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Abstract

We characterize the finite intervals of the Muchnik lattice by proving that
they form a certain proper subclass of the finite distributive lattices. We
also discuss infinite intervals, mainly to conclude that much more is possible
here than for the related Medvedev lattice.
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1 Introduction

The Medvedev lattice and the Muchnik lattice are structures from computability
theory that were originally defined for their connections with constructive logic,
but that are of independent interest as well. Both can be seen as generalizations
of the Turing degrees, and for example when Muchnik presented his solution
to Post’s problem he phrased it as a result about the Medvedev lattice. In
Terwijn [21] the structure of the Medvedev lattice M was investigated, and it was
proven there that the finite intervals of M are precisely the finite Boolean algebras,
and that the infinite intervals of M all have cardinality 22ℵ0 (cf. Theorem 1.5
below). It was noted there that this strong dichotomy does not hold for the
Muchnik lattice Mw, and that there are many more possibilities for intervals in
Mw, both for the finite and for the infinite ones. In this paper we characterize
the finite intervals of Mw by proving that they are a certain subclass of the finite
distributive lattices that can be described using elementary lattice theory. In the
rest of this section we will repeat the necessary definitions and list some further
preliminaries.
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megen, the Netherlands, terwijn@math.ru.nl. This research was supported by the Austrian
Science Fund FWF under project P18713-N18.
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The Medvedev lattice, introduced by Medvedev [8], is a particular way of
specifying Kolmogorov’s idea of a calculus of problems. Let ω denote the natural
numbers and let ωω be the set of all functions from ω to ω (Baire space). A mass
problem is a subset of ωω. Every mass problem is associated with the “problem”
of producing an element of it. A mass problem A Medvedev reduces to a mass
problem B, denoted A 6M B, if there is a partial computable functional Ψ : ωω →
ωω defined on all of B such that Ψ(B) ⊆ A. (For background on computable
functionals we refer the reader to [13] or [11].) That is, Ψ is a uniformly effective
method for transforming solutions to B into solutions to A. The relation 6M

induces an equivalence relation on mass problems: A ≡M B if A 6M B and
B 6M A. The equivalence class of A is denoted by degM(A) and is called
the Medvedev degree of A. We denote Medvedev degrees by boldface symbols.
There is a smallest Medvedev degree, denoted by 0, namely the degree of any
mass problem containing a computable function, and there is a largest degree 1,
the degree of the empty mass problem, of which it is absolutely impossible to
produce an element. A meet operator × and a join operator + are defined on
mass problems as follows: For functions f and g, as usual define the function
f ⊕ g by f ⊕ g(2x) = f(x) and f ⊕ g(2x + 1) = g(x). Let n̂A = {n̂f : f ∈ A},
where ̂ denotes concatenation (either of two finite strings or of a finite and an
infinite string, as in this case). Define

A + B =
{
f ⊕ g : f ∈ A ∧ g ∈ B

}

and
A× B = 0̂A ∪ 1̂B.

The definitions of the ordering 6M and of the operations + and × on mass
problems extend to the Medvedev degrees in the obvious way. The structure
M of all Medvedev degrees, ordered by 6M and together with + and × is a
distributive lattice (Medvedev [8]).

The Muchnik lattice, introduced by Muchnik [10], is a nonuniform variant of
the Medvedev lattice. It is the structure Mw resulting from the reduction relation
on mass problems defined by

A 6w B ≡ (∀f ∈ B)(∃g ∈ A)[g 6T f ].

(The “w” stands for “weak”.) That is, every solution to the mass problem B can
compute a solution to the mass problem A, but not necessarily in a uniform way.
The lattice operations in Mw are defined from the same operations + and × on
mass problems as for M. Notice that A × B in Mw simplifies to A ∪ B. Also 0

and 1 in Mw are defined in the same way. It is easy to check that Mw is again a
distributive lattice.

An M-degree is a Muchnik degree if it contains a mass problem that is up-
wards closed under Turing reducibility 6T . The Muchnik degrees of M form a
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substructure that is isomorphic to Mw as an upper semilattice (meets are not
necessarily the same in M as in Mw). For any mass problem A, let C(A) denote
the upward closure of A under 6T . We have the following embeddings of upper
semilattices:

DT →֒ Mw →֒ M

Turing degrees Muchnik degrees Medvedev degrees

degT (f) 7−→ degw({f})

degw(A) 7−→ degM(C(A)).

That the embedding Mw →֒ M above is an embedding of upper semilattices,
but not preserving infima, was observed in Sorbi [15, Proposition 3.8]. That
the embedding DT →֒ Mw above is an embedding of upper semilattices (not
preserving infima) follows from [15, Theorem 2.8].
More discussion about the elementary properties of M and Mw can be found in
Rogers’ textbook [13] and the survey paper by Sorbi [17]. Previous results about
embeddings of lattices and algebras into M and Mw can be found in Sorbi [15, 16].
Binns and Simpson [2] contains results about lattice embeddings into the lattice
of Π0

1-classes under 6M and 6w.
Our notation is mostly standard and follows Odifreddi [11]. Φe is the e-th

partial computable functional. For countable sets I ⊆ ω and mass problems Ai,
i ∈ I, we have the meet operator

∏
i∈IAi =

{
îf : i ∈ I ∧ f ∈ Ai

}
.

Note that for finite I this is M-equivalent to an iteration of the meet operator ×.
If a 6 b in a given partial order, we use the interval notation [a, b] = {x : a 6

x 6 b}. Similarly (a, b) denotes an interval without endpoints, and (a] denotes
the set {x : x 6 a}. We say that b covers a if b > a and there is no x with
a < x < b. We should warn the reader that in order to save notation we often
identify degrees (Turing, Medvedev, and Muchnik) with their representatives.
E.g. if it is understood that we are working in Mw we sometimes write [A,B] for
the interval [degw(A), degw(B)].

In the final section of [21] some consequences of the results of that paper for
the Muchnik lattice Mw were listed. Some of these consequences were:

• In contrast to M, the lattice Mw contains nonempty linear intervals.

• Every finite Boolean algebra is isomorphic to an interval of Mw.

