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THE MATHEMATICAL FOUNDATIONS OF
RANDOMNESS

SEBASTIAAN A. TERWIJN

ABSTRACT. We give a nontechnical account of the mathematical
theory of randomness. The theory of randomness is founded on
computability theory, and it is nowadays often referred to as algo-
rithmic randomness. It comes in two varieties: A theory of finite
objects, that emerged in the 1960s through the work of Solomonoff,
Kolmogorov, Chaitin and others, and a theory of infinite objects
(starting with von Mises in the early 20th century, culminating in
the notions introduced by Martin-Lof and Schnorr in the 1960s and
1970s) and there are many deep and beautiful connections between
the two. Research in algorithmic randomness connects computabil-
ity and complexity theory with mathematical logic, proof theory,
probability and measure theory, analysis, computer science, and
philosophy. It also has surprising applications in a variety of fields,
including biology, physics, and linguistics. Founded on the theory
of computation, the study of randomness has itself profoundly in-
fluenced computability theory in recent years.
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1. INTRODUCTION

In this chapter we aim to give a nontechnical account of the mathe-
matical theory of randomness. This theory can be seen as an extension
of classical probability theory that allows us to talk about individual
random objects. Besides answering the philosophical question what
it means to be random, the theory of randomness has applications
ranging from biology, computer science, physics, and linguistics, to
mathematics itself.

The theory comes in two flavors: A theory of randomness for finite
objects (for which the textbook by Li and Vitanyi [18] is the standard
reference) and a theory for infinite ones. The latter theory, as well
as the relation between the two theories of randomness, is surveyed
in the paper [10], and developed more in full in the recent textbooks
by Downey and Hirschfeldt [9] and Nies [21]. Built on the theory of
computation, the theory of randomness has itself deeply influenced
computability theory in recent years.

We warn the reader who is afraid of mathematics that there will be
formulas and mathematical notation, but we promise that they will be
ezxplained at a nontechnical level. Some more background information
about the concepts involved is given in footnotes and in two appendices.
It is fair to say, however, that to come to a better understanding of the
subject, there is of course no way around the formulas, and we quote
Euclid, who supposedly told King Ptolemy I, when the latter asked
about an easier way of learning geometry than Euclid’s Elements, that

“there is no royal road to geometry”.'

2. WHAT IS RANDOMNESS?

Classical probability theory talks about random objects, for example
by saying that if you randomly select four cards from a standard deck,
the probability of getting four aces is very small. However, every con-
figuration of four cards has the same small probability of appearing,
so there is no qualitative difference between individual configurations
in this setting. Similarly, if we flip a fair coin one hundred times, and
we get a sequence of one hundred tails in succession, we may feel that
this outcome is very special, but how do we justify our excitement over
this outcome? Is the probability for this outcome not exactly the same
as that of any other sequence of one hundred heads and tails?

Probability theory has been, and continues to be, a highly successful
theory, with applications in almost every branch of mathematics. It

'As with many anecdotes of this kind, it is highly questionable if these words
were really spoken, but the message they convey is nevertheless true.



THE MATHEMATICAL FOUNDATIONS OF RANDOMNESS 3

was put on a sound mathematical foundation in 1933 by Andrei Kol-
mogorov [14], and in its modern formulation it is part of the branch of
mathematics called measure theory. (See appendix A.) In this form it
allows us to also talk not only about randomness in discrete domains
(such as cards and coin flips), but also in continuous domains such
as numbers on the real line. However, it is important to realize that
even in this general setting, probability theory is a theory about sets
of objects, not of individual objects. In particular, it does not answer
the question what an individual random object is, or how we could call
a sequence of fifty zero’s less random than any other sequence of the
same length. Consider the following two sequences of coin flips, where
0 stands for heads and 1 for tails:

00000000000000000000000000000000000000000000000000
00001110011111011110011110010010101111001111010111

The first sequence consists of fifty 0’s, and the second was obtained by
flipping a coin fifty times.? Is there any way in which we can make our
feeling that the first sequence is special, and that the second is less so,
mathematically precise?

3. CAN RANDOMNESS BE DEFINED?

A common misconception about the notion of randomness is that
it cannot be formally defined, by applying a tautological reasoning of
the form: As soon as something can be precisely defined, it ceases to
be random. The following quotation by the Dutch topologist Hans
Freudenthal [11] (taken from [16]) may serve to illustrate this point:

It may be taken for granted that any attempt at defin-
ing disorder in a formal way will lead to a contradiction.
This does not mean that the notion of disorder is contra-
dictory. It is so, however, as soon as I try to formalize
it.

A recent discussion of randomness and definability, and what can hap-
pen if we equate “random” with “not definable”, is in Doyle [8].> The

2The author actually took the trouble of doing this. We could have tried to write
down a random sequence ourselves, but it is known that humans are notoriously bad
at producing random sequences, and such sequences can usually be recognized by
the fact that most people avoid long subsequences of zero’s, feeling that after three
or four zero’s it is really time for a one. Indeed, depending on one’s temperament,
some people may feel that the first four zero’s in the above sequence look suspicious.

