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Abstract. We prove a number of elementary facts about com-
putability in partial combinatory algebras (pca’s). We disprove a
suggestion made by Kreisel about using Friedberg numberings to
construct extensional pca’s. We then discuss separability and ele-
ments without total extensions. We relate this to Ershov’s notion
of precompleteness, and we show that precomplete numberings are
not 1-1 in general.

1. Introduction

Combinatory algebra was founded by Schönfinkel [28] and Curry [10],
and is closely related to the lambda calculus (cf. Barendregt [2]). Curry
attempted to use combinatory algebra as a foundation of mathematics,
and Church tried the same for the lambda calculus. Both attempts fell
short (Church’s system was inconsistent and Curry’s was too weak),
but the formalisms became important for other reasons, for example as
foundational theories for the theory of computation. Partial combina-
tory algebra (pca) was first studied in Feferman [13] as an axiomatic
approach to the theory of computation and the study of various con-
structive theories. See Troelstra and van Dalen [31] for a discussion of
pca and the relation with constructive mathematics, as well as a varied
list of models of pca. In this paper we discuss computability in pca’s
and relate this to the theory of numberings.

The work in this paper is related to several other approaches to ab-
stract models of computation, many of which are discussed in Longley
and Normann [20]. In particular there is the notion of a Basic Re-
cursive Function Theory (BRFT), introduced by Wagner and Strong,
which is closely related to Moschovakis’ notion of a precomputation
theory (cf. Odifreddi [21, p222]). Every BRFT gives rise to a pca, as
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pointed out in [9, p199]. This will be relevant below when we discuss
the work of Kreisel.

Kreisel [17] eloquently discusses some of the reasons one might want
to generalize the setting of classical computability theory. Kreisel’s
ideas were highly influential, cf. Sacks [26], and also the review by
Yates [32]. Hyland wrote [15] as a kind of tribute to [17]. In section 6
we disprove a suggestion made by Kreisel in [17] (quoted as a theorem
in Odifreddi [21]) about constructing extensional models, using Fried-
berg’s result that the partial computable functions are computably
enumerable without repetitions. We prove that such a construction is
impossible.

Cockett and Hofstra [9] discuss category theoretic approaches to
computability theory and pca’s. They introduce the notion of a Tur-
ing category, relaxing restrictions in earlier work on so-called recursion
categories by Di Paola and Heller, and then proceed to show that the
study of Turing categories is essentially (in a precise sense) equivalent
to the study of pca’s.

The paper is organized as follows. In section 2 we list some prelim-
inaries about pca’s, and in section 3 we discuss basics of computable
and computably enumerable (c.e.) sets in pca’s. In section 4 we prove
that Post’s theorem fails in Kleene’s second model K2. In section 5 we
discuss the halting problem and relativization. In section 6 we discuss
Kreisel’s suggestion about Friedberg numberings and extensional pca’s,
and show that it is impossible. In section 7 we discuss inseparable sets,
and in section 8 use this in the discussion of elements without total
extensions. In section 9 we relate this to the theory of numberings,
and show that precomplete generalized numberings cannot be 1-1. In
section 10 we use the notion of relativization to formulate an analog of
Arslanov’s completeness criterion for pca’s, motivated by results about
the theory of numberings.

Our notation from computability theory is mostly standard and fol-
lows Odifreddi [21] and Soare [29]. The natural numbers are denoted by
ω. ω<ω is the set of finite sequences over ω. ϕe, e ∈ ω, denotes a stan-
dard enumeration of the (unary) partial computable (p.c.) functions.
Notation for pca’s is introduced in section 2. For a partial function
ϕ, dom(ϕ) denotes the set of elements where ϕ is defined, and ϕ�x
denotes its restriction to numbers n < x.

2. Partial combinatory algebras

Definition 2.1. A partial applicative structure (pas) is a setA together
with a partial map · from A×A to A. We also write ab instead of a · b,
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and think of this as ‘a applied to b’. If this is defined we denote this
by ab↓. By convention, application associates to the left. We write abc
instead of (ab)c. Terms over A are built from elements of A, variables,
and application. If t1 and t2 are terms then so is t1t2. If t(x1, . . . , xn)
is a term with variables xi, and a1, . . . , an ∈ A, then t(a1, . . . , an) is
the term obtained by substituting the ai for the xi. For closed terms
(i.e. terms without variables) t and s, we write t ' s if either both are
undefined, or both are defined and equal. Here application is strict in
the sense that for t1t2 to be defined, it is required that both t1, t2 are
defined. We say that an element f ∈ A is total if fa↓ for every a ∈ A.

A pas A is combinatory complete if for any term t(x1, . . . , xn, x),
0 6 n, with free variables among x1, . . . , xn, x, there exists a b ∈ A
such that for all a1, . . . , an, a ∈ A,

(i) ba1 · · · an ↓,
(ii) ba1 · · · ana ' t(a1, . . . , an, a).

A pas A is a partial combinatory algebra (pca) if it is combinatory
complete.

