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Abstract

We give a probabilistic interpretation of first-order formulas based on
Valiants model of pac-learning. We study the resulting notion of prob-
abilistic or approximate truth and take some first steps in developing
its model theory. In particular we show that every fixed error parame-
ter determining the precision of universal quantification gives rise to a
different class of tautologies. Finally we study the inductive inference
of first-order formulas from atomic truths.

1 introduction

The goal of this paper is to develop a notion of model theoretic pac-learning
and to study the corresponding notion of probabilistic truth. This parallels
the fact that Golds model of language learning [5] can be transformed to
a more general model-theoretic one (Osherson et al. [12], see also Terwijn
[13]). This has already yielded some interesting results, e.g. connections
with the theory of belief revision (Martin and Osherson [11]). The model
of pac-learning was introduced by Valiant [15]. This model was the first
probabilistic model of learning amenable to a complexity theoretic analy-
sis of learning tasks, and in the subsequent years became one of the most
prominent models in the learning theory research. A good introduction to
the theory of this model is Kearns and Vazirani [8].

The connections between logic and probability are old and manifold. An
early critic of the use of universal statements outside of the synthetic realm
of mathematics was the sceptic Sextus Empiricus (2nd–3rd century). He
pointed out that without a formal context, where a universal statement can
hold by definition, such a statement can only be true when every instance
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of it has been examined. As in most cases this is not feasible, there is
in general no way to induce universal statements from examples. As a
way out of dilemma’s like this, in the course of history there have been
many proposals for probabilistic interpretations of quantifiers. In the 20th
century, the connections between scientific deduction and the foundations
of probability were a major research topic for the members of the Vienna
Circle, cf. e.g. Carnap [2]. For a survey of results connecting logic and
probability see Halpern [6]. In this paper we give yet another interpretation
of universal quantification, based on the theory of pac-learning. Valiant
[16] himself already gave an interpretation of logical formula’s based on
pac-learning. Although some of the ideas in [16] are closely related to the
material below, our approach is different. For example, [16] is primarily
concerned with a merging of logic and learning, and in particular develops
a setting for learning logical rules from statistical data. These rules form a
powerful fragment of first order predicate logic, and the learning of a rule
consists of producing a good approximation to it. In [16] only finite models
are considered. Below we will be using arbitrary first order formulas and we
will consider models of arbitrary cardinality.

Another study of probability quantifiers that is related to the logic that
we study below is Keisler [9]. The logic L �

P studied there contains a quanti-
fier (Px ≥ r)ϕ meaning that the set {x : ϕ(x)} has measure at least r. This
coincides with our interpretation of universal quantification below. However,
negation in L �

P behaves in a crucially different way, and as a consequence
L �

P does not contain any of the classical quantifiers ∀ and ∃, whereas the
logic below still contains the classical ∃. The same volume in which [9]
appeared describes work by H. Friedman on probabilistic quantifiers.

We will not review all studies of probability logic here, but we only men-
tion one other approach, namely the one where instead of models that each
have their own probability distribution one considers classical models, with
the usual semantics, and where the probability distributions are taken over
the class of models. This is the approach studied in Adams [1]. Appendix
7 in [1] contains a brief outline of a theory for predicate logic under this
approach. This approach seems to be fundamentally different from the one
taken by e.g. Keisler, Valiant, and by us.

Below, we will first give a naive statistical semantics for first order for-
mulas based on sampling according to an unknown distribution D and an
error parameter ε. In Section 3 we discuss the notion of probabilistic or
approximate truth resulting from this, and in particular compare it to clas-
sical and intuitionistic truth. In Section 4 we then discuss the induction
of formulas, which will be the deciding of such formulas with a prescribed
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rate of certainty. We will not be concerned with beliefs and their relation to
probability theory and induction. We refer to Hill, Paris, and Wilmers [7]
for interesting results and references on this related topic. A recent survey
on logic and learning in artificial intelligence is De Raedt and Kersting [4].

2 A probabilistic interpretation of first-order logic

Fix a language L of a finite signature. In our setting, there will always be
a given model M and a given probability distribution D over the universe
of M. The idea of the learning situation will be that we have to learn
about the structure of the unknown model M by taking samples from it
according to the (also unknown) distribution D. When sampling elements
from the model, we will be given the atomic truths these elements satisfy.
From this information we have to induce general statements involving full
quantification. It is clear that this can only be done with a certain rate of
confidence. First we need a definition of approximate truth. The definition
of what it means to induce a sentence in this context (“learning”) will be
given in Section 4. Note that the language of our probabilistic logic is just
first-order predicate logic, but the interpretation of first-order formulas will
be different from the classical one.