3The notion of mathematical definability is itself definable in set theory, see
Kunen [15, Chapter V]. If “random” is equated with “not definable”, then the
following problem arises: By a result of Godel [12] it is consistent with the axioms
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problem is not that the notion of definability is inherently vague (be-
cause it is not), but that no absolute notion of randomness can exist,
and that in order to properly define the notion, one has to specify with
respect to what the supposed random objects should be random. This
is precisely what happens in the modern theory of randomness: A ran-
dom object is defined as an object that is random with respect to a
given type of definition, or class of sets. As the class may vary, this
yields a scale of notions of randomness, which may be adapted to the
specific context in which the notion is to be applied.

The first person to attempt to give a mathematical definition of
randomness was Richard von Mises [28], and his proposed definition
met with a great deal of opposition of the kind indicated above. Von
Mises formalized the intuition that a random sequence should be un-
predictable. Without giving technical details, his definition can be de-
scribed as follows. Suppose that X is an infinite binary sequence, that
is, a sequence

X(0),X(1),X(2),X(3),...

where for each positive integer n, X (n) is either 0 or 1. Suppose further
that the values of X are unknown to us. We now play a game: At every
stage of the game we point to a new location n in the sequence, and
then the value of X (n) is revealed to us. Now, according to von Mises,
for X to be called random, we should not be able to predict in this way
the values of X with probability better than %, no matter how we select
the locations in X. A strategy to select locations in X is formalized
by a selection function, and hence this notion says that no selection
function should be able to give us an edge in predicting values from X.
However, as in the above discussion on absolute randomness, in this full
generality, this notion is vacuous! To counter this, von Mises proposed
to restrict attention to “acceptable” selection rules, without further
specifying which these should be. He called the sequences satisfying
his requirement for randomness Kollektiv’s.*

Later Wald [29, 30] showed that von Mises’ notion of Kollektiv is non-
empty if we restrict to any countable set of selection functions.® Wald
did not specify a canonical choice for such a set, but later Church [6]

of set theory that all sets are definable, and hence the notion of randomness becomes
empty. The solution to this problem is to be more modest in defining randomness,
by only considering more restricted classes of sets, as is explained in what follows.

4For a more elaborate discussion of the notion of Kollektiv see van Lambal-
gen [16].

5A set is called countable if its elements can be indexed by the natural numbers
0,1,2,3,... These sets represent the smallest kind of infinity in the hierarchy of
infinite sets.
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suggested that the (countable) set of computable selection rules would
be such a canonical choice. We thus arrive at the notion of Mises—
Wald—Church randomness, defined as the set of Kollektiv’'s based on
computable selection rules. This notion of random sequence already
contains several of the key ingredients of the modern theory of ran-
domness, namely:

e the insight that randomness is a relative notion, not an absolute
one, in that it depends on the choice of the set of selection rules;

e it is founded on the theory of computation, by restricting at-
tention to the computable selection functions (cf. section 4).

Ville [27] later showed that von Mises’ notion of Kollektiv is flawed
in the sense that there are basic statistical laws that are not satisfied
by them. Nevertheless, the notion of Mises—Wald—Church randomness
has been decisive for the subsequent developments in the theory of
randomness.°

The Mises—Wald—Church notion formalized the intuition that a ran-
dom sequence should be unpredictable. This was taken further by Ville
using the notion of martingale. We discuss this approach in section 7.
The approach using Kolmogorov complexity formalizes the intuition
that a random sequence, since it is lacking in recognizable structure,
is hard to describe. We discuss this approach in section 5. Finally, the
notion randomness proposed by Martin-Lof formalizes the intuitions
underlying classical probability and measure theory. This is discussed
in section 6. It is a highly remarkable fact that these approaches are
intimately related, and ultimately turn out to be essentially equivalent.
As the theory of computation is an essential ingredient in all of this,
we have to briefly discuss it before we can proceed.

4. COMPUTABILITY THEORY

The theory of computation arose in the 1930s out of concerns about
what is provable in mathematics and what is not. Godel’s famous
incompleteness theorem from 1931 states, informally speaking, that
in any formal system strong enough to reason about arithmetic, there
always exist true statements that are not provable in the system. This
shows that there can never be a definitive formal system encompassing
all of mathematics. Although it is a statement about mathematical
provability, the proof of the incompleteness theorem shows that it is in
essence a result about computability. The recursive functions used by
Godel in his proof of the incompleteness theorem were later shown by

6Tn the light of the defects in the definition of Mises—Wald—Church random se-
quences, these sequences are nowadays called stochastic rather than random.
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Turing [26] to define the same class of functions computable by a Turing
machine. Subsequently, many equivalent definitions of the same class of
computable functions were found, leading to a robust foundation for a
general theory of computation, called recursion theory, referring to the
recursive functions in Godel’s proof. Nowadays the area is mostly called
computability theory, to emphasize that it is about what is computable
and what is not, rather than about recursion.

