Erratum to “On the structure of the Medvedev lattice”

S. A. Terwijn, April 28, 2009.

This is an erratum to Lemma 2.3 of [4]. We thank Paul Shafer and Richard Shore
for pointing out a mistake at the end of the proof of Lemma 2.3, where it is falsely
concluded that from the incomparability of the C; the same follows for the B x Cj.
Below we fix the proof of Lemma 2.3. The rest of the paper is not affected, and in
particular Theorem 2.10 that depends on Lemma 2.3 remains valid. We use the
same notation as in [4]. In particular, for any f € w* we let f~(x) = f(z + 1).
0“ denotes the all zero sequence. For any mass problem C, instead of {0“} 4+ C we
simply write 0“ + C.

Lemma A. Let A and B be mass problems such that
VC C A finite (B xC £y A), (1)

and let Dy, D1 C 2% be dense (or even just dense along 0). Then there exists a
pair Cy, C1 = A such that

(Do + Co) U (0¥ 4+ C1) #um B xCy,
('Dl +Cl) U (Ow +Co) Z2m B x Cy.

Proof. Instead of A we work with the set

[ThewA={n"fincwAfec A}l

This set gives us infinitely many disjoint copies of A, so that we can pick witnesses
from fresh copies of A. We will build the C; C [, A as unions of finite sets |, C; s.
We want to satisfy the following requirements for all e € w:

RY: ®e(Do+CoU0¥ +Cr) B xCr.

e

R!: (I)e('Dl—FClUOM—i-Co)ZBXCo.

e

The construction proceeds as follows.

Stage s=0. Let Cop = C10 = 0. All n € w are declared fresh. At every stage
there will be only finitely many numbers that are not fresh.

Stage s+1=2e+1. We satisfy R?. Pick n € w fresh. Consider the computable
functional ®(f) = ®.(0¥ @ n"f). By condition (1) there is f € A such that
O(f) ¢ B x Cis. (Either by being undefined or by not being an element of
B xCis.) If ®(f)(0) # 1 or ®(f) is not total (i.e. ®(f)(z) T for some z) then
put n”f into C;. Then 0% @ n”f is a witness for RO. Otherwise ®(f) is total and
O(f)(0) =1, and ®(f) ¢ 17Cy 5. Since Cy 5 is finite it follows that there is a finite
initial segment 0% such that ®.(0F @ n~f)(x) |= ®(f)(z) for x € {0,1} and for all
g € C1 ¢ there is an x such that ®.(0F @ n"f)(z) |# 1"g(z). Hence for all h J 0 it
holds that ®.(h@n"f) ¢ 17Cy1 s. By density of Dy, choose h € Dy with h 3 0% and
put n°f into Cp. Then h @ n"f is a witness for RY, provided that future elements



of Cy are kept different from ®.(h ® n”f)~. This will be by freshness: We declare
m = ®(f)(1) to be nonfresh, which ensures that at later stages only elements n” f
with n # m will enter C;.

Stage s+1=2e+2. The construction to satisfy R. is symmetric to the one for
RS, switching the roles of C; and Cy. This ends the construction.

The construction succeeds in satisfying the requirements: Either the element
0% @ n"f that is put into 0“ + C; at stage s + 1 = 2e + 1 is a witness to RY or
there is an element h @ n"f € Dy + Cy with ®(h @& n"f) ¢ 17C1 5. In the latter
case, since m = ®.(h @ n " f)(1) = ®(f)(1) is declared nonfresh, all witnesses put
into C; at a later stage are different from ®.(h ®n"f)~ (because at the beginning
of every stage we pick a fresh n), hence ®.(h ® n"f) ¢ 1°C; and R? is satisfied.
The case of R! is again symmetric. O

Lemma B. Let A and B be mass problems such that
VC C A finite (B xC £y A), (1)

and let Dy, C 2% be dense (or even just dense along 0%) for every o € 2. Then
there exist countable mass problems Co, 21 A, o € 2¥, such that

(Da+Ca) U (Ow—i—Cﬁ) ?u BB XC@

for all o #£ 3.

