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Chapter 1

Summary

The main topic of this thesis is the Jacobian Conjecture and the polynomial
automorphism group. The focus point lies in the case where we are working
over a finite field.

In chapter 2 the neccessary introduction of the Jacobian Conjecture is made.
In chapter 3 we consider the finite field case, and prove the J.C. for certain
cases. In particular, we want to restrict to dimension 2, and make certain
assumptions on the degrees of the components of the automorphism. Besides
the conditions as used by Adjamagbo, some additional conditionals were added
to create stronger results.

In chapter 4 we futher explore the idea of replacing the “Adjamagbo re-
quirement”: p - |Fp (X) : Fp (F )| by additional equations on the coefficients.
We show that the most obvious choise for this is not the right one.

In chapter 5 we explore the following: if F = I + Hd + H̃d+1 where Hd

is homogenous of degree d and H̃d+1 has only terms of degree at least d + 1,
what the Hd can be. In particular, the set of such Hd form a vector space. We
compute this vector space in dimension 2 for certain F .
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Chapter 2

Introduction

2.1 Problem description

2.1.1 Polynomial automorphisms

Let k be a field. Let n ∈ N∗. A polynomial map is a map F = (F1, . . . , Fn) :
kn → kn where the Fi ∈ k [x1, . . . xn].

A polynomial map F is called invertible if there exists a polynomial map G
such that G ◦ F = I, where I is the identity. Now we can define the Jacobian
matrix of F : JF := (aij), where aij := d

dxj
Fi. I denote |JF | := det (JF ).

Jacobian conjecture 1. Suppose that if k is a field with characteristic 0, then
F has a polynomial inverse if and only if |JF | ∈ k∗.

The following is a formulation of the Jacobian Conjecture for characteristic
p (in this thesis we restrict to finite fields). This formulation is due to done by
Adjamagbo (see [2], proposition 10.3.17).

Notation 2. By k(X) respectively k(F ) we denote the quotient field of k[X]
respectively k[F ].

Conjecture 3. Let k = Fp. If |JF | ∈ k∗ and p - [k(X) : k(F )], then F is
invertible over k. This conjecture we denote by JC(Fp, n, p).

Theorem 4. If JC(Fp, n, p) holds for alle n ≥ 1 and all primes p, then the
Jacobian conjecture holds. (see [2], theorem 10.3.13)

2.1.2 Tameness

Definition 5. A polynomial automorphism F is called elementary if there exists
an i and an a = a(x1, . . . , xi−1, xi+1, . . . , xn) such that

F = (x1, x2, . . . , xi−1, xi + a(x1, x2, . . . , xi−1, xi+1, . . . , xn), xi+1, . . . , xn)

The subgroup of all polynomial automorphisms generated by the elementary
automorphisms is called En (k).
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Definition 6. A polynomial automorphism F is called De Jonquières if for
each 1 ≤ i ≤ n there exists fi ∈ k [xi+1, . . . , xn] such that

F = (x1 + f1(x2, . . . , xn), x2 + f2(x3, . . . xn), . . . , xn−1 + fn−1(xn), xn)

The subgroup of all polynomial automorphisms generated by the De Jon-
quières automorphisms is called Jn (k).

Definition 7. A polynomial automorphism is called affine if it doesn’t contain
powers strictly bigger then one. The group of Affine automorphisms Affn (k) is
defined as the group of all polynomial automorphisms F such that degFi = 1
for all 1 ≤ i ≤ n.

Definition 8. A polynomial automorphisms F is called tame if it is a finite
composition of elementary maps and elements of the affine subgroup Affn (k).
The subgroup of all the polynomial automorphisms generated by tame automor-
phism is called TAn (k).

Definition 9. The group of all polynomial automorphisms is called GAn (k).

The Jung - van der Kulk theorem states that if n = 2, then every polynomial
automorphism is tame (see [2], theorem 5.1.11). For n > 2 and char(k) = 0 there
are counterexamples (Nagata) (see [2], proposition 5.1.9).

Theorem 10. (Jung, van der Kulk) If k is a field, then Autk k[X,Y ] = TA2 (k).
Also, Autk k[X,Y ] is the amalgated free product of Aff2 (k) and J2 (k) over their
intersection.
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Chapter 3

JC in finite cases

3.1 Generalisation, counterexamples and approach

Lets consider the Jacobian Conjecture if we just replace C by Fp. I will call this
the “wrong Jacobian Conjecture” for finite fields.

Now lets look at the following example:〈
x− xp

y

〉
This obviously isn’t an automorphism over Fp, since xp = x on Fp, so this

mapping behaves exactly as
〈

0
y

〉
. But what is its Jacobi determinant? That

is ∣∣∣∣ 1− p · xp−1 0
0 1

∣∣∣∣ =
∣∣∣∣ 1 0

0 1

∣∣∣∣ = 1

So according to the “wrong Jacobian Conjecture” this should be an automor-
phism. So for every prime p there exists a counterexample.

So only satisfying the Jacobian requirement |JF | ∈ k∗ is not enough to
ensure that F is an automorphism. So an addition condition is neccessary. In the
literature, usually the following additional condition is used due to Adjamagbo:
a mapping F only needs to be an automorphism if p - [k(F ) : k(X)]. This
will rule out all the examples like above. Also, for each F , this condition only
rules out finitely many (because the field extention also is finite). So if the new
conjecture is true for all primes p, then the Jacobian Conjecture over C holds
(see [2], theorem 10.3.13).

Unfortualy, this additional condition makes it even harder to say anything
on this conjecture, because the field extention is not easily rewritten in other
terms. But it is possible to only consider small p (for example, p = 2) and small
n (where n is the dimention), in particular n = 2.

An other way around it is to find an alternative to the Adjamagbo require-
ment. As long as those conditions rule out only a finite number of primes p for
every mapping F , it still implies the Jacobian Conjecture over C. Also, an alter-
native condition might be more accessible then the “Adjamagbo requirement”.

In characteristic zero, the Jacobian condition |JF | ∈ k∗ is a collection of
equations on the coefficients of F . In characteristic p this collection is not
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enough, as we have seen above. This is because certain equations disappear
as they are a multiple of p. It seems a good idea, instead of adding the field
extention condition, to add additional equations on the coefficients. In section
4 I briefly consider this approach.

At the end I also look to the beginning part of the polynomials in F . So
we take F and we throw away any term with a degree bigger then a certain
treshold. This obviously would loose too much information to make definitive
answer if F is an automorphism, but there is a chance we can say very early
if an F will not be a polynomial automorphism. Also I hope to get some
information about how the decomposition of F looks like (I will only look to
tame automorphisms). So we will have two ways of saying something about F :
it isn’t a tame automorphism because the lower degrees can’t become a tame
automorphism and if we can find an actual decomposition (which proves that it
is a tame automorphism).