Turing machines serve as a very basic model of computation, which
are nevertheless able to perform any type of algorithmic computation.”
The fortunate circumstance that there are so many equivalent defini-
tions of the same class of computable functions allows us to treat this
notion very informally, without giving a precise definition of what a
Turing machine is. Thus, a computable function is a function for which
there is an algorithm, i.e. a finite step-by-step procedure, that com-
putes it. It is an empirical fact that any reasonable formalization of
this concept leads to the same class of functions.®

Having a precise mathematical definition of the notion of computabil-
ity allows us to prove that certain functions or problems are not com-
putable. One of the most famous examples is Turing’s Halting Problem:

Definition 4.1. The Halting Problem is the problem, given a Turing
machine M and an input z, to decide whether M produces an output
on z in a finite number of steps (as opposed to continuing indefinitely).

Turing [26] showed that the Halting Problem is undecidable, that
is, that there is no algorithm deciding it. (Note the self-referential
flavor of this statement: There is no algorithm deciding the behavior
of algorithms.) Not only does this point to a fundamental obstacle in
computer science (which did not yet exist in at the time that Turing
proved this result), but it also entails the undecidability of a host of

Tt is interesting to note that the Turing machine model has been a blueprint
for all modern electronic computers. In particular, instead of performing specific
algorithms, Turing machines are universally programmable, i.e. any algorithmic
procedure can be implemented on them. Thus, the theory of computation preceded
the actual building of electronic computers, and the fact that the first computers
were universally programmable was directly influenced by it (cf. [7]). This situation
is currently being repeated in the area of quantum computing, were the theory is
being developed before any actual quantum computers have been built. (see e.g.
[2]).

8The statement that the informal and the formal notions of computability co-
incide is the content of the so-called Church-Turing thesis, cf. Odifreddi [22] for a
discussion.
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other problems.® Its importance for the theory of randomness will

become clear in what follows.

5. KOLMOGOROV COMPLEXITY

An old and venerable philosophical principle, called Occam’s razor,
says that when given the choice between several hypotheses or ex-
planations, one should always select the simplest one. The problem
in applying this principle has always been to determine which is the
simplest explanation: that which is simple in one context may be com-
plicated in another, and there does not seem to be a canonical choice
for a frame of reference.

A similar problem arises when we consider the two sequences on
page 3: We would like to say that the first one, consisting of only
0’s, is simpler than the second, because it has a shorter description.
But what are we to choose as our description mechanism? When we
require, as seems reasonable, that an object can be effectively recon-
structed from its description, the notion of Turing machine comes to
mind. For simplicity we will for the moment only consider finite binary
strings. (This is not a severe restriction, since many objects such as
numbers and graphs can be represented as binary strings in a natural
way.) Thus, given a Turing machine M, we define a string y to be a
description of a string x if M(y) = z, i.e. M produces = when given y
as input. Now we can take the [ength of the string y as a measure of the
complexity of x. However, this definition still depends on the choice
of M. Kolmogorov observed that a canonical choice for M would be a
universal Turing machine, that is, a machine that is able to simulate all
other Turing machines. It is an elementary fact of computability the-
ory that such universal machines exist. We thus arrive at the following
definition:

Definition 5.1. Fix a universal Turing machine U. The Kolmogorov
complexity of of a finite binary string x is the smallest length of a string
y such that

Uly) = .
We denote the Kolmogorov complexity of the string « by C(x).

Hence, to say that C'(x) = n means that there is a string y of length n
such that U(y) = z, and that there is no such y of length smaller
than n. Note that the definition of C'(z) still depends on the choice of

9n [26] Turing used the undecidability of the Halting Problem to show the
undecidability of the Entscheidungsproblem, that says (in modern terminology)
that first-order predicate logic is undecidable.
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U. However, and this is the essential point, the theory of Kolmogorov
complexity is independent of the choice of U in the sense that when we
choose a different universal Turing machine U’ as our frame of reference,
the whole theory only shifts by a fixed constant.!® For this reason, the
reference to U is suppressed from this point onwards, and we will simply
speak about the Kolmogorov complexity of a string.

Armed with this definition of descriptive complexity, we can now
define what it means for a finite string to be random. The idea is that
a string is random if it has no description that is shorter than the string
itself, that is, if there is no way to describe the string more efficiently
than by listing it completely.

Definition 5.2. A finite string z is Kolmogorov random if C(z) is at
least the length of x itself.

For example, a sequence of 1000 zero’s is far from random, since its
shortest description is much shorter than the string itself: The string
itself has length 1000, but we have just described it using only a few
words.!! More generally, if a string contains a regular pattern that
can be used to efficiently describe it, then it is not random. Thus
this notion of randomness is related to the compression of strings: If
U(y) = x, and y is shorter than x, we may think of y as a compressed
version of x, and random strings are those that cannot be compressed.

