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Abstract

We show that there is a set that is almost complete but not complete under
polynomial-time many-one (p-m) reductions for the class E of sets computable in
deterministic time 2", Here a set A in a complexity class C is almost complete for
C under some reducibility r if the class of the problems in C that do not r-reduce
to A has measure 0 in C in the sense of Lutz’s resource-bounded measure theory.
We also show that the almost complete sets for EE under polynomial-time bounded
one-one length-increasing reductions and truth-table reductions of norm 1 coincide
with the almost p-m-complete sets for E. Moreover, we obtain similar results for
the class EXP of sets computable in deterministic time 2P°lY,
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1 Introduction

Lutz [16] introduced measure concepts for the standard deterministic time and
space complexity classes that contain the class E of sets computable in deter-
ministic time 2", These measure concepts have been used for investigating
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quantitative aspects of the internal structure of the corresponding complexity
classes. Most of this work focussed on the measure for E. The majority of the
results obtained there, however, carry over to the larger complexity classes.
For recent surveys of the work on resource-bounded measure, see Lutz [18]
and Ambos-Spies and Mayordomo [4].

Lutz’s measure theory on E not only has revealed relationships to older con-
cepts such as complete and bi-immune sets, but also has led to important
new concepts. The most investigated concept of this sort appears to be weak
completeness, as introduced by Lutz [17]. While all sets in E can be reduced
to a complete set (under some given polynomial time reducibility notion), for
a weakly complete set, Lutz requires only that the class of the reducible sets
does not have measure 0 in E, i.e., is a non-negligible part of E.

Originally, Lutz introduced weak completeness for polynomial time many-one
(p-m) reducibility — the reducibility that is used in most completeness proofs
in the literature — and he showed that there actually is a weakly p-m-complete
set for E that is not p-m-complete for E (Lutz [17]). In fact, the class of weakly
p-m-complete sets for E has measure 1 in E (Ambos-Spies, Terwijn, Zheng [7],
Juedes [12]). Since it was long known that the class of p-m-complete sets for
E has measure 0 in E (Mayordomo [19]), we see that weak completeness leads
to a new large class of provably intractable problems.

A natural concept between completeness and weak completeness is almost
completeness. Here a set A in E is almost p-m-complele for E if the class of
problems that are p-m-reducible to A has measure 1 in E, i.e., if the sets in E
that are not reducible to A can be neglected with respect to measure. Zheng
and others (see e.g. [4], Section 7) raised the question of whether there are
almost p-m-complete sets for E that are not p-m-complete for E. Here we
answer this question affirmatively by constructing such a set.

Our result is contrasted by a result of Regan, Sivakumar and Cai [20], which
implies that for the standard transitive polynomial-time reducibilities allowing
more than one oracle query — such as bounded truth-table (btt), truth-table
(tt), and Turing (T) reducibility — completeness and almost completeness co-
incide. It follows that any almost p-m-complete set for E is p-btt-complete for
E, whence — in contrast to the weakly p-m-complete sets — the class of almost
p-m-complete sets for E has measure 0 in E.

The above results still leave the investigation of almost completeness for the
one-query reducibilities different from many-one reducibility. Here we show
that the almost completeness notions coincide for the reducibilities rang-
ing from one-to-one, length-increasing reductions to truth-table reductions
of norm 1. This parallels previous results for completeness (see Berman [9]
and Homer, Kurtz and Royer [11]) and weak completeness (see Ambos-Spies,



Mayordomo and Zheng [5]).

The outline of the paper is as follows. In Section 2 we describe the part of
Lutz’s measure theory for E needed in the paper and we review the limiting
result on almost completeness by Regan, Sivakumar, and Cai. Section 3 con-
tains the proof of our main result, while in Section 4 the relations among the
various completeness notions are discussed. In Section 5 we summarize some
further results.

Our notation is fairly standard, for unexplained notation we refer to [4]. Capi-
tal letters like A, B, R, X denote sets of binary strings. Lower case letters from
the end of the alphabet like z,y, z denote binary strings, whereas the other
letters denote natural numbers with the exception of p and ¢ which denote
polynomials and d, f, g, h and s,t which denote general functions. Sometimes
we identify strings with natural numbers by letting n be the (n + 1)st binary
string under the canonical length-lexicographical ordering.

Sets are identified with their characteristic sequence, i.e., for every natural
number n, we have A(n) = 1 if n € A and A(n) = 0if n ¢ A. For a set
A and a string = let A[z denote the restriction of A to all strings less than
z, i.e., w = Alz is an initial segment of A such that the length of w is just
the natural number that corresponds to z. Moreover, for n = |z| we have
2" — 1 < |w| < 2" — 1. In the context of computations that receive as input
an initial segment of a set we write w or v for this prefix, whereas if the input
of a computation is meant as a possible member of a set, we use z, y, or z for
the input.

The polynomial time reductions considered here are general reductions of Tur-
ing type (p-T), truth-table reductions (p-tt) allowing only non-adaptive quer-
ies, bounded truth-table reductions (p-btt) in which in addition the number
of queries is bounded by a constant, and the special case hereof where this
constant ¢ is fixed (btt(c)). We will represent p-btt(1)-reductions by a pair
of polynomial time computable functions g and h where g(z) is the string
queried on input z and the unary Boolean function h(z) tells how the answer
of the oracle is evaluated. If the reduction is positive, i.e., h(z)(¢) = ¢ for
all strings « and all ¢ in {0,1}, we have a p-many-one-reduction (p-m) and
in this case we omit h. If in addition ¢ is one-to-one (and length-increasing)
we obtain a (length-increasing) one-one reduction (p-1 and p-1-li). For r in
{T,tt,btt,btt(1),m, 1, 1-1i} and any set A, we let the lower p-r-span of A be
the class {B : B <P A}.