3.2 Degree of field extention

3.2.1 Problem

I will take a non-standard approach to the Jacobian Conjecture. To begin with,
I mainly consider finite fields. If I can prove a conjecture simular to the Jacobian
Conjecture, but for finite fields, then I can also prove the jacobian conjecture.

So most often I will use a finite field. Near the end of this chapter I will
use a even more specific case, namely F2. Proving the conjecture for F2 is not
enough to prove the Jacobian conjecture over C, but a proof of the theorem over
F2 can lead to an idea for a proof in all finite field cases.

Conjecture 11. Given F ∈ Fn
p . If p - [k (x, y) : k (F1, F2)] and |JF | ∈ k∗.

Then F is injective.

In this chapter, I will affirmatively answer this conjecture for some specific
cases.

3.2.2 Degree extension requirement

We have two if-statements in the problem. I will examine the requirement on
the degree extension. First, remark the following:

Remark 12. If F is a polynomial automorphism, then [k (x, y) : k(F )] = 1.

Proof. Because F is a polynomial automorphism, x ∈ k(F ) and also y ∈ k(F ).

Remark 13. If F be a polynomial mapping and G a polynomial automorphism.
Then

[k (x, y) : k(F ◦G)] = [k (x, y) : k(F )] = [k (x, y) : k(G ◦ F )]

Remark 14. I remark that [k (x) : k (f)] = degx (f) if f ∈ k[x] and degx f ≥ 1
(note: k can be any field here) [1]
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3.2.3 Odd degree

We consider a very special case, where there is a term of odd degree in x or y.
We will use the following terminology (which isn’t completely standard).

Definition 15. A term of odd degree is a term not of the form x2·i · y2·j.

Now I will define two notations. I will use these notations a lot.

Notation 16. Let F ∈ F2 [x, y]2. Then F can be written as〈
f1(x2, y2) + x · f2(x2, y2) + y · f3(x2, y2) + x · y · f4(x2, y2)
g1(x2, y2) + x · g2(x2, y2) + y · g3(x2, y2) + x · y · g4(x2, y2)

〉
Lemma 17. If F is written as in notation 16, then

|JF | = a(x2, y2) + x · b(x2, y2) + y · c(x2, y2) + x · y · d(x2, y2)

Where:

a(x2, y2) =
∣∣∣∣ f2(x2, y2) f3(x2, y2)
g2(x2, y2) g3(x2, y2)

∣∣∣∣
b(x2, y2) =

∣∣∣∣ f2(x2, y2) f4(x2, y2)
g2(x2, y2) g4(x2, y2)

∣∣∣∣
c(x2, y2) =

∣∣∣∣ f4(x2, y2) f3(x2, y2)
g4(x2, y2) g3(x2, y2)

∣∣∣∣
d(x2, y2) =

∣∣∣∣ f4(x2, y2) f4(x2, y2)
g4(x2, y2) g4(x2, y2)

∣∣∣∣ = 0

Proof.

|JF | =
∣∣∣∣J 〈 f1(x2, y2) + x · f2(x2, y2) + y · f3(x2, y2) + x · y · f4(x2, y2)

g1(x2, y2) + x · g2(x2, y2) + y · g3(x2, y2) + x · y · g4(x2, y2)

〉∣∣∣∣
=

∣∣∣∣ f2(x2, y2) + y · f4(x2, y2) f3(x2, y2) + x · f4(x2, y2)
g2(x2, y2) + y · g4(x2, y2) g3(x2, y2) + x · g4(x2, y2)

∣∣∣∣
=

∣∣∣∣ f2(x2, y2) f3(x2, y2)
g2(x2, y2) g3(x2, y2)

∣∣∣∣+ x ·
∣∣∣∣ f2(x2, y2) f4(x2, y2)
g2(x2, y2) g4(x2, y2)

∣∣∣∣+

y ·
∣∣∣∣ f4(x2, y2) f3(x2, y2)
g4(x2, y2) g3(x2, y2)

∣∣∣∣+ x · y ·
∣∣∣∣ f4(x2, y2) f4(x2, y2)
g4(x2, y2) g4(x2, y2)

∣∣∣∣

The lemma below is used to cause a contradiction in a later lemma. In
notation 16 I introduced some new polynomials (f1, f2, f3, f4, g1, g2, g3, g4). The
following lemmas will tell something about properties of these polynomials.

Lemma 18. If F is written as in 17 and |JF | = 1, then
〈
f4(x2, y2)
g4(x2, y2)

〉
=〈

0
0

〉

8



Proof. Assume that the conclusion isn’t true, so
〈
f4(x2, y2)
g4(x2, y2)

〉
6=
〈

0
0

〉
Because |JF | = 1 (using notation 16 and 17) it must follow that a(x2, y2) = 1

and
b(x2, y2) = c(x2, y2) = d(x2, y2) = 0

Because b(x2, y2) and c(x2, y2) are determinants of matrices, the columns of
those matrices must depend on each other. I first look at the columns of
c(x2, y2). Because 〈

f4(x2, y2)
g4(x2, y2)

〉
6=
〈

0
0

〉
it follows that〈

f3(x2, y2)
g3(x2, y2)

〉
= α ·

〈
f4(x2, y2)
g4(x2, y2)

〉
=
〈
α · f4(x2, y2)
α · g4(x2, y2)

〉
(α ∈ k)

That also works for looking to the columns of b(x2, y2): because again〈
f4(x2, y2)
g4(x2, y2)

〉
6=
〈

0
0

〉
it follows that〈

f2(x2, y2)
g2(x2, y2)

〉
= β ·

〈
f4(x2, y2)
g4(x2, y2)

〉
=
〈
β · f4(x2, y2)
β · g4(x2, y2)

〉
I use those equalities to simplify the assumption |JF | = 1:

|JF | = 1 ⇔
∣∣∣∣ f2(x2, y2) + y · f4(x2, y2) f3(x2, y2) + x · f4(x2, y2)
g2(x2, y2) + y · g4(x2, y2) g3(x2, y2) + x · g4(x2, y2)

∣∣∣∣ = 1

⇔
∣∣∣∣ (β + y) · f4(x2, y2) (α+ x) · f4(x2, y2)

(β + y) · g4(x2, y2) (α+ x) · g4(x2, y2)

∣∣∣∣ = 1

⇔
∣∣∣∣ β + y α+ x
β + y α+ x

∣∣∣∣ · f4(x2, y2) · g4(x2, y2) = 1

⇔ 0 = 1

Because 0 6= 1 it follows that |JF | 6= 1. But |JF | = 1 is given. So the

assumption must be wrong. So
〈
f4(x2, y2)
g4(x2, y2)

〉
=
〈

0
0

〉
Now I can state the most important theorem of this section. If F ∈ Fp [x, y]2

and |JF | = 1, then it follows that JF can’t have a term of odd degree (odd
degree as defined in definition 15).