A major hindrance in using Kolmogorov complexity is the fact that
the complezity function C' is noncomputable. A precise proof of this
fact is given in appendix B (see Corollary B.2), but it is also intuitively
plausible, since to compute the complexity of y we have to see for which
inputs x the universal machine U produces y as output. But as we have
seen in section 4, this is in general impossible to do by the undecidabil-
ity of the Halting Problem! This leaves us with a definition that may
be wonderful for theoretical purposes, but that one would not expect
to be of much practical relevance. One of the miracles of Kolmogorov
complexity is that the subject does indeed have genuine applications,

10This is not difficult to see: Since both U and U’ are universal, they can simulate
each other, and any description of z relative to U can be translated into a description
relative to U’ using only a fixed constant number of extra steps, where this constant
is independent of x.

HNotice that the definition requires the description to be a string of 0’s and
1’s, but we can easily convert a description in natural language into such a string
by using a suitable coding, that only changes the length of descriptions by a small
constant factor. Indeed, the theory described in this chapter applies to anything
that can be represented or coded by binary strings, which includes many familiar
mathematical objects such as numbers, sets, and graphs, but also objects such as
DNA strings or texts in any language.
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many of which are discussed in the book by Li and Vitényi [18]. We
will briefly discuss applications in section 11.

We will not go into the delicate subject of the history of Kolmogorov
complexity, other than saying that it was invented by Solomonoff, Kol-
mogorov, and Chaitin (in that order), and we refer to [18] and [9] for
further information.

6. MARTIN-LOF RANDOMNESS

The notion of Martin-Lof randomness, introduced by Martin-Lof in
[20], is based on classical probability theory, which in its modern for-
mulation is phrased in terms of measure theory. In appendix A the
notion of a measure space is explained in some detail, but for now we
keep the discussion as light as possible.

The unit interval [0, 1] consists of all the numbers on the real line
between 0 and 1. We wish to discuss probabilities in this setting by
assigning to subsets A of the unit interval, called events, a probability,
which informally should be the probability that when we “randomly”
pick a real from [0, 1] that we end up in A. The uniform or Lebesgue
measure on [0, 1] assigns the measure b—a to every interval [a, ], i.e. the
measure of an interval is simply its length. For example, the interval
[0, 2] has measure 1, the interval [2, 1] has measure . Note that [0, 1]
itself has measure 1.

Given this, we can also define the measure of more complicated sets
by considering combinations of intervals. For example, we give the
combined event consisting of the union of the intervals [0, 3] and [2, 1]
the measure % + }1 = %. Since the measures of the subsets of [0, 1]
defined in this way satisfy the laws of probability (cf. appendix A), we
can think of them as probabilities.

A series of intervals is called a cover for an event A if A is contained
in the union of all the intervals in the series. Now an event A is defined
to have measure 0 if it is possible to cover A with intervals in such a
way that the total sum of the lengths of all the intervals can be chosen
arbitrarily small.

For example, for every real = in [0, 1], the event A consisting only
of the real x has measure 0, since for every n, x is contained in the
interval [z — %, x+ %], and the length of the latter interval is 2%, which
tends to 0 if n tends to infinity.

These definitions suffice to do probability theory on [0, 1], and to
speak informally about picking reals “at random”, but we now wish to
define what it means for a single real x to be random. We can view
any event of measure 0 as a “test for randomness”, where the elements
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not included in the event pass the test, and those in it fail. All the
usual statistical laws, such as the law of large numbers, correspond to
such tests. Now we would like to define x to be random if x passes
all statistical tests, i.e. x is not in any set of measure 0. But, as we
have just seen in the example above, every single real = has measure 0,
hence in its full generality this definition is vacuous. (The reader may
compare this to the situation we already encountered above in section 3
when we discussed Kollektiv’s.)

However, as Martin-Lof observed, we obtain a viable definition if we
restrict ourselves to a countable collection of measure 0 sets. More
precisely, let us say that an event A has effective measure 0 if there
is a computable series of covers of A, with the measure of the covers
in the series tending to 0. Phrased more informally: A has effective
measure 0 if there is an algorithm witnessing that A has measure 0,

by producing an appropriate series of covers for A. Now we can finally
define:

Definition 6.1. A real x is Martin-Lof random if x is not contained
in any event of effective measure 0.

It can be shown that with this modification random reals exist.'?
Moreover, almost every real in [0,1] is random, in the sense that the
set of nonrandom reals is of effective measure 0.

Note the analogy between Definition 6.1 and the way that Church
modified von Mises definition of Kollektiv, as described in section 3:
There we restricted to the computable selection functions, here we
restrict to the effective measure 0 events.