2 Measure on E and almost completeness

In this section we describe the fragment of Lutz’s measure theory for the
class E of sets computable in deterministic time 2" that we will need in the
following. For a more comprehensive presentation of this theory we refer the
reader to the recent surveys by Lutz [18] and by Ambos-Spies and Mayordomo
[4]. Our presentation follows [4]. The ¢(n)-measure defined there slightly differs
from the original definition by Lutz, but both definitions lead to the same
notions of p-measure and measure on E.

The measure on E is obtained by imposing appropriate resource-bounds on a
game theoretical characterization of the classical Lebesgue measure.

Definition 1 A betting strategy s is a function s : {0,1}* — [0,1]. The
(normed) martingale d; : {0,1}* — [0,00) induced by a betting strategy s is

inductively defined by ds(A\) =1 and

ds(wi) =2 |1 — s(w)] - ds(w)

forw € {0,1}* and © € {0,1}. A martingale is a martingale induced by some

strategy. A martingale d succeeds on a set A if
lim sup dfAF oo,
n—o0
and d succeeds on a class C if d succeeds on every member A of C.

This definition can be motivated by the following fair betting game in which
a gambler puts bets on the successive bits of a hidden sequence A € {0,1}°.
The game proceeds in infinitely many rounds where at the end of round n
the n-th bit of the sequence A is revealed to the gambler. The gambler starts
with (normed) capital d(A) = 1. Then, in round n, depending on the first n
outcomes w = A [ n, he bets a certain fraction o, - d(w) (o, € [0,1]) of his
current capital d(w) on the event A(n) = 0 and he bets the remaining capital
(1 — ay) - d(w) on the complementary event A(n) = 1. The amount put on
the correct outcome is doubled, the amount put on the wrong guess is lost.
Then, if the gambler uses the strategy s to determine the ratio a,, = s(w) for
his bets, the martingale ds(w) = d(w) induced by s will describe the capital
of the gambler in the course of this game. If this capital is unbounded, the
gambler wins.

It can be shown that a class C has Lebesgue measure 0, u( C) = 0, iff some
martingale succeeds on C. By imposing resource bounds, martingales can be

used for defining resource-bounded measure concepts.

Definition 2 Let t : N — N be a recursive function. A {(n)-martingale d is a



martingale induced by a rational valued betling strategy s such that s(w) can
be computed in O(L(|w|)) steps for all strings w.

A class C has t(n)-measure 0, pyn)(C) = 0, if some t(n)-martingale succeeds
on C, and C has t(n)-measure I, py,y(C) = 1, if the complement C has

t(n) -measure 0.

Note that for i € {0,1} and for recursive bounds t(n) and t'(n) such that
t(n) < t'(n) almost everywhere,

pin(C) =i = (G =1 = p(C) =i

In order to obtain measures for complexity classes, resource-bounded measure
concepts are defined not for individual bounds but for families of bounds. In
particular, working with polynomial bounds yields a measure on E.

Definition 3 A p-martingale d is a g(n)-martingale for some polynomial q.
A class C has p-measure 0, pp(C) =0, if pyn)(C) = 0 for some polynomial

q(n), i.e., if some p-martingale succeeds on C, and py(C) =1 if pp(C) = 0.

A class C has measure 0 in E, u(C|E) = 0, if uyp,(CNE) = 0 and C has
measure 1 in E, u(C|E) =1, if u(C|E) = 0.

Lutz [16] has shown that this measure concept for E is consistent. In particular,
E itself does not have measure 0 in E, namely

po(E) # 0, hence p(E[E) # 0. (1)

On the other hand, every slice of E has measure 0 in E, namely for £ > 1

p1p(DTIME(2"")) = 0, hence u(DTIME(2"")[E) = 0. (2)

Based on the above measure for E we can now introduce the completeness
notions for E that are central for our paper. Here <P denotes any polynomial-
time reducibility.

Definition 4 a) (Lutz [17]) A set A is weakly p-r-hard for E if the lower p-r-
span of A does not have measure 0 in E, i.e., if u,({B: B <P A}NE) # 0.
If, in addition, A is in E then A is weakly p-r-complete.

b) (Zheng) A set A is almost p-r-hard for E if the lower p-r-span of A has
measure 1 in B, i.e., if u,({B : B <P A}NE) = 1. If, in addition, A is in
E then A is almost p-r-complete.

Intuitively, a set A in E is weakly p-r-complete for E if its lower span contains
a non-negligible part of E and it is almost p-r-complete for E if the part of E
that is not contained in the lower span of A can be neglected. In particular,



every p-r-complete set for E is almost p-r-complete for E and — by (1) and by
additivity of p, — every almost p-r-complete set for E is weakly p-r-complete
for E. Moreover, since P has measure 0 in E by (2), every weakly p-r-complete
set 1s provably intractable.

After Lutz [17] demonstrated the existence of weakly p-m-complete sets for E
that are not p-m-complete for E, weak completeness was extensively studied
and most relations among the different weak completeness and completeness
notions have been clarified (see Section 4 below).