Note that combinatory completeness is the analog of the S-m-n-
theorem (also called the parametrization theorem) from computability
theory, cf. Odifreddi [21].

Theorem 2.2. (Feferman [13]) A pas A is a pca if and only if it has
elements k and s with the following properties for all a, b, c ∈ A:

• k is total and kab = a,
• sab↓ and sabc ' ac(bc).

Note that k and s are nothing but partial versions of the familiar
combinators from combinatory algebra. As noted in [13, p95], Theo-
rem 2.2 has the consequence that in any pca we can define lambda-
terms in the usual way (cf. Barendregt [2, p152]):1 For every term
t(x1, . . . , xn, x), 0 6 n, with free variables among x1, . . . , xn, x, there
exists a term λ∗x.t with variables among x1, . . . , xn, with the property
that for all a1, . . . , an, a ∈ A,

• (λ∗x.t)(a1, . . . , an)↓,
• (λ∗x.t)(a1, . . . , an)a ' t(a1, . . . , an, a).

1Because the lambda-terms in combinatory algebra do not have the same substi-
tution properties as in the lambda calculus, we use the notation λ∗ rather than λ,
cf. Barendregt [2, p152]. E.g. ([20, p84]) the terms λx.(λy.y)x) and λx.x are β-
equivalent, but their λ∗-versions are s(ki)i and i, and these are in general different
elements in a pca.



4 S. A. TERWIJN

The most famous examples of a pca are Kleene’s first and second
models K1 and K2. K1 consists of the natural numbers ω, with appli-
cation defined as n · m = ϕn(m). So this is essentially the setting of
classical computability theory. K2 is defined on ωω, with application
α · β defined by applying the continuous functional with code α to the
real β. See Longley and Normann [20] for more details. Many other ex-
amples of pca’s can be found in the books by Beeson [6], Odifreddi [21],
and van Oosten [23].

The presence of the λ∗-terms and the combinators allows for the
following definitions in any pca (cf. Barendregt [2, p44] and van Oosten
[23]): The Booleans true and false can be defined as T = λ∗xy.x = k
and F = λ∗xy.y = ki, where i = skk. We can implement definition by
cases using an element if-then-else with the property if-then-elseTab = a
and if-then-elseFab = b. Namely, we can simply take if-then-else = i.
This also gives the Boolean operations, for example

nota = if-then-elseaFT, and

andab = if-then-elsea(if-then-elsebTF)F.

Coding of sequences is a standard device in the lambda calculus. Us-
ing the λ∗-terms available in any pca, we can code n-tuples (a1, . . . , an)
by 〈a1, . . . , an〉 = λ∗z.za1 . . . an. The inverse projection functions can
be defined as Uni = λ∗u1 . . . un.ui, so that

〈a1, . . . , an〉Uni = ai.

There are various ways to define the natural numbers 0̄, 1̄, 2̄, . . . in
a pca. A convenient way is to define 0̄ = i, and n+ 1 = 〈F, n̄〉, cf.
Barendregt [2, p44].

All the above can be defined in any pca, but they may trivialize if
|A| = 1. van Oosten [23, p11] calls A nontrivial if |A| > 1. We note
that n = 1 is the only possible cardinality for a finite pca:

Proposition 2.3. Suppose that a pca A is finite. Then |A| = 1.

Proof. Note that every pca is nonempty, since by Feferman’s Theo-
rem 2.2 it has to contain the combinators k and s. Furthermore,
there exists a (total) pca with precisely one element a, with appli-
cation aa↓= a. In this pca we have s = k = a. Since all λ∗-terms are
equal to a, also T = F = a.

Now suppose that A = {a1, . . . , an}, and n > 1. A contains the
elements ka1, . . . , kan, which are n distinct constant functions since
kaib = ai. A also contains the identity function i = skk, which is not
a constant function since n > 1. So A has at least n + 1 elements, a
contradiction. �
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Following [22], we say that a partial function ϕ : A → A is rep-
resentable in A if there is an element r ∈ A such that for every
a ∈ dom(ϕ), ra↓= ϕ(a). We have a similar definition for multivariate
functions.

3. Computable sets and c.e. sets in pca’s

The following definition is taken from van Oosten and Voorneveld
[24], which in turn is based on Longley [19].

Definition 3.1. Let A be a pca, and A ⊆ A. A is called decidable in
A if there exists a total c ∈ A such that for every a ∈ A,

ca = T⇐⇒ a ∈ A,
ca = F⇐⇒ a /∈ A.

Note that this is equivalent to saying that the characteristic function
χA : A → {T,F} of A is representable in A. Instead of T and F, we
may equivalently use 0 and 1, cf. Proposition 3.4.

We can also easily define the analog of c.e. sets in the following way.

Definition 3.2. We say that A is computably enumerable (c.e.) in A
if there exists e ∈ A such that

A = dom(e) = {a ∈ A | ea↓}.

Note that this notion is not very useful in total pca’s, since there
A itself is the only c.e. set.2 For nontotal pca’s we have the following
result.

Proposition 3.3. In nontotal pca’s, decidable sets are c.e. The con-
verse implication does not hold in general.