Identifying a real number z with its decimal expansion,'® we have
thus obtained a definition of randomness for infinite sequences. The
question now immediately presents itself what the relation, if any, of
this definition is with the definition of randomness of finite sequences
from section 5. A first guess could be that an infinite sequence is
random in the sense of Martin-Lof if and only if all of its finite initial
segments are random in the sense of Kolmogorov, but this turns out to
be false. A technical modification to Definition 5.1 is needed to make
this work.

A string y is called a prefix of a string ¢ if y is an initial segment of y/'.
For example, the string 001 is a prefix of the string 001101. Let us now

3

2The proof runs as follows: There are only countably many algorithms, hence
there are only countably many events of effective measure 0, and in measure theory
a countable collection of measure 0 sets is again of measure 0.

Bwe ignore here that decimal expansions in general are not unique, for example
0,999... =1,000..., but this is immaterial.
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impose the following restriction on descriptions: If U(y) = z, i.e. y is a
description of z, and U(y') = 2/, then we require that y is not a prefix
of /. This restriction may seem arbitrary, but we can motivate it as
follows. Suppose that we identify persons by their phone numbers. It is
then a natural restriction that no phone number is a prefix of another,
since if the phone number y of z were a prefix of a phone number
y' of 2/, then when trying to call 2’ we would end up talking to x.
Indeed, in practice phone numbers are not prefixes of one another. We
say that the set of phone numbers is prefiz-free. We now require that
the set of descriptions y used as inputs for the universal machine U in
Definition 5.1 is prefix-free. Of course, this changes the definition of the
complexity function C'(z): Since there are fewer descriptions available,
in general the descriptive complexity of strings will be higher. The
complexity of strings under this new definition is called the prefiz-free
complexity. The underlying idea of the prefix-free complexity is the
same as that of Kolmogorov complexity, but technically the theory of
it differs from Kolmogorov complexity in several important ways. For
us, at this point of the discussion, the most important feature of it is
the following landmark result. It was proven in 1973 by Claus-Peter
Schnorr, one of the pioneers of the subject.

Theorem 6.2 (Schnorr [24]). An infinite sequence X is Martin-Ldf
random if and only if there is a constant ¢ such that every initial seg-
ment of X of length n has prefix-free complexity at least n — c.

The reader should take a moment to let the full meaning and beauty
of this theorem sink in. It offers no less than an equivalence between
two seemingly unrelated theories. One is the theory of randomness for
finite sequences, based on descriptive complexity, and the other is the
theory of infinite sequences, based on measure theory. The fact that
there is a relation between these theories at all is truly remarkable.

7. MARTINGALES

Thus far we have seen three different formalizations of intuitions
underlying randomness:

(i) Mises—Wald—Church randomness, formalizing unpredictability us-
ing selection functions,
(ii) Kolmogorov complexity, based on descriptive complexity,
(iii) Martin-L6f randomness, based on measure theory.

Theorem 6.2 provided the link between (ii) and (iii), and (i) was
discussed in section 3. We already mentioned Ville, who showed that
the notion in (i) was flawed in a certain sense. Ville also showed an
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alternative way to formalize the notion of unpredictability of an infinite
sequence, using the notion of a martingale, which we now discuss.*
Continuing our game-theoretic discussion of section 3, we imagine that
we are playing against an unknown infinite binary sequence X. At each
stage of the game, we are shown a finite initial part

X(0), X(1), X(2),..., X(n—1)

of the sequence X, and we are asked to bet on the next value X (n).
Suppose that at this stage of the game, we have a capital of d dollar.
Now we may split the amount d into parts by and by, and bet the
amount by that X(n) is 0, and the amount by that X(n) is 1. After
placing our bets, we receive a payoff dy = 2bq if X (n) = 0, and a payoff
d; = 2by if X(n) = 1. Hence the payoffs satisfy the equation

do + dy

(1) 5 = d.
After placing our bets, we receive a payoff dy if X (n) = 0, and a payoff

For example, we may let by = by = %d, in which case our payoff will
be d, no matter what X (n) is. So this is the same as not betting at
all, and leaving our capital intact. But we can also set by = d and
by = 0. In this case, if X(n) = 0 we receive a payoff of 2d, and we
have doubled our capital. However, if it turns out that X(n) = 1,
we receive 0, and we have lost everything. Hence this placement of
the bets should be made only when we are quite sure that X (n) = 0.
Any other placement of bets between these two extremes can be made,
reflecting our willingness to bet on X(n) =0 or X(n) = 1.

After betting on X (n), the value X(n) is revealed, we receive our
payoff for this round, and the game continues with betting on X (n+1).