A severe limitation on the existence of nontrivial almost complete sets is im-
posed by the following observation on classes that have measure 1 in E.

Theorem 5 (Regan, Sivakumar and Cai [20]) Let C be a class such thal
p(C|E) =1 and C is either closed under symmetric difference or closed under
union and intersection. Then C contains all of E.

Since for r in {btt,tt,T} the lower p-r-span of any set A is closed under union
and intersection (as well as under symmetric difference) this shows that the
concept of almost completeness is trivial for these reducibilities.

Corollary 6 For r in {btt,tt,T}, every almost p-r-complete (almost p-r-
hard) set for E is p-r-complete (p-r-hard) for E.

Concerning p-m-reducibility, it is immediate from Theorem 5 that in case the
lower p-m-span of a set is closed under union and intersection, then the set is
almost p-m-complete for E if and only if it is p-m-complete for E. Applying
the latter observation to a set that is p-m-complete for the class NP, we
obtain — similarly to an argument in [20] — that if NP has measure 1 in E
then NP N E coincides with E (and hence, by being closed downwards under
p-m-reductions, NP coincides with EXP.) For other complexity classes that
are closed under union and intersection, we can argue similarly. Moreover, the
above observation for example can be used to show that GI, the set of all
(appropriately encoded) pairs of isomorphic graphs, is almost p-m-complete
for E if and only if it is p-m-complete for E. Here the closure of the lower
p-m-span of GI under union and intersection follows from the fact that GI has
polynomial-time computable or- and and-functions, i.e., from a list of potential
members of GI we can compute in polynomial time a single pair of graphs such
that this pair is in GI if and only if some pair (respectively, all pairs) in the
list are in GI (for details of this construction see the textbook by Kobler et
al. [15, Section 1.5]).

In general, however, the lower p-m-span of a set is neither closed under sym-
metric difference nor under union and intersection, hence the argument used
for proving Corollary 6 does not work for almost p-m-completeness. As an
immediate consequence of Corollary 6, however, almost p-m-complete sets for



E must be p-btt-complete for E. Since the class of p-btt-complete sets has p-
measure 0 (see [6]), this also shows that almost p-m-complete sets are scarce.

Corollary 7 Fvery almost p-m-complete (hard) set for E is p-btt-complete
(hard) for E. In particular, the class of the almost p-m-complete sets for E
has p-measure (0, hence measure 0 in E.

In fact, as observed in [4], every almost p-m-hard set for E is p-btt(2)-hard
for E (see Theorem 12 below). Despite these limitations, in the next section
we will show that there are almost p-m-complete sets for E that are not p-m-
complete for E. Moreover, in Section 4 we will obtain the same results for
some other p-reducibilities that allow only one oracle query by showing that
all these reducibilities yield the same class of almost complete sets.

Our results and proofs will use the characterization of p-measure and measure
in E in terms of resource-bounded random sets. In the remainder of this section
we shortly describe this approach (from [7]) and state some results on the
measure in E in terms of random sets, which we will need in the following.

Definition 8 A set R is t(n)-random if no t(n)-martingale succeeds on R.

For later use, we observe the following trivial relation among random sets for
increasing time bounds.

Proposition 9 Let t(n),t'(n) be recursive functions such that t(n) < t'(n)
almost everywhere. Then every t'(n)-random set is t(n)-random.

The characterization of the p-measure and the measure in E in terms of ran-
dom sets is as follows.

Lemma 10 (Ambos-Spies, Terwijn and Zheng [7]) For any class C,

(i) pp(C) = 0 iff there is a number k such that C does nol contain any

n*-random set, and

(i7) u(C|E) = 0 iff there is a number k such that CNE does not contain
any n*-random set.

Lemma 10 (together with Definition 3) immediately yields the following char-
acterization of almost hardness.

Lemma 11 A set A is almost p-r-hard for E if and only if, for some number
k > 1, the lower p-r-span of A contains all n*-random sets in E, i.e.,

VR € E (R n*-random = R <P A). (3)

To illustrate how results on random sets can be turned into results on p-



measure and the corresponding measure in E, we give a proof of the strength-
ening of Corollary 7 mentioned above.

Theorem 12 (Ambos-Spies and Mayordomo [4]) Fuvery almost p-m-hard
set for E is p-btt(2)-hard for E.

The proof of Theorem 12, which is not explicitly given in [4], requires the
following two lemmas. The first lemma gives a well-known invariance property
of the n*-random sets generalizing the observation that the complement of an

n*-random set is n*-random again.

Lemma 13 Lel k > 1, let the set R be n*t'-random and let the set A be
in DTIME(2*"). Then the symmetric difference RAA of R and A is n**'-

random again.

Proof. Let d be an n*t'-martingale and let s be the strategy underlying d.
In order to show that d does not succeed on RAA we convert the martingale
d into an n**'-martingale d’ such that d’' succeeds on a set X if and only if
d succeeds on XAA. Since, by n®*t!'-randomness of R, d’ does not succeed on

R, it follows that d will not succeed on RAA.
The strategy s" underlying d' is defined by
s'(Xw) = |A(z) — s((XAA)

Then, for any set X and any string =, d'(X [z) = d((XAA) [z) by a straight-
forward induction on z, hence d' has the required behavior. Moreover, given
Xz, by A€ DTIME(2*"), A(z) and (XA A) |z can be computed in O(2!.
2klzly = O(| X [« [k*+1) steps. Since s can be computed in Q25+ steps, it
follows that s’ can be computed in O(2++1)") steps too, hence d’ is an n*+!-
martingale. O

Lemma 13 implies that every set in E can be presented as the symmetric
difference of two n*-random sets.