Proof. Suppose that A is a nontotal pca, and that A ⊆ A and c ∈ A
are as in Definition 3.1 above. First note that A contains a totally
undefined function. Namely, since A is nontotal, there are f, g ∈ A
such that fg ↑. Now define h = λ∗x.fg = s(kf)(kg). Then ha ↑ for
every a ∈ A.

Now define ea = if-then-else(ca)0(ha). This yields 0 if ca = T, so if
a ∈ A, and ha, which is undefined, otherwise. Hence ea↓ if and only if
a ∈ A.

For the converse implication, c.e. sets are not always decidable by
Proposition 5.1. �

2In total pca’s, such as the lambda calculus, one can represent ‘undefined’ in
other way’s, for example using terms without normal form, cf. Barendregt [3].
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Definition 3.1 uses T,F as truth values. In mathematics it is cus-
tomary to use 0, 1 as values of characteristic functions. We show that
in the context of pca’s, we may equivalently use the numerals 0̄, 1̄ as
truth values.

Proposition 3.4. Let A be a pca. There exists c, d ∈ A such that

cT = 1̄ d1̄ = T

cF = 0̄ d0̄ = F.

Proof. It is easy to check that c = λ∗z.if-then-elsez1̄0̄ satisfies the first
part of the proposition.

For the second part, note that the term zero = λ∗x.xT has the
property zero0̄ = T and zero1̄ = F (cf. [2, p134]) so we can take d
to be the term λ∗x.not(zerox). �

Since in every pca there are elements mapping T and F to 1̄ and 0̄,
and vice versa, we may equivalently use 1̄ and 0̄ in Definition 3.1. From
now on we will mostly use the latter, and simply write 0 and 1 for the
values of characteristic functions.

4. A counterexample to Post’s theorem

Post’s theorem is the statement that for A ⊆ ω, if both A and its
complement A are c.e., then A is decidable. To decide whether x ∈ A,
simply enumerate both A and A until x appears in one of them. This
works because in ω, c.e. sets have finite approximations, and if x ∈ A
then x appears in A after finitely many steps. In general, we do not
have a good notion of approximation in pca’s, and being “enumerated”
into a c.e. set does not have to happen in finitely many stages in every
pca. Hence there does not seem to be a reason why Post’s theorem
should hold in general. Indeed we now show that it fails in Kleene’s
second model K2.

Proposition 4.1. Post’s theorem fails in K2.

Proof. Let 0̄ denote the all zero sequence in 2ω, and let 1̄ denote the
all one sequence.

Let A = {0̄}. Then A is c.e. in K2: Define α̂ : 2<ω → 2ω by

α̂(x) =

{
0n if x = 0n

↑ otherwise.

α̂ defines a partial computable functional α : 2ω → 2ω that simply
copies the input, as long as the input consists of only zeros, and becomes
undefined otherwise. Hence dom(α) = 0̄, which shows that A is c.e.
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The complement A = {r ∈ 2ω : r 6= 0̄} is also c.e.: Define

β̂(x) =

{
1n if n = |x| and x(i) = 1 for some i < n,

↑ otherwise.

Then β̂ defines a partial computable functional β with dom(β) = A.
So both A and A are c.e., but A is not decidable in K2. Suppose

that it were, and suppose that γ is a computable functional such that
γ(x) = T if x = 0̄, and γ(x) = F if x 6= 0̄. Now since γ is continuous,
this distinction has to be made on the basis of a finite initial segment
of x, which is impossible. Note that for this argument it does not really
matter what T and F are, as long as they are distinct reals in 2ω. �

5. Reductions and relativization

In Beeson [6, p107] it is already remarked that besides the existence
of a universal function and the undecidability of the halting problem,
not many analogues of classical results in computability theory can be
proved. We claim no originality for the results in this section, but for
the record discuss the m-completeness of the halting problem. This
was surely known to people working in axiomatic recursion theory, but
since we have not been able to locate it in the literature, we include
it here. In any case, it is an easy fact that is completely analogous to
Turing’s classical result.

We can define the analog of the halting problem in any pca A using
the coding of sequences. Define

H = {〈a, b〉 | ab↓}.

Proposition 5.1. For every nontotal pca A, H is undecidable and c.e.
in A.

Proof. To see that H is c.e. in A, define e ∈ A by

ex = (xU2
1)(xU

2
2),

where U2
i refers to the projection functions defined in section 2. We

then have in particular that

e〈a, b〉↓ ⇐⇒ ab↓ ⇐⇒ 〈a, b〉 ∈ H
which shows that H is indeed c.e. in A.

The proof of the undecidability is the same as for the classical case.
Namely suppose that H were decidable. This would mean the existence
of f ∈ A such that

f〈a, b〉 =

{
T if ab↓,
F if ab↑.
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Define g ∈ A such that ga ↓ if and only if f〈a, a〉 = F. Such g can
be defined using the if-then-else operator (cf. section 2) as follows. Let
ha ↑ for every a. (Such h exists in any nontotal pca, cf. the proof of
Proposition 3.3. Now define

ga = if-then-else(not(f〈a, a〉))0(ha)

This yields 0 if f〈a, a〉 = F, hence if aa↑, and ha, which is undefined,
otherwise. Hence ga ↓ if and only if aa ↑. Taking a = g we obtain a
contradiction. �

Note that by Proposition 5.1, as soon as a pca has one undefined
application ab↑, its halting problem is undecidable.

