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Abstract

We analyze the quantitative structure of ∆0

2
. Among other things,

we prove that a set is Turing complete if and only if its lower cone is
nonnegligible, and that the sets of r.e.-degree form a small subset of
∆0

2
.
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1 Introduction

We study an effective measure theory suited for the study of ∆0
2, the second

level of the arithmetical hierarchy (alternatively, the sets computable relative
to the halting problem K). This work may be seen as part of the construc-
tivist tradition in mathematics as documented in [6]. The framework for
effectivizing measure theory that we employ uses martingales. Martingales
were first applied to the study of random sequences by J. Ville [23]. Recur-
sive martingales were studied in Schnorr [20], and became popular in com-
plexity theory in more recent years through the work of Lutz [15, 16]. Lutz
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used recursive and more efficient martingales to analyze the quantitative
structure of complexity classes like EXP, the exponential time computable
sets (see [1] for a survey). Recursive martingales define a notion of null set
which is suited for the study of the recursive sets [16]. By relativization,
K-recursive martingales can be used to analyze the quantitative structure
of ∆0

2. In particular, we can study classes defined by Turing reducibility
(which is trivial on the recursive sets) in a quantitative way. This is what
we do below. We first prove that the lower cones of incomplete sets are
small, and use this to prove that the sets of r.e.-degree form a small subset
of ∆0

2. In Section 5 we will make some remarks on other definitions of effec-
tive measure. In particular, we consider the stronger notion of recursive null
set introduced by Schnorr [20] which is directly based on the intuitionistic
notion of null set. (This notion was also used in Freidzon [7].) We show that
the results of Sections 3 and 4 also hold for this stronger measure. Finally,
in Section 6 we motivate the question whether the low sets have measure
zero in ∆2.

2 Measure in ∆2

We proceed by giving the relevant definitions and by fixing notation. Since
we will only consider arithmetical sets in this paper we will write ∆2 instead
of ∆0

2.
Our recursion theoretic notation follows Soare [21]. We identify a subset

of ω (the natural numbers) with its characteristic string. So 2ω is the power
set of ω. 2<ω is the set of finite binary strings, and λ is the empty string.
A↾n denotes the initial segment of the set A of length n. K denotes the
standard Turing complete r.e. set.

We denote the upper cone of a set A by A≤T = {B : A ≤T B} and the
lower cone by ≤TA = {B : B ≤T A}.

Definition 2.1 A function d : 2<ω → Q+ is a martingale if for every
σ ∈ 2<ω, d satisfies the averaging condition

2d(σ) = d(σ0) + d(σ1). (1)

A martingale d succeeds on a set A if

lim sup
n→∞

d(A↾n) = ∞.

We say that d succeeds on, or covers, a class A ⊆ 2ω if d succeeds on every
A ∈ A. The success set S[d] of d is the class of all sets on which d succeeds.
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A class A has ∆2-measure 0, denoted µ∆2
(A) = 0, if there is a martingale

d ∈ ∆2 such that A ⊆ S[d]. A has measure 0 in ∆2 if A ∩ ∆2 has ∆2-
measure 0. A has measure 1 in ∆2 if the complement of A has measure 0
in ∆2.

The above definition is robust in several respects. For example, for our
purposes it does not matter whether in (1) we use “=” instead of “≤”. Also,
normally one would start to define martingales to be real-valued functions
and then proceed to study computability issues by using computable ap-
proximations. Again, for the resulting measure µ∆2

this does not make any
difference (see e.g. [16, 22]).

The following basic facts are the relativized versions of the same facts
for recursive measure. Part (i) shows the consistency of the definition of
“measure 1 in ∆2.” Proofs can be found e.g. in [16, 22].

Theorem 2.2 (Lutz)

(i) ∆2 does not have ∆2-measure zero.

(ii) For every A ∈ ∆2 the singleton {A} has ∆2-measure zero.

(iii) µ∆2
is closed under ∆2-unions (and is in particular finitely additive)

i.e. if Ai ⊆ 2ω, i ∈ ω, is a sequence of classes and di is a sequence
of martingales uniformly computable in K such that di succeeds on Ai

for every i, then
⋃

iAi has ∆2-measure zero.

As an example of (iii) we may note that the r.e. sets have ∆2-measure 0
since they are uniformly computable in K. We will later use the following
result, saying that upper cones are small.

Theorem 2.3 (Lutz and Terwijn) For every nonrecursive set A ∈ ∆2 the
upper cone

A≤T = {B : A ≤T B}

has ∆2-measure zero.

