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1 Preliminaries

These notes are meant to support part of the course Introduction to Logic
in Computer Science. Below we treat various proof methods from computer
science. In particular we treat the tableau method and resolution. Apart from
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the basic definitions of propositional and predicate logic, no acquaintance with
any particular proof system for these logics is required. Our lectures are loosely
based on Nerode and Shore [2], which we recommend as background reading.

2 Tableau proofs in propositional logic

Tableaux are schemes to analyze composite formulas into their simpler com-
ponents. They have become a standard way of presenting proofs in computer
science, for example because they are a natural tool in proof search. If the
search fails, as a bonus we obtain a countermodel. For readers familiar with
proof theory we may note that tableaux are just proofs from Gentzen’s sequent
calculus (cf. Buss [1]) written upside-down.

Propositional logic models reasoning about propositional atoms that are true
or false, using the propositional connectives ¬ (negation), ∧ (and), ∨ (or), and
→ (implication). Usually the meaning (semantics) of the connectives is defined
using truth tables:

p q ¬p p ∧ q p ∨ q p → q
1 1 0 1 1 1
1 0 0 0 1 0
0 1 1 0 1 1
0 0 1 0 0 1

Given this, one can compute the truth value of any composite formula by writing
out the complete truth table containing its value for all possible assignments of
the propositional variables. A propositional formula is satisfiable if it has an
assignment that makes it true, and a set of formulas is satisfiable if there is an
assignment satisfying all its elements.

For a formula with n variables there are 2n possible assignments, hence the
truth table quickly becomes too big to handle. Since the Boolean satisfiability
problem SAT is NP-complete, and NP is not known to be different from P, at
present it is not clear whether and how exponential methods in the worst case
can be avoided. But since it is clear that the truth table method is guaranteed
to take exponential time, it is desirable to have methods that at least in some
cases work much faster. The tableau method is one such method.

A sequent is an object of the form Φ ⇒ Ψ, where Φ and Ψ are finite sets
of formulas. We think of this as saying that the conjunction of the formulas
in Φ implies the disjunction of the formulas in Ψ. A tableau is a scheme for
reducing sequents to simpler ones. To start with, every sequent of the form ⇒ p
or p ⇒, where p is a propositional variable, is an atomic tableau. For every
propositional connective there are two atomic tableaux, a left version and a right
version, listed in Figure 2.1. Formally a tableau is a (binary) tree obtained from
a sequent by repeated applications of the atomic tableaux. Figure 2.2 contains
an example of a propositional tableau.

Definition 2.1. Suppose that ' is a formula in a sequent on a path P through
tableau ¿ . We define the following notions.

∙ ' is reduced on P if the atomic tableau for ' is applied somewhere along P .
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Figure 2.1: The atomic tableaux

⇒ ((p → q) ∨ r ∨ s) ∧ (p ∨ q)

UUUUUUUUUUUU
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⇒((p → q) ∨ r ∨ s) ⇒p ∨ q

⇒p → q, r ∨ s ⇒p, q

⇒p → q, r, s

p ⇒q, r, s

Figure 2.2: An example tableau
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∙ P is closed if some formula occurs both on the left and on the right of ⇒
on P . In the pictures below we mark the end of closed paths with ⊗.

∙ P is finished if it is closed or every formula on it is reduced. A finished
path that is not closed is open.

∙ ¿ is finished if every path is finished, and closed if every path is closed.

∙ A tableau proof of a formula ' is a closed tableau with root ⇒ '. In this
case we say that ' is tableau provable and write ⊢ '.

As an example we consider the following proof of Peirce’s law.

⇒((p → q) → p) → p

(p → q) → p ⇒p

MMM
MMM

M

qqq
qqq

q

⇒p → q, p p ⇒p

p ⇒q, p ⊗

⊗
Definition 2.2. Given a sequent, the complete systematic tableau (CST) with
this sequent as root is the tableau obtained by reducing at every step the first
unreduced formula, where “first” is defined by choosing the least level at which
an unreduced formula occurs and then choosing the leftmost one at that level.

We need the following basic result about trees. A tree is finitely branching if
every node has only finitely many successors.

König’s Lemma. Every infinite tree that is finitely branching has an infinite
path.

Proof. Inductively define the infinite path as follows. Starting in the root, pick
a successor such that the subtree below it is still infinite. Such a successor
exists since the tree is infinite and there are only finitely many successors. For
choosing the next successor, repeat the argument.

Proposition 2.3. Every CST is finished and finite.

Proof. Since every level of the tableau is finite, if ' is an unreduced formula,
at some point in the construction of the CST it would be the least unreduced
formula and it would be reduced.

Next note that every path in the CST is finite. This is because at every
step extending the path some sequent occurring on it is reduced. Since every
formula can be reduced only finitely often, the path must be finite.

The CST has the form of a binary tree, and by the previous observation all
its paths are finite, hence by König’s Lemma it is finite.
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Let ∣= ' denote that ' is a tautology, i.e. that it is valid under all assignments
of its propositional variables.

Theorem 2.4. (Soundness) For all formulas ', ⊢ ' =⇒ ∣= '.

Proof. This follows immediately from the soundness of the atomic tableaux.
Since general tableaux are built out of the atomic ones, these are sound too.

The proof of the following theorem demonstrates a feature that will be useful
later on when we generalize our methods to predicate logic, namely that an
open branch of a tableau yields a countermodel.