Theorem 19. Let F ∈ F2 [x, y]2. If |JF | = 1 then JF has no term of odd
degree.

Proof. We will show that if |JF | = 1 and JF has a term of odd degree then〈
f4
(
x2, y2

)
g4
(
x2, y2

) 〉 6= 〈
0
0

〉
(using notation 16 and 17). Choose i and j such

that xi · yj is a term of JF . This term in the Jacobian matrix comes from a
derivation of f or g in x or y. Without loss of generatity, I will assume it comes
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from a derivation to x. I now take the primitive, which is a term in F of the
form xi+1 · yj . This is only possible if 2 - i + 1, so i is even. Because the term
xi · yj is odd, j must be odd.

So this means that there exists a term in F of the form xi+1 · yj , where
i + 1 and j are odd. This means that this term also has to be in f4

(
x2, y2

)
or g4

(
x2, y2

)
. So not both f4 and g4 can be zero, a contradiction with lemma

18.

3.2.4 A zero in JF

In this section, I will consider the case where JF has a zero in one of its four
entries. Without loss of generality, I can decide which entry of JF equals zero.
I can also rewrite |JF | such that it is a lot simpler.

Remark 20. I may assume that JF =
〈
? 0
? ?

〉
.

Proof. If d
dxF1 = 0, then I can consider F ′ =

〈
F1(y, x)
F2(y, x)

〉
. If d

dxF2 = 0, then I

consider F ′ =
〈
F2(y, x)
F1(y, x)

〉
. And the last case, d

dyF2 = 0 can be replaced with

F ′ =
〈
F2(x, y)
F1(x, y)

〉
.

For these three cases F is an automorphism if and only if F ′ is an automor-
phism and d

dyF
′
1 = 0.

Remark 21. If d
dyF1 = 0 then |JF | =

(
d
dxF1

)
·
(

d
dyF2

)
.

Proof.

|JF | =
∣∣∣∣ d

dxF1 0
d
dxF2

d
dyF2

∣∣∣∣
=

(
d

dx
F1

)
·
(

d
dy
F2

)

The following corollary follows directly from the previous remark.

Corollary 22. If d
dyF1 = 0 and |JF | ∈ k∗, then d

dxF1 ∈ k∗ and d
dyF2 ∈ k∗.

Proof. From remark 21 follows that |JF | =
(

d
dxF1

)
·
(

d
dyF2

)
. It is given that

|JF | ∈ k∗. Because |JF | is a product, and the result is a non-zero element of
that field, both sides needs to be a non-zero element of the field. So it follows
easily that

d
dx
F1 ∈ k∗

d
dy
F2 ∈ k∗
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I want to use the knowledge about the derivatives of a polynomial to say
something about the polynomial (for note that in characteristic p, the conclu-
sions of the previous collary are not enough to ensure that F is an automorphism
by themselves).

Lemma 23. Let k be a field of characteristic p, and f ∈ k [x, y] such that the
following hold:

• p - degx f, p - degy f

• d
dxf ∈ k,

d
dyf ∈ k

Then f =
(

d
dxf

)
· x+

(
d
dyf

)
· y + c, where c ∈ k.

Proof. Write f = c + p(x) + q(y) +
∑

i,j≥1 aij · xi · yj (p(0) = q(0) = 0).
k 3 d

dxf = d
dxp+

∑
i,j≥1 i · aij · xi−1 · yj implies that p = a · x+ p?(xp), aij = 0

if p - i.
Similarly, d

dyf ∈ k implies that q = b · y + q?(yp), aij = 0 if p - j.
Thus, f = c + a · x + b · y + p?(xp) + q?(yp) +

∑
i,j≥1,p|i,p|j

aij · xi · yj which

implies f ∈ c + a · x + b · y + k [xp, yp]xp + k [xp, yp] yp. Because of p - degx f ,
p - degy f , f must equal a · x+ b · y + c.

In conjecture 11, the degree extention is used. So if we want to say anything
about that conjecture, we need to know something about the degree extionsion.
So it is time to use that assumption. I want to simplify that assumption such
that I can use it. For that, I reduce it to a statement on the degree. This
reduction loses information, but for now it will be enough.

Condition 24. I will add another condition to the Adjamagbo condition. This
additional condition makes it still possible to prove the Jacobian Conjecture if
it is proved for finite fields for every p.

degx (F1) > 0⇒ p - degx (F1)
degy (F1) > 0⇒ p - degy (F1)
degx (F2) > 0⇒ p - degx (F2)
degy (F2) > 0⇒ p - degy (F2)

Theorem 25. Let k be a field of characteristic p > 0. Let |JF | ∈ k∗. Assume
that JF does contain a zero in a position and that condition 24 is satisfied.
Then F is invertible over k.

Proof. Bij remark 20 we may assume that d
dyF1 = 0. Then by corollary 22

we get at d
dxF1 ∈ k∗ and d

dyF2 ∈ k∗. It then follows from lemma 23 that
F1 =

(
d
dxF1

)
· x+ c for some c ∈ k. Let λ = d

dxF1 ∈ k∗. So F1 = λ · x+ c. Since
d
dyF2 = µ ∈ k∗ we get F2 = µ · y + a (x, yp). Since p - degy (F2) we deduce that
F2 = µ · y + a(x). So F = (F1, F2) = (λ · x+ c, µ · y + a(x)) which is invertible
over k.
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3.2.5 Constant entry in JF

Because we know how to deal with the problem if there is a zero in JF , I can
now assume that JF doesn’t contain a zero on any position. The next step is
the case where there is a constant on a position in JF .

If there is a constant in JF , then I can make a very similar F̃ such that JF̃
contains a one on a position. Without loss of generality, I can again decide in
which position that entry is.

Remark 26. If JF has an entry in k∗, and |JF | ∈ k∗ then there exist a linear
transformation L1 and L2 such that G = L1 ◦ F ◦ L2 satisfies |JF | ∈ k∗ and
d
dyG1 = 1.

Remark 27. If f is a polynomial and d
dxf = a, where a ∈ k. Then there exists

an l such that f = a · x+ l(xp, y).

I again have to use the assumption on the extention degree. Again, I make
a reduction and I throw away part of the information, because that information
is difficult to use. What is left are some easy degree demands.

The only tricky part of this lemma is that the degrees of the polynomials can
be zero. So I also need to prove that that doesn’t happen because JF doesn’t
contain a zero.