Now the idea of Ville’s definition is that we should not be able to win
an infinite amount of money by betting on a random sequence. For a
given binary string o, let o~ 0 denote the string o extended by a 0, and
o 1 the string o extended by a 1. Formally, a martingale is a function
d such that for every finite string o the martingale equality

) d@ﬁ»;d@ﬁ):d@)

14The word “martingale” comes from gambling theory, where it refers to the
very dangerous strategy of doubling the stakes in every round of gambling, until
a win occurs. With the stakes growing exponentially, if the win does not occur
quickly enough, this may result in an astronomical loss for the gambler. In modern
probability theory, the word “martingale” refers to a betting strategy in general.
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holds. The meaning of this equation is that when we are seeing the
initial segment o, and we have a capital d(o), we can bet the amount
1d(070) that the next value will be a zero, and 1d(0”1) that the next
value will be a one, just as above in equation (1). Thus the martingale
d represents a particular betting strategy. Now for a random sequence
X, the amounts of capital

d(X(0),...,X(n—1))

that we win when betting on X should not tend to infinity.'®

As in the case of Mises—Wald—Church randomness and the case of
Martin-Lof randomness, this definition only makes sense when we re-
strict ourselves to a countable class of martingales.'® A natural choice
would be to consider the computable martingales. The resulting no-
tion of randomness was studied in Schnorr [23], and it turns out to
be weaker than Martin-Lof randomness. However, there exists another
natural class of martingales, the so-called c.e.-martingales,'” such that
the resulting notion of randomness is equivalent to Martin-Lof random-
ness.

Thus Ville’s approach to formalizing the notion of unpredictability
using martingales gives yet a third equivalent way to define the same
notion of randomness.

8. RANDOMNESS AND PROVABILITY

By Gédel’s incompleteness theorem (see section 4), in any reason-
able formal system of arithmetic, there exist formulas that are true yet
unprovable. A consequence of this result is that there is no algorithm
to decide the truth of arithmetical formulas. It follows from the un-
decidability of the Halting Problem (see Definition 4.1) that the set of
formulas that are provable is also undecidable.'® However, the set of
provable formulas is computably enumerable, meaning that there is an

15ville showed that martingales provide an alternative, game-theoretic, formu-
lation of measure theory: The sets of measure 0 are precisely the sets on which a
martingale can win an infinite amount of money.

I6Note that for every sequence X there is a martingale that wins an infinite
amount of capital on X: just set d(X(0)...X(n —1)7%) = 2d(X(0)... X (n — 1)),
where ¢ = X(n). However, in order to play this strategy, one has to have full
knowledge of X.

17C.e. is an abbreviation of “computably enumerable”. This notion is further
explained in section 8.

18This follows by the method of arithmetization: Statements about Turing ma-
chines can be translated into arithmetic by coding. If the set of provable formulas
were decidable, it would follow that the Halting Problem is also decidable.
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algorithm that lists all the provable statements. Computably enumer-
able, or c.e., sets, play an important role in computability theory. For
example, the set H representing the Halting Problem is an example of
a c.e. set, because we can in principle make an infinite list of all the
halting computations.'” The complement H of the set H, consisting of
all nonconvergent computations, is not c.e. For if it were, we could de-
cide membership in H as follows: Given a pair M and x, effectively list
both H and its complement H until the pair appears in one of them,
thus answering the question whether the computation M (z) converges.
Since H is not computable, it follows that H cannot be c.e. Because
the set of all provable statements is c.e., it also follows that not all
statements of the form

“M (z) does not halt”

are provable. Hence there exist computations that do not halt, but for
which this fact is not provable! Thus we obtain a specific example of a
true, but unprovable statement. The same kind of reasoning applies if
we replace H by any other noncomputable c.e. set.

Now consider the set R of all strings that are Kolmogorov random,
and let non-R be the set of all strings that are not Kolmogorov random.
We have the following facts:

(i) non-R is c.e. This is easily seen as follows: If = is not random,
there is a description y shorter than x such that U(y) = z. Since
the set of halting computations is c.e., it follows that non-R is
also c.e.

(ii) R is not c.e. This is proved in Theorem B.1 in appendix B.

By applying the same reasoning as for H above, we conclude from
this that there are statements of the form

“r is random”

that are true, but not provable. This is Chaitin’s version of the incom-
pleteness theorem [5].%°

YWe can do this by considering all possible pairs of Turing machines M and
inputs z, and running all of them in parallel. Every time we see a computation
M (z) converge, we add it to the list. Note, however, that we cannot list the
converging computations in order, since there is no way to predict the running time
of a converging computation. Indeed, if we could list the converging computations
in order, the Halting Problem would be decidable.

2075 for Godel’s incompleteness theorem, the statement holds for any reasonable
formal system that is able to express elementary arithmetic. In fact, it follows from
Theorem B.1 that any such system can prove the randomness of at most finitely
many strings.
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9. OTHER NOTIONS OF RANDOMNESS

Mises—Wald—Church random sequences were defined using comput-
able selection functions, and Martin-Lof random sequences with com-
putable covers, which in Ville’s approach correspond to c.e.-martin-
gales. As Wald already pointed out in the case of Kollektiv’s, all of
these notions can be defined relative to any countable collection of se-
lection functions, respectively covers and martingales. Choosing com-
putable covers in the case of Martin-Lof randomness gave the funda-
mental and appealing connection with Kolmogorov randomness (The-
orem 6.2), but there are situations in which this is either too weak, or
too strong. Viewing the level of computability of covers and martin-
gales as a parameter that we can vary allows us to introduce notions of
randomness that are either weaker or stronger than the ones we have
discussed so far.