Theorem 2.5. (Completeness) For all formulas ', ∣= ' =⇒ ⊢ '.

Proof. Suppose that ∕⊢ '. Then the CST for ⇒ ' has an open branch P .
Define an assignment V of the propositional variables by V (p) = 1 if and only
if p occurs on the left of ⇒ on P . By formula induction it follows that V agrees
with all entries on P , i.e. makes all formulas on the left true and all those on
the right false. Since ' occurs on the right, V falsifies '.

Given any (possibly infinite) set of formulas Σ we can define the notion of tableau
from Σ as before, but now we consider every sequent ' ⇒ with ' ∈ Σ as an
atomic tableau. This means that in the construction of a tableau we may add
formulas from Σ on the left at any point. We write Σ ⊢ ' if there is a closed
tableau from Σ with root ⇒ '.

As an example, the following tableau shows that ¬q, p ∨ q ⊢ p.

¬q, p ∨ q ⇒p

p ∨ q ⇒q, p

NNNNNNN

ppppppp

p ⇒q, p q ⇒q, p

⊗ ⊗
Given a set of premises Σ, we can define in the obvious way all the analogues of
the notions we had before. In the definition of the complete systematic tableau
(CST) from Σ, we now have to make sure that all formulas of Σ appear on
any open path. In particular, the CST is not always finite anymore, but it is
always finished. Also, if a tableau is closed, i.e. all paths are closed, then by
König’s Lemma is is finite. Hence tableau proofs are still finite. Soundness and
completeness follow as before.

Theorem 2.6. (Compactness) If Σ ∣= ' then there is a finite subset Σ′ ⊆ Σ
such that Σ′ ∣= '.

Proof. By completeness we have Σ ∣= ' if and only if Σ ⊢ ', so the theorem
follows from the fact that tableau proofs are finite.
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3 Resolution in propositional logic

Like the tableau method, resolution is a method for refuting formulas. In res-
olution there is only one rule, which speeds up the search for proofs, but the
method only works for formulas in CNF. (Recall that we have seen in the com-
plexity part of the course that converting formulas to CNF may be expensive.
Recall also that the CNF fragment of SAT is still NP-complete.) Resolution is
the method underlying Prolog (cf. Section 5).

We use the following terminology. A literal is a propositional variable or the
negation thereof. For a literal x its negation is denoted by x̄. A clause is a finite
disjunction of literals. Clauses are often denoted using set notation, so the set
of literals {x1, . . . , xk} denotes the clause x1 ∨ . . . ∨ xk. □ denotes the empty
clause, and stands for false. A formula is in conjunctive normal form (CNF) if
it is a conjunction of clauses. Since in the context of resolution we work in the
CNF-fragment, we identify formulas with (not necessarily finite) sets of clauses.
Note that the empty set stands for true.

Definition 3.1. If C1 = {l}⊔C ′
1 and C2 = {l̄}⊔C ′

2 are clauses, where ⊔ denotes
that we are taking a union of disjoint sets, then C ′

1 ∪C ′
2 is called a resolvent of

C1 and C2.

Note that resolution is sound, i.e. preserves satisfiability. That is, if both of the
parent clauses are satisfiable then also their resolvent is satisfiable. A resolution
proof of a clause C from a formula S is a finite sequence C1, C2, . . . , Cn = C of
clauses such that each Ci is an element of S or a resolvent of clauses earlier in
the sequence. If such a proof exists we write S ⊢ℛ C. If S ⊢ℛ □ we say that S
is refutable.

We can picture resolution proofs as binary trees. For example, the follow-
ing is a refutation proof from the set S =

{{p, r}, {q,¬r}, {¬q}, {¬p, t}, {¬s},
{s,¬t}}.

□
TTTTTTTTTTTTTTT

kkkkkkkkkkkkkk

{p} {¬p}

{p, q}
wwwww

{¬q}

FFFFF

{¬p, s}
vvvvvv

{¬s}

EEEEE

{p, r}
zzzzz

{q,¬r}

GGGGG

{¬p, t}
uuuuuu

{s,¬t}

HHHHHH

Definition 3.2. ℛ(S) is the closure of S under resolution, i.e. S ⊆ ℛ(S) and
if C1, C2 ∈ ℛ(S) and C is a resolvent of C1 and C2 then also C ∈ ℛ(S).

Theorem 3.3. (Soundness of propositional resolution) S ⊢ℛ □ =⇒ S unsat-
isfiable.

Proof. Obviously, if V is an assignment satisfying C1 and C2, then also V ∣= C
for any resolvent C of C1 and C2. Hence if S is satisfiable then S ∕⊢ℛ □.
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The following notion will be useful here and later on. Define

Sl =
{
C − {l̄} : C ∈ S ∧ l /∈ C

}
.

Motivation: When analyzing S by cases, Sl corresponds to the assumption that
l is true. In this case, if we are trying to refute S, we can delete all C with
l ∈ C and delete {l̄} from the remaining clauses.

Lemma 3.4. (i) S is satisfiable if and only if either Sl or S l̄ is satisfiable.

(ii) S is unsatisfiable if and only if both Sl and S l̄ are unsatisfiable.

Proof. This follows from the “meaning” of Sl: S is satisfiable if and only if S is
satisfiable with l = 1 or S is satisfiable with l = 0 if and only if Sl is satisfiable
or S l̄ is satisfiable. Item (ii) follows from this by taking the contrapositive.