Lemma 28. If JF doesn’t contain a zero on a position, then

• [k (x) (y) : k (x) (F1)] is finite.

• [k (y) (x) : k (y) (F1)] is finite.

• [k (x) (y) : k (x) (F2)] is finite.

• [k (y) (x) : k (y) (F2)] is finite.

Proof. I prove the first case, as the proof of the other cases is simular.
If degy (F1) > 0, then [k (x) (y) : k (x) (F1)] = degy F1, so it is clearly finite.

This means that we only have to prove that degy (F1) > 0. So suppose degy F1

is at most zero. Then F1(x, y) = F1(x, 0). So I can write F1 = F ′1(x). Now I
consider d

dyF1 = d
dyF

′
1(x) = 0. But one of the conditions was that there isn’t

a zero on a position in the Jacobian. Contradiction, so degy (F1) > 0 hence
[k (x) (F1) : k (x) (y)] = degy (F1) is finite.

Corollary 29. If JF doesn’t contain a zero on a position, then

• degx F1 > 0

• degy F1 > 0

• degx F2 > 0

• degy F2 > 0

Proof. This is already proven in the proof of lemma 28.

I can now use the above corollary to say something substancial about the
degree:
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Lemma 30. (k = Fp) If JF = 1, JF doesn’t contain a zero on a position,
p - [k (F, :) k (x, y)] and condition 24 holds, then:

• p - degx F1

• p - degy F1

• p - degx F2

• p - degy F2

Proof. This is proved imediately from the consequence of condition 24 with that
remark that the depends in that condition are satisfied by the conclusions of
lemma 29.

Theorem 31. Let k be a field of characteristic p > 0 and |JF | ∈ k∗. Assume
that condition 24 is statisfied and that the Adjamagbo condition is statisfied. If
JF contains a constant in any position, then F is invertible over k.

Proof. By theorem 25, we may assume that the constant is non-zero and hence
by remark 26 we may assume that d

dxF1 = 1. So F1 = x + a(xp, y). Since
p - degx(F1) (follows from lemma 30) we get that F1 = x + a(y). Replace
F by F ◦ (x − a(y), y). This replacing does not change the condition that
|JF | ∈ k∗. The Adjamagbo condition also is still satisfied. Since in the re-
mainder of this argument, we don’t use condition 24 anymore, we may assume
that F1 = x. Since |JF | = 1 this implies that d

dyF2 = 1. So F2 = y +
b(x, yp). Finally, since p - [k (x, y) : k (F1, F2)] = [k (x, y) : k (x, y + b(x, yp))] =
[k (x) (y) : k (x) (y + b(x, yp))], it follows that degy (b(x, yp) = 0. So b = b(x)
hence F2 = y + b(x), and thus follows that F = (x, y + b(x)) which is invertible
over k.

3.2.6 JF ∈M2,2(k [x2, y2])

I will assume here that JF doesn’t have a zero entry, because I already proved
that case. Using notation 16, the Jacobian of F now looks as follows:

JF =
(
f2(x2, y2) f3(x2, y2)
g2(x2, y2) g3(x2, y2)

)
I remark that:

F =
(
xf2(x2, y2) + yf3(x2, y2) + f1(x2, y2), xg2(x2, y2) + yg3(x2, y2) + g1(x2, y2)

)
The following lemma should make the problem left to solve easier. But

this document will not prove the remaining cases. The following lemma say
something about how the different degrees are connected.
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Lemma 32. If JF ∈ M2,2

(
k
[
x2, y2

])
, |JF | = 1, condition 24 is satisfied and

JF doesn’t have a zero in any position, then the following equalities hold:

degx

(
d

dx
F1

)
≥ degx

(
d
dy
F1

)
degy

(
d
dy
F1

)
≤ degy

(
d

dx
F1

)
degx

(
d

dx
F2

)
≥ degx

(
d
dy
F2

)
degy

(
d
dy
F2

)
≤ degy

(
d

dx
F2

)
Proof. The proof of every of these equalities are the same. So I only prove the
first one.

From lemma 30 follows that 2 - degx (F1). Because

degx(F1) = degx

(
x · f2(x2, y2) + y · f3(x2, y2) + f1(x2, y2)

)
But the last is also equal to: max {1 + 2 · degx f2(x, y), 2 · degx f3(x, y), 2 · f1(x, y)}.
So it follows that

degx f2(x2, y2) ≥ degx f3(x2, y2)

In the same way follows:

degy f2(x2, y2) ≤ degy f3(x2, y2)

degx g2(x2, y2) ≥ degx g3(x2, y2)
degy g2(x2, y2) ≤ degy g3(x2, y2)

Now I only need to remark that from notation 16 follows that d
dxF1 = f2,

d
dyF1 = f3, d

dxF2 = g2 and d
dyF2 = g3.
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Chapter 4

Alternatives

Definition 33. Let F : Zn → Zn be such that

Fl : (x1, . . . , xn) 7→
∑
i∈Nn

al,i ·
n∏

j=1

x
ij

j

Let A be defined as

A := {ai,j |1 ≤ i ∈ N ≤ n ∧ j ∈ Nn}

Let J be the Jacobian determinant of F . J can be written down as

J =
∑
i∈Nn

Ji ·
n∏

j=1

x
ij

j


where Ji are coefficients in Z [A]. For all i, I rewrite Ji as follows:

Ji =
∞∑

k=0

pk · J (k)
i

where J (k)
i in {0, 1, . . . , p− 1} [A].

Now let J (k)
i ∈ Fp be derived from J

(k)
i by calculating modulo p.

Then we say F := F (mod p) satisfies the FZ conditions if and only if

J
(k)
i =

{
1 if i = 0 and k = 0
0 otherwise

It seemed plausible that FZ met exactly the requirements to replace the
Jacobian Condition in characteristic p, but the following example shows other-
wise:

Example 34. If F is a tame automorfisme in Fp, then the FZ conditions don’t
follow automaticly.

Proof. Consider the following automorphism:(
x+ y2

y

)
◦
(

x
x2 + y

)
=
(

x+ y2

x2 + 2 · x · y2 + y + y4

)
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In F2, this will be (
x+ y2

x2 + y + y4

)
I take this F as the base of the conditions. I first look to what the a-variables

are.

ai,j =

 1 if
(i = 1 ∧ (j = (1, 0) ∨ j = (0, 2)))∨
(i = 2 ∧ (j = (2, 0) ∨ j = (0, 1) ∨ j = (0, 4)))

0 otherwise

I don’t write ai,j if ai,j = 0. I can do that because they disappear later
without using it.