Defining the analog of m-reductions is also straightforward:

Definition 5.2. For sets A,B ⊆ A, we say that A m-reduces to B,
denoted A 6m B, if there exists a total element f ∈ A such that

a ∈ A⇐⇒ fa ∈ B
for every a ∈ A. We write A ≡m B if both A 6m B and B 6m A, in
which case we say that A and B have the same m-degree.

Many basic properties of m-reductions in ω carry over to the general
case. For example, we can define the diagonal halting problem

K = {a | aa↓},
and show that K ≡m H.

Proposition 5.3. H is m-complete for the c.e. sets in A, i.e. A 6m H
for every such set A.

Proof. Suppose that A is c.e. in A, say A = dom(e) for e ∈ A. Then

e ∈ A⇔ ea↓⇔ 〈e, a〉 ∈ H,
and hence fa = 〈e, a〉 is an m-reduction from A to H. Note that f is
total, since 〈· , ·〉 is implemented by λ∗-terms in any pca. �

We also have an analog of Turing reductions in any pca A. This is
somewhat harder to define, and was carried out in van Oosten [22], see
also [24]. This gives for any pca A and any partial function f : A → A
a new pca A[f ] in which f is represented, in such a way that A[f ]
contains A in a natural way. Application in A[f ] models computation
in A with f as an oracle, and thus provides an analog of relativization
for pca’s. For A = K1 we have that A ∈ K1[B] is equivalent to Turing
reducibility A 6T B.

More specifically, A[f ] has the same underlying set as A, with only
a different application operator ·f , defined as follows. a ·f b↓= c if there
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exist e0, . . . , en−1 ∈ A (the queries to the oracle f) such that for every
i < n:

• a · 〈b, f(e0), . . . , f(ei−1〉 = 〈F, ei〉,
• a · 〈b, f(e0), . . . , f(en−1〉 = 〈T, c〉.

Here · denotes application in A. We will use this construction in sec-
tions 8 and 10.

6. Extensionality and enumerations without repetitions

Definition 6.1. A pca A is called extensional if

∀a ∈ A(fa ' ga) =⇒ f = g

for all f, g ∈ A.

In [14] Friedberg proved the classic result that the class of partial
computable functions is c.e. without repetitions. In the second edition
of Odifreddi [21, p224] it is stated that the existence of an extensional
partial combinatory algebra follows from Friedberg’s result, with a ref-
erence to Kreisel [17]. (This is from the second edition of [21]; in the
first edition this statement is missing.) Indeed, Kreisel (p186 ibid.)
suggested that an enumeration without repetitions could be used to
obtain an extensional model. (Note however that Kreisel’s concern
were models of BRFT mentioned above, not pca’s.) However, Kreisel
explicitly says that he did not verify this result.3 In any case, it seems
that the mere statement of Friedberg’s theorem is not sufficient to ob-
tain an extensional pca, so that at least an adaptation of the proof of
Friedberg’s result is required.

Suppose that ψe, e ∈ ω, is an enumeration of all unary p.c. functions.
On the face of it, it seems plausible that one could make this into an
extensional pca, since after all every function in the enumeration has
a unique code. Of course the intended application operator here is

n ·m = ψn(m). (1)

To prove that ω with this application operator is a pca, one has to
show that there exist combinators k and s as in Theorem 2.2. Now the
statement of Friedberg’s theorem itself is not sufficient to prove this.
Namely, for every a there is a code ka of the constant a function in the

3Kreisel discusses the relation between BRFT and set theory, using general-
ized recursion theory. In this context he discusses extensionality. Kreisel writes:
“...there are two ways of treating extensionality . [The first is proof-theoretic] An-
other is to appeal to an enumeration without repetition; but I have not stopped to
verify the obvious essential point whether the axioms of BRFT are in fact satisfied
for such an enumeration without repetition...”
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enumeration, but we cannot find such codes uniformly in a. Hence we
cannot prove that we have a combinator k satisfying kab = a for every
a and b, which is the first requirement of Theorem 2.2. This obstacle,
however, can be overcome by an adaptation of the proof of Friedberg’s
result, see Theorem 6.3 (i). However, for the combinator s no such
adaptation is possible.