Corollary 3.5. UNSAT =
{
S : S unsatisfiable

}
can be inductively defined by

(i) □ ∈ S =⇒ S ∈ UNSAT,

(ii) Sl, S l̄ ∈ UNSAT =⇒ S ∈ UNSAT.

Note that resolution is not complete in the sense that for every set of clauses S
and every clause C, whenever S ∣= C then S ⊢ℛ C. For example, ∣= p∨¬p but
∕⊢ℛ {p,¬p}. However, resolution is complete in the sense that any inconsistent
S is refutable. Sometimes this fact is called refutation completeness.

Theorem 3.6. (Completeness of propositional resolution) S unsatisfiable =⇒
S ⊢ℛ □.

Proof. This can be proven using compactness, but it is more useful for later
applications to prove it directly, with a proof that we can reuse later. The proof
is by induction on the number of applications of Corollary 3.5 (ii). Suppose that
T0 and T1 are proofs witnessing Sl ⊢ℛ □ and S l̄ ⊢ℛ □, respectively. If every leaf
of T0 is a clause in S then T0 is already a proof of S ⊢ℛ □. Otherwise change
every node C in T0 above1 a leaf not in S to C ∪ {l̄}. Note that every C ∈ Sl

is either in S or of the form C − {l̄} with C ∈ S. Thus we obtain a proof T ′
0

of S ⊢ℛ {l̄}. Similarly, if T1 is not already a proof that S ⊢ℛ □, we obtain a
proof T ′

1 of S ⊢ℛ {l} by suitably adding {l} at some nodes. Putting T ′
0 and T ′

1

together, we obtain a proof of □.

4 Refinements of resolution

We introduce various restricted versions of resolution that try to further re-
duce the search space (and hence increase the speed of proof search). These
variants are often useful in practise, even though we know that SAT-CNF is
NP-complete. Of course, all restricted versions are still sound.

1Here our proof trees grow downwards.
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Figure 4.1: A linear resolution deduction

∙ T-resolution: Here neither of the parent clauses is a tautology. The idea is
that tautologies cannot really help to produce a contradiction. Note that
checking whether a clause is a tautology is easy, namely check if it contains
both a literal p and p̄. T-resolution is still complete: Use the same proof
as above for Theorem 3.6. If T0 and T1 there have no tautologies then
also T ′

0 and T ′
1 do not.

∙ A-resolution, also called semantic resolution: For a fixed assignment A,
require that at least one of the parents is false under A. The idea is that
if both parent clauses are true under A then they are consistent, which
cannot help in producing a contradiction. The closure of S under A-
resolution is denoted by ℛA(S). To see the completeness of A-resolution,
again use the proof of Theorem 3.6, modifying T0 and T1, which is now a
bit more work.

∙ Ordered resolution: Given an ordering of the propositional variables, only
allow resolutions C1 ⊔ {p}, C2 ⊔ {p̄} when p is larger than all elements in
C1 and C2. For completeness we can again reuse the previous proof.

∙ Linear resolution: A linear resolution deduction of C from S is a sequence
(C0, B0), . . . , (Cn, Bn) so that for C = Cn+1

– C0 and each Bi are either elements of S or some Cj for some j < i,

– each Ci+1, i ⩽ n, is a resolvent of Ci and Bi.

Notation: S ⊢ℒ C. Figure 4.1 depicts a linear deduction. The Ci are
called the center clauses and the Bi the side clauses. Linear resolution is
still complete. We defer the proof until Section 11. Linear resolution is
also the proof method underlying Prolog.

5 Prolog

Prolog is a declarative programming language built on (linear) resolution. It
has its own terminology and notation, that we now discuss. Consider a clause
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C with positive literals Ai and negative ones ¬Bj:

C = A1 ∨ . . . ∨ Am ∨ ¬B1 ∨ . . . ∨ ¬Bn.

The terminology for C for the various possible values of m and n is as follows.

If m ⩽ 1 C is a Horn clause.

m = 1: C is a program clause.

n > 0: C is a rule A :- B1 . . . Bn. A is the head and the Bi are the body
or subgoals.

n = 0: C is a fact A :-

m = 0: C is a goal clause :- B1 . . . Bn.

A Prolog program P is a set of rules and facts. Given B1 . . . Bn, P ∣= B1∧. . .∧Bn

if and only if P ∪ {{¬B1, . . . ,¬Bn}} ∣= □. Entering ?- B1 . . . Bn in Prolog
results in adding the goal clause {¬B1 . . .¬Bn} to the program P , after which
Prolog searches for a proof of □. Hence this corresponds to trying to prove
B1 ∧ . . . ∧Bn from P .2

Lemma 5.1. If a set of Horn clauses S is unsatisfiable then it contains at least
one fact and one goal clause.

Proof. This is beause the assignment making all variables true satisfies every
program clause (rules and facts), and the assignment making all variables false
satisfies every rule and every goal clause.

As mentioned in Section 4, linear resolution is complete (Theorem 11.3). Here
we prove a weaker result, namely completeness for the Horn fragment.

Theorem 5.2. (Completeness of linear resolution for Horn clauses) If S is
unsatisfiable and Horn then S ⊢ℒ □.