Definition 2.1 (Truth definition) Given a first-order sentence ϕ and ε ∈
[0, 1], we inductively define M |=D,ε ϕ as follows.

1. For every prime formula ϕ (i.e. ϕ atomic or the negation of an atomic
formula), M |=D,ε ϕ if M |= ϕ.

2. The logical connectives ∧ and ∨ are treated classically, e.g. M |=D,ε

ϕ ∧ ψ if it holds that M |=D,ε ϕ and M |=D,ε ψ.

3. M |=D,ε ∃xϕ(x) if ∃x ∈ M M |=D,ε ϕ(x).

4. The case of negation is split into subcases as follows:

4.1. For ϕ atomic, M |=D,ε ¬¬ϕ if M |=D,ε ϕ. Furthermore, ¬ dis-
tributes in the classical way over ∨ and ∧, e.g. M |=D,ε ¬(ϕ ∧ ψ)
if M |=D,ε ¬ϕ ∨ ¬ψ.

4.2. M |=D,ε ¬∃xϕ(x) if M |=D,ε ∀x¬ϕ(x).

4.3. M |=D,ε ¬∀xϕ(x) if M |=D,ε ∃x¬ϕ(x).

5. M |=D,ε ϕ→ ψ if M |=D,ε ¬ϕ ∨ ψ.
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6. M |=D,ε ∀xϕ(x) if PrD

[

x ∈ M : M |=D,ε ϕ(x)
]

≥ 1 − ε.

Note that in the above definition everything is treated classically, except
the interpretation of ∀xϕ(x) in case 6. Case 4 in the definition allows us to
rewrite all formula’s in prenex normal form by pushing the negations inside.

Note that both M |=D,ε ∃xϕ(x) and M |=D,ε ∀x¬ϕ(x) may hold, since
the interpretation of the first is the classical one, but the interpretation of
the second is that most x’s satisfy ¬ϕ(x). That is, the logic of |=D,ε is
paraconsistent.

The asymmetry in the interpretation of ∃ and ∀ can be explained when
one thinks of establishing with a given degree of confidence the truth of
statements by taking samples: If the sample contains an x with ϕ(x) one
knows with certainty that ∃xϕ(x), but if one is looking for evidence for
the statement ∀xϕ(x) in general only a certain degree of confidence can be
achieved. This interpretation of universal statements is in line with e.g.
Popper’s philosophy of science, where one counterexample says more than
any number of positive examples. (Note though that Popper’s philosophy
was lacking a proper probabilistic interpretation.)

Note that for ε = 0 the truth definition does not coincide with the
classical one, since in this case there can still be exceptions to a universal
statement, although they can only form a set of measure zero. Still, the case
ε = 0 is somewhat special, as exemplified by Theorem 3.7.2 below.

One could also propose to interpret M |=D,ε ∃xϕ(x) by PrD

[

x : M |=D,ε

ϕ(x)
]

> ε, so that the cases of ∃x¬ϕ(x) and ∀xϕ(x) are exactly complemen-
tary, instead of having a small overlap as in the definition above. However,
besides the fact that the intended meaning of ∃ changes, it then becomes im-
possible to distinguish between these two cases on the basis of finite samples
with a prescribed degree of confidence. Since our definition of learnabil-
ity (Definition 4.1) will require exactly the making of such a decision, the
definition above is more suited for our purposes.

Below, terms like “probabilistic validity” refer to the probabilistic inter-
pretation above. So we will say that a sentence ϕ is probabilistically valid

(or a probabilistic tautology) if for all M, D, and ε it holds that M |=D,ε ϕ.
Similarly, ϕ is probabilistically satisfiable if there exist M, D, and ε such
that M |=D,ε ϕ.

Example 2.2 Consider the sentence

ϕ ≡ ∀xR(x) ∧ ∀xQ(x) ∧ ∀x
(

R(x) ↔ ¬Q(x)
)

.

Then ϕ is probabilistically satisfiable when ε ≥ 1

3
, but not when ε < 1

3
.

Namely to every one of the three universal statements the exceptions can
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have at most ε in weight. An optimum is obtained when all exceptions are
equal in weight, and then ε = 1

3
.