I now examine JF :

JF =
∣∣∣∣ 1 2 · a1,(0,2) · y

2 · a2,(2,0) · x 1 + 4 · a2,(0,4) · y3

∣∣∣∣
JF = 1 + 4 · a2,(0,4) · y3 − 4 · a1,(0,2) · a2,(2,0) · x · y

I look at the Ji in J . If Ji is zero, then I don’t write it down.

J(0,0) = 1
J(0,4) = 4 · a2,(0,4)

J(1,1) = −4 · a1,(0,2) · a2,(2,0)

From here, I write down J
(k)
i , and again I don’t write it down if it zero:

J
(0)
(0,0) = 1

J
(2)
(0,4) = a2,(0,4)

J
(2)
(1,1) = −a1,(0,2) · a2,(2,0)

According to the constrains of FZ, J (2)
(0,4) should be zero, but it is nonzero.

So this is a counterexample.
Obviously, it is stil an interesting open question to determine the right set

of equations defining the set of automorphisms.
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Chapter 5

Compositions

5.1 Lowest non-linear degree

I first want to show what happens if two mappings are composed. I am especially
interested in the case where all the lower terms vanish (except the lineair terms).
I want to say something about the lowest non-linear part of a F . I hope to say
something about a polynomial mapping not being an automorphism by only
looking to the lowest non-linear terms. But to do that, I first look at a general
case.

I don’t make any assumptions about the size of the field k. I start with only
the case n = 2.

I need a notation which gives me all the terms of a degree a out of a poly-
nomial F :

Definition 35. Let P =
∑

(i,j)∈N2
ai,jx

iyj. Then I define

P	a :=
a∑

i=0

ai,a−ix
iya−i

Because we are interested in polynomial maps, and a mapping can be seen
as a collection of polynomials, I also define this notation for polynomial maps.
Because I only consider mappings from k2 → k2, I restrict my definition to
dimension two, but it is easy to see how to extent this to a more general case.

Definition 36. If F =
〈
f
g

〉
, then F	a =

〈
f	a

g	a

〉
.

5.2 Technical details

If F,G are two polynomial maps, then I want to describe (F ◦G)	c for certain
cases. In order to do that, I need some technical definitions.

If s ∈ N and v ∈ Ns, then denote

yv := yv1
1 · y

v2
2 · . . . · yvs

s

17



Next to the standard grading deg on k [y1, . . . , yb] we also define the non-

standard grading d̃eg by ˜deg(yi) = i. Hence, if ∇ := (1, 2, . . . , n) and 1 :=

(1, 1, . . . , 1), then ˜deg (yv) = 〈∇, v〉, deg (yv) = 〈1, v〉.
Now (y1 + y2 + . . .+ yc−1)b has several terms of d̃eg-degree c. These are

exactly the terms yv, where 〈1, v〉 = b and 〈∇, v〉 = c.
Let us definie

Definition 37.

Vb,c :=
{
v ∈ Nc−1| 〈1, v〉 = b and 〈∇, v〉 = c

}
The coefficient of the term yv in (y1 + . . .+ yc−1)b can be computed and is

equal to: (
b

v

)
=
(

b

v1, v2, . . . , vc−1

)
=

b!
v1! · v2! · . . . · vc−1!

where
(

b
v

)
is the generalized binomial coefficient.

We now define:

Definition 38.

Wb,c :=
{(

b

c

)
· yv|v ∈ Vb,c

}
I now make some substitutions for y1, . . . , yc−1.

Remark 39. Using the definition above, I can now calculate the following:(〈
x+ yb

y

〉
◦G
)	c

= G	c +
∑

w∈Wb,c

〈
w
(
G	1, G	2, . . . , G	c−1

)
0

〉

where G = G	1 +G	2 + . . ..

This also gives the usefullness of this definition: I can write an elementary
map composed combined with a given map G. Now I will give the object of
interest of this chapter:

Definition 40. If F =
〈
x
y

〉
+F	2+F	3+. . . and F	2, F	3, . . . , F	i−1 = 0,

then we say that F is of lower-degree i. Note that I do not demand that F	i 6= 0.

The next lemma follows directly from this:

Lemma 41. If F is of lower degree i and a is an invertible lineair mapping,
then a−1 ◦ F ◦ a is also of lower degree i.

Proof. This proof is easy.

From the Jung-van den Kulk theorem, we know that every map in dimension
2 is tame. That means, every mapping can be written as Gj ◦ Gj−1 ◦ . . . ◦ G1

and only G1 is affine, the others are either lineair, or of the form
〈
x+ λ · yi

y

〉
with i > 1 and λ ∈ k.

Definition 42. If G = Gi ◦ . . . G2 ◦G1 and j ≤ i, then Gj := Gj ◦ . . . ◦G2 ◦G1.

18



5.3 Example

I will go over the definitions above again, but now with an example. That way,
it is more clear what happens.

I start with G :=
〈
x+ y3

y

〉
, F =

〈
x+ y2 + x2 · y2

y + x3

〉
. I will use the

field F2. I remark the following about F and G:

• F	2 =
〈
y2

0

〉

• F	3 =
〈

0
x3

〉

• F	4 =
〈
x2 · y2

0

〉
• F is of lower degree 2.

• G is of lower degree 3.

• V1,1 = ∅

• V2,1 = ∅

• V1,2 = ∅

• V2,2 = {(2)}

• V3,2 = ∅

• V1,3 = ∅

• V2,3 = {(1, 1)}

• V3,3 = {(3, 0)}

• V1,4 = ∅

• V2,4 = {(1, 0, 1)}

• V3,4 = {(2, 1, 0)}

• V4,4 = {(4, 0, 0)}

• V1,5 = ∅

• V2,5 = {(1, 0, 0, 1)}

• V3,5 = {(2, 0, 1, 0)}

• V4,5 = {(3, 1, 0, 0)}

• V5,5 = {(5, 0, 0, 0)}

• V1,6 = ∅

• V2,6 = {(1, 0, 0, 0, 1)}
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• V3,6 = {(2, 0, 0, 1, 0) , (1, 1, 1, 0, 0)}

• V4,6 = {(3, 0, 1, 0, 0)}

• V5,6 = {(4, 1, 0, 0, 0)}

• V6,6 = {(6, 0, 0, 0, 0)}

• W1,1 = ∅

• W2,2 =
{(

2
2

)
x2

1

}

• W3,4 =
{(

3
(2, 1, 0)

)
· x2

1 · x1
2 · x0

3

}

• W3,6 =


(

3
(2, 1)

)
· x2

1 · x1
4,(

3
(1, 1, 1)

)
· x1

1 · x1
2 · x1

3


•
(〈

x+ y2

y

〉
◦G
)	c

= G	2 +

〈 (
3
2

)
·
(

1
2

)
·
(
G	1

)2 · (G	2
)1

0

〉

5.4 Vectorspace

Definition 43. Let Endi be the set all polynomial mappings which only contains
terms of degree exactly i.