Proof. As noted in Lemma 5.1, S contains at least one fact {p}. Then also Sp

is unsatisfiable: If A ∣= Sp then A ∪ {p} ∣= S by definition of Sp. Since Sp

contains fewer literals, by induction it follows that Sp ⊢ℒ □. As in the proof of
Theorem 3.6, either this is already a proof of S ⊢ℒ □ or by adding p̄ to every
clause above a clause not in S we obtain S ⊢ℒ p̄, and by resolving on p we get
S ⊢ℒ □.

LI-resolution. Let P be a set of program clauses andG a goal. A linear input res-
olution refutation of S = P ∪{G} is a linear refutation that starts with G and in
which all side formulas are from P (the input clauses). In general, LI-resolution
is not complete: Consider the set S =

{{p, q}, {p,¬q}, {¬p, q}, {¬p,¬q}} where
{¬p,¬q} is the goal clause. In any linear derivation from S, as soon as we get
to a center clause with one literal, any resolution produces another such clause,
hence we cannot derive □.

2The term “goal clause” for {¬B1 . . .¬Bn} is perhaps a misnomer, since it actually corre-
sponds to the negation of the goal, which is to prove B1 ∧ . . . ∧Bn.
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6 Tableau proofs in predicate logic

We assume the reader is familiar with the language and classical semantics of
predicate logic.

In the following we work with a countable first-order language ℒ, that is,
we assume that ℒ has at most countably many nonlogical symbols (predicates,
functions, and constants). Although the restriction to countable languages is
not essential, it makes the presentation much more transparent. Given a first-
order language ℒ, consider the terms built from variables and constants by
applying function symbols in ℒ. Ground terms are terms without variables. To
ensure that there are enough terms, expand ℒ to ℒC by adding a set of fresh
constants c0, c1, . . .. The atomic tableaux are defined as in Section 2, with the
following extra cases for the quantifiers:

∀x'(x) ⇒

t any ground
term of ℒC

'(t) ⇒

⇒∀x'(x)

⇒'(c)
c fresh
constant

∃x'(x) ⇒

c fresh
constant

'(c) ⇒

⇒∃x'(x)

⇒'(t)
t any ground
term of ℒC

Note that in applying these rules, fresh constants are always available since we
added the set of constants C.

Now tableau proofs, possibly with premises, are defined as before. As an
example we prove ∀x'(x) → ∃x'(x).

⇒∀x'(x) → ∃x'(x)

∀x'(x) ⇒∃x'(x)

∀x'(x) ⇒'(c)

'(c) ⇒'(c)

⊗
In the example shown in Figure 6.1, note that we do not necessarily repeat
formulas along a path. Figure 6.2 contains an example of a false proof.

Let t1, t2, . . . be a list of all ground terms of ℒC . Since there are infinitely many
terms to instantiate formulas, we cannot guarantee anymore that tableaux are

10



⇒∀x(Px → Qx) → ∀xPx → ∀xQx

∀x(Px → Qx) ⇒∀xPx → ∀xQx

∀xPx ⇒∀xQx

⇒Qc c fresh

Pc ⇒

Pc → Qc ⇒
LLLLLL

rrrrrrr

⇒Pc Qc ⇒

⊗ ⊗
Figure 6.1: Example of a tableau proof

⇒∃x'(x) → ∀x'(x)

∃x'(x) ⇒∀x'(x)

'(c) ⇒∀x'(x)

'(c) ⇒'(c)
false development
of ∀, c not fresh

⊗
Figure 6.2: Example of a false proof

11



⇒∀x∃yRxy → ∃y∀xRxy

∀x∃yRxy ⇒∃y∀xRxy

∃yRc0y ⇒

⇒∀xRxc0

Rc0c1 ⇒

⇒Rc2c0

∃yRc1y, ∃yRc2y ⇒

⇒∀xRxc1,∀xRxc2

Figure 6.3: Example of an open tableau

finite. In the construction of the complete systematic tableau CST, we now
make sure that for formulas ' = ∀xÃ(x) occurring on the left, x is instantiated
with every possible ground term ti. Similarly for formulas ' = ∃xÃ(x) occurring
on the right. The CST is uniquely specified by always using the smallest ground
term ti, and for ∃ on the left and ∀ on the right the smallest fresh constant ci.
A (possibly infinite) path through a tableau is now called finished if it is either
closed (i.e. some formula occurs both on the left and the right) or all such
instantiations occur along it. A finished path that is not closed is open. A
tableau is finished or closed if all its paths are. Provability using tableaux is
again denoted by ⊢. That is, S ⊢ ' if there is a closed tableau from S with root
⇒ '.

As an example of an open tableau, consider an initial part of a tableau
for the formula ∀x∃yRxy → ∃y∀xRxy depicted in Figure 6.3. The right hand
side provides us with ever more examples of y’s with Rxy, and the left hand
side ensures that none of the y’s that are introduced is a uniform witness. By
Theorem 6.3 the open branch provides us with an infinite countermodel for the
formula. Note however that in this case there is also a finite countermodel with
only two elements.

Proposition 6.1. Every CST is finished (but not necessarily finite!).

Proof. As before.

Theorem 6.2. (Soundness) For all formulas ', ⊢ ' =⇒ ∣= '.

Proof. Again this follows from the soundness of the atomic tableaux.

For completeness, again we use an open branch in the CST to build a model.
The idea is crucial for later applications, including Herbrand’s theorem.
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Theorem 6.3. Suppose that P is an open path in CST ¿ from S with root ⇒ '.
Then there is a model A in which ' is false and S is true.