• Whereas in M only countable Boolean algebras can be embedded, the dual
of P(2ω) is embeddable into Mw as a Boolean algebra.
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A Medvedev or Muchnik degree is a degree of solvability if it contains a single-
ton mass problem. When no confusion arises we sometimes also call these degrees
Turing degrees. For every degree of solvability S there is a unique minimal M-
degree > S that is denoted by S′ (cf. Medvedev [8]). If S = degM({f}) then S′

is the degree of the mass problem

{f}′ =
{
n̂g : f <T g ∧ Φn(g) = f

}
.

Note that for any computable f the set {f}′ is M-equivalent to the set of all
noncomputable functions. We will also denote this set by 0′. Note further that
for any f we have {f}′ ≡w {g ∈ ωω : f <T g} so that in Mw we can use this
simplified version of {f}′. Dyment [4] proved that the degrees of solvability are
precisely characterized by the existence of such an S′.1 Namely, the degrees of
solvability are first-order definable (both in M and in Mw) by the formula

φ(x) = ∃y
(
x < y ∧ ∀z(x < z → y 6 z)

)
.

Thus the Turing degrees form a first-order definable substructure of both M

and Mw.2 This has many immediate corollaries, for example that the first-order
theories of the structures (M,6M) and (Mw,6w) are undecidable.3

Theorem 1.1. (Dyment [4], cf. [21, Theorem 2.5]) For Medvedev degrees A and
B with A <M B it holds that (A,B) = ∅ if and only if there is a degree of
solvability S such that A ≡M B × S, B 66M S, and B 6M S′.

Theorem 1.1 also holds for Mw, with a much easier proof. We will include a proof
here, as a warm-up for Section 3.

Lemma 1.2. Suppose that A and B satisfy

∀C ⊆ A finite (B × C 66w A). (1)

Then there exists C >w A such that C 6>w B and B × C 66w A. If moreover
A 6w B then the interval (A,B) is infinite.

1The characterization was for M, but the same proof works for Mw, and is in fact easier.
(Cf. Theorem 1.3 below.)

2That the formula φ indeed defines the Turing degrees in M can also be seen using The-
orem 1.1 as follows. If A is a Turing degree then φ is satisfied by A

′. Conversely, suppose
A is not Turing and suppose for a contradiction that it satisfies φ, as witnessed by B. Then
(A,B) = ∅, so by Theorem 1.1 there is a Turing degree S >M A that satisfies the conditions
from the theorem. But A is not Turing, hence A 6≡M S, and hence S >M B. This contradicts
the condition B 66M S from the theorem.

3Recently, Lewis, Nies, and Sorbi proved that the degree of both theories is in fact the same
as that of third-order arithmetic. These results were obtained independently by Shafer.
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Proof. Since from (1) it follows that B 66w A, there is f ∈ A such that {f} 6>w B.
Again by (1) we have that B × {f} 66w A, so we can take C = {f}.

If in addition A 6w B then we have A <w B × {f} <w B. Since A and
B × {f} also satisfy (1) we can by iteration of the first part of the lemma obtain
an infinite downward chain in (A,B).

Theorem 1.3. (Dyment’s Theorem for Mw) For Muchnik degrees A and B with
A <w B it holds that (A,B) = ∅ if and only if there is a degree of solvability S

such that A ≡w B × S, B 66w S, and B 6w S′.

Proof. (If) Suppose that S = degw({f}) is as in the theorem and suppose that
A ∈ A, B ∈ B, and B × {f} 6w C 6w B. If C does not contain any element of
Turing degree degT (f) then it follows that C >w B × {f}′, because the elements
of C that get sent to the {f}-side are all strictly above f , hence included in {f}′.
So in this case C >w B by {f}′ >w B.

Otherwise C contains an element of Turing degree degT (f), and consequently
C 6w {f}. Hence C 6w B × {f} ≡w A.

(Only if) Suppose that (A,B) = ∅. Then by Lemma 1.2, A and B do not
satisfy condition (1), hence there is a finite set C ⊆ A such that B × C 6w A.
There is also an f ∈ C such that {f} 6>w B, for otherwise we would have A >w B.
Because the interval is empty and A 6w B×{f} <w B we must have A ≡w B×{f}
since there is no other possibility for B×{f}. We also have B×{f}′ 66w A because
both {f} 6>w B and {f} 6>w {f}′. Hence B × {f}′ ≡w B, again by emptiness of
the interval, and in particular {f}′ >w B. So we can take S to be degw({f}).

Let f and g be T-incomparable. Then it follows from Theorem 1.3 that the
interval

[
{f, g}, {f}′ × {g}′

]
in Mw contains exactly two intermediate elements,

cf. Figure 1. This can be generalized to obtain finite intervals of size 2n for any

{f, g}

{f} × {g}′
����

HHHH

{g} × {f}′
HHHH

����

{f}′ × {g}′

Figure 1

n as follows:

Theorem 1.4. Let B be any mass problem. Let n > 1 and let f1, . . . , fn ∈ ωω be
T-incomparable such that {fi} 6>w B for every i. Then the interval

[
B × {f1, . . . , fn},B × {f1}

′ × . . . × {fn}
′
]
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in Mw is isomorphic to the finite Boolean algebra 2
n consisting of all subsets of

{1, . . . , n}.

Proof. This was proved in [21] for M. It holds for Mw with the same proof.

Platek [12] proved that M has cardinality 22ℵ0 (i.e. the maximum possible for a
collection of sets of reals) by showing that M has antichains of that cardinality.
(He mentions that the result was noted independently by Elisabeth Jockusch and
John Stillwell.) In fact, in M such large antichains occur in every infinite interval:

Theorem 1.5. (Terwijn [21]) Let [A,B] be an interval in M with A <M B.
Then either [A,B] is isomorphic to the finite Boolean algebra 2

n for some n > 1,
or [A,B] contains an antichain of size 22ℵ0 . In the latter case, it is consistent4

that it also contains a chain of size 22ℵ0 .

In particular, M’s version of Theorem 1.4 is the only way to generate finite
intervals of M. As we will see in what follows, the situation for Mw is rather
different.

We will use the following theorem at several places below.