3 Probabilistic truth

The next proposition allows us to compare approximate truth with other
kinds of logical truth.

Proposition 3.1 Let ϕ(x) be a formula with a free variable x. Then the

sets Y =
{

x ∈ M : M |=D,ε ϕ(x)
}

and N =
{

x ∈ M : M |=D,ε ¬ϕ(x)
}

satisfy Y ∪N = M, but not necessarily Y ∩N = ∅.

Proof. We prove this by induction on the complexity of ϕ. The atomic case,
the cases of the propositional connectives, and the case of the existential
quantifier are all classical, hence trivial. So we only have to consider the case
of the universal quantifier. Suppose ϕ(x) = ∀yψ(x, y), and suppose that x is
not in Y . Then PrD

[

y : M |=D,ε ψ(x, y)
]

< 1−ε, and by induction hypothesis
we have PrD

[

y : M |=D,ε ¬ψ(x, y)
]

≥ ε So certainly there exists y ∈ M such
that ¬ϕ(x, y). But this is by definition the same as M |=D,ε ¬∀yϕ(x, y), so
x ∈ N . �

It is instructive to compare the above interpretation of logical formulas to the
intuitionistic and the classical one. In classical logic, the interpretations of ϕ
and ¬ϕ are exactly complementary: The sets Y and N from Proposition 3.1
are disjoint and satisfy Y ∪N = M. In intuitionistic logic, Y and N are also
disjoint, but they need not satisfy Y ∪N = M. In our present probabilistic
interpretation, we do have that Y ∪ N = M, but Y and N need not be
disjoint: there may be an overlap between the interpretations of ϕ and ¬ϕ.
In fact, it may happen that Y ∩N = M.

Proposition 3.2 Every classically satisfiable formula is probabilistically sat-

isfiable, but not vice-versa.

Proof. Every classically valid/satisfiable formula is also valid/satisfiable un-
der the present probabilistic interpretation: This follows since every formula
can be written in prenex normal form (see the remarks following Defini-
tion 2.1) and since case 6 in Definition 2.1 is weaker than the classical
interpretation. In particular we have for any model M that M |= ϕ =⇒
(∀D, ε)

[

M |=D,ε ϕ
]

. An example of a probabilistically satisfiable formula
that is not classically satisfiable is the sentence ∃xR(x) ∧ ¬∃xR(x). Note
that this sentence is even probabilistically satisfiable with ε = 0. �
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Example 3.3 Consider a language L with predicates ≤ and R. Let lin =
(∀x, y)[x ≤ y∨ y ≤ x] be the sentence saying that ≤ is a linear order and let

ϕ = ¬lin ∨ ∃x∀y(y ≤ x).

Clearly ϕ is not a classical tautology. We show that ϕ probabilistically holds
for all ε > 0 in all linear orders that are countable unions of intervals. Let
M, D, ε be a probabilistic model with ε > 0. When M |=D,ε ¬lin then we
are done. When M 6|=D,ε ¬lin then we have classically M |= lin so ≤ really is
a linear order in M. Now suppose that M is a countable union of intervals.
Then we can choose x ∈ M such that most of the weight is to the left of x:
PrD

[

y ∈ M : x ≤ y
]

< ε. Then in particular

PrD
[

y : M |=D,ε y ≤ x
]

=

PrD

[

y : M |= y ≤ x
]

≥ 1 − ε

and hence M |=D,ε (∃x)(∀y)[y ≤ x].
Note that this also gives an example of a model M for which M |=D,ε ϕ

for all ε > 0 does not imply M |=D,0 ϕ.
Next we show that ϕ is not a probabilistic tautology, even when ε > 0.

Let M = (ω1,≤), where ≤ is the usual well-order on ω1. By a ‘tail’ of ω1

we understand any set of the form
{

y ∈ ω1 : x ≤ y
}

for x ∈ ω1. Define a
measure D on M by defining for A ⊆ M,

D(A) =

{

1 if A contains a tail of ω1,

0 if A is countable.

It is easy to check that D is a probability measure. Notice that every
initial segment of ω1 has measure 0. That D satisfies countable additivity
is guaranteed by the fact that the cofinality cof(ω1) of ω1 is ℵ1 (see Kunen
[10]). In particular, however we choose x ∈ ω1, all the weight is always to
the right of x. Hence M 6|=D,ε ϕ for any ε > 0. Uncountable models such
as M in which all weight is “at infinity” will be useful as countermodels in
Theorem 3.7.