Lemma 6.2. There exists a computable enumeration without repeti-
tions ψx of the unary p.c. functions such that for all x, y ∈ ω,

ψ2x+1(y) = x. (2)

Proof. For the application of the lemma below, we need to be able to
effectively retrieve the combinator k (as in Theorem 2.2) from the enu-
meration. Note that for every a, ka is the function that is constant a.
We code the functions ka on the odd numbers by defining ψ2a+1 as
in (2). We use the even numbers for the construction of the enumer-
ation of all other p.c. functions, in the manner of Friedberg [14] (see
also Odifreddi [21, II.5.22]).4

We start the construction by fixing ψ2x+1 as in (2) for every x. We
construct ψ2x in such a way that every unary p.c. function occurs ex-
actly once. (We assume that ϕe is an enumeration of all unary p.c.
functions.) We do this by letting ψ2x follow some ϕe for every x. If
subsequently it looks like e is not a minimal code of ϕe, or that ϕe is
one of the constant functions, we release the follower by making ψ2x a
finite function different from all functions occurring so far, and stop its
enumeration.

We say that x is a follower of ϕe at stage s if we are trying to make
ψx = ϕe, i.e. ψx,s = ϕe,s. A follower x of ϕe is permanent if it is a
follower of ϕe at almost every stage.

For a follower x of ϕe, to release x at stage s means that x is no
longer a follower of ϕe, and that we define ψx to be different from all
other finite functions ψy,t that have been defined so far, i.e. with y 6= x,
t 6 s, and with either 0 < y < s or y odd, by making it a finite function
incompatible to these. We will have that ψ0 is the empty function, and
all other ψx will have nonempty domain. Since we work in ω<ω it will
always be possible to find incompatible strings for finite functions with
nonempty domain. To make ψx incompatible with all ψy with y odd,
it suffices to make it nonconstant.

4There is nothing very special about the class of constant functions being fixed in
this lemma. Similar modifications of Friedberg’s result have been made by Pour-El
and Howard and others, cf. [21, p232] for references and further discussion.
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The formal construction is as follows. At stage s = 0, define ψ2x+1 as
in (2) for every x. Also define ψ0 = ∅ to be the empty function. In the
rest of the construction, we only consider ϕe with nonempty domain.

At stage s > 0 of the construction we do the following.
For every x < s, if x is a follower of ϕe, we release x if x is even and

one of the following hold:

• there is i < e with ϕi,s�x = ϕe,s�x. (In this case e does not look
like a minimal code.)
• for some follower y already released, ψy,s = ψx,s. (In this case
ϕe might equal the finite function ψy, and we have to avoid the
duplication.)
• ϕe,s�x is a constant function, i.e. ∃a∀n < x (ϕe,s(n) = a). (Since

the constant functions are already covered by the ψ2x+1.)

If s = 〈e, t〉, and ϕe,s 6= ∅, and ϕe currently does not have a follower,
pick the smallest even x that has not yet been used as a follower,
and appoint x as a follower of ϕe. Note that this ensures that every
nonempty ϕe has infinitely many opportunities of being appointed a
follower.

Finally, for every x and e such that x is a follower of ϕe at stage s,
define ψx,s = ϕe,s. This ends the construction. We verify that the
enumeration ψx is as desired.

Claim: ∀e ∃x (ϕe = ψx), i.e. every unary p.c. function occurs in the
enumeration ψx. To prove the claim, suppose that e is a minimal index
of ϕe, and that s0 is so large that

∀s > s0 ∀x > s0 ∀i < e (ϕi,s�x 6= ϕe,s�x).

If ϕe is constant then it is equal to ψ2x+1 for some x by stage 0 of the
construction. Suppose that ϕe is not constant. If ϕe has a permanent
follower x then ϕe = ψx. Otherwise, ϕe keeps getting appointed new
followers (at stages of the form s = 〈e, t〉). Since the first option for
releasing a follower x is ruled out after stage s0 by assumption, and
the third is ruled out because ϕe is not constant, the only option for
releasing x after this stage is the second one, namely that ψy,s = ψx,s
for some already released y. But this can happen only once, since all
ψy,s for y released are incompatible.

Claim: x 6= y =⇒ ψx 6= ψy, i.e. ψx is an enumeration without
repetitions. Namely, the ψx for x odd are all different by (2). Note
further that every even x > 0 is eventually used as a follower, since we
always pick the smallest one not used yet.

If x is a follower of ϕe, and ϕe is constant, then x will eventually be
released by the third reason for release in the construction. Hence ψx
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is never a constant function for any even x. So it suffices to prove the
claim for x and y even. We check the following cases.

Suppose that x and y are permanent followers, say ψx = ϕe and
ψy = ϕi. Then e 6= i since ϕe can have at most one permanent follower.
W.l.o.g. suppose i < e. If ψx = ψy then ϕe = ϕi, hence there is a
stage s such that ϕi,s�x = ϕe,s�x, causing x to be released, contrary to
assumption. Hence we must have ψx 6= ψy.

Suppose that both x and y are released at some stage. Since all
functions ψx and ψy for different released x and y are incompatible,
this implies that they are different.

Finally suppose that one of x and y is permanent and the other is
released, say x is permanent and y is not. If ψx = ψy, then ψx is a
finite function. So at some stage s we will have ψy,s = ψx,s, causing x
to be released, contradicting the assumption.

This proves the second claim, and the proof of the lemma. �

Theorem 6.3. (i) There exists an extensional pas on the set of all
partial computable unary functions, containing a combinator k as
in Theorem 2.2.