Theorem 1.6. (Lachlan and Lebeuf [6], cf. also Lerman [7, p164]) Every count-
able upper semilattice with a least element is isomorphic to an initial segment of
the Turing degrees DT .

2 More on chains and antichains

Although every countable linear order can be embedded into Mw (because by
Theorem 1.6 this already holds for the Turing degrees), the following result shows
that not every countable linear order is isomorphic to an interval in Mw. (From
Theorem 3.14 it will follow that every finite linear order is isomorphic to an
interval in Mw.)

Proposition 2.1. Not every countable linear order is isomorphic to an interval
in Mw.

Proof. Consider the linear order ω +ω∗ (that is, a copy of ω followed by a reverse
copy of ω). Suppose that An and Bn, n ∈ ω, are mass problems such that for all
n and m,

An <w An+1 <w Bm+1 <w Bm.

Let C =
∏

m∈ωBm ≡w

⋃
m∈ω Bm. Then for all n, An <w C <w Bn, so the interval

[A0,B0] is not isomorphic to ω + ω∗.

4The precise set-theoretic assumption that is needed is discussed in [21]. The existence of
such large chains is in fact independent, as follows from results in Baumgartner [1], see also
Comfort and Remus [3]. We thank George Barmpalias for pointing out these references to us.
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Proposition 2.2. Mw contains linear intervals that are countably infinite.

Proof. Consider the linear order 1 + ω∗ (a least element plus a reverse copy of
ω). By Theorem 1.6 we can embed this order in the Turing degrees as an initial
segment: Let F = {fn : n ∈ ω} be such that fn+1 <T fn and such that

h 6T f0 → h computable ∨ ∃n h ≡T fn

for every h. Let B = {h : h 66T f0} and A = B × F . (Note that A is in fact
w-equivalent to 0′.) Now if C ∈ [A,B] then C can be split in disjoint parts C0 and
C1 such that C0 is maximal with the property B 6w C0 and {f : f 6T f0} 6w C1.
Then C1 ⊆ F and C ≡w B × C1. So it suffices to analyze all subclasses of F : For
every I ⊆ ω consider CI = B × {fn : n ∈ I}. If I is infinite then CI 6w F , hence
CI ≡w A. For I and J finite we have CI 6w CJ whenever min I 6 min J . So we
see that the interval (A,B) contains only the countably many elements B×{fn},
n ∈ ω.

By Proposition 2.2 there are linear nonempty intervals in Mw. This contrasts the
situation for M, where by Theorem 1.5 all the linear intervals are empty. So here
we already see that Theorem 1.4 is not the only way anymore to generate finite
intervals.

Mw contains antichains of size 22ℵ0 , using the same argument that Platek
used for M (starting with an antichain of size 2ℵ0 in the Turing degrees, form
22ℵ0 incomparable combinations), but Proposition 2.2 shows that they do not
occur in every infinite interval, as we had for M (cf. Theorem 1.5). In fact there
are intervals with maximal antichains of every possible size:

Theorem 2.3. Each of the following possibilities is realized by some interval
[A,B] in Mw:

1. [A,B] contains an antichain of size n, but not of size n + 1,

2. [A,B] contains an antichain of size ℵ0, but no uncountable antichain,

3. [A,B] contains an antichain of size 2ℵ0, but not of size 22ℵ0 ,

4. (Platek [12]) [A,B] contains an antichain of size 22ℵ0 .

Proof. 1. This follows from Theorem 1.4.
2. (Small correction in the proof added September 2010.) Let x0 < x1 < x2 <

. . . be an increasing chain of elements in some lattice and let y0 > y1 > y2 < . . . be
a decreasing chain of elements in the same lattice such that xn | yn for all n. Let
L be the free upper semilattice on these sets of elements with an additional least
element. Then L is a countable bottomed upper semilattice, so by Theorem 1.6
we have that L is embeddable into the Turing degrees as an initial segment. Let
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{fn : n ∈ ω} and {gn : n ∈ ω} be representatives from the image Im(L) of L
corresponding to the sequences xn and yn respectively, so that fi |T gj for all i
and j and such that for all n, fn <T fn+1 and gn+1 <T gn. Let

B = {h : ∀n h 66T fn, gn} and

A = B × {fn, gn : n ∈ ω}.

Then every C ∈ [A,B] can be split as C ≡w C0 × C1, with C0 ⊆ C maximal with
the property that B 6w C0 and C1 ⊆ Im(L). Note that the only elements of
Im(L) that are not in B are the fn, gn, n ∈ ω. As a consequence, we have (by
maximality of C0) that C1 ⊆ {fn, gn : n ∈ ω}. Now degw(C) is determined by
degw(C1): One easily checks that if C,D ∈ [A,B] are split as above as C ≡w C0×C1

and D ≡w D0 × D1 then C1 ≡w D1 implies that C ≡w D. In its turn, degw(C1)
is determined by the minimal n (if any) such that fn ∈ C1 and by whether C1

contains infinitely or finitely many gm’s, and in the latter case by the maximal m
(if any) such that gm ∈ C1. So we see that there are only countably many
possibilities for the degree of C1, and hence for the degree of C, and hence [A,B]
is countable.

Now consider the mass problems Cn = B×{fn, gn}. Clearly Cn |w Cm if n 6= m.
So [A,B] is countable and contains an infinite antichain.

3. Let L be a countably infinite distributive lattice with a least element and
an infinite antichain. By Theorem 1.6, L is embeddable into the Turing degrees
as an initial segment. Let fn, n ∈ ω, be a set of representatives of all the degrees
in the image of L. Consider the interval [A,B], where B = {h : ∀n h 66T fn} and
A = B × {fn : n ∈ ω}. Then [A,B] contains an infinite antichain of elements
of the form B × {f} because L contains a corresponding infinite antichain. For
I ⊆ ω let CI = B ×

{
fn : n ∈ I

}
. Then for incomparable sets I, J ⊆ ω it holds

that CI |w CJ . So [A,B] contains an antichain of size 2ℵ0 . Now if C ∈ [A,B] then
C ≡w C0 ×C1, with C0 ⊆ C maximal with the property that B 6w C0 and C1 ⊆ A.
So the Muchnik degree degw(C) of every C ∈ [A,B] is determined by a countable
set C1, hence there are at most 2ℵ0 many elements in [A,B].