Lemma 3.4 Let D be a probability distribution on M such that for all x ∈
M, D({x}) 6= 0. Then for every formula ϕ, M |= ϕ ⇐⇒ M |=D,0 ϕ.

Proof. One direction follows from Proposition 3.2. For the converse direc-
tion, if D is as in the lemma and PrD

[

x ∈ M : M |=D,0 ϕ(x)
]

= 1 then in
fact (∀x ∈ M)

[

M |=D,0 ϕ
]

. So the interpretation of ∀ is in fact the classical
one, and hence every formula is interpreted classically. �
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Proposition 3.5 The probabilistic tautologies coincide with the classical

tautologies.

Proof. That every classically valid formula is also probabilistically valid was
proven in Proposition 3.2. For the converse, suppose that ϕ is not classically
valid. Then there is a countable model M such that M 6|= ϕ. Since M is
countable, there is a distribution D on M such that for all x ∈ M, D({x}) 6=
0. But then by Lemma 3.4, M 6|=D,0 ϕ. Hence ϕ is not probabilistically
valid. �

Proposition 3.5 shows that the probabilistic tautologies coincide with the
classical tautologies because of the ε = 0 case. Next we refine Proposition 3.5
by considering ε-tautologies for every separate ε.

Definition 3.6 For ε ∈ [0, 1], a sentence ϕ an ε-tautology if M |=D,ε ϕ for
every M and D.

Theorem 3.7 1. For all ε < ε′, the ε-tautologies are included in the

ε′-tautologies.

2. Although for ε = 0, ε-truth is not the same as classical truth, the

0-tautologies coincide with the classical tautologies.

3. The class of 1-tautologies is different from the ε-tautologies for every

ε < 1.

4. For all ε, ε′ with 1 > ε′ > ε ≥ 0, the ε-tautologies are different from

the ε′-tautologies.

Proof. Ad 1. This is immediate from Definition 2.1, since case 6 becomes
weaker if ε becomes bigger.

Ad 2. This was proved in Proposition 3.5.
Ad 3. This is a degenerate case: Note that for ε = 1 case 6 in Def-

inition 2.1 is in fact empty. This makes a sentence like ϕ = ∀xR(x) a
1-tautology. Clearly ϕ is not an ε-tautology for any ε < 1.

Ad 4. Since the rationals are dense in the reals it is sufficient to prove
this for rational ε and ε′. We use ideas similar to Example 3.3. First we
give an example of a 2

3
-tautology ϕ that is not a ε-tautology for any ε < 2

3
.

Given a unary predicate X, let

lin(X) = ∀x∀y
[

X(x) ∧X(y) → (xRy ∨ yRx)
]
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be the sentence saying that R is a linear order on X. For unary predicates
X and Y let XRY be the sentence ∀x∀y(X(x)∧Y (y) → xRy). Now let X0,
X1, and X2 be unary predicates and define

3lin = ∀x
(

X0(x) ∨X1(x) ∨X2(x)
)

∧

lin(X0) ∧ lin(X1) ∧ lin(X2) ∧

X0RX1 ∧X1RX2 ∧X2RX0.

We do not require R to be transitive except on the Xi, e.g. we do not
require X0RX2. Note that because 3lin is purely universal we have that
if M 6|=D,ε ¬3lin then M consists precisely of X0, X1, and X2 (with no
exceptions), the Xi are really (classically) linearly ordered, and Xi precedes
Xi+1 (with indices taken mod 3). Now define1

ϕ = ¬3lin ∨ ∃x∀y(X0(y) ∧ yRx)

∨ ∃x∀y(X1(y) ∧ yRx)

∨ ∃x∀y(X2(y) ∧ yRx).

We claim that ϕ is a 2

3
-tautology. Indeed, if M 6|=D,ε ¬3lin then the measure

is divided over X0, X1, and X2, so at least one of them has measure at
least 1

3
. If this holds for Xi we can pick the upper bound x from Xi+1. Next

we show that ϕ is not an ε-tautology for any ε < 2

3
. Namely let Xi = ω1 for

i ∈ {0, 1, 2}, with R on ω1 the usual well-order, and such that M consisting
of the Xi satisfies 3lin. Define a measure on ω1 by

D(A) =

{

1

3
if A contains a tail of ω1

0 if A is countable.

