb
is equivalent with f ∈ Fa ∩ Fb. Thus h(x) = (x− a)2q(x) where q(x) ∈ C[x]
and h′(x) = 2(x − a)q(x) + (x − a)2q′(x). Substituting x = b and using the
fact that h(b) = 0:

2(b− a)q(b) + (b− a)2q
′
(b) = 0 and since a 6= b we have q(b) =

1

2
(a− b)q′(b)

which is the condition q(x) should satisfy for h(x) ∈ Fa∩Fb. Hence deg(h1(x)) =
deg((x − a)2) + deg(q(x))︸ ︷︷ ︸

≥1

≥ 2 + 1 = 3. On the other hand from corol-

lary 3.11 it follows that deg(h1(x)) ≤ codim(Fa ∩ Fb) + 1 = 2 + 1 = 3.
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Hence deg(h1(x)) = 3 and a minimal representation of Fa ∩ Fb has at most
3 generators. Thus we can just find three polynomials q1, q2, q3 of degrees
1, 2 and 3 respectively that satisfy the condition q(b) = 1

2
(a − b)q′(b) and

h1 = (x − a)2q1, h2 = (x − a)2q2, h3 = (x − a)2q3 will be a minimal set of
generators of Fa ∩ Fb. We search for qk-s of the form qk(x) = xk + ck. Then
q′k(x) = kxk−1 and: bk + ck = 1

2
(a − b)kbk−1 ⇒ ck = 1

2
(ka − (k + 2)b)bk−1

Substituting for k we find c1 = 1
2
(a − 3b), c2 = (a − 2b)b, c3 = 1

2
(3a − 5b)b2

which is equivalent to what we wanted to prove.

Lemma 4.4. For all a, b ∈ C there exists Φ ∈ AutC(C[x]) such that Φ(Fa ∩
Fb) = F0 ∩ F−1. In particular Fa ∩ Fb ∼= F0 ∩ F−1.

Proof. Define Φ(x) = (a − b)x + a ∈ AutCC[x]. We have that Φ(0) = a
and Φ(−1) = (a − b) · (−1) + a = b. Now we can use lemma 3.6 and get
Φ(Fa) = FΦ−1(a) = F0 and Φ(Fb) = FΦ−1(b) = F−1. But we also have that
Φ(Fa∩Fb) = Φ(Fa)∩Φ(Fb) = F0∩F−1. So Fa∩Fb ∼= F0∩F−1 as required.

Theorem 4.5. Fa ∩ Fb ∼= C[x2(2x + 3), x2(x2 − 2), x2(2x3 + 5)] up to auto-
morphisms of C[x].

Proof. Direct result of lemma 4.4 and then lemma 4.3.

Figure 3: For F0 ∩F−1 the polynomial map t 7→ (t2(2t+ 3), t2(t2− 2), t2(2t3 + 5))
is not smooth. The curve has two cusps at the points t = 0,−1.
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4.2 The structure of Fa ∩ Fb,c
Lemma 4.6. Let a, b, c ∈ C such that b 6= a, c. The following are true:

1. If 2a = b + c then Fa ∩ Fb,c = C[h1, h2] is a minimal representation
where

(a) h1(x) = (x− a)2

(b) h2(x) = x(x− a)2(x− b)(x− c)

2. Denote z = c−a
b−a . If 2a 6= b+c then Fa∩Fb,c = C[h1, h2, h3] is a minimal

representation where

(a) h1(x) = (x− a)2
(
x+ z2c−b

1−z2

)
(b) h2(x) = (x− a)2

(
x2 + z2c2−b2

1−z2

)
(c) h3(x) = (x− a)2

(
x3 + z2c3−b3

1−z2

)
Proof. Let f(x) ∈ Fa ∩ Fb,c = {g(x) ∈ C[x] : g′(a) = 0 and g(b) = g(c)}.
Define h(x) = f(x) − f(a). Clearly h satisfies h′(a) = h(a) = 0 and h(b) =
h(c) and h ∈ Fa ∩ Fb,c is equivalent with f ∈ Fa ∩ Fb,c. Then we have that
h(x) = (x − a)2q(x) where q(x) ∈ C[x]. The condition h(b) = h(c) implies

that q should satisfy q(b) = (c−a)2

(b−a)2
q(c) = z2q(c). Here there are 2 cases to

consider:

1. z2 = 1 (notice that only z = −1 is possible because b 6= c)

2. z2 6= 1

The first case is special because we can choose q1 such that deg(q1(x)) =
0 ⇒ deg(h1(x)) = 2. Let q1(x) = 1. From corollary 3.11 a minimal repre-
sentation of Fa,b ∩ Fc,d will only have 2 generators. So we must have that
deg(q2(x)) = 3 and deg(h2(x)) = 5. We can find easily q2(x) = x(x−b)(x−c)
which satisfies the conditions and the corresponding polynomial h2(x) =
x(x− a)2(x− b)(x− c). With this we conclude that if a, b, c satisfy relation
1. we have Fa ∩ Fb,c = C[(x− a)2, x(x− a)2(x− b)(x− c)].
If a, b, c satisfy condition 2. we proceed similarly to the proof of lemma 4.3
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and find q1, q2 and q3 polynomials of degree 1, 2 and 3 respectively that sat-
isfy q(b) = z2q(c). Taking q1(x) = x+ t1, q2(x) = x2 + t2 and q3(x) = x3 + t3
we find

t1 =
z2c− b
1− z2

, t2 =
z2c2 − b2

1− z2
, t3 =

z2c3 − b3

1− z2

Thus:

h1(x) = (x−a)2(x+t1), h2(x) = (x−a)2(x2+t2) and h3(x) = (x−a)2(x3+t3)

are the generators of Fa ∩ Fc,d. With this the proof is finished.

Definition 4. If R = Fa ∩ Fb,c satisfies the condition 2a = b + c as in the
first case of lemma 4.6, we call R a maximal C-subring of the first kind. If
2a 6= b+ c we call R a maximal C-subring of the second kind.

Lemma 4.7. Let a, b, c ∈ C such that b 6= a, c and denote c∗ = c−b
b−a . Then

there exists Φ ∈ AutC(C[x]) such that Φ(Fa∩Fb,c) = F−1∩F0,c∗. In particular
Fa ∩ Fb,c ∼= F−1 ∩ F0,c∗.

Proof. Define Φ(x) = (b − a)x + b ∈ AutCC[x]. We have that Φ(0) = b and
Φ(−1) = (b − a) · (−1) + b = a. Now we can use lemma 3.4 and lemma 3.6
and get Φ(Fb) = FΦ−1(b) = F0 and Φ(Fa) = FΦ−1(a) = F−1. But we also have
that Φ(Fa ∩ Fb,c) = Φ(Fa) ∩ Φ(Fb,c) = F−1 ∩ F0,Φ−1(c). We can check that
Φ(c∗) = (b− a) · c−b

b−a + b = c. So Φ−1(c) = c∗ and Fa ∩ Fb,c ∼= F−1 ∩ F0,c∗ as
required.

Remark 4.8. Lemma 4.7 says that Fa ∩ Fb,c ∼= Fa′ ∩ Fb′,c′ are isomorphic
(up to automorphisms of C[x]) if and only if c−b

b−a = c∗ = c′∗ = c′−b′
b′−a′ .

Because of lemma 4.7 and lemma 4.6 we can classify all the maximal C-
subrings of the first kind up to automorphisms of C[x]. Indeed, notice that
c∗ = c−a

b−a − 1 which implies that if 2a = b + c then c∗ = −2. Hence all the
maximal C-subrings of the first kind are isomorphic to F−1∩F0,−2. Obviously
it follows that all maximal C-subrings of the second kind are isomorphic to
F−1 ∩ F0,c∗ where c∗ 6= −2.
Let’s plot the graph of the polynomial map that we get for F−1 ∩ F0,−2.
Applying lemma 4.6 we get

F−1∩F0,−2 = C[(x+1)2, x2(x+1)2(x+2)] = C[(x+1)2, (x+1)2, x2(x+1)2(x+2)]
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Denoting its polynomial map φ(t) = ((t + 1)2, (t + 1)2, t2(t + 1)2(t + 2)) we
get the graph:

Figure 4: For the case of the maximal C-subring F−1 ∩F0,−2 the polynomial map
φ(t) = ((t+1)2, (t+1)2, t2(t+1)2(t+2)) is neither smooth nor injective. The curve
has a cusp at the point φ(−1) and it is self intersecting at the points φ(0) = φ(−2).

