
Erratum to “On the structure of the Medvedev lattice”
S. A. Terwijn, April 28, 2009.

This is an erratum to Lemma 2.3 of [4]. We thank Paul Shafer and Richard Shore
for pointing out a mistake at the end of the proof of Lemma 2.3, where it is falsely
concluded that from the incomparability of the CI the same follows for the B×CI .
Below we fix the proof of Lemma 2.3. The rest of the paper is not affected, and in
particular Theorem 2.10 that depends on Lemma 2.3 remains valid. We use the
same notation as in [4]. In particular, for any f ∈ ωω we let f−(x) = f(x + 1).
0ω denotes the all zero sequence. For any mass problem C, instead of {0ω}+ C we
simply write 0ω + C.
Lemma A. Let A and B be mass problems such that

∀C ⊆ A finite (B × C 66M A), (1)

and let D0, D1 ⊆ 2ω be dense (or even just dense along 0ω). Then there exists a
pair C0, C1 >M A such that

(D0 + C0

) ∪ (
0ω + C1

) 6>M B × C1,(D1 + C1

) ∪ (
0ω + C0

) 6>M B × C0.

Proof. Instead of A we work with the set
∏

n∈ω A =
{
n̂f : n ∈ ω ∧ f ∈ A}

.

This set gives us infinitely many disjoint copies of A, so that we can pick witnesses
from fresh copies of A. We will build the Ci ⊆

∏
nA as unions of finite sets

⋃
s Ci,s.

We want to satisfy the following requirements for all e ∈ ω:

R0
e : Φe

(D0 + C0 ∪ 0ω + C1

) 6⊆ B × C1.

R1
e : Φe

(D1 + C1 ∪ 0ω + C0

) 6⊆ B × C0.

The construction proceeds as follows.
Stage s=0. Let C0,0 = C1,0 = ∅. All n ∈ ω are declared fresh. At every stage

there will be only finitely many numbers that are not fresh.
Stage s+1=2e+1. We satisfy R0

e. Pick n ∈ ω fresh. Consider the computable
functional Φ(f) = Φe(0ω ⊕ n̂f). By condition (1) there is f ∈ A such that
Φ(f) /∈ B × C1,s. (Either by being undefined or by not being an element of
B × C1,s.) If Φ(f)(0) 6= 1 or Φ(f) is not total (i.e. Φ(f)(x) ↑ for some x) then
put n̂f into C1. Then 0ω ⊕ n̂f is a witness for R0

e. Otherwise Φ(f) is total and
Φ(f)(0) = 1, and Φ(f) /∈ 1̂C1,s. Since C1,s is finite it follows that there is a finite
initial segment 0k such that Φe(0k ⊕ n̂f)(x)↓= Φ(f)(x) for x ∈ {0, 1} and for all
g ∈ C1,s there is an x such that Φe(0k⊕n̂f)(x)↓6= 1̂g(x). Hence for all h w 0k it
holds that Φe(h⊕n̂f) /∈ 1̂C1,s. By density of D0, choose h ∈ D0 with h w 0k and
put n̂f into C0. Then h⊕ n̂f is a witness for R0

e, provided that future elements
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of C1 are kept different from Φe(h⊕ n̂f)−. This will be by freshness: We declare
m = Φ(f)(1) to be nonfresh, which ensures that at later stages only elements n̂f
with n 6= m will enter C1.

Stage s+1=2e+2. The construction to satisfy R1
e is symmetric to the one for

R0
e, switching the roles of C1 and C0. This ends the construction.

The construction succeeds in satisfying the requirements: Either the element
0ω ⊕ n̂f that is put into 0ω + C1 at stage s + 1 = 2e + 1 is a witness to R0

e or
there is an element h ⊕ n̂f ∈ D0 + C0 with Φe(h ⊕ n̂f) /∈ 1̂C1,s. In the latter
case, since m = Φe(h⊕ n̂f)(1) = Φ(f)(1) is declared nonfresh, all witnesses put
into C1 at a later stage are different from Φe(h⊕n̂f)− (because at the beginning
of every stage we pick a fresh n), hence Φe(h ⊕ n̂f) /∈ 1̂C1 and R0

e is satisfied.
The case of R1

e is again symmetric.

Lemma B. Let A and B be mass problems such that

∀C ⊆ A finite (B × C 66M A), (1)

and let Dα ⊆ 2ω be dense (or even just dense along 0ω) for every α ∈ 2ω. Then
there exist countable mass problems Cα >M A, α ∈ 2ω, such that

(Dα + Cα

) ∪ (
0ω + Cβ

) 6>M B × Cβ

for all α 6= β.