Definition 44. Define End>i :=
∞∑

k=i+1

Endk.

Definition 45. Let D ⊂ N. Then I define

VD :=

{
v ∈

∑
i∈D

Endi |I + v +H>max(D) ∈ GAn (k) , H>max(D) ∈ End>max(D)

}

Definition 46. Let d ∈ N. Then I define Vd := V{d}.

Lemma 47. If k is a finite space with p elements (p prime), and V is a subspace
of a vector space over k. Then V is a vector space if and only if V is closed
under addition.

Proof. From left to right is easy: if V is a vector space, then it is closed under
addition. From right to left I only need to prove that V is closed under scalar
multiplication. If V is closed under addtition and scalar multiplication, then V
is a vectorspace. Let a ∈ k an element of k, and v an element of V . Let a be
the smallest strictly positive number such that a+ pZ = a. Because V is closed

under addition, b :=
a∑

i=1

v is defined. I now remark that b = a · v and b ∈ V , so

a · v ∈ V .
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Lemma 48. (k = F2) Let b :=
〈
x+ p(y)

y

〉
, where p(y) = a2 · y2 + a3 · y3 +

. . .+ ad · yd and let F = J1 + J2 + J3 + . . ., where Ji is homogenous of degree i.
Let b ◦ F be written as J ′1 + J ′2 + . . ., where J ′i is homogenous of degree i. Now

• J ′1 = J1

• J ′2 = J2 +
〈
a2 · (J ′1)22

0

〉
= J2 +

〈
a2 · y2

0

〉
◦ J1

• J ′3 = J3 +
〈
a2 · (J ′1)32

0

〉
= J2 +

〈
a2 · y3

0

〉
◦ J1

Proof.

b ◦ F =
〈
x+ a2 · y2 + a3 · y3 + . . .+ ad · yd

y

〉
◦

( ∞∑
i=1

Ji

)
)

=
∞∑

i=1

Ji +
〈
a2

0

〉
·

( ∞∑
i=1

(Ji)2

)2

+
∞∑

j=3

〈
aj

0

〉
·

( ∞∑
i=1

(Ji)2

)j

=
∞∑

i=1

Ji +
∞∑

i=1

〈
a2 · (Ji)

2
2

0

〉
+
∞∑

j=3

( ∞∑
i=1

〈
aj · (Ji)2

0

〉)j

Now it is neccessary to carefully find homogeneous parts of degree 1, 2 and
3.
∞∑
i=1

Ji: This parts means that J ′i = Ji + . . ..

∞∑
i=1

〈
a2 · (Ji)

2
2

0

〉
: This contains only terms of even degree. So J ′1 and J ′3 are

not affected by this part. J ′2 =
〈
a2 · J2

1

0

〉
+ . . ., so so far, we have

J ′2 = J1 +
〈
a2 · J2

1

0

〉
+ . . ..

∞∑
j=3

( ∞∑
i=1

〈
aj · (Ji)2

0

〉)j

: Because every part on the inside of power has at least

degree 1, every j strictly bigger then 3 only contribute terms of degree 4
and higher. Because we are only interested in what happens to J ′1, J ′2 and
J ′3, only the case j = 3 is left.

To get terms of degree 3 when taking a power of 3 without a affine part,
we only need to look at those terms inside the power of degree exactly

one. This means that J ′3 =
〈
a3 · (J1)2

0

〉
+ . . .. This means that so far,

we have J ′3 = J3 +
〈
a3 · (J1)2

0

〉
+ . . ..

That’s all Because we have discussed all parts of b ◦ F , there cannot be other
things contributing to J ′i . So we can make a conclusion:
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• J ′1 = J1

• J ′2 = J2 +
〈
a2 · (J ′1)22

0

〉
= J2 +

〈
a2 · y2

0

〉
◦ J1

• J ′3 = J3 +
〈
a2 · (J ′1)32

0

〉
= J3 +

〈
a2 · y3

0

〉
◦ J1

Lemma 49. Let k = F2 and let F and G automorphisms of the form F =
H1 (x, y) +H2 (x, y) + . . . where H1 (x, y) = I and G = J1 (x, y) +J2 (x, y) + . . .,
where Hi and Ji are homogenous of degree i.

Lets write G ◦ F = K1 (x, y) +K2 (x, y) + . . .. Now the following conditions
hold:

• K1 (x, y) = J1 (x, y) ◦H1 (x, y)

• K2 (x, y) = J1 (x, y) ◦H2 (x, y) + J2 (x, y)

• K3 (x, y) = J1 (x, y) ◦H3 (x, y) + J3 (x, y)

Proof. Because G also is tame, G can also be written as bm ◦ bm−1 ◦ . . . ◦ b1,
where bi is either linear or Jonquière. I will prove this by induction to m. Define

Gi := bi ◦ . . . ◦ b1 ◦
〈
x
y

〉
. The induction will be that all the conditions hold

for Gi ◦ F .

Base step I will prove the conditions hold for G0. Note that G0 =
〈
x
y

〉
.

That means that G0 ◦ F = F , so Ki = Hi. Also, J1 (x, y) is the identity,
so J1(x, y) ◦Hi (x, y) = Hi (x, y). Also, Ji = 0 if i is 1 or bigger. This is
enough to prove the equations above.

Induction step Suppose the equations hold for Gi ◦ F . I hope to prove that
the conditions also hold for Gi+1. To avoid using the same names for
different objects, I will add accents to K and J in the induction step.
Because Gi+1 = bi+1 ◦Gi, I will say something about the two possibilities
for bi+1.

bi+1 is linear Because bi+1 is linear, bi+1◦(J1 (x, y) ◦H2 (x, y) + J2 (x, y)) =
bi+1◦J1 (x, y)◦H2 (x, y)+bi+1◦J2 (x, y). I note that bi+1◦J2 (x, y) =
J ′2 (x, y), so K ′2 (x, y) = J ′1 (x, y) ◦H2 (x, y) + J ′2 (x, y). The case for
K ′3 is essentially the same as K ′2. The case K ′1 is obvious, because it
only contains compositions.

bi+1 is Jonquière I can now assume

bi+1 =
〈
x+ p(y)

y

〉
=

〈
x+

∞∑
i=2

ai · yi

y

〉

Note that J ′1 = J1
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Gi+1 ◦ F = bi+1 ◦Gi ◦ F

=
〈
x+ p(y)

y

〉
◦Gi ◦ F

=
〈
x+ p(y)

y

〉
◦ (K1(x, y) +K2(x, y) + . . .)