Lemma 14 Let A be in E and let k > 1. There are n*-random sets Ry and
Ry in E such that A = RyAR,.

Proof. Fix k' > k such that A € DTIME(2¥™), let R, be any n**'-random
set in E, and let R, = RyAA. Then, by Lemma 13, R, is n*'+t'-random too,
hence R; and R, are n*-random by Proposition 9. Moreover, since, for any sets
Xand Y, X = YA(YAX), the choice of Ry implies that A = RiA(R1AA) =
RiAR,. O



Proof of Theorem 12. let A be almost p-m-hard for E. Then, by Lemma 11,
there is a number k& > 1 such that every n*-random set in E is p-m-reducible

to A. Since, by Lemma 14, every set in E is the symmetric difference of two
nF-random sets in E, it follows that A is p-btt(2)-hard for E. O

Many results about p-measure exploit the fact that random sets do not contain
any easy parts and that they are incompressible. Before we state the observa-
tions needed here, we first recall some definitions. A set A is C-bi-immune for
a class C, if no infinite subset of A or of the complement of A is a member of
C. A set A is p-incompressible if, for any set B and for any p-m-reduction f
such that A <P B via f, f is one-to-one almost everywhere.

Theorem 15 (a) (Mayordomo [19]) Every n**'-random set is DTIME(2%")-
bi-immune.
(b) (Juedes and Lutz [13]) Every n?-random set is p-incompressible.

In [19] and [13] these observations are phrased in terms of p-measure. For a
proof of the theorem in the given form, see [4].

Theorem 15 (a) implies that any p-m-reduction of an n*+'-random set R to a
set A € DTIME(2"") is length-increasing almost everywhere.

Corollary 16 Letk > 1, let A be in DTIME(2*"), let R be n**'-random and

assume that R <P A wvia f. Then [ is length-increasing almost everywhere.

Proof. For a contradiction assume that |f(z)] < |z| for infinitely many
strings x. For i < 1 let B, = {z : |f(z)| < |z| & A(f(z)) = i}. Then
B; € DTIME(2*"), B, C R, B, C R, and, by assumption, By or By is infi-
nite. So R is not DTIME(2*")-bi-immune contrary to Theorem 15 (a). O

Another related fact needed in Section 4 is the following.

Lemma 17 Let k > 2 be a natural number and let R be an n*-random set.
Assume that R and ils complement are p-m-reducible to some set A via p-m-
reductions g and h, respectively. Then the intersection of the range of g and
the range of h is finile.

Proof. For a contradiction assume that the intersection of the ranges of ¢
and A is infinite. Since, by Lemma 13, R is n*-random too, by symmetry, we
may assume that

B ={z : Jy <z(g(x) = h(y))}



is infinite. Note that B € DTIME(2%*") and, for « € B, the string y, that
is the least string y < x such that g(x) = h(y) can be found in 2%°! steps.
Moreover, by choice of g and h,

R(z) = A(g(w)) = A(h(y:)) = R(yz),

hence R(z) # R(ys) and y, < x. By infinity of B this allows the definition of
an n"-martingale d that succeeds on R contrary to choice of R. The strategy
s underlying d is as follows. Given an initial segment X |z, check whether

x € B. If not then do not bet (i.e. s(X [z) = 1/2). If so, compute y, and bet

all the current capital on the outcome X(z) = 1 — X(y,) (i.e. s(¥] =1
if X(y;) = 0 and s(X [z) = 0 otherwise). So, when betting against R, the
capital will be doubled at every string z in B and thus d succeeds on R. O

Finally, for the proof of our main theorem in the next section, we will need
the following instance of the Borel-Cantelli-Lemma for p-measure (see Regan
and Sivakumar [21] for a more general discussion of this lemma).

Lemma 18 Let {D;y,D,,...} be a sequence of pairwise disjoint finite sets
where Dy has cardinality k. Assume further thal given x, in time O(22|x|),
firstly, one can decide whether x is in Dy, for some k and, if so, secondly, one
can compute the unary notation 1% of k and a list of all strings y < = in Dy.
Then every n*-random sel inlersecls almost all of the sets Dj,.

Proof. Tt suffices to define an n*-martingale d that succeeds on every set A
that has an empty intersection with infinitely many of the sets Dj. We will
define an appropriate betting strategy s that induces the martingale d. Here
the strategy s will never bet on z being in A (i.e. s(w) > 1/2 for all w), and
so s in turn is determined by specifying for all w, the stake v(w) > 0 that is
bet on x not being in A.

We split the initial capital d(A) = 1 into infinitely many parts ¢1, ¢ ..., where
fraction ¢, = 1/2% is exclusively used for bets on the strings in Dj. On input
w, we let v(w) = ¢ - 27" in case the string z = |w| to bet on is the jth
element of Dy and none of the strings y < = in Dy is in A (ie. ifall j —1
previous bets on Dy have been wins). Otherwise, we abstain from betting by
letting v(w) = 0. Thus for all &, if A does not intersect Dy, then the capital
¢ 1s doubled k times, i.e., the total capital originating solely from ¢ equals
1. As a consequence, the gain of d on A is unbounded in the limit in case A
has an empty intersection with infinitely many of the Dj.