(ii) There exists no such a pas with the combinator s.

Proof. (i) Using the enumeration ψx from Lemma 6.2, define applica-
tion as in (1). This pas is clearly extensional, as the enumeration ψx
is 1-1. We show that we have the combinator k. Let k be a code such
that ψk(a) = 2a + 1 for every a. The code k exists because this is a
computable function, so it occurs in the enumeration. Then by (2) we
have

ψψk(a)(b) = a,

hence k is a code of a total function with the property kab = a for
every a.

For the proof of part (ii), suppose that ψe, e ∈ ω, is a computable
enumeration without repetitions containing all unary p.c. functions,
and suppose that ω with the application operator (1) is a pca. We
make the following observations.

I. {a ∈ ω : ψa(a) ↓} is undecidable. This is the same as the usual
argument for the undecidability of the halting problem: Suppose that c
is a code such that ϕc(a)↓⇔ ψa(a)↑ for every a. Since the enumeration
ψe contains a code of every p.c. function, there exists e such that ψe =
ϕc. Taking a = e we obtain a contradiction: ψe(e)↓⇔ ϕc(e)↓⇔ ψe(e)↑.
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II. {b ∈ ω : ψb is constant zero} is decidable.5 Suppose c is a code
such that ψc is the constant zero function. Since codes in the enumer-
ation ψe are unique, ψb is constant zero if and only if b = c.

Since we have assumed that ω with application (1) is a pca, we have
combinatory completeness (see Definition 2.1), which is an analogue
of the S-m-n-theorem. Using this we can reduce I to II, and thus we
obtain a contradiction. Namely, consider the term

t(x, y) = 0 · (x · x).

Here 0 · x should be read as the constant zero function applied to x
(which happens to be the same notation as multiplying with 0). By
combinatory completeness, there exists f ∈ ω such that for every a and
c in A, fa ↓ and fac ' 0(aa) = 0 · ψa(a). So we have that ψa(a) ↓ if
and only if ψfa is the constant zero function. Because fa = ψf (a) is
a total computable function, this constitutes an m-reduction from I to
II. Since the set from II is decidable, it follows that the one from I is
also decidable, contradicting what we proved above. �

Corollary 6.4. There does not exist an extensional pca on the set of
all p.c. functions (with application the intended one)

Proof. By Theorem 2.2, such a pca would have to contain combinators
s and k, which is impossible by Theorem 6.3 (ii). �

As we mentioned above, Kreisel’s suggestion was about models of
BRFT, not pca’s. However, since every BRFT gives rise to a pca (cf.
the introduction), Corollary 6.4 also precludes the use of Friedberg’s
result to construct extensional models of BRFT.

7. Inseparability

In this section we show that every pca has computably inseparable
subsets A and B. This is completely analogous to the situation in
classical computability theory, even though the sets A and B may not
always be representable in the pca. We use this in the following sections
when we discuss elements without total extensions.

Definition 7.1. Let A be a pca. We call a pair of disjoint subsets
A,B ⊆ A computably separable if there exists a decidable subset C ⊆ A
such that A ⊆ C ⊆ B, and computably inseparable otherwise.

5Note that for the standard numbering ϕe of the p.c. functions, the set from II
is Π0

2-complete.
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Define

A = {a ∈ A | aa↓= 0},
B = {a ∈ A | aa↓= 1}.

Proposition 7.2. The sets A and B are computably inseparable in A.

Proof. Suppose that A ⊆ C ⊆ B and that C is decidable by c ∈ A.
Then

c ∈ C =⇒ cc↓= 1 =⇒ c ∈ B =⇒ c /∈ C,
c /∈ C =⇒ cc↓= 0 =⇒ c ∈ A =⇒ c ∈ C,

and we have a contradiction. �

Note that for K1, the set A and B are the standard example of a
pair of computably inseparable c.e. sets. We note that the sets A and
B need not always be c.e. in A. A sufficient condition for A and B to
be c.e. is that every singleton {a} is c.e. in A. To see that this implies
that A is c.e., suppose that e ∈ A is such that ea ↓⇔ aa ↓. Since {0}
is c.e., there exists d ∈ A such that da↓⇔ a = 0. Then we have

d(ea)↓⇔ ea↓= 0⇔ aa↓= 0,

hence A is c.e. in A. The condition that every singleton is c.e. holds in
K1 and K2.

Scott (cf. [2, Theorem 6.6.2]) proved that for the set of terms Λ in
the lambda calculus, any pair of disjoint subsets that are closed under
equality is computably inseparable. Note that this refers to ordinary
computable inseparability in ω, using a suitable coding of lambda-terms
[2, Definition 6.5.6]. Note that Definition 7.1 is more general, as it also
applies to uncountable domains.

8. Elements without total extensions

Definition 8.1. For elements b and f of a pca A, we say that f is a
total extension of b if f is total and for every a ∈ A,

ba↓ =⇒ fa = ba.