Proof. This is an effectivization of Sacks’s theorem that A≤T has measure
0 for every nonrecursive set. A proof is in Terwijn [22, Thm 6.2.1]. �

Corollary 2.4 The Turing-incomplete sets in ∆2 do not have measure 0
in ∆2.

Proof. By Theorem 2.3 the degree of K has measure 0 in ∆2, whereas by
Theorem 2.2 ∆2 itself does not have ∆2-measure 0. The corollary follows
from the additivity of ∆2-measure. �
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3 Weak completeness

Informally, a set is weakly complete for some class if its lower cone is not of
measure zero in that class. We can consider various classes and reducibilities
for which this definition makes sense. For our purposes let us make the
following definition.

Definition 3.1 A set A ∈ ∆2 is weakly complete if ≤TA does not have
measure 0 in ∆2.

The halting set K is weakly complete since ∆2 is not of measure zero in
itself by Theorem 2.2.

First note that if we define a set to be weakly complete if its lower cone
has measure 1 in ∆2,

1 then we immediately have that every weakly complete
set is complete. This can be seen using the following argument of Regan et
al. [18]:

Theorem 3.2 If C ⊆ ∆2 is closed under symmetric difference △ and has
measure 1 in ∆2 then C = ∆2.

Proof. Suppose C 6= ∆2, say A ∈ ∆2 \ C. It is easy to see that also A△C =
{A△C : C ∈ C} has measure 1 in ∆2. But C and A△C are disjunct, because
if A △ C ∈ C then also A = (A △ C) △ C ∈ C, hence we have reached a
contradiction. �

So if A is a set such that almost every set in ∆2 reduces to it, then A is
Turing complete because ≤TA is closed under △. The following theorem
shows that this is true already when the lower cone of A is not small in ∆2.
So there are no nontrivial examples of weakly complete sets in ∆2. This still
leaves the possibility that some set in ∆2 (necessarily a Turing complete
one) would have a big lower cone with respect to some strong reducibility,
like m- or tt- or wtt-reducibility. Since ∆2 has no complete sets with respect
to the strong reducibilities we could call such sets proper weakly complete
with respect to these reducibilities. However, this cannot happen since for
every A ∈ ∆2 its wtt-lower cone {B : B ≤wtt A} has measure zero in ∆2

[22, Theorem 4.4.4].
N.B. In complexity theory it is known that the sets that are weakly p-

m-complete for EXP, the class of exponential time computable sets, have
measure 1 in EXP, whereas the p-m-complete sets have measure 0 (see the

1Such sets are called almost complete in complexity theory. They were studied recently
in Ambos-Spies et al. [3]

4



survey [1] for references). The question whether there are p-T-incomplete
weakly T-complete sets in EXP is open.

N.B. Ambos-Spies and Terwijn [22, Chapter 3] defined a measure tailored
for the recursively enumerable sets, and studied the resulting weak complete-
ness notions. They proved that in the class of r.e. sets the weak completeness
notions for truth-table, weak truth-table, and Turing reducibility coincide
with the ordinary completeness notions, whereas those for many-one and
bounded truth-table reducibility differ from their ordinary counterparts.

Theorem 3.3 Every weakly complete set is Turing complete.

Proof. Suppose that A <T K. We define uniformly in K for every e ∈ ω a
martingale de such that

Re : {e}A total and 0,1-valued =⇒ {e}A ∈ S[de].

By Theorem 2.2 (iii) this suffices to prove the theorem. Let f ≤T K be a
function that is not dominated by any function g <T K, for example, f(x)
= µs(Ks↾x = K↾x) (the smallest s such that all the y ∈ K smaller than x

are enumerated into K within s steps).
We now define de in stages s. On stage s we define de on all strings

σ ∈ 2<ω of length s. The value de(σ) will depend only on |σ|. (Such
martingales were called ‘oblivious’ in Ambos-Spies et al. [2].)

Stage s = 0. Define de(λ) = 1.
Stage s+1. Given de(σ), |σ| = s, use the oracle K to search for a string

τ ⊏ A with |τ | ≤ f(s) such that {e}τ|τ |(s) ↓. If such τ does not exist, or if

{e}τ|τ |(s)↓6∈ {0, 1}, we do not make a bet, namely we let de(σi) = de(σ) for

i ∈ {0, 1}. If τ exists and {e}τ|τ |(s)↓= i ∈ {0, 1} we define de(σi) = 2de(σ),

that is, we bet all our money on {e}A(|σ|) = i. This concludes the definition
of de.