4. We can apply Platek’s argument to any interval that contains an antichain
of size 2ℵ0 of singletons: Suppose that the interval [A,B] contains the elements
B × {fα}, α < 2ω, such that the fα form an antichain in the Turing degrees. For
I ⊆ 2ω let CI = B×

{
fα : α ∈ I

}
. Clearly CI ∈ [A,B]. Now for incomparable sets

I, J ⊆ 2ω it holds that CI |w CJ , so it suffices to note that there is an antichain
of size 22ℵ0 in P(2ω). (For some general notes on chains and antichains we refer
to [21].)

From the proof of Theorem 2.3 we can also deduce some consequences for chains
in Mw:

1. By Theorem 1.4 there are intervals containing chains of size n but not of
size n + 1.
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2. By the proof of item 2., and also Proposition 2.2, there are countable inter-
vals with an infinite chain.

3. The example of an interval given in the proof of item 3. also contains a
chain of size 2ℵ0 , but not of size 22ℵ0 . This is because P(ω) has a chain of
size 2ℵ0 so the same holds with ω replaced by {fn : n ∈ ω}. A chain in the
interval of item 3. cannot be bigger since the interval itself was of size 2ℵ0 .

4. It is consistent that Mw has a chain of size 22ℵ0 , cf. [21]. The conditions
for the existence of chains of size 22ℵ0 in P(2ω), in M, and in Mw are the
same, so as for M this is independent, cf. footnote 4.

3 The finite intervals of Mw

Theorem 3.1. (Sorbi [15, 17]) A countable distributive lattice with 0, 1 is em-
beddable into M (preserving 0 and 1) if and only if 0 is meet-irreducible and 1 is
join-irreducible.

Sorbi proved Theorem 3.1 by embedding the (unique) countable dense Boolean
algebra into M. Inspection of the proof in [15] shows that this algebra also
embeds into Mw, since different elements of the algebra are mapped to mass
problems in such a way that each one of them contains functions not T-above
any of the functions in the other. In particular every finite distributive lattice is
embeddable into Mw. In the following we consider lattices that are isomorphic
to an interval of Mw. In Theorem 1.5 we saw that for M these were precisely the
finite Boolean algebras. Of course no nondistributive lattice can be isomorphic
to an interval in M or Mw since both structures are distributive (Medvedev [8]).
In this section we characterize the finite intervals of Mw as a certain subclass of
the finite distributive lattices (Theorem 3.14). We start with some illustrative
examples.

Example 3.2. That the diamond lattice is isomorphic to an interval in Mw

was already shown in Theorem 1.4. For later purposes we show that this way of
obtaining a diamond is essentially the only way. Suppose that [A,D] is an interval
in Mw containing precisely two intermediate elements B and C, and that B and
C are incomparable, cf. Figure 2. Then A and D do not satisfy property (1) of
Lemma 1.2 because the interval is finite. So there is a finite set X ⊆ A such that
D×X 6w A, and hence D×X ≡w A. Without loss of generality the elements of
X are pairwise T-incomparable and {f} 6>w D for every f ∈ X . Clearly X must
be nonempty since otherwise A ≡w D. If X contains only one element f then
for any Z ∈ [A,D] we have D × {f} 6w Z 6w D. If {f} >w Z then A ≡w Z,
hence for Z >w A we have {f} 6>w Z and hence D × {f}′ 6w Z. It follows that
[D×{f},D×{f}′] is the initial part of the interval [A,D], contradicting that the
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latter is a diamond. We conclude that X contains at least two elements. Because
the sets D×{f} with f ∈ X are pairwise incomparable elements of [A,D] we see
that X can contain at most two elements. So X contains precisely two elements,
f0 and f1 say. Then [A,D] contains the interval [D×{f0, f1},D×{f0}

′ ×{f1}
′],

which by Theorem 1.4 is isomorphic to the diamond lattice. So we must have
that D ≡w D × {f0}

′ × {f1}
′. �

Using similar methods as in the previous example one can show that the lattices
from Figures 3 and 4 can be obtained as intervals of Mw. For the first one uses
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an f and two incomparable elements f0 and f1 that are minimal over f , and for
the second one uses incomparable elements f0 and f1 such that their join f0 ⊕ f1

is minimal over both of them.
Next we show that not every finite distributive lattice is isomorphic to an

interval in Mw.

Proposition 3.3. The double diamond lattice from Figure 5 is not isomorphic
to an interval in Mw.

Proof. Assume for a contradiction that the interval [A,G] is isomorphic to the
lattice of Figure 5. As in Example 3.2 we can argue that there is a finite set X ⊆ A
such that A ≡w X ×G. Using the same reasoning as before we can argue that X
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contains precisely two T-incomparable elements f0 and f1 with {f0}, {f1} 6>w G.
(If X contained at least three of such elements then by Theorem 1.4 the interval
[A,G] would contain a copy of 2

3, but the interval contains only 7 elements so
this is impossible.) Since by Example 3.2 there is only one way of obtaining a
diamond, there are T-incomparable g0 and g1 with {g0}, {g1} 6>T G such that

A ≡w G × {f0, f1}

B ≡w G × {f0}
′ × {f1}

C ≡w G × {f0} × {f1}
′

D ≡w G × {f0}
′ × {f1}

′ ≡w G × {g0, g1}

E ≡w G × {g0}
′ × {g1}

F ≡w G × {g0} × {g1}
′

G ≡w G × {g0}
′ × {g1}

′.

From the two equations for D it follows that {g0, g1} >w {f0, f1}. Now there are
two cases:

• Both gi’s are T-above both fj’s. But then we have

D ≡w G × {f0}
′ × {f1}

′
6w G × {f0 ⊕ f1} <w G × {g0, g1} ≡w D,

a contradiction. (The second to last inequality is strict since f0⊕f1 <T g0, g1

because g0 and g1 are incomparable.)

