Lowness for the Class of Random Sets
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ABSTRACT

A positive answer to a question of M. van Lambalgen and D. Zam-
bella whether there exist nonrecursive sets that are low for the class
of random sets is obtained. Here a set A is low for the class RAND of
random sets if RAND = RAND*.

1 INTRODUCTION

The present paper is concerned with the notion of randomness as originally
defined by P. Martin-Lof in [8]. A set is Martin-Lof-random, or 1-random for
short, if it cannot be approximated in measure by recursive means. These
sets have played a central role in the study of algorithmic randomness. One
can relativize the definition of randomness to an arbitrary oracle. Rel-
ativized randomness has been studied by several authors. The intuitive
meaning of “A is 1-random relative to B” is that A is independent of B.
A justification for this interpretation is given by M. van Lambalgen [7]. In
this introduction we review some of the basic properties of sets which are
l-random and we state the main problem. We work in the Cantor space
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2% of subsets of w, and we denote the Lebesgue measure on 2¥ by p. Our
notation for recursion theoretic notions is standard and follows [9]. The e-th
r.e. set W, can be both interpreted as a set of numbers W, C w or a set of
initial segments W, C 2<“. In the last case W, defines the 2(1) class Ext(W,)
={A€2¥: (30 € W) [o C A]}. The distinction will always be clear from
the context. Instead of p(Ext(W,)) we also write u(We).

DEFINITION 1.1 (Martin-Lof [8], Kautz [3]) A class Ais E?’A—approximable
if there is an A-recursive function f such that for the E?’A classes W]‘,‘% ) it

%
holds that ,u(W;l(i)) <2 %and A C N; W]f%z.). A set C is Martin-Lof-random
relative to A, or A-1-random for short, if {C} is not E(I)’A—approxima,ble.
The class of A-1-random sets is denoted by RAND#. If A is recursive we

write RAND instead of RAND4.

DEFINITION 1.2 A set A is low for a class C if the relativized version C4 of
C satisfies C = C“. The class of sets that are low for C is denoted by Low (C).

For example, the ordinary low sets from recursion theory are the sets that
are low for the class of T-complete sets, and a set is low for the class of
recursive sets if and only if it is recursive. For a class C, the class Low(C)
consists of the oracles that are not ‘helpful’ for C in the sense that they do
not alter C. A set A € Low(C) either contains no information that is useful
for C, or the information in it is coded in such a way that elements from C
cannot retrieve it. In this paper we are interested in sets that are low for
RAND.

Motivated by the work in [6], M. van Lambalgen and D. Zambella for-
mulated the question whether there exist nontrivial examples of sets A such
that every random set is already random relative to A. (The question is first
explicitly stated in Zambella [11].) This question was raised in the context
of a comparison between randomness properties in classical dynamic sys-
tems (specifically, Bernoulli sequences) and recursion theoretic randomness.
A famous result of Kamae [2] showed that the infinite binary sequences that
have no information about Bernoulli sequences (normal sequences) are pre-
cisely the sequences with zero entropy. The question was whether a similar
characterization exists for sets that have no information about Martin-Lof
random sequences. This motivates the question whether every element of
Low(RAND) has to be recursive.

First, it is not immediately clear that there is a 1-random set that has
a nonrecursive set Turing-below it in which it is 1-random. That this situ-
ation can occur was proved by Kucera in [5] by consideration of diagonally



nonrecursive functions. He also proved that if a nonrecursive set A admits
an A-l1-random set above it (which is the case when A € Low(RAND), cf.
the proof of Corollary 3.2) then A is not too complex in the sense that A
is generalized low (GL1), i.e. A@® () =1 A’. In Section 2 we prove that
indeed the class Low(RAND) contains nonrecursive sets, thereby answering
the above question.

Next we prove some facts that will be useful later. A recursive sequence
of 2(1) classes such as in Definition 1.1 is called a sequential test. The next
theorem shows that there are sequential tests that are universal in the sense
that they cover all the sets that are covered by some sequential test.