It is clear that de is defined on all strings for every e, uniformly in K.
We check that Re is satisfied. Suppose that {e}A is total and computes a
set. Then the function

fe(n) = µt(∃τ ⊏ A [ |τ | = t ∧ {e}τt (n)↓ ])

is an A-computable function. By choice of f we have that there are infinitely
many s such that f(s) ≥ fe(s). But this means that in the definition of de
infinitely often the string τ is found and a bet is placed successfully. (Note
that we never make a wrong bet.) Hence {e}A ∈ S[de]. �
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Corollary 3.4 For every ∅ <T A <T K the sets incomparable with A have
measure one in ∆2.

Proof. The sets incomparable with A are the complement of the union
≤TA ∪A≤T of the lower and the upper cone of A. The former has measure
0 in ∆2 by Theorem 3.3 and the latter by Theorem 2.3. �

4 Smallness of the r.e.-degrees

After Theorem 2.2 we observed that the r.e. sets form a small subset of ∆2.
We now apply Theorem 2.3 to obtain

Theorem 4.1 The class of sets that have r.e.-degree has measure 0 in ∆2.

Proof. Let We be the e-th r.e. set. For every We we define a martingale de
as in the proof of Theorem 3.3 such that

We <T K =⇒ de succeeds on ≤TWe.

Note that the definition of de does not depend on the assumption We <T

K, only the success of de does. So we have a recursive sequence of ∆2-
martingales de, and Theorem 2.2 (iii) gives that

⋃
{≤TWe : We <T K} has

∆2-measure 0. Finally, Theorem 2.3 and the finite additivity of µ∆2
give

that

{A : ∃e(A ≡T We)} ⊆ {A : ∃e(A ≤T We <T K)} ∪ {A : K ≤T A}

has measure 0 in ∆2. �

We could have proved this theorem in a slightly different way, namely by
defining for every r.e. set We two martingales d0e and d1e, the first succeeding
on ≤TWe if We <T K, and the second succeeding on We

≤T if ∅ <T We.
This needs, however, that in the proof of Theorem 2.3 the definition of the
martingale is independent of the hypothesis ∅ <T A, and only the success
of the martingale depends on this. As this is indeed the case, this second
proof now gives that

{A : ∃e(A ≤T We <T K)} ∪ {A : ∃e(∅ <T We ≤T A)}

has ∆2-measure 0. This yields
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Corollary 4.2 Almost every set (in the sense of ∆2-measure) in ∆2 is
Turing-incomparable to every r.e. set, except the recursive and the complete
ones.

The existence of sets as in Corollary 4.2 can be proved directly (Kleene-
Post style arguments [9, 21]). Corollary 4.2 can be seen as a probabilistic
version of this result, just as the main result of Kučera and Terwijn [12] can
be seen as a probabilistic solution to Post’s problem.

5 Modulated measure

In this section we make some remarks about other measures and strengthen
the results of the previous sections. Instead of ∆2-measure one could use a
weaker notion of null set like Σ1-measure (as defined in Martin-Löf [17]2) or
recursive measure to study ∆2. These two examples, however, are unnatural
for this purpose because ∆2 contains elements that are Martin-Löf random
(Σ1-random), i.e. elements A such that the Σ1-measure of {A} is not zero.3

This trivially makes results like Theorem 2.3 and Theorem 3.3 untrue for
these measures, and is an indication that they are to weak for the study of
∆2. Instead we consider another definition of measure, which is more in the
spirit of constructive mathematics.

Schnorr [20] pointed out a nonconstructive aspect of Martin-Löfs defi-
nition of measure [17], and he introduced the following stronger notion of
null set, based on the intuitionistic notion of null set in Brouwer [4]. The
definition given here is not his original one, but one that is equivalent to it
[20, Satz 9.7].

Definition 5.1 A class A has modulated recursive measure 0 if and only if
there is a recursive martingale d and a nondecreasing unbounded recursive
function h such that A ⊆ Sh[d], where

Sh[d] = {X : lim sup
n→∞

d(X↾n)

h(n)
≥ 1}.

The pair (d, h) is also called a total recursive sequential test.

2One can define Σ1-measure by replacing in Definition 2.1 ∆2 by Σ1. (A function f is
in Σ1 if the set {〈x, y〉 : y ≤ f(x)} is r.e.)