D defines a probability measure on M by letting A ⊆ M have measure 0,
1

3
, 2

3
, or 1 depending on whether A contains 0, 1, 2, or 3 tails. (That D is

countably additive again uses that cof(ω1) = ℵ1 as in Example 3.3.) Now
any element x ∈ M can be R-upper bound for at most one Xi, hence cover
at most 1

3
in measure. This shows that ϕ is not an ε-tautology for any ε < 2

3
.

Next we indicate how to generalize the previous construction to obtain a
1

3
-tautology ϕ that is not an ε-tautology for any ε < 1

3
. Define the formula

σij = ∃x∃y∀z
(

(Xi(z) ∧Rzx) ∨ (Xj(z) ∧Rzx)
)

1The simpler sentence ϕ = ¬3lin ∨ ∃x∀y(yRx) would suffice for this case, but we use
the more complex sentence in order to explain how the generalization works.
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and define
ϕ = ¬3lin ∨ σ01 ∨ σ02 ∨ σ12.

Basically ϕ says that if M 6|=D,ε ¬3lin then there are two upper bounds in M

that together cover at least two of the three Xi. Now it is easy to see that
there are always two copies Xi that together carry at least 2

3
of the measure.

Hence ϕ is a 1

3
-tautology. The argument that it is not an ε-tautology for

any ε < 1

3
is completely analogous to the argument in the previous case.

Now it should be clear how to proceed in the general case of ε = 1 − m
n

.
In this case we have n copies X0, . . . , Xn−1 and a formula nlin analogous
to 3lin. For every of the

(

n
m

)

choices {i1, . . . , im} of different values from
{0, . . . , n− 1} we have the formula

σi1...im = ∃x1 . . . ∃xm∀z
(

(Xi1(z) ∧Rzx) ∨ . . . ∨ (Xim(z) ∧Rzx)
)

,

and we define
ϕ = ¬3lin ∨

∨

i1...im

σi1...im .

The arguments that ϕ is an (1 − m
n

)-tautology but not an ε-tautology for
any ε < 1 − m

n
are completely analogous to the case of ε = 1 − 2

3
. �

4 Learning logical sentences

Now that we have developed a notion of approximate truth, we want to
continue our discussion of inducing general sentences from atomic data. In
the definition of learning below there will be given two parameters: An
error parameter ε and a confidence parameter δ. Both are typically small
numbers from (0, 1]. Now given a sentence ϕ, we say that an algorithm L

pac-learns ϕ if L, given any ε and δ, and with the use of sampling from the
unknown model M according to the also unknown distribution D, can decide
the approximate truth of ϕ in M (measured using the relation |=D,ε) with
high probability, namely 1 − δ. Like in Valiants pac-model, the acronym
“pac” stands for “probably approximately correct”, where the “probably”
refers to the confidence parameter δ and “approximately correct” to the
error parameter ε.

In the next definition we make use of a sampling oracle EX(D), which
when called upon randomly draws an element x from the model M, according
to the distribution D. Given a sample of elements, the oracle supplies us
with all the atomic truths these elements satisfy, for every relation of every
arity in the language L. Recall that we have assumed that the language L is
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of finite signature, so that every sample satisfies only finitely many atomic
truths.

Definition 4.1 (Probabilistic induction) A (probabilistic) algorithm L

pac-learns sentence ϕ if L, for any unknown M and D, given error parameter
ε > 0 and confidence parameter δ > 0, and with access to the sampling oracle
EX(D), L outputs one of the possibilities M |=D,ε ϕ, M |=D,ε ¬ϕ, such that
with probability at least 1− δ the output is correct. Note that both possible
outputs can be correct (see the discussion following Definition 2.1).

For the next result we will assume that L has no constants or function
symbols. See however the remarks in Section 5 that show that this restriction
is rather immaterial.

Theorem 4.2 There exists an algorithm L that pac-learns any sentence ϕ.

If ϕ has n quantifiers, L takes a sample of size
(

1

ε
ln n

δ

)n
.