• The gi’s are not both above f0 and f1. Hence either there is precisely one
gi above each fj, or there are precisely two gi’s above one fj. In both
cases there is at least one gi T-incomparable to an fj, say f0 |T g1. Now
consider the element H = G × {f0} × {g1}

′. Clearly H ∈ [A,G]. But H is

11



w-incomparable to D: H 66w D because H 66w {g1}, and D 66w H because
D 66w {f0}. So again we have reached a contradiction, because [A,G] does
not contain an element incomparable to D.

Since both cases are contradictory we conclude that it is impossible that [A,G]
is isomorphic to the double diamond.

We will see later (in Proposition 3.6 and Theorem 3.14) that the double diamond
lattice of Figure 5 is the smallest possible counterexample, in the sense that any
other counterexample contains it as a sublattice.

Let us recall some elementary lattice theory from Grätzer [5]. Let L be a
distributive lattice. J(L) denotes the set of all nonzero join-irreducible elements
of L. J(L) is a poset under the ordering of L. For a ∈ L define

r(a) =
{
x ∈ J(L) : x 6 a

}
.

For a poset P let H(P ) be the collection of downward closed subsets of P , partially
ordered by inclusion. Then H(P ) is a distributive lattice, and we have

Theorem 3.4. ([5, Theorem II.1.9]) For any finite distributive lattice L the map-
ping a 7→ r(a) is an isomorphism between L and H(J(L)).

Thus the mappings J and H are inverses of each other, and they relate the class
of finite distributive lattices with the class of all finite posets.

Say that a lattice L contains another lattice L′ as a subinterval if there is
an interval [a, b] ⊆ L that is isomorphic to L′. Note that this is not the same
as saying that L′ is a sublattice of L. For example, the free distributive lattice
on three elements FD(3), depicted in Figure 6, contains the double diamond of
Figure 5 as a sublattice, but not as a subinterval.
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Figure 6: The free distributive lattice on three elements.
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Definition 3.5. We call a finite distributive lattice L double diamond-like if in
the poset J(L) there are two incomparable elements with at least two minimal
upper bounds.

So if L is double diamond-like then J(L) contains the configuration from Figure 7,
where the lines denote intervals that may contain (possibly incomparable) other
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Figure 7

elements. By the next proposition the double diamond lattice is the smallest
example of a double diamond-like lattice. Figure 8 shows some other examples.
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Figure 8: Some double diamond-like lattices.

Proposition 3.6. Any double diamond-like lattice contains the double diamond
lattice from Figure 5 as a sublattice.

Proof. If L is double diamond-like then J(L) contains elements x0 and x1 that
have two minimal upper bounds y0 and y1. Hence L contains the sublattice
generated by {x0, x1, y0, y1}, which is the double diamond lattice.

Theorem 3.7. For any finite distributive lattice L, the following are equivalent:

(i) L is not double diamond-like,

13



(ii) the poset J(L) is an initial segment of an upper semilattice,

(iii) L does not have a double diamond-like lattice as a subinterval.

Proof. The equivalence of (i) and (ii) is immediate from Definition 3.5. (iii)
trivially implies (i). For the implication from (ii) to (iii), suppose that J(L) is
an initial segment of an upper semilattice, and let [a, b] be an interval in L. We
prove that [a, b] is not double diamond-like. Suppose for a contradiction that
J([a, b]) contains the configuration of Figure 7, with bottom elements x0 and x1

and top elements y0 and y1. We cannot immediately conclude from this that
J(L) contains the same configuration, for J([a, b]) and J(L) can even be disjoint.
Nevertheless, suppose that y0 is join-reducible in L as y0 = z0 + z1, with z0|z1.
By Lemma 3.8 we can choose z0 and z1 such that z0 × x0 6= z0 × x1 and z0 66 y1.
Then in L the set {z0 × x0, z0 × x1, z0, y1}, is partially ordered as in Figure 7.
Continuing in this way we can reduce the configuration until the top element
y0 has become join-irreducible, and of course we can reduce y1 in the same way.
Then L contains the configuration of Figure 7 with both top elements in J(L). We
claim that we can choose maximal join-irreducible elements v0 6 x0 and v1 6 x1

such that v0 66 x1 and v1 66 x0. Namely, if all maximal join-irreducible elements
below x0 were also below x1 then they, and any join of them, would be below
x0 × x1, hence x0 6 x0 × x1 6 x1, a contradiction. So we can pick v0 and v1 as
above. Since v0 and v1 are maximal below x0 and x1, the elements y0 and y1 are
minimal upper bounds of them in J(L). So we see that L contains Figure 7 with
all four elements in J(L). But this contradicts that J(L) is an initial segment of
an upper semilattice and hence that the bottom two elements x0 and x1 should
have a least upper bound in J(L).

Lemma 3.8. In the proof of Theorem 3.7 above, if y0 = z0 + z1 in L, z0|z1, then
we can choose such z0 and z1 with z0 × x0 6= z0 × x1 and z0 66 y1.

Proof. Suppose that y0 = z0 + z1 in L, with z0|z1. Note that z0 and z1 cannot be
both in [a, b] because y0 is join-irreducible in [a, b]. Suppose that

∀v, w ∈ L
(
v|w ∧ y0 = v + w → v, w /∈ [a, b]

)
. (2)

Consider z0 and a + z1. If a + z1 = y0 then this contradicts (2) (because both
a, z1 < y0 they must be incomparable in this case). If a + z1 < y0 then by
(a + z1) + z0 = y0 we again contradict (2). Hence (2) is false, and if y0 = z0 + z1

with z0|z1 in L we can always choose z0 /∈ [a, b] and z1 ∈ [a, b]. In this case
z0 + a = y0, for if z0 + a < y0 then by (a + z0) + z1 = y0 we would have y0

join-reducible in [a, b], a contradiction. Hence for every c ∈ [a, y0] it holds that
z0 + c = y0, and in particular

z0 + x0 = z0 + x1 = y0. (3)
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Now we also have z0 66 y1 because otherwise y0 = z0 + x0 6 y1, a contradiction.
Finally we prove that z0 × x0 6= z0 × x1. Suppose that z0 × x0 = z0 × x1.