= K1(x, y) +K2(x, y) + . . .+〈
p (K1(x, y)2 +K2(x, y)2 + . . .)

0

〉
= K1(x, y) +K2(x, y) + . . .+〈 ∞∑

j=1

a2 ·Kj(x, y)22 +
∞∑

i=3

ai ·

(
∞∑

j=1

Kj(x, y)2

)i

0

〉

K ′1(x, y) = K1(x, y)

K ′2(x, y) = K2(x, y) +
〈

([K1(x, y)]2)2

0

〉
= J1(x, y) ◦H2(x, y) + J2(x, y) +

〈
([K1(x, y)]2)2

0

〉
= J ′1(x, y) ◦H2(x, y) + J ′2(x, y)

K ′3(x, y) = K3(x, y) +
〈

([K1(x, y)]2)3

0

〉
= J1(x, y) ◦H3(x, y) + J3(x, y) +

〈
([K1(x, y)]2)3

0

〉
= J ′1(x, y) ◦H3(x, y) + J ′3(x, y)

I will prove the same lemma in a different way. For that, I need some lemma’s
to make the addition proof go smoothly.

Lemma 50. Let F and G be polynomial automorphisms of the form F =
H1(x, y) +H2(x, y) + . . . and G = J1(x, y) + J2(x, y) + . . ., where H1(x, y) = I
and Hi and Ji are homogenous of degree i. Let a, b ∈ N such that b < a.

Then (G	a ◦ F )	b = 0

Proof. Note that F	0
1 = 0 and F	0

2 = 0. Therefor, the degree of every term in
xi · yj ◦ F is at least i + j. So for every term g in G	a, g ◦ F is of degree at
least a. So that also goes for the sum of the terms, which means that G	a ◦ F
only contains terms of degree at least a. Because b < a, it means that it doesn’t
contain any term of degree b, and thus (G	a ◦ F )	b = 0.

Lemma 51. Let F and G be polynomial automorphisms of the form F =
H1(x, y) +H2(x, y) + . . . and G = J1(x, y) + J2(x, y) + . . ., where H1(x, y) = I
and Hi and Ji are homogenous of degree i. Let a ∈ N.

Then (G	a ◦ F )	a = G	a
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Proof. Let g be a term of G	a. Let c ∈ k, i ∈ N such that g = c · xi · ya−i. Now
I look at g ◦ F . g ◦ F = c ·

(
F	1

1 + F	2
1 + . . .

)i · (F	1
2 + F	2

2 + . . .
)a−i

. From

here it follows that (g ◦ F )	a = c ·
(
F	1

1

)i · (F	1
2

)a−i
.

Because F	1
1 = H1(x, y)1 = x and F	1

2 = H1(x, y)2 = y, (g ◦ F )	a = g.
Because G	a is a sum of terms like g, (G	a ◦ F )	a = G	a

Lemma 52. Let k = F2. Let F and G be polynomial automorphisms of
the form F = H1(x, y) + H2(x, y) + . . . and G = J1(x, y) + J2(x, y) + . . .,
where H1(x, y) = I and Hi and Ji are homogenous of degree i. Write G	2 =〈
b20 · x2 + b11 · x · y + b02 · y2

c20 · x2 + c11 · x · y + c02 · y2

〉
.

Then
(
G	2 ◦ F

)	3 =
〈
b11
c11

〉
(F1 · F2)	3

Proof.

(
G	2 ◦ F

)	3
=

〈
b20 · x2 + b11 · x · y + b02 · y2

c20 · x2 + c11 · x · y + c02 · y2

〉
◦ F	3

=
〈
b20 · F 2

1 + b11 · F1 · F2 + b02 · F 2
2

c20 · F 2
1 + c11 · F1 · F2 + c02 · F 2

2

〉	3

=
〈
b20 · F 2

1

c20 · F 2
1

〉	3

+
〈
b11 · F1 · F2

c11 · F1 · F2

〉	3

+
〈

b02 · F 2
2

c02 + F 2
2

〉	3

=
(〈

b20
c20

〉
F 2

1

)	3

+
(〈

b11
c11

〉
F1F2

)	3

+
(〈

b02
c02

〉
F 2

2

)	3

=
〈
b20
c20

〉
·
(
F 2

1

)	3
+
〈
b11
c11

〉
· (F1 · F2)	3 +

〈
b02
c02

〉
·
(
F 2

2

)	3

=
〈
b20
c20

〉(
2F	1

1 F	2
1

)
+
〈
b11
c11

〉
(F1F2)	3 +

〈
b02
c02

〉(
2F	1

2 F	2
2

)
= 0 +

〈
b11
c11

〉
· (F1 · F2)	3 + 0

=
〈
b11
c11

〉
· (F1 · F2)	3

Lemma 53. Let k = F2 and let F and G be automorphisms of the form F =
H1 (x, y) +H2 (x, y) + . . . where H1 (x, y) = I and G = J1 (x, y) +J2 (x, y) + . . .,
where Hi and Ji are homogenous of degree i.

Lets write G ◦ F = K1 (x, y) +K2 (x, y) + . . .. Now the following conditions
hold:

• K1 (x, y) = J1 (x, y) ◦H1 (x, y)

• K2 (x, y) = J1 (x, y) ◦H2 (x, y) + J2 (x, y)

• K3 (x, y) = J1 (x, y) ◦H3 (x, y) + J3 (x, y)
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Proof. K1(x, y) = (G ◦ F )	1 =
∞∑

i=1

(
G	i ◦ F

)	1. By applying lemma 50 on

most parts of this sum, I can conclude that this equals
(
G	1 ◦ F

)	1. By apply-
ing lemma 51, this equals G	1. Because H1(x, y) = I, G	1 = G	1 ◦H1(x, y).
By definition of J1, G	1 = J1(x, y), so G	1 ◦H1(x, y) = J1(x, y) ◦H1(x, y), so
K1(x, y) = J1(x, y) ◦H1(x, y), which is one of the things we want to prove.

K2(x, y) = (G ◦ F )	2 =
∞∑

i=1

(
G	i ◦ F

)	1. By applying lemma 50 on most

parts of the sum, I can conclude thatK2(x, y) equals
(
G	1 ◦ F

)	2+
(
G	2 ◦ F

)	2.
I now apply 51 on the right side of this sum. Throu this, K2(x, y) =

(
G	1 ◦ F

)	2+
G	2. I remark that by definition, J1(x, y) = G	1 and J2(x, y) = G	2. By sub-
stitution we get K2(x, y) = (J1(x, y) ◦ F )	2 + J2(x, y). Because J1(x, y) is lin-
ear, (J1(x, y) ◦ F )	2 = J1(x, y) ◦F	2, so K2(x, y) = J1(x, y) ◦F	2 + J2(x, y) =
J1(x, y) ◦H2(x, y) + J2(x, y), which is one of the things we want to prove.