THEOREM 1.3 (Martin-Lof [8]) There exists a universal sequential test.
That is, there is a recursive sequence of %) classes Uy,Us, ... such that

o U() Qul 2
o Vn (p(ln) <277)

o for any X9-approzimable class A we have A C (), Uy.

We sketch the proof of Theorem 1.3. For every mn construct an r.e. set
U, C 2<% as follows. For every e > n, U, enumerates all the elements of
Wiei(e) (Where we take this set to be empty if {e}(e) is undefined) as long
as ((Wiey(e)) < 27°. Define U,, = Ext(Uy,). Then p(Uy,) < -, 27° =277,
and if {e} defines a sequential test then for every n there exists by padding
i € w (in fact, infinitely many 1) such that Wiy C U, so [, Wiy C
N,, Un.

DEFINITION 1.4 For every n, denote by U, the %y class from the above
proof. Define P,, to be the complement of U,,.

Define the left shift T : 2¥ — 2% by T(C)(n) = C(n+1). Let T* denote
the k-iteration of T'.

LEMMA 1.5 For every C € RAND there exists k € w such that T*(C) € Py.

Proof. For a set of initial segments ¥ and a class A define X" A = {c"A :
o € ¥ N A € A}, where 0" A denotes the concatenation of o with the
characteristic sequence of A. Fix an r.e. set Uj that defines the 2(1) class Uj.
By induction define L{& = Uy and Zx{éﬂ‘l = UOAUéc.



Now by q¢ = p(Uy) < 1 there is an [ € w such that ¢! < 1/2, so p(U) =
g* < 27 Tt follows that the sequence

l 21
Uy, U, UZ, ...

constitutes a sequential test. Therefore, if C € RAND then either C ¢
Uy, i.e. C € Py and we are done, or for some k > 0 we have C € U(’)“l
and C ¢ Z/{ék+1)l. But the latter means that Tk’(C) ¢ Uy for some k', so
T (C) € Py. O

When we relativize the concept of a sequential test to an oracle A it
makes no difference if we relativize the function that gives the indices of the
levels of the test or not, as the following standard lemma shows.

LEMMA 1.6 Let f be an A-recursive function. Then there is a recursive
; A A

function g such that Wf(n) = Wg(n) for every n.

2 A NONRECURSIVE SET THAT IS LOW FOR THE RANDOM SETS

A set which is low for RAND is computationally weak in the sense that
it cannot detect any regularity in any 1l-random sequence. Clearly every
recursive set is in Low(RAND). This section is devoted to a proof that also
nontrivial examples of such sets exist.

THEOREM 2.1 There exists a nonrecursive r.e. set A that is low for RAND.

Proof. We make A simple to guarantee nonrecursiveness. That is, during
the construction we want to satisfy the requirements

R,: W, isinfinite = W, N A # (.

By Theorem 1.3 and Lemma 1.6, let f be a recursive function that defines
the universal sequential test relative to X for any set X. That is, for every i,
f (%) is an index of the i-th level W;gi) of the universal sequential test relative

to X. So for every oracle X and every ¢ it holds that /L(Wﬁi)) < 27

Simultaneously with A we describe a program coded by e (e > 0) such that
A
Wiee) 2 Wiern) (1)

and such that u(W{e}(e)) < 27¢. By the recursion theorem we may assume
that we know the number e in advance. Note that by construction of the
first level Uy of the universal sequential test (see above) the equation (1)



implies that the (e + 1)-st level of the universal sequential test relative to A
is included in Up. In particular RAND# D P;. So if C € RAND, then T%(C)
is in Py for some k by Lemma 1.5, hence T%(C) € RAND#, and therefore
C € RANDA. So (1) guarantees that A is low for RAND.