Because by (3) it holds that z0 + x0 = z0 + x1 we have

x1 = (z0 × x1) + x1

= (z0 × x0) + x1

= (z0 + x1) × (x0 + x1) (by distributivity)
= (z0 + x0) × (x0 + x1)
= x0 + (z0 × x1)
> x0.

From this contradiction we conclude that z0 × x0 6= z0 × x1.

Example 3.9. Before giving the general result of how to obtain lattices as inter-
vals of Mw we give one more specific example to illustrate the method. Figure 9
depicts the procedure to obtain a given lattice L as an interval of Mw. The top
left side of the picture shows an example of a finite distributive lattice, with its
nonzero join-irreducible elements circled. The partial order J(L) is depicted on
the top right. Now for the lattice L in this particular example we can map the
poset J(L) to an isomorphic configuration I(J(L)) in DT , such that the inter-
vals in I(J(L)) contain no other elements than those of I(J(L)). (The picture
remains the same, so we drew it only once. That one can find this configuration
in DT follows from the general results quoted at the beginning of the proof of
Theorem 3.10.) This means that the only relations are the ones indicated in the
picture, g0 covers f0 and f1, and g1 covers f1. (Recall that “covers” entails min-
imality. Also note that for notational simplicity we are identifying f here with
degT (f).) Next we can form the distributive lattice H = H(I(J(L))), which is
isomorphic to L by Theorem 3.4. Finally we apply the mapping F : H → Mw

defined as follows. First define

X =
{
h >T f0 : h|T g0

}
∪

{
h >T f1 : h|T g0 ∧ h|T g1

}
.

This has the effect that modulo X we have X × {f0}
′ ≡w X × {g0} (this follows

from the minimality of g0 over f0) and X × {f1}
′ ≡w X × {g0, g1}. For every

A ∈ H define
Â =

{
f ∈ I(J(L)) : f maximal in A

}
.

Finally define

F (A) = X ×
∏{

{f}′ : f ∈ Â
}
×

{
f ∈ I(J(L)) : f |T Â

}
.

Here f |T Â denotes that f |T g for every g ∈ Â. We thus obtain the lattice F (H)
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Figure 9: Procedure to obtain an interval in Mw isomorphic to a given L.

on the bottom left of the picture, with

A = X × {f0, f1}

B = X × {f0}
′ × {f1}

C = X × {f0} × {f1}
′ ≡w X × {f0, g1}

D = X × {f0}
′ × {f1}

′ ≡w X × {f0}
′ × {g1} ≡w X × {g0, g1}

E = X × {f0} × {g1}
′

F = X × {f0}
′ × {g1}

′ ≡w X × {g0} × {g1}
′

G = X × {g0}
′ × {g1}

H = X × {g0}
′ × {g1}

′.

Using Example 3.2 one can check that F is an isomorphism between H and F (H),
so that the interval

[
A,H

]
=

[
F (∅), F (I(J(L)))

]
is indeed isomorphic to L. �
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We are now ready to prove:

Theorem 3.10. Suppose that L is a finite distributive lattice such that J(L) is an
initial segment of a finite upper semilattice. Then L is isomorphic to an interval
of Mw.

Proof. We follow the procedure depicted in Figure 9. Let L be as in the hypothesis
of the theorem. Since J(L) is an initial segment of a finite upper semilattice, by
Theorem 1.6 we have a finite poset I(J(L)) in DT that is isomorphic to J(L),
with the property that if g covers f in J(L) then the image of g is a minimal
cover of f in DT . Furthermore, the minimal elements of I(J(L)) can be chosen
to be of minimal T-degree (so that in particular they are all noncomputable).
Next we form the distributive lattice H = H(I(J(L))), which is isomorphic to L
by Theorem 3.4. Finally we define the mapping F : H → Mw as follows. For a
given f ∈ I(J(L)) let g0, . . . , gm be all elements of I(J(L)) covering f . Define

Xf =
{
h ∈ ωω : h >T f ∧ h|T g0 ∧ . . . ∧ h|T gm

}
,

X =
⋃

f∈I(J(L))

Xf .

Note that for every f as above we have the properties

X × {f}′ ≡w X × {g0, . . . , gm} (4)

X 66w {f}. (5)

Also notice that if f is maximal in I(J(L)) (i.e. f is maximal in the poset as
well as 6T -maximal) then there are no elements of I(J(L)) covering f , hence
Xf ≡w {f}′. Furthermore we have for every h ∈ ωω,

{h} >w I(J(L)) ∧ {h} 6>w X −→ h ∈ I(J(L)). (6)

Next, for every A ∈ H define

Â =
{
f ∈ I(J(L)) : f maximal in A

}
,

F (A) = X ×
∏{

{f}′ : f ∈ Â
}
×

{
f ∈ I(J(L)) : f |T Â

}
.

Here f |T Â denotes that f |T g for every g ∈ Â. This concludes the definition of
the mapping F . By definition, f |T ∅ holds for every f , so we have that

F (∅) = X × I(J(L)) ≡w X ×
{
f ∈ I(J(L)) : f minimal in I(J(L))

}
.

We thus obtain the lattice F (H). Note that H has ∅ as least element and I(J(L))
as largest element. We prove that F is an isomorphism from H to the interval

17



[
F (∅), F (I(J(L)))

]
⊆ Mw. Since H is isomorphic to L this suffices to prove the

theorem.
F is injective. Suppose that A,B ∈ H. Note that since A and B are down-

wards closed, A = B if and only if Â = B̂. So it suffices to show that if Â 6⊆ B̂
then F (A) 6≡w F (B). Suppose that f ∈ Â − B̂. Since f ∈ I(J(L)) we have

{f} 6>w X by (5). Since f ∈ Â we also have {f} 6>w F (A) because Â is an

antichain. If f |T B̂ then {f} >w F (B) so in this case F (A) 6≡w F (B). If f 6 |T B̂

then there is g ∈ B̂ with either f >T g or g >T f . In the first case we have
f >T g (because g is in B̂ and f is not), hence {f} >w F (B), and again we can

conclude that F (A) 6≡w F (B). In the second case, since g >T f ∈ Â we have

{g} >w F (A), but {g} 6>w F (B) because g ∈ B̂ and B̂ is an antichain, so again
F (A) 6≡w F (B).