Next we look at the graphs of the two maximal C-subrings of the second
kind F−1 ∩ F0,1 and F−1 ∩ F0,−1. F−1 ∩ F0,1 is a more generic case which is a
good representative of how the corresponding polynomial maps of the other
maximal C-subrings except F−1 ∩F0,−2 and F−1 ∩F0,−1. The reason why we
look at F−1 ∩ F0,−1 independently is because in this case a = c. Applying
lemma 4.6 for the maximal C-subrings of the second kind we get:

1. F−1 ∩ F0,1 = C[(x+ 1)2(x− 4
3
), (x+ 1)2(x2 − 4

3
), (x+ 1)2(x3 − 4

3
)]

2. F−1 ∩ F0,−1 = C[x(x+ 1)2, x2(x+ 1)2, x3(x+ 1)2]

Now we define their respective polynomial maps:

1. φ1(t) = ((t+ 1)2(t− 4
3
), (t+ 1)2(t2 − 4

3
), (t+ 1)2(t3 − 4

3
)) and

2. φ2(t) = (t(t+ 1)2, t2(t+ 1)2, t3(t+ 1)2)
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We can now plot their graphs.

Figure 5: For the case of the maximal C-subring F−1 ∩ F0,1 the polynomial map
φ1(t) is neither smooth nor injective. The curve has a cusp at the point φ1(−1)
and it is self intersecting at the points φ1(0) = φ(1).

Figure 6: For the case of the maximal C-subring F0 ∩ F−1,0 the polynomial map
φ2(t) is neither smooth nor injective. The curve has a cusp at the point φ2(0) and
it is self intersecting at the points φ2(0) = φ2(−1).
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4.3 The structure of Fa,b ∩ Fc,d
Lemma 4.9. Let a, b, c, d ∈ C such that a 6= b and c 6= a, b, d. The following
are true:

1. If a+ b = c+ d then Fa,b ∩Fc,d = C[h1, h2] is a minimal representation
where

(a) h1(x) = (x− a)(x− b)
(b) h2(x) = x(x− a)(x− b)(x− c)(x− d)

2. Denote z = (d−a)(d−b)
(c−a)(c−b) . If a+ b 6= c+ d then Fa,b ∩Fc,d = C[h1, h2, h3] is

a minimal representation where

(a) h1(x) = (x− a)(x− b)
(
x+ c−zd

z−1

)
(b) h2(x) = (x− a)(x− b)

(
x2 + c2−zd2

z−1

)
(c) h3(x) = (x− a)(x− b)

(
x3 + c3−zd3

z−1

)
Proof. Let f(x) ∈ Fa,b ∩ Fc,d = {g(x) ∈ C[x] : g(a) = g(b) and g(c) = g(d)}.
Define h(x) = f(x) − f(a). Clearly h satisfies h(a) = h(b) = 0 and h(c) =
h(d) and h ∈ Fa,b ∩Fc,d is equivalent with f ∈ Fa,b ∩Fc,d. Then we have that
h(x) = (x − a)(x − b)q(x) where q(x) ∈ C[x]. The condition h(c) = h(d)

implies that q should satisfy q(c) = (d−a)(d−b)
(c−a)(c−b) q(d) = zq(d). Here there are 2

cases to consider:

1. z = 1 which is equivalent to a+ b = c+ d

2. z 6= 1 which is equivalent to a+ b 6= c+ d

The first case is special because we can choose q1 such that deg(q1(x)) which
implies deg(h1(x)) = 2. Let q1(x) = 1. From corollary 3.11 a minimal
representation of Fa,b∩Fc,d will only have 2 generators. So we must have that
deg(q2(x)) = 3 and deg(h2(x)) = 5. We can easily find q2(x) = x(x−c)(x−d)
which satisfies the condition. With this we conclude that in case a, b, c and
d satisfy relation 1. we have

Fa,b ∩ Fc,d = C[(x− a)(x− b), x(x− a)(x− b)(x− c)(x− d)]