Proof. Build A from the ground terms ti (in the language ℒC). Define

fA(ti1 , . . . , tin) = f(ti1 , . . . , tin)

and let RA(ti1 , . . . , tin) hold if and only if R(ti1 , . . . , tin) occurs on the left side
of P . Now prove by formula induction that a formula Ã occurs on the right of
P if and only if A ∕∣= Ã, and Ã occurs on the left of P if and only if A ∣= Ã.

Theorem 6.4. (Completeness) For all S, ', either

(i) the CST from S with root ⇒ ' is a tableau proof of ' from S, or

(ii) there is an open path that gives a model of S and ¬'.
Proof. If every path in the CST ¿ is closed then all paths are finite, hence by
König’s Lemma ¿ is finite. If there is an open path in ¿ then Theorem 6.3 gives
us a model.

Theorem 6.5. (Löwenheim-Skolem) If S is countable and satisfiable then it
has a countable model.

Proof. This follows since the path in Theorem 6.4 (ii) is countable.

As in Theorem 2.6, compactness follows from completeness.
In propositional logic, every CST is finite, hence we have a decision proce-

dure for validity, albeit a bad one in terms of complexity. For predicate logic,
when we search for a proof of ' we will find one if ' is valid, but if this is not
the case the CST may be infinite so we may never find out whether ' is valid.
This is unavoidable, since by Church’s Theorem predicate logic is undecidable.
A proof of this result belongs to a course in computability theory.

7 Skolemization

In our quest to reduce predicate logic to propositional logic, we will try to elim-
inate quantifiers by introducing new function symbols. The idea is that the
formulas ∀x∃yR(x, y) and ∀xR(x, f(x)) are equisatisfiable, that is, one of them
is satisfiable if and only if the other is too. (In general the two formulas are not
equivalent, cf. Exercise 7.3.) For ease of presentation, we assume that all formu-
las are in prenex normal form, but we remark that this assumption, although
it is made in most presentations on this subject, is not strictly necessary. In
fact, we have seen before that putting a formula in prenex form may be costly,
so that it is good to know that we can work with general formulas. To put a
formula in prenex form, we can move all quantifiers in front by repeatedly using
the elementary equivalences ¬∀ ≡ ∃¬ and ¬∃ ≡ ∀¬,

∀x' ∨ Ã ≡ ∀z('(x/z) ∨ Ã),

etcetera.
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Theorem 7.1. For every sentence ' in a given first-order language ℒ there
is a universal sentence '′ in an expanded language ℒ′ obtained by adding new
function symbols such that ' and '′ are equisatisfiable.

Proof. Without loss of generality ' is in prenex normal form. It suffices to show
that ∀x⃗∃yÃ(x⃗, y) is equisatisfiable with ∀x⃗Ã(x⃗, f(x⃗)). This is obvious.
For example, ∃x∀y∃z∀u∃vR(x, y, z, u, v) is equisatisfiable with

∀y∀uR(
c, y, f(y), u, g(y, u)

)
.

Here c is a 0-place function symbol, i.e. a constant. We call formulas obtained
in this way Skolemized.

Corollary 7.2. For any set S of sentences in ℒ, there is a formula (i.e. a set
T of clauses) in an expansion ℒ′ such that S and T are equisatisfiable.

Exercise 7.3. Show that in Theorem 7.1 ' and '′ are not necessarily equiva-
lent. We always have '′ → ' but not necessarily ' → '′.

8 Herbrand’s theorem

In what follows we assume that the language ℒ contains at least one constant
symbol.

Definition 8.1. The set of ground terms of ℒ is called the Herbrand universe
of ℒ. A model A is a Herbrand model if its universe is the Herbrand universe
and for every function symbol f and elements t1, . . . , tn of A,

fA(t1, . . . , tn) = f(t1, . . . , tn), (1)

and cA = c for all constants c ∈ ℒ. Note that the left hand side of (1) denotes
the interpretation fA of f in the model A, and the right hand side is an element
of A. That is, ground terms are purely syntactically interpreted by themselves.

By assumption, ℒ always contains a constant symbol, so that its Herbrand uni-
verse is never empty. Note that the model built in the proof of the Completeness
Theorem 6.4 was a Herbrand model, but in the language ℒC with added con-
stants C. Note further that in Definition 8.1 there are no restrictions on the
predicates of ℒ, so there are many possible Herbrand models.

Theorem 8.2. (Herbrand’s Theorem) Let S be a formula, i.e. a set of clauses
interpreted as a universal formula. Then either

(i) S has a Herbrand model, or

(ii) S is unsatisfiable, and there are finitely many ground instances of elements
of S whose conjunction is unsatisfiable.
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Proof. Let S ′ be the set of all ground instances of formulas from S (in the
language ℒ, not in the language ℒC from the completeness theorem). Note
that S ′ ∕= ∅ because ℒ always contains a constant. Consider the CST from S ′,
again in ℒ, starting with the sequent ⇒ ⊥, where ⊥ denotes some false formula.
Notice that in the construction of the CST on page 12 we do not need to apply
the steps that add fresh constants, because S is purely universal. If there is an
open path then we obtain a model of S ′ as in the proof of the Completeness
Theorem 6.4, which is then a Herbrand model for S. If the tableau is finite and
closed, then it is a proof that the finite subset of S ′ appearing in the tableau is
unsatisfiable, and it follows that S is unsatisfiable.