It is well-known that there exist p.c. functions without total com-
putable extensions. This follows e.g. from the existence of computably
inseparable c.e. sets. The existence of inseparable sets from Proposi-
tion 7.2 does not immediately yield the same result for pca’s, as these
sets do not have to be c.e. in A. To obtain elements without total
extensions, an extra property is needed.
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Definition 8.2. We say that 0,1 are separable in A if there exists a
total 0-1-valued c ∈ A such that for every a ∈ A,

ca = 0 =⇒ a 6= 1

ca = 1 =⇒ a 6= 0.

Note that separability of 0,1 in A implies that 0 6= 1, and that it is
equivalent to the statement that the subsets {0}, {1} are computably
separable. This provides a constructive way to verify for every element
a ∈ A the formula a 6= 0 ∨ a 6= 1.

In Definition 8.2 we have used 0 and 1, i.e. the numerals 0̄ and 1̄ (cf.
the discussion in section 3), but the notion of separability would apply
to any other pair of elements from A.

Separability of 0 and 1 is satisfied in K1 and K2, but not in every
pca. For example, it does not hold in the λ calculus. By Corollary 8.4
below, 0 and 1 are inseparable in any total pca, and by Theorem 8.5
there also exist nontotal examples where this is the case.

Theorem 8.3. Suppose that A is a pca such that 0,1 are separable in
A. Then there exists b ∈ A without a total extension f ∈ A.

Proof. Define ba = aa. (Note that such a b exists by combinatory
completeness applied to the term t(x) = xx.) Suppose that f ∈ A is a
total extension of b, and let c ∈ A be a total 0-1-valued separation of
0,1 as in Definition 8.2. Then f̂a = c(fa) is also 0-1-valued, and again

f̂ ∈ A by combinatory completeness. Now

aa↓= 0 =⇒ ba↓= 0 =⇒ fa = 0 =⇒ f̂a = c(fa) = 0,

aa↓= 1 =⇒ ba↓= 1 =⇒ fa = 1 =⇒ f̂a = c(fa) = 1,

and hence f̂ is a total 0-1-valued extension of b. But this contradicts the
computable inseparability of the sets A andB from Proposition 7.2. �

Note that the proof of Theorem 8.3 still does not require the sets A
and B to be c.e. in A.

Corollary 8.4. In any total pca A (i.e. in any combinatorial algebra),
0 and 1 are inseparable.

Proof. If 0,1 are separable in A then by Theorem 8.3 there exists an
element without a total extension, which is clearly impossible if A is
total. �

By Corollary 8.4, if 0,1 are separable in A then A is not total. The
converse of this does not hold by the next theorem.
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Theorem 8.5. There exists a nontotal pca A in which 0,1 are insep-
arable.

Proof. Let A be any nontrivial total pca, and let f be representable
in A. (We can simply take f ∈ A.) We use the construction of the
relativized pca A[f ] from section 5. By van Oosten [22, Corollary
2.3], the pca A[f ] is never total, even if A is total. (This is due to
the different interpretation of application in A[f ], which allows for the
definition of undefined functions.) It is easy to verify that A[f ] has
the same total functions as A. (Simply replace queries to the oracle f
by computations in A.) So if 0 and 1 are separable in A[f ] by a total
0-1-valued function c, then the same must hold in A. But A is total,
hence by Corollary 8.4, 0,1 are inseparable in A. �

Consider the following statements about a pca A:

(i) 0,1 are separable in A.
(ii) The function ba = aa has no total extension in A.

(iii) There exists an element in A without total extension in A.
(iv) A is not total.

We have (i)⇒(ii)⇒(iii)⇒(iv): The first implication follows from the
proof of Theorem 8.3, and the others are obvious. In fact, (ii)⇔(iii),
as can be seen as follows. The application function d〈a, b〉 = ab is
universal, so it suffices to prove that if ba = aa has a total extension,
then so has d. Suppose that f is a total extension of b, and let g be
such that g〈a, b〉x ' ab for all a, b, x. (We can take g = λ∗z, x.d(kzx).)
Then

ab↓⇐⇒ g〈a, b〉(g〈a, b〉)↓= f(g〈a, b〉)
so f(g〈a, b〉) is a total extension of d.

By Theorem 8.5 we have that (iv) 6⇒(i), but we can in fact say more.
In section 6 we discussed Kreisel’s suggestion for constructing a non-
total extensional pca from a Friedberg numbering. Despite the failure
of this (Corollary 6.4), such pca’s A do exist, as was proven in Bethke
and Klop [7]. Since A is extensional, every element in A has a total
extension in A, as was proven in [5].6 Since A is nontotal, we have
(iv)6⇒(iii). At the moment we do not know whether (ii)6⇒(i).

The negation of item (iii) does not imply that A has a total com-
pletion in the sense of Bethke et al. [8], as one might think. Indeed,
¬(iii) implies that in particular the application function d〈a, b〉 = ab
has a total extension h ∈ A, but this total extension h does not have

6It follows from Proposition 5.2 in [5] that if A is extensional then the identity
on A is precomplete, which is equivalent to the statement that every element in A
has a total extension in A.
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to respect the structure of the combinator s. In fact, if we let A be
nontotal and extensional as above, by extensionality ¬(iii) holds in A
(cf. [5, Proposition 5.2]), but A is not completable by [8, Theorem 7.2].