If a, b, c and d satisfy condition 2. we continue similarly to the proofs of
the previous lemmas. We can find polynomials qk-s of degrees 1, 2 and 3
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respectively that satisfy the condition q(c) = zq(d). Then h1 = (x− a)(x−
b)q1, h2 = (x − a)(x − b)q2, h3 = (x − a)(x − b)q3 will be a minimal set of
generators of Fa,b ∩ Fc,d. Let’s search for polynomials of the form qk(x) =
xk + tk:

qk(c) = zqk(d) =⇒ ck + tk = z(dk + tk) =⇒ tk =
ck − zdk

z − 1

Substituting for k = 1, 2, 3 we find h1(x) = (x−a)(x−b)
(
x+ c−zd

z−1

)
, h2(x) =

(x− a)(x− b)
(
x2 + c2−zd2

z−1

)
and h3(x) = (x− a)(x− b)

(
x3 + c3−zd3

z−1

)
. With

this the proof is finished.

Definition 5. If R = Fa,b ∩ Fc,d satisfies the condition a + b = c + d as in
the first case of lemma 4.9, we call R a maximal C-subring of the first kind.
If a+ b 6= b+ c we call R a maximal C-subring of the second kind.

Lemma 4.10. Let a, b, c, d ∈ C such that a 6= b and c 6= a, b, d and denote
c∗ = c−b

b−a and d∗ = d−b
b−a . Then there exists Φ ∈ AutC(C[x]) such that Φ(Fa,b ∩

Fc,d) = F−1,0 ∩ Fc∗,d∗. In particular Fa,b ∩ Fc,d ∼= F−1,0 ∩ Fc∗,d∗.

Proof. Define Φ(x) = (b − a)x + b ∈ AutCC[x]. We have that Φ(0) = b and
Φ(−1) = (b − a) · (−1) + b = a. Now we can use lemma 3.4 and lemma 3.6
and get Φ(Fb) = FΦ−1(b) = F0 and Φ(Fa) = FΦ−1(a) = F−1. But we also have
that Φ(Fa,b ∩ Fc,d) = Φ(Fa,b) ∩Φ(Fc,d) = F−1,0 ∩ FΦ−1(c),Φ−1(d). We can check
that Φ(c∗) = (b − a) · c−b

b−a + b = c and Φ(d∗) = (b − a) · d−b
b−a + b = d . So

Φ−1(c) = c∗ and Φ−1(c) = c∗. But this implies Φ(Fa,b ∩ Fc,d) = F−1,0 ∩ Fc∗,d∗
as required and obviously Fa,b ∩ Fc,d ∼= F−1,0 ∩ Fc∗,d∗ .

Remark 4.11. Lemma 4.10 says that Fa,b∩Fc,d ∼= Fa′,b′∩Fc′,d′ are isomorphic
(up to automorphisms of C[x]) if and only if c∗ = c′∗ and d∗ = d′∗. We notice
that the last equalities are true if and only if c−b

c′−b′ = d−b
d′−b′ . This equality can

serve as a test to check if 2 subrings of the type Fa,b ∩ Fc,d are isomorphic.

Because of lemma 4.10 and lemma 4.9 we can classify all the maximal
C-subrings of the first kind up to automorphisms of C[x]. Notice that

c∗ + d∗ + 1 =
(c− b) + (d− b) + (b− a)

b− a
=

(c+ d)− (a+ b)

b− a

So (b− a)(c∗+ d∗+ 1) = (c+ d)− (a+ b) which is equivalent to c∗+ d∗ = −1
iff a+ b = c+ d. Hence the maximal C-subring Fa,b ∩ Fc,d is of the first kind
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if and only if c∗+d∗ = −1. Thus all the maximal C-subrings of the first kind
are isomorphic to F−1,0 ∩ Fc∗,−c∗−1. Obviously it follows that all the other
maximal C-subrings are of the second kind.
Let’s plot the graph of the polynomial map that we get for F−1,0∩F−2,1 which
is a maximal C-subring of the first kind. Applying lemma 4.9 we get

F−1,0 ∩ F2,1 = C[x(x+ 1), x2(x+ 1)(x− 1)(x+ 2)]

Denoting its polynomial map φ(t) = (t(t+ 1), t(t+ 1), t2(t+ 1)(t− 1)(t+ 2))
we get the graph:

Figure 7: For the case of the maximal C-subring F−1,0 ∩ F−2,1 the polynomial
map φ(t) is not injective. The intersecting points are φ(−1) = φ(0) = (0, 0, 0) and
φ(−2) = φ(1) = (2, 2, 0).