Proof. As in Sacks’ construction of an antichain of size 2ℵ0 in the Turing degrees
[2], [1, p. 462] we construct a tree of Cα, α ∈ 2ω, but now with the basic strategies
from the proof of Lemma A. We build finite sets Cσ ⊆ ∏

n∈ω A, σ ∈ 2<ω, and
thus obtain for every path α ∈ 2ω a set Cα =

⋃
σ@α Cσ. Given two sets Cσ and Cτ ,

|σ| = |τ | = s, at stage s = e, we want to ensure that

Φe

(Dα + Cα ∪ 0ω + Cβ

) 6⊆ B × Cβ and

Φe

(Dβ + Cβ ∪ 0ω + Cα

) 6⊆ B × Cα

for all α A σ and β A τ . The basic strategy for doing this is exactly the same as
in Lemma A, and the way in which the strategies are put together on a tree is the
same as in Sacks’ construction.

Lemma C. Let Cα, α ∈ 2ω, be as in Lemma B. There is a perfect set of indices
T ⊆ 2ω such that

(∀α, β ∈ T )(∀f ∈ Cα)(∀g ∈ Cβ) [α 6= β → α⊕ f |T β ⊕ g]. (2)

Proof. The reason that it is possible to construct such a set T is that every Cα

is countable, and if f ∈ Cα then f in its totality is put into Cα at some finite
stage of the construction in Lemma B. We construct T as the set of paths in a
(noncomputable) tree T ⊆ 2<ω.
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Construction of T . Let Cσ, σ ∈ 2<ω, refer to the finite approximations of the
Cα from the proof of Lemma B. At stage s of the construction we have defined
T (σ) ∈ 2<ω for all σ ∈ 2<ω of length < s, and we define extensions T (σ) for every
σ of length s. For every σ 6= τ of length s = e we guarantee

(∀α A T (σ))(∀β A T (τ))(∀f ∈ Cσ)(∀g ∈ Cτ )
[
Φe(α⊕ f) 6= β ⊕ g ∧

Φe(β ⊕ g) 6= α⊕ f
]
.

This can be realized in a standard finite extension construction à la Sacks, because
the sets Cσ and Cτ are finite. Given f and g (possibly equal), the basic strategy
for constructing α and β with α ⊕ f |T β ⊕ g is the same as in the Kleene-Post
construction of two incomparable sets. This concludes the construction of T .

The construction of T guarantees that its set of paths T satisfies (2): Given
α 6= β in T and f ∈ Cα, g ∈ Cβ, the construction guarantees that Φe(α⊕f) 6= β⊕g
and Φe(β ⊕ g) 6= α ⊕ f for all e larger than the point in T where α and β split
and larger than the stage where f has entered Cα and g has entered Cβ. Since we
have this for almost every e, by padding we have α⊕ f |T β ⊕ g.

Lemma 2.3. Let A and B be mass problems satisfying the condition

∀C ⊆ A finite (B × C 66M A). (1)

Then there exists an antichain CI , I < 22ℵ0 , of mass problems such that CI >M A
for every I and such that the elements B × CI are also pairwise M-incomparable.
In particular, none of the CI is above B.

Proof. Let Cα, α ∈ 2ω, be as in Lemma B, and let T be as in Lemma C. Fix a
single element α0 ∈ T , and for every α 6= α0 define

Gα =
(
degT (α) + Cα

) ∪ (
0ω + Cα0

)
.

For every subset I ⊆ T − {α0} define

CI =
⋃

α∈I

Gα.

Note that CI >M A for every I via the mapping h⊕ n̂f 7→ f .
Now consider any family I of cardinality 22ℵ0 of pairwise incomparable (with

respect to inclusion) subsets of T − {α0} (cf. Proposition 3.1). We claim that if I
and J are incomparable subsets of T − {α0} then B × CI |M B × CJ . Namely, let
α ∈ I − J . Because degT (α) is dense we have by Lemma B that Gα 6>M B × Cα0 ,
hence also

Gα 6>M B × (
0ω + Cα0

)
. (3)

It follows from (2) that no element of degT (α) + Cα or of Cα0 can compute any
element of degT (β) + Cβ whenever β 6= α, α0, β ∈ T . Hence from (3) it follows
that

Gα 6>M B ×
⋃

β 6=α,α0

Gβ.
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Since Gα ⊆ CI and CJ ⊆
⋃

β 6=α,α0
Gβ we have in particular that CI 6>M B × CJ ,

and hence B × CI 6>M B × CJ . So the sets B × CI , I ∈ I, form an antichain of
cardinality 22ℵ0 .
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