It remains to show that s(w) can be computed in time O(|w|?). First we show
that for every w and every prefix u of w, the stake v(u) can be computed in
time O(|w|?). For every such u and w and for = = |ul, we have 2211 < |w|?,

10



hence by assumption within time O(|w|?) we can check whether z is in some
Dy, and, if so, can compute 1¥ and a list of the elements y < z in Dj. Moreover
this list, which contains less than |w| elements, can be ordered in time O(|w|?)
and running the ordered list against w in order to check whether none of the
strings y is in A requires time linear in |w|.

Next we will argue that in time O(|w|?) we can compute the accumulated
capital d(w) by starting with d()) and then adding up the wins and losses for
all prefixes u of w. Here the values d(u) are bounded by 2l“l while the stakes
v(u) are bounded by 1. Moreover, the stakes v(u) can always be written as
multiples of 1/2°(*F) bhecause if a string y < z is in some set Dy, then by the
discussion in the preceding paragraph, & is in O(|w|*). Thus a single addition
amounts to adding two rationals that have a binary expansion of at most
|w| + O(Jwl|?) digits. So for all prefixes u of w, the computation of the stake
v(u), the check whether the corresponding bet was a win, and the ensueing
addition can be done in time O(]w|?), and consequently d(w) can be computed
in time O(|w|?).

By definition of the terms involved, the capital d(w0) can be written as d(w)+
v(w) and also as 2 - s(w) - d(w), hence we obtain in case d(w) # 0

s(w) = %. (4)

From the preceding discussion it is immediate that the binary expansion of
both numerator and denominator of the fractional representation of s(w) ac-
cording to (4) can be computed in time O(|w|?). We leave to the reader the
easy task of showing that the latter time bound is also sufficient for finding
natural numbers p, ¢, and r where s(w) = p/q- 27", i.e., to find a standard
representation of the rational s(w) in the sense of [4]. O

3 An almost complete set that is not complete

We now turn to the main result of this paper.

Theorem 19 There is an almost p-m-complete set for E thal is not p-m-
complete for E.

For a proof of Theorem 19 it suffices to show the following lemma.

Lemma 20 There are sets A and B in E such that BLY A and

for all n*-random sets R in EXP, R<P A. (5)

11



Then, for such sets A and B, the set A is almost p-m-complete for E by (5)
and Lemma 11, whereas B is not p-m-reducible to A and thus A is not p-m-
complete for E. In fact, for this argument it suffices to consider E in place of
EXP in (5). We will use in Section 5, however, that the extension proved here
will lead simultaneously to a corresponding result for the class EXP, i.e., the
class of sets computable in time 2PV,

Proof of Lemma 20. We construct sets A and B as required in stages. To be
more precise we choose a strictly increasing function h : N — N with ~(0) = 0
and we determine the values of A and B for all strings in the interval

Io={z: h(k) < |z| < h(k+1)}

at stage k. Here the function h is chosen to be p-constructible and, for technical
reasons to be explained below, to satisfy

() k2 < h(k) (i) k2 - pu(h(k)) < 2500 (i) pr(h(k)) < h(k+1)  (6)

for all k& > 0 and pg(n) = n* + k. Note that given z, by p-constructibility of
h, we can compute the index k such that = € Iy, as well as h(k), in poly(|z|)
steps.

Before we define stage k of the construction formally, we first discuss the
strategies to ensure the required properties of A and B and simultaneously
introduce some notation required in the construction.

In order to ensure (5) we let A sufficiently resemble a p-m-complete set for
EXP. Let {C. : ¢ > 0} be an effective enumeration of EXP such that C.(z)

can be computed uniformly in 2I°I° + e steps, and let
E = {1°01""0z : 2 € C. & e € N}

be the padded disjoint union of these sets. Then F can be computed in time
2" and, for all e, C; is p-m-reducible to E via

| e

g.(z) = 1°01" 0z,
so F is p-m-complete for EXP. Hence, if we let
CODE, = range(g.)

denote the set of strings used for coding C. into F, then in order to satisfy
(5) it suffices to meet for all numbers ¢ > 0, the requirement

R! : If C, is n®>vandom then A N CODE, is a finite variant of £ N CODE,.
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Namely, given an n*-random set R in EXP we can choose ¢ with R = C..
Then the corresponding requirement R! will ensure that R is p-m-reducible
to A via a finite variant of g..

In order to meet the requirements R! we will let A look like F unless the task
of making B not p-m-reducible to A will force a disagreement. Since F is in
DTIME(2") this procedure is compatible with ensuring that A is in E as long
as the strings on which A and F differ can be recognized in linear exponential
time. In this connection note that the sets CODE, are pairwise disjoint and
that, for given x, poly(|z|) steps suffice to decide whether z is a member of
one of these sets and if so to compute the unique e with x € CODE..

The condition B«LP A is satisfied by diagonalization. Let {f; : k& > 1} be an
effective enumeration of the p-m-reductions such that fi(z) can be computed
uniformly in py(|z]) = |z|* +k steps. Then it suffices to meet the requirements

Ry 3w € {0,1} (B(x) # A(fu(x)))

for all numbers k > 1. We will meet requirement R} at stage k of the con-
struction.

For this purpose we will ensure that there is a string = from a set of k*
designated strings of length h(k) such that B(z) and A(fx(x)) differ, while
we will let B be empty and let A equal £ on [ otherwise. We will say that
this action injures an almost completeness requirement R! if, for the chosen
string @, fi(z) is in Iy N CODE. and A and FE differ on fi(z). Since A and
E agree on I, N CODE,. otherwise, the conclusion of R! will fail if and only if
the requirement is injured at infinitely many stages.