Proof. The idea is that one can decide universal quantifiers with any pre-
scribed accuracy by taking large enough samples, and likewise decide exis-
tential quantifiers by searching examples in large enough samples. When
one knows the number of quantifiers one can iterate this, and compute the
size of the sample needed to get a good answer with high probability. More
precisely, let ϕ be any sentence. As before, we may assume that ϕ is in
prenex normal form: ϕ = ∃x0∀x1 . . . QxnR(x0, . . . , xn). Let m ∈ ω. Con-
sider the following induction procedure L: For every xi sample m xi+1’s
from M according to D. So in total L takes a sample of size mn.
Claim: If m > 1

ε
ln 1

δ
then with certainty (1 − δ)n one can decide whether

M |=D,ε ϕ or M |=D,ε ¬ϕ.
We prove the claim by induction on the number of quantifiers n:

n = 0. The base of the induction is in fact empty since we have assumed
that the language L has no constants and function symbols, so that there
are no sentences without quantifiers.

n+ 1. Keeping the notation from above, write ϕ = ∃x0ψ(x0).

– Suppose the sample S taken by L satisfies ϕ (where the quantifiers are
restricted to S). We denote this by ϕS . That means that S contains x0

such that S satisfies ψ(x0). By induction hypothesis this then holds
with probability ≥ (1 − δ)n−1. Hence M |=D,ε ϕ with probability
≥ (1 − δ)n−1 ≥ (1 − δ)n.
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– Suppose the sample S does not satisfy ϕ: No x0 is found. Suppose
that

PrD

[

x ∈ M : M |=D,ε ¬ψ(x)
]

< 1 − ε.

Then by Proposition 3.1 we have that

PrD
[

x ∈ M : M |=D,ε ψ(x)
]

≥ ε.

Then the probability that the m sampled x’s miss this set is (1−ε)m ≤
e−mε < δ when m > 1

ε
ln 1

δ
. By induction hypothesis we have that for

every x with M |=D,ε ψ(x) that ψS(x) holds with probability at least
(1− δ)n−1. So the probability that ϕS is at least (1− δ)(1− δ)n−1. So
with probability at least (1 − δ)n it holds that

PrD

[

x ∈ M : M |=D,ε ¬ψ(x)
]

≥ 1 − ε,

i.e. that M |=D,ε ¬ϕ.

Now to finish the proof of the theorem we notice that if we replace δ in
the above claim by δ

n
then we can decide ϕ with certainty

(

1 − δ
n

)n
. From

the binomial or Taylor expansion of the latter expression one can see that
(

1 − δ
n

)n
≥ 1 − δ for all δ ∈ [0, 1] and all n, so the theorem follows. �

5 Concluding remarks

• A possible objection to the probabilistic model ω1 with the measure D

as defined in Example 3.3 is that the relation ≤ is not a D2-measurable
subset of ω 2

1 . (This is a famous argument of Sierpinksi using Fubini’s
theorem.) Case 6 in Definition 2.1 does not require that all k-ary re-
lations occurring in ϕ are Dk-measurable in Mk, only that the appro-
priate sections are D-measurable, but one could argue that the cases
where the whole relations are not Dk-measurable are pathological. A
natural extra condition would be to require that

for every k-ary predicate R occurring in ϕ the set of k-tuples
satisfying R is Dk-measurable, (1)

where Dk denotes the product measure on Mk. If we wish to im-
pose condition (1) then we have to reprove Theorem 3.7 using other
countermodels than the ones used there. This can indeed be done, so
that Theorem 3.7 remains true also with condition (1). Note also
that we do not have (as was already remarked in Keisler [9]; the
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same argument works here) that M |=D,ε ∀x∀yR(x, y) if and only
if M |=D,ε ∀y∀xR(x, y), even under the measurability condition (1).
(There exists an easy 3-element counterexample for M.)

• In the proof of Theorem 4.2 we assumed that the language L had no
constants and function symbols. However, if we assume that the truth
of all atomic sentences in L is given (these are only finitely many since
L is of finite signature) then Theorem 4.2 still holds for languages with
constants and function symbols. That the truth of all finitely many
atomic sentences from L is given could be accounted for by broadly
interpreting the action of the sampling oracle as listing not only all
atomic truths of the elements of a sample but also that of all atomic
sentences built from constants.

• The setting of Section 4 can be suitably generalized by allowing the
possibility that in inducing a formula ϕ different distributions D are
used for different variables and predicates in ϕ, instead of the same
one for all.

• We note that Definition 4.1 does not subsume the definition of pac-
learning, primarily because the task of deciding the truth of a formula
(as in Definition 4.1) is different from producing a concept hypothesis
from a concept class (as in pac-learning), even if these concepts are
defined by first order formulas.

• We have left many model-theoretic questions about the probabilistic
logic studied here unsettled. Some of these questions, as well as mat-
ters of decidability, are treated in [14].
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