Proof. As in Sacks’ construction of an antichain of size 280 in the Turing degrees
[2], [1, p. 462] we construct a tree of Cy, o € 2¥, but now with the basic strategies
from the proof of Lemma A. We build finite sets C, C Hnew A, 0 € 2<%, and
thus obtain for every path o € 2 a set C, = J,, Co- Given two sets C, and C-,
|o| = |7] = s, at stage s = e, we want to ensure that

P (Do +CaU0¥ +C3) € BxCg and
P (Ds+C3U0% 4+ Co) L B xCq

for all « J 0 and 8 J 7. The basic strategy for doing this is exactly the same as
in Lemma A, and the way in which the strategies are put together on a tree is the
same as in Sacks’ construction. O

Lemma C. Let Cy, a € 2¥, be as in Lemma B. There is a perfect set of indices
T C 2% such that

(Va, B € T)(Vf €Ca)(Vg€Cp) [a# B — ad flrB® g]. (2)

Proof. The reason that it is possible to construct such a set 7 is that every C,
is countable, and if f € C, then f in its totality is put into C, at some finite
stage of the construction in Lemma B. We construct 7 as the set of paths in a
(noncomputable) tree T C 2<%,



Construction of T. Let Cy,, o € 2<%, refer to the finite approximations of the
Co, from the proof of Lemma B. At stage s of the construction we have defined
T(o) € 2<¥ for all 0 € 2<% of length < s, and we define extensions T'(o) for every
o of length s. For every o # 7 of length s = e we guarantee

(Ya 3 T(0))(VB I T(7))(Vf € Co)(Vg € Cr) [Bela® f) # BB g A
(B g) #a f].

This can be realized in a standard finite extension construction a la Sacks, because
the sets C, and C;, are finite. Given f and g (possibly equal), the basic strategy
for constructing o and 3 with a @ f|rf @ g is the same as in the Kleene-Post
construction of two incomparable sets. This concludes the construction of 7.
The construction of T' guarantees that its set of paths 7 satisfies (2): Given
a# fin7T and f € Cy, g € Cg, the construction guarantees that ®.(a® f) # Bdyg
and (0 @ g) # a @ f for all e larger than the point in 7" where o and [ split
and larger than the stage where f has entered C, and g has entered Cg. Since we
have this for almost every e, by padding we have a @ f|r3 @ g. O

Lemma 2.3. Let A and B be mass problems satisfying the condition
VC C A finite (BxC € A). (1)

Then there exists an antichain Cy, I < 22%, of mass problems such that C; > A
for every I and such that the elements B x Cr are also pairwise M-incomparable.
In particular, none of the Cy is above B.

Proof. Let C,, o € 2¥, be as in Lemma B, and let 7 be as in Lemma C. Fix a
single element g € 7, and for every a # g define

Go = (degr(a) +Ca) U (0¥ + Ca).

For every subset I C 7 — {ap} define

cr=J G

ael

Note that C; > A for every I via the mapplng hon f— f.

Now consider any family Z of cardinality 22%0 of pairwise incomparable (with
respect to inclusion) subsets of 7 — {ag} (cf. Proposition 3.1). We claim that if [
and J are incomparable subsets of 7 — {«g} then B x C; |y B x C;. Namely, let
a € I — J. Because degp () is dense we have by Lemma B that G, 2y B X Coy,
hence also

Ga 2m B x (0¥ + Cqy)- (3)
It follows from (2) that no element of degy(a) + Cqo or of Cq, can compute any
element of degy () + Cs whenever 3 # o, ag, f € T. Hence from (3) it follows
that
Go 2 Bx | G5
BF#a,a0



Since G, € Cr and C; C Uﬁ?éapm Gs we have in particular that C; 2y B x Cy,
and hence B x C; 23y B x Cjy. So the sets B x Cy, I € Z, form an antichain of
cardinality 22" O
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