To avoid injuries we will attempt to diagonalize in such a manner that injuries
to the first k& requirements R!, e < k, are avoided. If the function f; is not
one-to-one on the designated strings or if fy(z) is shorter than z for some
designated string = then the diagonalization will not affect A on [, at all and
thus no injuries occur. The critical case occurs if, for every designated string x,
Jr(z) is longer than z and is an element of some of the sets CODE, with e < k.
In this case, in order to diagonalize as intended we have to make A( fy(z)) differ
from the canonical value 0 for B(z) (not vice versa, since otherwise we might
fail to make B computable in exponential time) and hence some injury may
occur.

By Lemma 18, however, we will be able to argue that if C. is n*-random and
if there are infinitely many stages at which we are forced to make A(fx(z))
differ from B(z) = 0 for some fi(z) in CODE,., then at almost all of these
stages letting A look like F on the fi-images of the designated strings will
yield the desired diagonalization. So for n’-random C. the requirement R!
will be injured only finitely often.

13



We now give the formal construction. We let BN Iy =0 and ANy = EN .
Given k > 0, stage k£ of the construction is as follows. We assume that A and
B have already been defined on the intervals Iy, ..., I)_;, and we will specify
both sets on the interval Ij. For the scope of the description of stage k& we call
the first &2 strings in Iy the designated strings. The designated strings are the
potential diagonalization witnesses for requirement R?, i.e., we will guarantee
B(z) # A(fx(z)) for some designated string z. Observe that every designated
string has length h(k) and is mapped by fi into the union of the intervals I
through I, as follows by items (i) and (iii) in (6), respectively.

For the definition of A and B on I, we distinguish the following four cases
with respect to the images of the designated strings under the mapping f;.
Here it is to be understood that on [, the sets A and B will always look like
the set F and the empty set, respectively, unless this specification is explicitly
overwritten according to one of the cases below. Moreover, as the cases are
not mutually exclusive, always the first applicable case 1s used.

Case 1: Some designated string is not mapped to [j.
Let z be the least such string. By the preceding discussion, fz(x) is contained
in some interval I; with j < k and A(fi(x)) has been defined at some
previous stage. We let B(z) = 1 — A(fx(x)) (thereby satisfying R}).

Case 2: Two designated strings are mapped to the same string.
Let z be the least designated string such that fi(z) = fi(z') for some
designated string 2’ # z and let B(z) = 1. (Then B(z) = 1 differs from
B(z') = 0, whereas f; maps = and 2’ to the same string, so R is met.)

Case 3: Some designated string is not mapped to the set |J.., CODEL,.
Let  be the least such designated string and let A(fx(z)) = 1. (Note that,
by failure of Case 1, fi(z) is in I, and R} is met since B(z) = 0 by
convention.)

Case 4: Otherwise.
In this case the k? designated strings are mapped by f; to k* different strings
in U, CODE,, hence we can let e; be the least e < k such that f; maps
at least k designated strings to CODE,,. Let J; be the set of the least k
designated strings that are mapped to CODE,,, and let

Fk = {fk(:v) S ]k}

be the fi-image of Ji. Observe that by case assumption all strings in Fj
are in I;. In case £ does not intersect F, we let A(y) = 1 where y is the
maximal element in [} and we say that Rik is injured at stage k. (Then
R? is met, because in case E intersects Fy there has already been a string

z in Ji such that B(z) = 0 differs from A(f(z)) while, otherwise, we will

enforce such a disagreement for some = where fi(z) = y.)

This completes the construction. It remains to show that the constructed sets
have the required properties. We first observe that the constructed sets are in
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DTIME(2*"). We sketch the proof for the set A and leave the similar proof for
the set B to the reader. Given a string y, we can compute in time poly(|y|) the
index k where y is in Iy, as well as h(k). Further it takes time O(k?py(h(k)))
to compute the list of all pairs (z, fx(z)) such that z is a designated string of
stage k and it takes time polynomial in the length of this list to check which
of the four cases applies and to determine whether according to this case,
A(y) might differ from E(y) at all. If not, we simply have to compute E(y).
Otherwise, we know that either Case 3 applies and y is in A or Case 4 applies,
y is the maximal string in Fj, and y is in A iff none of the £ —1 smaller strings
in Fy is also in K. Using item (ii) in (6) it is then a routine task to show that
A in fact can be computed in time 27,

It remains to show that the requirements R!, ¢ > 0, and R%, k > 0, are
met. By the comments made in the individual cases of the construction, it is
immediate that all the requirements R?, k > 0, are met. For a proof that all
the almost completeness requirements R! are met, too, fix ¢ > 0 and assume
for a contradiction that Ré fails. Then C. is n®-random and A N CODE, and
E N CODE, differ on infinitely many intervals . By construction, the latter
implies that there are infinitely many stages & where R! is injured. Note that,
for such a stage k, Case 4 applies, e = ¢, and consequently the set I} is defined
and

FkQCODEeﬁIk and FkﬂEZQ.

For all other stages, we define now Fj to be the set of the first £ strings in
CODE, N I} (except that for the at most finitely many k where the latter
set contains less than k strings, we let Fj be an arbitrary k-element subset of
CODE, such that the sets Fy, F1,... are pairwise disjoint). Then we let

Dy ={g-'(y) : y € Fy}.