Let A denote the (finite) set of elements of A enumerated by the end of
stage s. To be able to satisfy (1) we want to make sure that whenever y
enters A at stage s for the sake of R,, the ‘mistake’ we have made, that is,
the amount of measure enumerated up to stage s on the basis of ‘A(y) = 0,
is small, so that we can correct it without danger of enumerating too much

in total. Given y and s, let M, be the set of all strings o € Uses W]?(te—i—l),t

such that for some ¢ < s with y ¢ A, the computation {f(e + 1)} (o)
converges and has use bigger than y, and such that there is no 7 C ¢ such
that (3t < s)[use({f(e + 1)}:* (7)) < y]. That is, M, is the set of strings
o that contribute to the measure of Wi,y () (this set will be defined below)
on the basis of ‘A(y) = 0°, and that were not yet enumerated (or implicitly
enumerated because some initial segment was enumerated) on the basis of
some other computation before stage s that did not use the bit A(y). We
think of M, as the potential mistake we make, which may become a real
mistake when we enumerate y into A, thereby changing the bit A(y) from 0
to 1. Note that we do not require different mistakes to be disjoint and that
mistakes may be counted more than once. The (finite) set M, defines a ¢
class of which we can compute the measure.

We say that R, requires attention at stage s if

Gy<s)lyeW.s Ay>22 AW, ;NA =0 A p(M;) <2777 (2)

The construction of A is now easily described:

Stage s = 0. Define Ay = 0.

Stage s > 0. For every z < s such that R, requires attention at s, pick some
y witnessing this, say the smallest y satisfying (2), and enumerate y into A;.
The number {e}(e) is defined to be an index of a %2 class such that whenever

o is enumerated into Wﬁse-q-l),s then o is enumerated into Wiy (o), 1., Wiey(e)

Ag
Wiy = U Wi, -

SEw

is defined as

Note that when the oracle A changes, say because y enters A at stage s,
no further string is enumerated into W,y () using the ‘wrong’ bit A(y) =0
because of the ‘s’ occurring in the subscript.

LEMMA 1 p(Wige) <27°



PROOF. The measure of Wiy () is by definition equal to the measure of
W]‘,‘%e +1) plus the amounts of measure y(M,) enumerated by ‘mistake’ be-
cause the approximation to A was changed. Because the approximation to A
is only changed for the sake of R, if this mistake is not bigger than 277 €2

and every R, requires attention at most once we have

BWieye) <243 2772702 =07

zZEw
O Lemma 1
LEMMA 2 R, is satisfied for every z.

PROOF. Suppose W, is infinite and that for all y > 2z with y € W, ; it
holds that ,u(M;) > 277 .22 First observe that for every y and s there
exist ¥’ > y and s’ > s such that for every v > ¢’ and every ¢ > s’ we have
Ext(M}) N Ext(M;) = 0. To see that ' and s exist, define the downward
closure

downcl(M;) ={re2<¥:3o¢ M;(’T Co)}.

Let typ € w be so large that

7 € downcl(M3) : Ft({f(e + DI (1))} =
{7 € downcl(My)) : Ft <to({f(e+1) A7) )}

Consider the maximum
max{use({f(e + 1)} (1)) : t <to AT € downcl(My)}.

Note that this maximum exists because the set downcl(M,) is finite. Now
if 9 is chosen above this maximum and s’ > tg then for every v > 3/
and t > s’ we have M, N downcl(M;) = @ and M; N downcl(M;) = 0, so
Ext(M;)NExt(M;) = 0. It follows from our assumption and from the above
that there are infinitely many pairs y and s such that y € W, s with p(M]) >
2727¢2 and such that all the X} classes Ext(M,;) are disjoint. Because for
every y and s it holds that M, C W) we then have u(Wiey () = o0, a
contradiction. So the assumption from the beginning of our proof cannot
be true, and it follows with (2) that for infinite W, R, requires attention at
some stage and is satisfied at that same stage. (For finite W, the requirement
R, is vacuously satisfied.) O Lemma 2