3Martin-Löf random sets play an important role in the area of Kolmogorov complexity,
see Li and Vitányi [14].
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Like the recursive measure, we can relativize this definition to K. Thus
we obtain the notion of modulated ∆2-measure 0 (mod-∆2-measure 0 for
short), which is defined exactly as modulated recursive measure 0 except
that in the definition we replace recursive everywhere by K-recursive. Note
that indeed we have that no set in ∆2 is mod-∆2-random. (Every single
A ∈ ∆2 can be covered by a martingale that computes A, thus growing with
rate h(n) = 2n.)

Let us summarize the various notions of null set that we have discussed:

(i) modulated recursive null

(ii) recursive null

(iii) Σ1-null

Relativized to K these give

(iv) modulated ∆2-null

(v) ∆2-null

(vi) Σ2-null

From the definitions it is immediate that (i)⇒(ii)⇒(iii). (ii) 6⇒(i) was proved
by Wang [24] and (iii) 6⇒(ii) follows since the recursive sets have Σ1-measure
zero. The strict implications (iv)⇒(v)⇒(vi) follow from relativizing this.
Finally, (iii)⇒(iv) follows from the analysis in Schnorr [20],4 and (iv) 6⇒(iii)
because, as noted above, there are A ∈ ∆2 such that {A} is not Σ1-null,
whereas for every A ∈ ∆2 we have that {A} is mod-∆2-null. So (i)−(vi)
is indeed a sequence of notions of measure 0 increasing in strength. As
discussed above, (iii) is too weak for the study of ∆2 and (vi) is too strong,
since ∆2 has Σ2-measure 0. The results from the previous sections used
(v). In this section we will prove that these results also hold for (iv). This
yields stronger statements, since Terwijn [22] proved that mod-∆2-measure
is strictly weaker (there are less null sets) on ∆2 than ∆2-measure.5 We will
use the following notion.

4Satz 9.5 in [20] says that every null set defined by a total recursive sequential test has
modulated recursive measure 0. Since every Σ1-null set is covered by a total K-recursive
sequential test the claim follows by relativization.

5Theorem 6.4.2 of [22] says that modulated recursive measure is strictly weaker than
recursive measure even when restricted to REC. This answered a question of Lutz. The
proof of this fact relativizes. That there are (necessarily nonrecursive) sets that are not
in any modulated recursive null set but that can be covered by a recursive martingale was
proved earlier by Wang [24].
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Definition 5.2 For functions f and g, we say that g densely dominates f

if

lim inf
n→∞

‖{i ≤ n : g(i) ≥ f(i)}‖

n
≥

1

2
. (2)

Lemma 5.3 There is a function f ≤T K such that no function g <T K

densely dominates f .

Proof. Let h ≤T K be a function not dominated by any g <T K (cf. the
proof of Theorem 3.3). Define f(x) = h(⌊log x⌋). If g satisfies (2) then for
almost every e there is a natural number x ∈ [2e, 2e+1) such that g(x) ≥ f(x).
But then g′(e) = max{g(x) : x ∈ [2e, 2e+1)} dominates h, contradiction. �

We will also need effective unions:

Lemma 5.4 If Ai ⊆ 2ω, i ∈ ω, is a sequence of classes and (di, hi) is
a sequence of sequential tests uniformly computable in K such that Ai ⊆
Shi

[di] for every i, then
⋃

iAi has mod-∆2-measure zero.

Proof. We will not prove this in detail. The proof is almost the same as that
of Theorem 2.2 (iii). The only extra ingredient that one needs is that for
a uniformly computable sequence hi as above one can define a computable
monotone unbounded h growing slower than any of the hi, which is easy to
see. (Such constructions were studied by P. du Bois-Reymond as early as
1877, see Hardy [8, Theorem 3].) �

Theorem 5.5 The lower cone of every A <T K has mod-∆2-measure zero.

Proof. We build on the proof of Theorem 3.3. There we argued that if {e}A

is total, then infinitely often we doubled the value of the martingale. Now
if we use the f from Lemma 5.3 we can do this at more than half of the
stages rather than just infinitely often. Namely, for fe as in the proof of
Theorem 3.3, we now have that infinitely often

‖{i ≤ n : f(i) > fe(i)}‖ ≥
1

2
n.