Thus C. N D, = () for the infinitely many stages k at which R! is injured
and in order to obtain the desired contradiction, it suffices to show that the
sequence Dy, Dy, ... satisfies the hypothesis of Lemma 18.

By construction, each Dy has cardinality k and the sets Dy are pairwise disjoint
because they are the inverse images of the pairwise disjoint sets Fj. We show
now that for given input z, in time O(2|x|) we can check whether x is in some
Dy, and if so, can compute 1* and a list of the elements in Dj. Here, first,
we compute g.(z) and the index k such that g.(z) € [. This can be done
in poly(|z|) steps. Second, we simulate stage k of the construction, check if
Case 4 applies with e = e and compute the set F} accordingly. This can be
done in time polynomial in k?pg(h(k)), as follows by an argument similar to
the one used to show that the set A can be computed in linear exponential
time. Third, we compute the preimage of F, under g., which can again be done
in time polynomial in k*pg(h(k)). So we are done, because the time required
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by the three preceding steps can be bounded for some constant ¢ and almost
all  (and the corresponding values of k) by

Here the inequalities in (7) follow, from left to right, by item (ii) of (6),
because, by choice of k, |h(k)| is bounded by |g.(z)| and hence is bounded by
|z|?¢ for almost all  and, finally, by the asymptotic growth of the functions

involved. O

4 Comparing completeness notions

The polynomial-time reducibilities allowing only one oracle query ranging from
one-to-one, length-increasing reductions to truth-table reductions of norm 1
lead to the same class of complete sets for E. Namely, Berman [9] has shown
that every p-m-complete set for E is in fact p-1-li-complete while Homer,
Kurtz and Royer [11] have proved that every p-btt(1)-complete set for E is in
fact p-m-complete for E. Corresponding results for weak completeness have
been proved by Ambos-Spies, Mayordomo and Zheng [5]. By the two following

theorems, the same phenomenon occurs for almost completeness.

Theorem 21 A set is almost p-m-complete for E if and only if it is almost
p-1-li-complete for E.

Proof. For a proof of the nontrivial direction assume that A is almost p-m-
complete for E and fix ky > 1 such that A € DTIME(2*"). By Lemma 11
and Proposition 9 choose k > kg such that all n*-random sets in E are p-m-
reducible to A. Then by Lemma 11 again, it suffices to show that all these sets
are p-1-li-reducible to A. So let R be any n*-random set in E and assume that
R is p-m-reducible to A via the polynomial-time computable function f. Then,
by Theorem 15 (b) and by Corollary 16, f is one-to-one and length-increasing
almost everywhere, i.e.,

B=A{z:|f(z)| <|z| or Jy <z(f(z)=f(y)}

is finite. So, in order to convert f into a p-1-li-reduction f’ from R to A,
it suffices to correct f on the finite set B. We do this by mapping the n-th
element x, of BN R (if it exists) to the n-th element y,, of A \ range(f) that
is longer than z, and, similarly, the n-th element 2/ of BN R (if it exists) to
the n-th element y/, of A\ range(f) that is longer than 2!, (n > 1). Since B is
finite, the function f’ defined in this way is polynomial-time computable and
it is a p-1-li-reduction from R to A.
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It remains to show, however, that [’ is well-defined, i.e., that the required
strings y, and y!, actually exist. For this sake it suffices to show that A \
range(f) and A\ range(f) are infinite. This is done as follows. By Lemma 13,
the complement R of R is n*-random too. Hence, by choice of k, R is p-m-
reducible to A, say via g. Moreover, since R € P, the intersections range(g)N A
and range(g) N A are infinite, whence it suffices to show that the ranges of
f and g have only finitely many elements in common. But this is true by
Lemma 17. O

Theorem 22 A set is almost p-btt(1)-complete for E if and only if il is
almost p-m-complete for E.

Proof. For a proof of the nontrivial direction assume that A is almost p-
btt(1)-complete for E. Then, by Lemma 11, firstly, we can assume that for
some k > 2 the lower p-btt(1)-span of A contains all n*-random sets in E and,
secondly, it suffices to show that every n*-random set in E is p-m-reducible
to A. So let R be an n*-random set in E and, for a contradiction, assume
that R is not p-m-reducible to A. We will obtain the desired contradiction by
constructing an n*-random set R’ in E that is not p-btt(1)-reducible to A.

Let {(ge,he) : € > 0} be an effective enumeration of the p-btt(1)-reductions
with nonconstant evaluators, i.e., with h.(z)(0) # h.(z)(1) for all strings =,
and such that g.(z) and h.(x) can be uniformly computed in 27l + ¢ steps.
Then, for every e > 1 we define a variant R. of R by letting

Ro(x) = R(zx) if he(z)(0) < he(z)(1)
) 1 — R(z) if he(z)(0) > he(z)(1)

Note that the set R, is not p-btt(1)-reducible to A via (g, h.) since otherwise
R would be p-m-reducible to A via g. contrary to the assumption. In fact, by
closure under finite variants of the lower p-m-span of A, the reduction (g, h.)
fails to reduce R. to A for infinitely many arguments. Hence we can construct
a partition of {0,1}* into easily recognizable intervals I., e > 0, such that
(ge, he) fails to reduce R, to A for some string in I.. Moreover, by a standard
delayed diagonalization argument (see e.g. Chapter 7 of [§]), we can choose the
partition in such a way that, for any z, the index e of the interval /. containing
x can be computed in |z|* steps and such that |z| > e. Now define R’ by letting
R’ agree with R, on the interval I.. Then R' will not be p-btt(1)-reducible to A
via any of the reductions (g, h.), € > 0. Since any p-btt(1)-reduction to A can
be easily converted into a reduction with nonconstant evaluators, this shows
that R’ is not p-btt(1)-reducible to A. Moreover, by choice of the intervals I,
R’ is in E and the set