F is monotone. We claim that A ⊆ B implies that F (A) 6w F (B). Suppose
that A ⊆ B and that h ∈ F (B). We prove that {h} >w F (A). We have the
following three cases, corresponding to the three components of F (B):

• If h ∈ X then we are immediately done.

• If h ∈ I(J(L)), h|T B̂ then we have one of the following three options:

– h|T Â. In this case we are done immediately.

– ∃g ∈ Â h >T g. In this case we cannot have h ∈ Â because A ⊆ B
and h|T B̂, so we have h >T g and hence {h} >w F (A).

– ∃g ∈ Â h 6T g. This case cannot occur because A is downwards
closed, hence h would be in A and hence in B, contradicting h|T B̂.

• h >T f for some f ∈ B̂. When f ∈ Â we are done. If f /∈ Â then since
A ⊆ B and f is maximal in B we have f /∈ A, so either f |T Â, in which

case we are done or ∃g ∈ Â f >T g, in which case f >T g since f /∈ Â, and
again we are done.

F (A ∩ B) ≡w F (A) × F (B): By monotonicity of F we have F (A ∩ B) 6w

F (A), F (B), hence also F (A∩B) 6w F (A)× F (B). For the other direction >w,
suppose that h ∈ F (A ∩ B). We consider the three cases corresponding to the
three components of F (A ∩ B).

• If {h} >w X then we immediately have that {h} >w F (A), F (B).

• Suppose that h ∈ F (A ∩ B) because h >T f for some f ∈ Â ∩ B. If
h /∈ I(J(L)) then by (6) we have {h} >w X , so we may assume that h ∈

I(J(L)). If {h} >w {g ∈ I(J(L)) : g |T Â} or {h} >w {g ∈ I(J(L)) : g |T B̂}
then we are done. Otherwise, since h ∈ I(J(L)) itself, in particular both
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h 6 |T Â and h 6 |T B̂, say that g0 ∈ Â and g1 ∈ B̂ are such that h 6 |T g0 and
h 6 |T g1. It is impossible that h 6T g0, g1 because then (because A, B are

downwards closed) h ∈ A ∩ B, contradicting f ∈ Â ∩ B. So at least one of
g0 <T h and g1 <T h must hold. But in the first case we have {h} >w F (A)
and in the second {h} >w F (B).

• Finally suppose that h|T Â ∩ B. When h|T Â or h|T B̂ then we are done, so

suppose that neither of these hold, say h 6 |T f ∈ Â and h 6 |T g ∈ B̂. When

either f or g is in Â ∩ B then h 6 |T Â ∩ B contrary to assumption, so we have

that f , g /∈ Â ∩ B. When f >T g then g ∈ A ∩ B, and because g /∈ Â ∩ B

there exists then k ∈ Â ∩ B with k >T g, contradicting g ∈ B̂. Likewise,
g >T f is impossible, so we have f |T g. Hence either h >T f, g or h <T f, g.

In the latter case h ∈ A ∩ B, contradicting h|T Â ∩ B, and in the former
case we have {h} >w F (A), F (B).

Hence every h ∈ F (A ∩ B) computes an element of either F (A) or F (B).
F (A ∪ B) ≡w F (A) + F (B): By monotonicity of F we have F (A), F (B) 6w

F (A∪B), hence also F (A)+F (B) 6w F (A∪B). For the other direction, suppose
that {h} >w F (A), F (B). We prove that {h} >w F (A ∪B). If {h} >w X we are
immediately done, so assume that {h} 6>w X . We have to prove that either

∃f ∈ Â ∪ B h >T f (7)

or ∃f ∈ I(J(L))
[
f |T Â ∪ B ∧ h >T f

]
. (8)

We have the following cases, corresponding to the four remaining ways in which
h can be above the components of F (A) and F (B) that are different from X :

• {h} >w {f ∈ I(J(L)) : f |T Â}, {f ∈ I(J(L)) : f |T B̂}. Suppose that

h >T f0 ⊕ f1, f0, f1 ∈ I(J(L)), f0 |T Â and f1 |T B̂. Note that it is not

possible that f0 ⊕ f1 6T g for some g ∈ Â ∪ B because then f0 ⊕ f1 would
be below an element of either Â or B̂, contradicting that f0 |T Â and f1 |T B̂.

So we either have f0⊕f1 >T g for some g ∈ Â ∪ B or f0⊕f1 |T Â ∪ B. In the
first case we have h >T g and we are done by way of (7). In the second case
we are done by way of (8) because we may assume that f0 ⊕ f1 ∈ I(J(L)).
Namely, if f0 ⊕ f1 /∈ I(J(L)) then by (6) we have {f0 ⊕ f1} >w X , hence
{h} >w X .

• {h} >w {f ∈ I(J(L)) : f |T Â} and h >T f0 for some f0 ∈ B̂. If there is such

an f0 with f0 ∈ Â ∪ B then we are done by way of (7), so assume without

loss of generality that f0 ∈ B̂ − Â ∪ B. As above, by (6) we may assume

that h ∈ I(J(L)). Hence if h|T Â ∪ B then we are done by (8), so assume

19



that h 6 |T Â ∪ B, say g ∈ Â ∪ B, h 6 |T g. We have one of the following two
cases:

– h 6T g. In this case g ∈ B̂ is impossible by h >T f0 ∈ B̂, so we must
have g ∈ Â. But this contradicts {h} >w {f ∈ I(J(L)) : f |T Â}.

– h >T g. In this case we are done by way of (7).

• {h} >w {f ∈ I(J(L)) : f |T B̂} and h >T f0 for some f0 ∈ Â. This is
completely symmetric to the previous case.

• h >T f0, f1 for some f0 ∈ Â and f1 ∈ B̂. As in previous cases, we may

assume by (6) that h ∈ I(J(L)). Hence when h|T Â ∪ B we are done by (8),

so assume that h 6 |T Â ∪ B, say h 6 |T f with f ∈ Â ∪ B. Since f0, f1 <T h it

is impossible that h 6T f , for then either f0 would not be in Â or f1 would
not be in B̂. Hence h >T f , and we are done by way of (7).