Corollary 8.3. An existential formula ∃x⃗'(x⃗), with ' quantifier free, is valid
if and only if there are finitely many ground terms t⃗1, . . . , t⃗n such that

'(⃗t1) ∨ . . . ∨ '(⃗tn)

is valid.

Proof. ∃x⃗'(x⃗) is valid if and only if ∀x⃗¬'(x⃗) is unsatisfiable. By Theorem 8.2
there are ground terms t⃗i such that

⋀
i ¬'(⃗ti) is unsatisfiable, hence

⋁
i '(⃗ti) is

valid.

Exercise 8.4. Suppose that the language ℒ does not contain any function
symbols, and suppose that ' is a purely universal satisfiable formula (i.e. ' does
not contain any existential quantifiers). Show that the proof of Theorem 8.2
can be used to obtain a finite model of '. (Hint: Without loss of generality the
language ℒ only contains one constant plus the constants occurring in '.)

Exercise 8.5. Give an example to show that the result of Exercise 8.4 no longer
holds in the presence of function symbols. If you like you can use equality. If
you have an example using equality, show how you can get rid of equality by
substituting a suitably axiomatized binary relation R for it. (This exercise
reveals some of the power of function symbols. That they have this power
should not come as a surprise, since we have seen that they can be used to
replace existential quantifiers.)

9 Unification

In principle, we could do resolution for predicate logic with all possible ground
terms, as in the proof of Herbrand’s Theorem 8.2. Needless to say, this is not
efficient. Instead we use unification, which is a procedure for making terms
equal by applying appropriate substitutions.3

Definition 9.1. A substitution µ is a finite set
{
x1/t1, . . . , xn/tn

}
, where the

xi are variables and the ti are expressions such as terms or atomic formulas. µ
is ground if all the terms ti are. For an expression E, or a set of expressions S,
we write Eµ (or Sµ) for the result of applying the substitution µ.

3In unification, term equations t = s are solved by applying the same substitution µ on
both sides to obtain equal terms tµ and sµ. If the substitution is applied to only one of the
sides the procedure is called matching. Both procedures are of fundamental importance in
computer science, both for first-order and higher order terms.

15



N.B. Substitutions are supposed to be done simultaneously , e.g. in

E{x1/t1, x2/t2}
occurrences of x2 in t1 are not affected by the substitution x2/t2.

We can also compose substitutions µ and ¾ to obtain µ¾, which is the substi-
tution obtained by first applying µ and then ¾. For example, the substitutions

µ = {x/f(y), y/g(z), w/v},
¾ = {x/a, y/b, z/f(y), v/w, u/c}

give the composed substitution

µ¾ =
{
x/f(b), y/g(f(y)), u/c, v/w, z/f(y)

}
.

Note that the substitution w/w is deleted from µ¾ since it is of no consequence.

Proposition 9.2. (i) (Eµ)¾ = E(µ¾).

(ii) (Ãµ)¾ = Ã(µ¾).

Proof. Exercise.

Definition 9.3. A substitution µ is a unifier for a set of expressions S =
{E1, . . . , En} if E1µ = . . . = Enµ. µ is a most general unifier (m.g.u.) for S if
for every unifier ¾ for S there is a substitution ½ such that µ½ = ¾.

For example, consider the following sets of terms, with constants a, b, c, and
variables x, y, w:

{
P (x, a), P (b, c)

}
is not unifiable.

{
P (f(x), z), P (a, w)

}
is also not unifiable.

{
P (f(x), y), P (f(a), w)

}
is unifiable by {x/a, y/w}, but also by {x/a, y/a, w/a}

and by {x/a, y/b, w/b} etcetera. Of these, {x/a, y/w} is a most general unifier.

The unification algorithm (J. A. Robinson, 1965) is a systematic way of search-
ing for a m.g.u. Without giving a formal description of the algorithm, we can
simply describe it by saying that we always locate the first difference from the
left and try to unify at that point. It can be shown that the m.g.u. ¾ found in
this way (if it exists) satisfies

¾µ = µ (2)

for every other unifier µ. (Note that property (2) is not automatic for every
m.g.u. ¾. Consider for example the term x. ¾ = {x/z} and µ = {x/y} are
m.g.u.’s for this term, and ¾{z/y} = µ, but ¾µ ∕= µ.)

For example:

S1 =
{
f(x, g(x)), f(ℎ(y), g(ℎ(z))

}
has m.g.u. {x/ℎ(y)}{y/z} = {x/ℎ(z), y/z}.

S2 =
{
f(ℎ(x), g(x)), f(g(x), ℎ(x))

}
is not unifiable.

16



10 Resolution in predicate logic

In the context of predicate logic, a literal is any atomic formula (possibly with
free variables) or a negation thereof. Again, a clause is a finite set of literals.
The clause C =

{
Q(x, y), R(y)

}
is interpreted as ∀x∀y(Q(x, y) ∨ R(y)

)
. A

formula S (i.e. any set of clauses) is interpreted as the conjunction of its clauses.
Clauses are universally quantified separately. If necessary we rename variables
from the various clauses. This is called “standardizing the variables apart”.
E.g. S =

{{P (x)}, {Q(x)}} corresponds to ∀xP (x) ∧ ∀zQ(z).