In his groundbreaking book [23], Schnorr discussed alternatives to
the notion of Martin-Lof randomness, thus challenging the status of
this notion (not claimed by Martin-Lof himself) as the “true” notion
of randomness.?!

In studying the randomness notions corresponding to various levels
of computability, rather than yielding a single “true” notion of random-
ness, a picture has emerged in which every notion has a corresponding
context in which it fruitfully can be applied. This ranges from low
levels of complexity in computational complexity theory (see e.g. the
survey paper by Lutz [19]), to the levels of computability (computable
and c.e.) that we have been discussing in the previous sections, to
higher levels of computability, all the way up to the higher levels of
set theory. In studying notions of randomness across these levels, ran-
domness has also served as a unifying theme between various areas of
mathematical logic.

Chaitin also drew a number of dubious philosophical conclusions from his version
of the incompleteness theorem, that were adequately refuted by van Lambalgen [17],
and later in more detail by Ratikaainen, Franzen, Porter, and others. Unfortunately,
this has not prevented Chaitin’s claims from being widely publicized.

21 After Martin-Lof’s paper [20], the notion of Martin-Lof randomness became
known as a notion of “computable randomness”. As Schnorr observed, this was not
quite correct, and for example the characterization with c.e.-martingales pointed
out that is was more apt to think of it as “c.e.-randomness”. To obtain a notion
of “computable randomness”, extra computational restrictions have to be imposed.
Schnorr did this by basing his notion on Brouwer’s notion of constructive measure
zero set. The resulting notion of randomness, nowadays called Schnorr randomness,
has become one of the standard notions in randomness theory, see [9].
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The general theory also serves as a background for the study of
specific cases. Consider the example of 7. Since 7 is a computable
real number, its decimal expansion is perfectly predictable, and hence
7 it is not random in any of the senses discussed above. However,
the distribution of the digits 0,...,9 in 7 appears to be “random”.
Real numbers with a decimal expansion in which every digit occurs
with frequency 11—0, and more general, every block of digits of length n
occurs with frequency #, are called normal to base 10. Normality
can be seen as a very weak notion of randomness, where we consider
just one type of statistical test, instead of infinitely many as in the case
of Martin-Lof randomness. It is in fact not known if 7 is normal to
base 10, but it is conjectured that 7 is indeed “random” in this weak
sense. For a recent discussion of the notion of normality, see Becher
and Slaman [3].

10. PSEUDORANDOM NUMBER GENERATORS AND COMPLEXITY
THEORY

In many contexts, it is desirable to have a good source of random
numbers, for example when one wants to take an unbiased random
sample, in the simulation of economic or atmospheric models, or when
using statistical methods to estimate things that are difficult to com-
pute directly (the so-called Monte Carlo method). In such a case, one
may turn to physical devices (which begs the question about random-
ness of physical sources), or one may try to generate random strings
using a computer. However, the outcome of a deterministic procedure
on a computer cannot be random in any of the senses discussed above.
(By Theorem B.1 in appendix B, there is no purely algorithmic way
of effectively generating infinitely many random strings, and it is easy
to see that a Martin-Lof random set cannot be computable.) Hence
the best an algorithm can do is to produce an outcome that is pseu-
dorandom, that is, “random enough”, where the precise meaning of
“random enough” depends on the context. In practice this usually
means that the outcome should pass a number of standard statistical
tests. Such procedures are called pseudorandom number generators.
That the outcomes of a pseudorandom number generator should not
be taken as truly random was pointed out by the great mathematician
and physicist John von Neumann, when he remarked that

Anyone who considers arithmetical methods of produc-
ing random digits is, of course, in a state of sin.??

22The Monte Carlo method was first used extensively in the work of Ulam and
von Neumann on the hydrogen bomb.
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Randomized algorithms are algorithms that employ randomness dur-
ing computations, and that allow for a small probability of error in
their answers. For example, the first feasible?® algorithms to determine
whether a number is prime were randomized algorithms.?* An impor-
tant theme in computational complexity theory is the extent to which
it is possible to derandomize randomized algorithms, i.e. to convert
them to deterministic algorithms. This is connected to fundamental
open problems about the relation between deterministic algorithms,
nondeterministic algorithms, and randomized computation.? Besides
being of theoretical interest, this matter is of great practical impor-
tance, for example in the security of cryptographic schemes that are
currently widely used. For an overview of current research we refer the
reader to Arora and Barak [2]. Tt is also interesting to note that ran-
domness plays an important part in many of the proofs of results about
deterministic algorithms, that do not otherwise mention randomness.