So if B = {e}A is total then, for h(n) = 2
1

2
n, we have

lim sup
n→∞

d(B↾n)

h(n)
≥ 1,
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that is, B ∈ Sh[d]. Now we can apply Lemma 5.4 to finish the proof. (In
fact we need less than Lemma 5.4, since all the hi’s are the same here.) �

An inspection of the proof of Theorem 2.3 in [22] shows that in fact we
have

Theorem 5.6 For every nonrecursive A ∈ ∆2 the upper cone A≤T has
mod-∆2-measure 0.

Now the stronger versions of Theorem 4.1 and Corollary 4.2 follow in the
same way as these results follow from the proofs of Theorems 2.3 and 3.3:

Theorem 5.7 The sets of r.e. degree have mod-∆2-measure 0.

Corollary 5.8 Almost every set (in the sense of modulated ∆2-measure)
in ∆2 is Turing-incomparable to every r.e. set, except the recursive and the
complete ones.

We end this section by remarking that the previous results cannot be
strengthened from mod-∆2-measure to Σ1-measure. For Theorems 5.6 and
5.7 and Corollary 5.8 this is immediate by the existence of Σ1-random sets
X with X ≡T K. For Theorem 5.5 this follows from the existence of low
Σ1-random sets X, i.e. X with KX ≡T K. The failure of Corollary 5.8 for
Σ1-measure is also illustrated by the result of Kučera [11] that there exist a
nonrecursive r.e. set A and a low ΣA

1 -random set X such that A ≤T X. That
the converse of this, namely that an incomplete r.e. set bounds a Σ1-random
set, cannot happen was proved by Kučera [10].

6 Questions

As an example of the well-known incompatibility of measure and category
one can prove that the 1-generic sets have ∆2-measure zero. Much more
interestingly, one can prove that the sets that have 1-generic degree have
measure zero in ∆2. This follows from the idea in the proof of Kurtz [13,
Theorem 4.2]. This gives in fact that the downward closure of the 1-generic
sets has Σ1-measure zero. Demuth and Kučera [5] proved the slightly more
general statement that no diagonally nonrecursive function is recursive in a
1-generic set.

Theorem 6.1 (Kurtz [13], Demuth and Kučera [5]) The class of sets that
have 1-generic degree has Σ1-measure zero. Equivalently, no Martin-Löf
random set has 1-generic degree.

10



Proof. The proof given here is a rather straightforward effectivization of the
proof of Theorem 4.2 in Kurtz [13]. For every e,i ∈ ω define the Σ0

1-class S
e
i

as follows. Let {σj}j∈ω be a recursive enumeration of 2<ω. Let τj be the
least τ extending σj such that Φe(τ) is defined on at least i+j+1 arguments.
(As usual Φe denotes the e-th Turing reduction.) Define Se

i to be the open
set defined by the range of the partial recursive function σj 7→ τj .

First we note that

µ(Φe(S
e
i )) ≤

∑

j∈ω

µ(Φe(τj)) ≤
∑

i∈ω

2−(i+j+1) = 2−i. (3)

Second, since the classes Se
i are uniformly r.e. in e and i, it follows that the

classes Φe(S
e
i ) are uniformly r.e. in e and i. So by (3), for every e the class⋂

i∈ω Φe(S
e
i ) is a Σ1-null set, and by a standard sum argument we have that⋃

e∈ω

⋂
i∈ω Φe(S

e
i ) is Σ1-null.

Now if G is 1-generic and G does not meet Se
i , then by 1-genericity there

is an initial segment σ ⊑ G such that no τ ⊒ σ is in Se
i . Hence for every

τ ⊒ σ, Φe(τ) is never defined on at least i+ j +1 arguments, where σ = σj .
Therefore if Φe(G) is total then G meets every Se

i . So we have

{A : A ≤T G for some 1-generic G} =
⋃

e∈ω

{A : A = Φe(G) for some 1-generic G} ⊆

⋃

e∈ω

{A : A = Φe(G) for some G that meets Se
i for every i} ⊆

⋃

e∈ω

⋂

i∈ω

Φe(S
e
i ),

and since this last class has Σ1-measure 0 the theorem follows. �

Since all sets in ∆2 that have 1-generic degree are low (A is low whenever
it holds that KA ≤T K) one can ask whether the low sets have measure
zero in ∆2. One would expect this to be the case, since the low sets behave
in many respects like the recursive sets, which have measure zero in ∆2.

Question 6.2 Do the low sets have measure zero in ∆2?

Still more general, we have:

Question 6.3 Does every jump class {B : B′ ≡T S}, S ∈ [∅′, ∅′′] have
measure zero in ∆2?
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