Definition 10.1. Suppose the clauses

C1 = C ′
1 ⊔

{
P t⃗1, . . . , P t⃗n

}

C2 = C ′
2 ⊔

{¬P s⃗1, . . . ,¬P s⃗m
}
.

have no variables in common. Here the t⃗i and s⃗j are sequences of terms. If ¾ is
a m.g.u. for

{
P t⃗1, . . . , P t⃗n, P s⃗1, . . . , P s⃗m

}
then C ′

1¾ ∪ C ′
2¾ is called a resolvent

of C1 and C2.

Resolution proofs of a clause C from a set of clauses S and resolution refutations
of S are defined in the same way as before in propositional logic. Again we write
S ⊢ℛ C if there is a resolution proof of C from S, and ℛ(S) denotes the closure
of S under resolution.

Remark (i). Renaming of variables is necessary:
{{P (x)}, {¬P (f(x))}} is un-

satisfiable and resolution refutable, but the clauses cannot be unified with-
out renaming x. (Note that the substitution x/f(x) is allowed but yields{{P (f(x))}, {¬P (f(f(x)))}} because by definition we have to apply the sub-
stitution to both sides.)

Remark (ii). In general we cannot assume that n = m = 1, as before in Defini-
tion 3.1. Consider for example S =

{{P (x), P (y)}, {¬P (x),¬P (y)}}. S is un-
satisfiable, but if we eliminate only one literal we end up with

{{P (y),¬P (y)}}
which is even valid.

Example 10.2. Consider

(a) ∀x, y, z(Pxy ∧ Pyz → Pxz
)

(b) ∀x, y(Pxy → Pyx
)

(c) ∀x, y, z(Pxy ∧ Pzy → Pxz
)

We prove that (a),(b)⊢(c). First we put the formulas in clausal form, while at
the same time standardizing the variables apart, to obtain

C1 =
{¬Pxy,¬Pyz, Pxz

}

C2 =
{¬Puv, Pvu

}

C3 =
{¬Pxy,¬Pzy, Pxz

}

17
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Figure 10.1: Lifting a single resolution

Now we can resolve as follows:

C2 =
{¬Puv, Pvu

}

{u/z, v/y}
BB

BB
BB

BB
BB

BB
BB

BB

{¬Pxy,¬Pyz, Pxz
}
= C1

xx
xx

xx
xx

xx
xx

xx
xx

x

{¬Pxy,¬Pzy, Pxz
}
= C3 □

Correct answer substitutions in Prolog. When using Prolog for predicate logic,
it is customary to denote predicates by small and variables by capital letters. In
Prolog, the query ?- p(X), q(Y ) is interpreted as ∃X∃Y (p(X) ∧ q(Y )). Prolog
adds {¬p(X),¬q(Y )} and tries to deduce □, and if successful returns a correct
answer substitution, i.e. a substitution

{
X/s, Y/t

}
with terms s and t such that

P ∣= p(s) ∧ q(t). In general, for a program P and goal G = {¬A1, . . . ,¬An},
µ is a correct answer substitution if P ∣= (A1 ∧ . . . ∧ An)µ. N.B. If P ∪ {G} is
unsatisfiable then by [2, Exercise 10.5] (which is an application of Herbrand’s
Theorem) there is a correct answer substitution that is ground. That one can
always find such a substitution with resolution follows from the completeness
of resolution below.

Theorem 10.3. (Soundness of resolution) □ ∈ ℛ(S) =⇒ S unsatisfiable.

Proof. Again this is obvious, since the resolution rule is sound.

We now prove the completeness of resolution. The proof shows that in a sense
we have succeeded in reducing predicate logic to propositional logic. Using
Skolemization we got rid of existential quantifiers, and Herbrand’s Theorem
enables us to get down to the level of ground instances. We then derive com-
pleteness from the completeness of resolution for propositional logic by “lifting”
resolution proofs back from the level of ground instances.

Lemma 10.4. If C ′
1 = C1µ1 and C ′

2 = C2µ2 are ground instances of the clauses
C1 and C2 that have no common variables, and C ′ is a resolvent of C ′

1 and C ′
2,

then there is a resolvent C of C1 and C2 such that C ′ = Cµ1µ2, cf. Figure 10.1.
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Proof. Suppose that C ′
1 and C ′

2 resolve on P (⃗t), that is, there are clauses

A1 =
{
P (s⃗1,1), . . . , P (s⃗1,i)

} ⊆ C1,

A2 =
{¬P (s⃗2,1), . . . ,¬P (s⃗2,j)

} ⊆ C2

that become unified to {P (⃗t)} and {¬P (⃗t)} respectively by µ1 and µ2. Since
by assumption the substitutions are disjoint, µ1µ2 unifies both. Hence, C =(
(C1 −A1)∪ (C2 −A2)

)
¾ is a resolvent of C1 and C2, where ¾ denotes a m.g.u.

for A1 and A2, and

Cµ1µ2 =
(
(C1 − A1) ∪ (C2 − A2)

)
¾µ1µ2

=
(
(C1 − A1) ∪ (C2 − A2)

)
µ1µ2 by property (2) on page 16

= (C1 − A1)µ1 ∪ (C2 − A2)µ2 by disjointness

= C ′.

Lemma 10.5. (Lifting lemma) Let S be an ℒ-formula. Let S ′ be the set of all
ground instances of S in the Herbrand universe of ℒ. If T ′ is a resolution proof
S ′ ⊢ℛ C ′ of a clause C ′ from S ′, then there is a clause C and a resolution proof
T for S ⊢ℛ C, and a substitution µ with T ′ = Tµ.