From the construction we see that the set A is r.e. By the clause ‘y > 22’ in
(2) it has infinite complement and by Lemma 2 it intersects every infinite



r.e. set, so A is simple. By Lemma 1 and the definition of Uy we have the
inclusion Wﬁe+1) C Wiepe) € Uo, so (1) is satisfied. This concludes the
proof of Theorem 2.1. O

We conclude this section with some remarks. Zambella (private commu-
nication) has shown that the use of the recursion theorem in the above proof
is not essential. It is unknown exactly how complex sets in Low(RAND) can
be. The nonrecursive example constructed above is still r.e. Are there sets
in Low(RAND) that are outside of A3? And if so, are there uncountably
many such sets? Recently, Terwijn and Zambella [10] proved that there are
uncountably many nonrecursive sets that are low for the class of Schnorr
random sequences. They also showed that these sets are all outside of AS.
This contrasts the situation for the 1-random sequences above.

3 SOME LIMITATIONS

In this section we make some remarks on the complexity of sets that are
low for RAND. Since every nonrecursive r.e. set bounds a 1-generic set we
immediately have the existence of 1-generic sets that are low for RAND.
However, if A € Low(RAND) then A cannot be 1-random, since this would
imply that A is A-1-random, which is impossible. Another limitation comes
from the next theorem.

THEOREM 3.1 (Kucera [5]) If A <1 B and B is A-1-random then A € GL4.
COROLLARY 3.2 If A is low for RAND then A € GL;.

Proof. Since every set has a l-random set above it ([4, 1]), if A is low for
RAND then in particular A has a set above it that is A-1-random, and the
corollary immediately follows from Theorem 3.1. O

Next we prove a limitation that shows that all (partial) functions that are
of degree that is low for RAND can be uniformly dominated by a function
recursive in ()'. First we give two definitions. We say that a function g
dominates a partial function f if there is a k € w such that whenever f(n)
is defined for some n > k it holds that g(n) > f(n). For strings 7 and o we
say that 7 is to the left of o, denoted 7 <1, o, if there is a string p such that
p"0C 7 and p"1 Co.

THEOREM 3.3 There exists a function g <7 (' that dominates every func-
tion in the class of partial functions {{e}* : A € Low(RAND)}.



Proof. Let R be the leftmost path in Py, Py as defined in Definition 1.4.
Then R is l-random, being an element of Py, and it is easy to see that
R <7 0 (even R <4 0"). Denote by V the set of strings to the left of R, i.e.

V= U{T € 2<¥: 7 <y, Rli}.

1€Ew

Note that V is an r.e. set since U is Z(l). Let {Vs}sew be a recursive enu-
meration of V. To every set A € 2* and every partial A-recursive function
{e}* we can assign an A-recursive sequential test {Bf’A}i@d as follows. If
{e}A(i) | let 7 be the first string of length 4 to the right of the rightmost
(in the sense of the ordering <, defined above) string of length i in Vieya)

if such a string exists, and let 7 be 0 otherwise. Now let C; 4 be the basic
open set defined by the string 7, i.e. Cf’A ={B:7C B}. If {e}4() 1 let
Cf’A be empty. Finally, let

e,A e, A
B =i
j>i

Now define
g(i) = (least s)(Vr <, Rli)[|7| =i = 7 € V}].

We claim that g satisfies the statement of the theorem. Clearly we have
g <7 R <7 (. Let A € Low(RAND). Suppose that there are infinitely
many i € w such that {e}#(i) is defined and bigger than or equal to g(i).
For every such i it holds that R € B; A Tt follows that R is not A-1-
random. Since A € Low(RAND) we then also have that R is not 1-random,
a contradiction. O

Zambella (private communication) has shown, using ideas of a totally
different nature, that Theorem 3.3 can be improved. Namely, the values
of the functions that are partial recursive in a set in Low(RAND) can be
uniformly approximated by an r.e. set in such a way that the number of
approximating values is small.
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