F is surjective. It remains to check that if C ∈
[
F (∅), F (I(J(L)))

]
then there

is A ∈ H such that F (A) ≡w C. To this end, let A be a maximal subset of I(J(L))
such that C >w F (A). We claim that then also C 6w F (A). Namely we have
C 6w X because C 6w F (I(J(L))). As for the other components of F (A), suppose

that f ∈ I(J(L)), f |T Â and suppose that C contains no element 6T f . Let B be
the downward closure of A∪{f} in the poset I(J(L)). Then C >w F (B), for the
elements of C that are mapped to f in the reduction C >w F (A) are all >T f . But
C >w F (B) contradicts the maximality of A. It follows that C 6w

{
f ∈ I(J(L)) :

f |T Â
}
. We also have C 6w

∏{
{f}′ : f ∈ Â

}
. Namely suppose not, that is,

suppose there is f ∈ Â such that C 66w {f}′. Such an f cannot be maximal in
I(J(L)) because C 6w F (I(J(L))). Hence the set {g0, . . . , gm} of all elements of
I(J(L)) covering f is nonempty. By (4) we have X × {f}′ ≡w X × {g0, . . . , gm},
hence there is g ∈ {g0, . . . , gm} such that C 66w {g}. But then it follows from
C >w F (A) that actually C >w F (A ∪ {g}), contradicting the maximality of A.
Note that the set A ∪ {g} is downwards closed in I(J(L)) since A is downwards
closed and f ∈ A. We have thus proved that C ≡w F (A). This concludes the
proof of the surjectivity of F and of the theorem.

Recall that C(A) denotes the upward closure of A. In Terwijn [19] it was proved
that a mass problem A is join-reducible in Mw if and only if

∃g, h /∈ C(A)
[
g |T h ∧ g ⊕ h ∈ C(A)

]
. (9)

The condition (9) already occurred in Sorbi [17] as a sufficient condition for
join-reducibility of Medvedev degrees. The condition does not characterize the
join-reducible Medvedev degrees [19].5 The following variant characterizes the

5Note added: Such a characterization was recently given by Shafer [14].
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join-irreducible elements of an interval in Mw. The proof is almost identical to
the proof in [19].

Proposition 3.11. A mass problem A is join-reducible in an interval [X ,Y ] ⊆
Mw if and only if

∃g, h /∈ C(A)
[
g |T h ∧ g ⊕ h ∈ C(A) ∧ g, h ∈ C(X )

]
. (10)

Corollary 3.12. The meet of two join-irreducible elements in an interval [X ,Y ]
⊆ Mw is again join-irreducible in [X ,Y ].

Proof. Suppose that A×B is join-reducible in [X ,Y ]. By (10) there are incompa-
rable g and h such that g, h /∈ C(A×B), g ⊕ h ∈ C(A×B) and g, h ∈ C(X ). In
particular g, h /∈ C(A) and g, h /∈ C(B), and either g⊕h ∈ C(A) or g⊕h ∈ C(B).
In the first case A is join-reducible in [X ,Y ], and in the second case B.

Theorem 3.13. If L is isomorphic to a finite interval in Mw then J(L) is an
initial segment of a finite upper semilattice.

Proof. Suppose that L is isomorphic to a finite interval [X ,Y ] in Mw, and suppose
that A and B are incomparable nonzero join-irreducible elements in [X ,Y ]. We
show that A and B do not have two minimal upper bounds in J(L) (hence they
have a least upper bound in J(L) in case they have an upper bound at all).
Since L is finite, if A and B have an upper bound in J(L) they have a minimal
upper bound. Suppose C and D are two incomparable such upper bounds in
J(L). Then by Corollary 3.12 the element C × D is a smaller upper bound in
J(L), contradicting the minimality of C and D. So there can be at most one
minimal upper bound in J(L). Hence J(L) is an initial segment of a finite upper
semilattice.

By combining the above results we obtain the following characterization of the
finite intervals of Mw:

Theorem 3.14. For any finite distributive lattice L the following are equivalent:

1. L is isomorphic to an interval in Mw,

2. J(L) is an initial segment of a finite upper semilattice,

3. L does not have a double diamond-like lattice as a subinterval.

Proof. Item 2 and 3 are equivalent by Theorem 3.7. Item 2 implies item 1 by
Theorem 3.10. Conversely, 1 implies 2 by Theorem 3.13.

Note that since L is finite, the word “finite” in item 2. above can be deleted. It is
also equivalent with the statement that J(L) completed with a greatest element
is an upper semilattice.
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Corollary 3.15. A finite distributive lattice is an initial segment of Mw if and
only if it has no double diamond-like subinterval and it has a meet-irreducible 0.

Proof. We can extend the definition of the mapping F in the proof of Theo-
rem 3.14 as follows. Define Xf as before and let

X0 =
{
h ∈ ωω : h|T f for all f minimal in I(J(L))

}
,

X = X0 ∪
⋃

f∈I(J(L))

Xf .

Then for every A ∈ H define F (A) as before, using this new definition of X . This
addition does not change anything in the proof of Theorem 3.10, but now we have
that F (∅) ≡w 0′, as is easily checked, using that we chose the minimal elements of
I(J(L)) of minimal T-degree. Thus we obtain that a finite distributive lattice has
no double diamond-like subinterval if and only if it is isomorphic to an interval
of the form [0′,A] in Mw. From this the corollary follows immediately.

It may be noted that the results of this paper in fact hold in greater generality
than we have stated them in. Start with a partial order (P,6) and consider the
lattice (in fact, Heyting algebra) of all upwards closed subsets of P , ordered by ⊇.
The main results of this paper hold for any lattice obtained in this way, provided
that every countable upper semilattice with a least element is embeddable in
P as an initial segment. (For the characterization from Theorem 3.14 it even
suffices that every finite upper semilattice is embeddable in P as an interval.)
However, our first interest here is in lattices from computability theory such as
the Medvedev and Muchnik lattices, also because of the intriguing connections
with constructive logic. For more on this we refer the reader to [18] or [20].

Acknowledgments. The author thanks Andrea Sorbi for helpful discussions,
and George Barmpalias for comments on [21].
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