D ={z:3e>0 (z €l &h(x)(0) > h(z)(1))},
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consisting of the strings for which the evaluator h. corresponding to the in-
terval I. containing z is negative, can be computed in time O(2"). Since
R'= RA D, by Lemma 13 this implies that R’ is n*-random. O

Previous results in the literature together with the results of this paper clarify
most of the relations among the different completeness notions for E. If we
let C(E,r) denote the class of p-r-complete sets for E, and if AC(E,r) and
WC(E,r) denote the corresponding classes of almost and weakly complete
sets, respectively, the known relations among the classes are summarized in

Figure 1.

C(E, 1-1i) C AC(E, 1-1i) C WC(E, 1-1i)
I I I
C(E,m) C AC(E, m) C WC(E, m)

I I I
C(E,btt(1)) < AC(E,btt(1)) < WC(E,btt(1))

N N N
C(E,btt) =  AC(E,btt) C  WC(E,btt)
N N N
C(E, tt) = AC(E, tt) C WC(E, tt)
N N N
C(E,T) =  ACE,T) C  WC(E,T)

Fig. 1. The figure shows the known relations among the completeness notions dis-
cussed in this paper. Here ‘C’ means that a class is a proper subclass, while ‘C’
indicates that it is not known if the inclusion is strict.

In Figure 1, the inclusions from top to bottom and from left to right are
immediate by definition. The two equalities in the first column have been
demonstrated by Berman [9] and by Homer et al. [11] (see the beginning of
this section), while the strictness of the remaining three inclusions in this
column has been established by Watanabe [22], who separated the standard
completeness notions for reducibilities that allow more than one query. The
two equalities in the second column are proved in Theorems 21 and 22 above.
It follows with Theorem 19 that the first three inclusions from column 1 to
column 2 are proper, while the coincidence of completeness and almost com-
pleteness for the other three reducibilities follows from Corollary 6 above due
to Regan et al. [20]. This corollary also yields that the last two inclusions in
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column 2 are proper. That the class AC(E,btt(1)) is a proper subclass of the
class AC(E, btt) follows from Theorem 12, since Watanabe [22] has shown that
there is a p-btt-complete set for E that is not p-btt(2)-complete. The relations
stated in the third column have been established by Ambos-Spies et al. in [5]
where weak completeness notions are compared.

The strictness of the first four inclusions between the second and the third col-
umn follows by considering the measure in E of the classes involved. By Corol-
lary 7, the class AC(E, btt) and all classes contained in it have measure 0 in
E. On the other hand, WC(E, m) has nonzero measure in E ([12]), in fact
measure 1 in E ([7]), i.e., all the classes of weakly complete sets shown in
the third column have measure 1 in E. Note that the measure in E of the
remaining four classes (the complete and almost complete sets for p-tt- and
p-T-reducibility) is hitherto unknown.

Finally, the question whether the last two inclusions between the second and
the third column are proper is still open. It has been shown, however, that
these questions cannot be resolved by relativizable techniques: namely, Allen-
der and Strauss [1] have shown that, relative to some oracle, all n*-random
sets are p-tt-complete whereas Ambos-Spies, Lempp, and Mainhardt [3] and,
independently, Buhrman et al. [10] have given oracles relative to which no n?-
random set 1s p-T-complete for E. This also shows that the measure in E of
the classes of complete and almost complete sets for p-tt- and p-T-reducibility
is oracle dependent.

5 Further results

In this paper we looked at the concept of almost completeness only for the
class E of sets computable in linear exponential time. Similar results, however,
can be obtained for other complexity classes. In particular all of our results can
be also shown for Lutz’s measure on the class EXP of sets computable in time
2Pl The analog of our main theorem (Theorem 19) in this setting follows
directly from Lemma 20 by the characterization of the measure in EXP in
terms of 20°6™*_random sets corresponding to Lemma 10, while analogs of the
other results require only minor changes in the proofs. The relations among the
different completeness notions in Figure 1 will remain the same if we replace

E by EXP.

While it is well-known that p-m-hardness for E and EXP coincide, Juedes
and Lutz [14] have shown that every weakly p-m-hard set for E is also weakly
p-m-hard for EXP but that there are weakly p-m-complete sets for EXP in
E that are not weakly p-m-complete for E. By refining the technique used
in the proof of our main theorem, Ambos-Spies has shown that the concepts
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of almost p-m-hardness for E and EXP are independent and that witnesses
for the independence can be found in E. Moreover, there is an almost p-m-
complete set for EXP that is not even weakly p-m-hard for E.

Ambos-Spies [2] has also investigated almost hardness for E and EXP under
bounded query reducibilities of constant norm, namely under the adaptive p-
Turing reducibility p-bT(¢) of constant norm ¢ and the nonadaptive p-truth-
table reducibility p-btt(c) of norm ¢. He has shown that the corresponding
notions of almost hardness are nontrivial and he proved hierarchy theorems
clarifying the relations among these new concepts.
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