9. Precompleteness and 1-1 numberings

In this section we consider numberings without repetitions, often
simply called 1-1 numberings.

A numbering of the p.c. functions that is equivalent to the standard
numbering is called acceptable [21, p215]. Rogers [25] showed that
acceptable numberings are precisely those for which the enumeration
theorem and parametrization (= the S-m-n-theorem) hold. It also fol-
lows from this that for any acceptable numbering the padding lemma
holds, ensuring that every p.c. function has infinitely many codes. In
particular, we see that no 1-1 numbering of the p.c. functions (such as
Friedberg’s numbering) is acceptable. For more on 1-1-numberings see
Kummer [18].

A general theory of countable numberings was initiated by Ershov
[11]. A numbering of a set S is simply a surjective function γ : ω → S.
In particular, Ershov introduced the notion of a precomplete numbering
on ω, and he proved in [12] that Kleene’s recursion theorem holds for
every precomplete numbering. Barendregt and Terwijn [4] extended
the setting to partial combinatory algebra by defining the notion of a
generalized numbering as a surjective function γ : A → S, where A is
a pca and S is a set. The notion of precompleteness for generalized
numberings was also defined in [4]. It is equivalent to the following
definition:

Definition 9.1. A generalized numbering γ : A → S is precomplete if
for every b∈A there exists a total element f∈A such that for all a∈A,

ba↓ =⇒ fa ∼γ ba. (3)

In this case, we say that f totalizes b modulo ∼γ.

Ershov’s notion of precomplete numbering is obtained from this by
taking for A Kleene’s first model K1. Section 5 of [5] studies the rela-
tions between combinatory completeness, extensionality, and precom-
pleteness of generalized numberings.

The standard numbering of the p.c. functions is precomplete by the
S-m-n-theorem, and since every acceptable numbering is equivalent
to the standard numbering it follows that acceptable numberings are
precomplete. On the other hand, Friedberg’s 1-1 numbering is not
precomplete. We generalize this fact in Theorem 9.2 below.
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Precompleteness is connected to the question which elements have
total extensions, studied in section 8. For example, the identity γA :
A → A is precomplete if and only if every element b ∈ A has a total
extension f ∈ A.

Theorem 9.2. Suppose γ : A → S is a precomplete generalized num-
bering, and that 0,1 are separable in A. Then γ is not 1-1.

Proof. Suppose that γ is precomplete and 1-1, and suppose that b ∈ A.
Since γ is precomplete, there exists f ∈ A that totalizes b modulo ∼γ.
As γ is 1-1 we have

ba↓=⇒ fa ∼γ ba =⇒ fa = ba

for every a. Hence every b ∈ A has a total extension f ∈ A. But this
contradicts Theorem 8.3. �

10. Arslanov’s completeness criterion

Ershov [12] showed that Kleene’s recursion theorem holds for any
precomplete numbering γ : ω → S. Working in another direction,
Feferman [13] proved that the recursion theorem holds in any pca A.
In Barendregt and Terwijn [4], the fixed point theorems of Ershov
and Feferman were combined by proving a fixed point theorem for
precomplete generalized numberings γ : A → S, that instead of ω have
an arbitrary pca A as a basis. The following diagram summarizes the
various possible settings of the recursion theorem.

pca A −→ γ : A → S generalized numbering

↑ ↑

ω −→ γ : ω → S numbering

Now another famous extension of the recursion theorem is Arslanov’s
completeness criterion [1], which extends the recursion theorem from
computable functions to the class of all functions that are computable
from a Turing-incomplete c.e. set. Explicitly, suppose that A ⊆ ω is
a c.e. set such that K 66T A, and suppose that f is an A-computable
function. Then there exists e ∈ ω such that for all x ∈ ω,

ϕf(e)(x) ' ϕe(x).

In Selivanov [27] it was shown that Arslanov’s completeness criterion
also holds for any precomplete numbering. (In contrast to this, it is
open whether the joint generalization from Terwijn [30] also holds for
every precomplete numbering.) This prompts the question whether Ar-
slanov’s completeness criterion also holds for generalized numberings.
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A first step would be to prove an analog of Arslanov’s result for pca’s.
Using the concepts of section 5, we can formulate such an analog as
follows.

Let A be a pca, and suppose that A is c.e. in A such that K /∈ A[A],
where K is the halting set in A defined in section 5. Note that this is
the analog of of stating that A is a c.e. set that is not Turing complete.
Now Arslanov’s result says that any A-computable function f has a
fixed point, which translates to the following. Suppose that f ∈ A[A]
is total. Then there exists e ∈ A such that for all x ∈ A,

f ·A e · x ' e · x.

Here ·A denotes application in A[A] and · denotes application in A.

Question 10.1. Does this analog of Arslanov’s completeness criterion
hold for every pca?
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