Next we look at the graphs of the two maximal C-subrings of the second
kind F−1,0 ∩ F1,2 and F−1,0 ∩ F1,0. F−1,0 ∩ F1,2 is a more generic case which
is a good representative of how the corresponding polynomial maps of the
other maximal C-subrings except those of the first kind and F−1,0∩F1,0. The
reason why we look at F−1∩F0,−1 independently is because in this case b = c
and the points on the graph where it is not injective coincide. Applying
lemma 4.9 for the maximal C-subrings of the second kind we get:
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1. F−1,0 ∩ F1,2 = C[x(x+ 1)(x− 5
2
), x(x+ 1)(x2 − 11

2
), x(x+ 1)(x3 − 23

2
)]

2. F−1,0 ∩ F1,0 = C[x2(x+ 1), x3(x+ 1), x4(x+ 1)]

Now we define their respective polynomial maps:

1. φ1(t) = (t(t+ 1)(t− 5
2
), t(t+ 1)(t2 − 11

2
), t(t+ 1)(t3 − 23

2
)) and

2. φ2(t) = (t2(t+ 1), t3(t+ 1), t4(t+ 1))

We can now plot their graphs.

Figure 8: For the case of the maximal C-subring F−1,0 ∩F1,2 the polynomial map
φ1(t) is not injective. The intersecting points are φ1(−1) = φ1(0) = (0, 0, 0) and
φ1(1) = φ1(2) = (−3,−9, 21).
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Figure 9: For the case of the maximal C-subring F−1,0 ∩ F1,2 the polynomial
map φ2(t) is not injective. The intersecting points are φ2(−1) = φ(0) = φ2(1) =
(2, 2, 0).

4.4 Ideas on how to prove that there are no other max-
imal C-subrings.

Theorem 4.12. Let B be a ring, A < B and suppose π : Spec(B) 7→
Spec(A) given by p 7→ p ∩ A is surjective. If Bp

∼= Ap∩A for all p ∈ Spec(B)
then A = B.

Proof. Let b ∈ B. We need to show that b ∈ A. Denote I = {s ∈ A|sb ∈ A}.
Obviously I is an ideal of A. If 1 ∈ I we are done because b = 1 · b ∈ A.
Otherwise I � (1) so it’s contained in some prime ideal q. From hypothesis,
there is a prime ideal p ∈ Spec(B) such that q = p ∩ A. By assumption we
have Bp

∼= Aq. In particular, b/1 is in the image; say b/1 = a/s, with s /∈ q.
Therefore tsb = ta for some t /∈ q. Thus ts ∈ I ⊂ q. But q is prime, so s ∈ q
or t ∈ q. This is a contradiction.

We also have theorem 2.2 in [3] which can be very useful in our case.

Definition 6. A ring homomorphism f : K 7→ A is called a minimal homo-
morphism if:
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1. it is injective

2. non-surjective

3. for all the decomopositions f = gh of f where g and h are injections,
g or h is an isomorphism.

Theorem 4.13. Ferrand-Olivier. Let f : A 7→ B be a minimal homomor-
phism:

1. There exists a maximal ideal m of A such that for all p ∈ Spec(A),
different from m, Ap 7→ Bp is an isomorphism.

2. The following conditions are equivalent:

(a) the maximal ideal m defined in part 1, can be ”transferred” in B
(this means that f(m) is an ideal in B).

(b) mB = m.

(c) A→ B ⇒ B ⊗A B is an exact sequence.

(d) f is finite.

(e) Spec(A) 7→ Spec(B) is surjective.

3. If the conditions in part 2 are not satisfied, f is a flat epimorphism.

The condition 2.e of the theorem is of interest to us because it is fulfilled
by our problem. Indeed in our case subrings are also finitely generated C-
subalgebras and C[x] is a principal domain.
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