11. APPLICATIONS

As pointed out in section 5 and Corollary B.2, due to the undecid-
ability of the Halting Problem, the notion of Kolmogorov complexity is
inherently noncomputable. This means that there is no algorithm that,
given a finite sequence, can compute its complexity, or decide whether
it is random or not. Can such a concept, apart from mathematical
and philosophical applications, have any practical applications? Per-
haps surprisingly, the answer is “yes”. A large number of applications,
ranging from philosophy to physics and biology, is discussed in the
monograph by Li and Vitdnyi [18]. Instead of attempting to give an
overview of all applications, for which we do not have the space, we
give an example of one striking application, namely the notion of infor-
mation distance. Information distance is a notion built on Kolmogorov
complexity that was introduced by Bennett et al. [4]. It satisfies the
properties of a metric (up to constants), and it gives a well-defined

23In computational complexity theory, an algorithms is considered feasible if it
works in polynomial time, that is, if on an input of length n it takes n* computation
steps for some fixed constant k.

24Since 2001 there also exist deterministic feasible algorithms to determine pri-
mality [1], but the randomized algorithms are still faster, and since their probability
of error can be made arbitrary small, in practice they are still the preferred method.

25The question about derandomization is embodied in the relation between the
complexity classes P and BPP, see [2]. This is a probabilistic version of the notorious
P versus NP problem, which is about determinism versus nondeterminism. The
latter is one of the most famous open problems in mathematics.
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notion of distance between arbitrary pairs of binary strings. The com-
putational status of information distance (and its normalized version)
was unclear for a while, but as the notion of Kolmogorov complexity
itself it turned out to be noncomputable [25]. However, it is possible
to approximate the ideal notion using existing, computable, compres-
sors. This gives a computable approximation of information distance,
that can in principle be applied to any pair of binary strings, be it
musical files, the genetic code of mammals, or texts in any language.
By computing the information distance between various files from a
given domain, one can use the notion to classify anything that can be
coded as a binary string. The results obtained in this way are startling.
E.g. the method is able to correctly classify pieces of music by their
composers, animals by their genetic code, or languages by their com-
mon roots, purely on the basis of similarity of their binary encodings,
and without any expert knowledge. Apart from these applications, the
notion of information distance is an example of a provably intractable
notion, which nevertheless has important practical consequences. This
provides a strong case for the study of such theoretical notions.

APPENDIX A. MEASURE AND PROBABILITY

A measure space is a set X together with a function p that assigns
positive real values p(A) to subsets A of X, such that the following
axioms are satisfied:

(i) The empty set () has measure 0.

(ii) If AN B =0, then u(AU B) = u(A) + u(B). That is, if A and
B are disjoint sets then the measure of their union is the sum of
their measures.?

If also u(X) = 1 we can think of the values of p as probabilities,
and we call X a probability space, and p a probability measure. If A
is a subset of X, we think of (A) as the probability that a randomly
chosen element of X will be in the set A. Subsets of X are also called
events. In this setting the axioms (i) and (ii) are called the Kolmogorov
axioms of probability. The axioms entail for example that if A C B,
i.e. the event A is contained in B, that then p(A) < u(B).

An important example of a probability space consists of the unit
interval [0, 1] of the real line. The uniform or Lebesgue measure on
[0, 1] is defined by assigning to every interval [a, b] the measure b — a,

261t is in fact usually required that this property also holds for countably infinite
collections.
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i.e. the length of the interval. The measure of more complicated sets
can be defined by considering combinations of intervals.?

APPENDIX B. THE NONCOMPUTABILITY OF THE COMPLEXITY
FUNCTION

In Zvonkin and Levin [31] the following results are attributed to
Kolmogorov.

Theorem B.1. The set R of Kolmogorov random strings does not
contain any infinite c.e. set.*® In particular, R itself is not c.e.

Proof. Suppose that A is an infinite c.e. subset of R. Consider the
following procedure. Given a number n, find the first string a enumer-
ated in A of length greater than n. Note that such a string a exists
since A is infinite. Since a is effectively obtained from n, n serves
as a description of a, and hence the Kolmogorov complexity C(a) is
bounded by the length of n, which in binary notation is roughly logn
(plus a fixed constant ¢ independent of n, needed to describe the above
procedure), where log denotes the binary logarithm. So we have that
C'(a) is at most logn. But since a is random (because it is an element
of A, which is a subset of R), we also have that C'(a) is at least the
length of a, which we chose to be greater than n. In summary, we
have n < C(a) < logn + ¢, which is a contradiction for sufficiently
large n. U

Corollary B.2. The complexity function C' is not computable.

Proof. It C' were computable, we could generate an infinite set of ran-
dom strings, contradicting Theorem B.1. 0
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