K3(x, y) = (G ◦ F )	3 =
∞∑

i=1

(
G	i ◦ F

)	1. By applying lemma 50 on most

parts of the sum, I can conclude thatK3(x, y) equals
(
G	1 ◦ F

)	3+
(
G	2 ◦ F

)	3+(
G	3 ◦ F

)	3. I first apply lemma 51 to simplify the right part of this sum. Now
I proved K3(x, y) =

(
G	1 ◦ F

)	3 +
(
G	2 ◦ F

)	3 +G	3. Because G	1 is linear,(
G	1 ◦ F

)	3 = G	1 ◦ F	3. I also apply lemma 52 on the middle part of this

sum. This proves that K3(x, y) = G	1 ◦ F	3 +
〈
b11
c11

〉(
F	3

1 + F	3
2

)
+ G	3,

where b11 and c11 are defined in lemma 52 and solely depend on G	3.
Because of lemma 19, G	2 doesn’t have a term of odd degree and as a

consequence, b11 = c11 = 0. This makes it possible to simplify K3(x, y) even
further such that K3(x, y) = G	1◦F	3+G	3. I can now rewrite it and conclude
that K3(x, y) = J1(x, y) ◦ H3(x, y) + J3(x, y), which was the last thing left to
prove.

Theorem 54. This proves that if k = F2 and n = 2, then V{2,3} is a vectorspace.

Proof. Because of lemma 47, it is enough to prove that V is closed under addi-
tion. Addition is proved by lemma 49 because for every element in V , V 	1 = I,
and thus holds the following equality for the variables J1 and H1 as used in
lemma 49: J1(x, y) = H1(x, y) = I. That lemma proves the addition, so it
follows that V is a vectorspace.

5.5 Conclusions

I will formulate some conclusions in this section. One important note is the
following:

Remark 55. Let F and G be polynomial maps over Fp. If F,G are of lower
degree i. Then (F ◦G)	i = F	i +G	i

This means that the set of maps of lower degree i forms a vector space (see
lemma 54). So My goal is to compute these vector space.
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Lemma 56. Let G be a tame mapping. Let G be of lower degree 2. Then

G	2 is an element of a vector space generated by
{〈

y2

0

〉}
and its linear

conjugations.

Proof. G is a tame mapping, so it is possible to write G as composition of
simple automorphisms: G = Gi ◦ . . . ◦ G2 ◦ G1. I prove this with induction
to Gj . If j is 0, then G

	2

0 = 0, so the lemma is o.k. for that. Now suppose

the lemma is correct for G
	2

j . Then it is also correct for
〈
x+ ya

y

〉
◦ Gj

if a > 2. Because the lineair transformations also are not relevant (because
conjungation of something in the vector space with a lineair mapping results in
somethings which is again in the vector space), the only case left to study is〈
x+ λ · y2

y

〉
◦Gj . But

(〈
x+ λ · y2

y

〉
◦Gj

)	2

= G
	2

j +
〈
λ · y2

0

〉
, so it

again is in the vector space.

Lemma 57. For all a1, a2, a3, a4 ∈ N, there exists a tame map F of lower

degree a1 + a3 − 1 such that F	a1+a3−1 =
〈

a1a2x
a3ya1−1

−a2a3x
a3−1ya1

〉
.

Proof. Take the following composition:〈
x− a2 · ya1

y

〉
◦
〈

x
y − xa3

〉
◦
〈
x+ a2 · ya1

y

〉
◦
〈

x
y + xa3

〉

Lemma 58. I +

〈
xp2

−yp2

〉
with higher order terms is also a tame automor-

phism.

Proof. Take the following composition:〈
x− yp

y

〉
◦
〈

x
y − xp

〉
◦
〈
x+ yp

y

〉
◦
〈

x
y + xp

〉

5.6 Calculations

In this section, I will give some examples on how these compositions look like.
First, I consider to the following example:

Gj+1 :=
〈
x+ y2

y

〉
◦Gj
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Then the following is true:

1. G	1
j+1 = G	1

j

2. G	2
j+1 = G	2

j +

〈 (
2
0

)(
G	1

j

)2
2

0

〉

3. G	3
j+1 = G	3

j +

〈 (
2
1

)(
G	1

j

)
2
·
(
G	2

j

)
2

0

〉

4. G	4
j+1 = G	4

j +

〈 (
2
0

)(
G	2

j

)2
2

+
(

2
1

)(
G	1

j

)
2
·G	3

j

0

〉

5. G	5
j+1 = G	5

j +

〈 (
2
1

)(
G	1

j

)
2
·
(
G	4

j

)
+
(

2
1

)(
G	2

j

)
2
·
(
G	3

j

)
2

0

〉

Now I consider the following example.

Gj+1 :=
〈
x+ y3

y

〉
◦Gj

Then the following is true:

1. G	1
j+1 =

(
G	1

j

)
2. G	2

j+1 = G	2
j

3. G	3
j+1 = G	3

j +

〈 (
3
0

)(
G	1

j

)3
2

0

〉

4. G	4
j+1 = G	4

j +

〈 (
3
1

)(
G	1

j

)2
2
·
(
G	2

j

)
2

0

〉

5. G	5
j+1 = G	5

j +

〈 (
3
1

)(
G	1

j

)
2
·
(
G	2

j

)2
2

+
(

3
1

)(
G	1

j

)2
2
·
(
G	3

j

)
2

0

〉

Now I consider:

Gj+1 :=
〈
x+ y4

y

〉
◦Gj

Then the following is true:

1. G	1
j+1 =

(
G	1

j

)
2. G	2

j+1 = G	2
j

3. G	3
j+1 = G	3

j

4. G	4
j+1 = G	4

j +

〈 (
4
0

)(
G	1

j

)4
2

0

〉

5. G	5
j+1 = G	5

j +

〈 (
4
1

)(
G	1

j

)4
2
·
(
G	2

j

)
2

0

〉

And the last example:

Gj+1 :=
〈
x+ y5

y

〉
◦Gj
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Then the following is true:

1. G	1
j+1 =

(
G	1

j

)
2. G	2

j+1 = G	2
j

3. G	3
j+1 = G	3

j

4. G	4
j+1 = G	4

j

5. G	5
j+1 = G	5

j +

〈 (
5
0

)(
G	1

j

)5
2

0

〉

This is remark 39 written out. This gives a more clear view about what
actually happens. So if you now want to know how to make a certain element,
we have an idea how to do that. The formulas tell you what the last step must
be. That way, it is possible to go back and find a suitable composition.
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