Proof. This follows by induction on the depth of proofs, using Lemma 10.4 at
the induction step. Note that several renamings of the same clause C may occur
in T , so that µ can give several ground instances of C in T ′.

Theorem 10.6. (Completeness of resolution) S unsatisfiable =⇒ □ ∈ ℛ(S).

Proof. Let S ′ be as in Lemma 10.5. By Herbrand’s Theorem 8.2, if S is unsat-
isfiable then so is S ′. By the completeness of propositional resolution (Theo-
rem 3.6) □ is derivable from S ′. By the Lifting Lemma, □ ∈ ℛ(S).

Exercise 10.7. Consider the following sentences:

(1) ∀x (®(x) → ¯(x)
) → ∃y (°(y) ∧ ¬¯(y))

(2) ∀x (°(x) → ¯(x))

(3) ∃x (®(x) ∧ ¬¯(x))
(a) Use Skolemization to put the above sentences in clausal normal form.
(b) Use resolution to prove that (1), (2) ∣= (3). That is, add the negation of (3)
to (1) and (2) and derive □.

11 Linear resolution

We already discussed linear resolution proofs in Section 4, but we only proved
completeness for the Horn fragment (Theorem 5.2). In this section we prove
the full completeness of linear resolution by refining the previous proofs.
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Definition 11.1. A subset U ⊆ S is called a set of support for S if S − U
is satisfiable. (Namely, if S is unsatisfiable, U supports this fact.) A linear
resolution proof has support U if it starts with C0 ∈ U . An unsatisfiable set
S is minimally unsatisfiable if every proper subset of it is satisfiable, that is, if
{C} is a set of support for every C ∈ S.

Lemma 11.2. If S is unsatisfiable then there is a minimally unsatisfiable S ′ ⊆
S. If U is a set of support for S, U ∩ S ′ is one for S ′.

Proof. The first statement follows from compactness. For the second, if S ′ ⊆ S
is minimally unsatisfiable, and U ∩ S ′ = ∅, then S ′ ⊆ S − U is satisfiable,
a contradiction. Hence S ′ − (U ∩ S ′) is a proper subset of S ′, and therefore
satisfiable, so U ∩ S ′ is a set of support for S ′.

Theorem 11.3. (Completeness of linear resolution) If S is unsatisfiable and U
is a set of support for S, then there is a linear refutation with support U .

Proof. By Herbrand’s Theorem 8.2, if S is unsatisfiable then so is the set S ′ of
all ground instances of S, and the set U ′ of all ground instances of U is a set of
support for S ′. From the Lifting Lemma 10.5 it is immediate that a linear proof
of □ from S ′ with support U ′ lifts to a linear proof from S with support U . So
it remains to prove completeness of linear resolution for the propositional case.
To this end, suppose that S is an unsatisfiable set of propositional formulas
with set of support U . Without loss of generality S is finite (by compactness)
and minimal (Lemma 11.2). The proof is by induction on the excess literal
number E(S), which is the number of occurrences of literals minus the number
of clauses in S. We prove that there is a linear refutation proof starting with
any given C ∈ S.

First note that E(S) is negative if and only if there are more clauses than
literals. Since every clause has at least one literal, this holds precisely when
□ ∈ S, so in this case there is nothing to prove. Hence suppose that E(S) ⩾ 0.
There are two cases.

Case 1. The given start of the proof C ∈ S is a unit clause {l}. Then there
is C ′ ∈ S containing l̄, since otherwise a satisfying assignment for S−C can be
extended to S by setting l to true. Also, l /∈ C ′ because otherwise C ′ would be
a tautology, contradicting the minimality of S. Hence C ′ − {l̄} ∈ Sl, where Sl

is the set defined before in Section 3. If C ′ = {l̄} then we are obviously done,
so suppose that C ′ contains more literals. By Lemma 3.4, Sl is unsatisfiable.
Clauses removed from S in forming Sl have at least one literal (namely l), so
their removal cannot increase the excess literal number. Since C ′ loses l̄ in
transition to Sl we have E(Sl) < E(S). As is obvious from its definition, Sl is
also minimally unsatisfiable, namely every satisfying assignment of a subset of
Sl gives one of S by making l true. Now the induction hypothesis gives a linear
proof T of □ from Sl starting with C ′ − {l̄}. We inductively define a linear
proof of □ from S as follows. If the configuration

Ci Bi

vvvvvvv

Ci+1

vvvvvvv
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occurs in T then Bi = Cj for some j < i or Bi ∈ Sl. In the first case the
induction tells us how to transform Cj, and we do the same with Bi. If Bi ∈ S
then we do not have to transform it. If Bi ∈ Sl − S then we modify the above
configuration as follows:

Ci Bi ∪ {l̄}
ttttttt

Ci+1 ∪ {l̄} {l}
ssssssss

Ci+1

ssssssss

Case 2. The clause C contains literals other than l. In this case consider
S l̄. As above, it is minimally unsatisfiable and E(S l̄) < E(S). By induction
hypothesis there is a linear deduction of □ from S l̄ starting with C − {l} ∈ S l̄.
(Note that by minimality l̄ /∈ C.) Add l to every center clause and any side
clause in S l̄ but not S to obtain a linear proof of {l} from S starting with C.
Now consider S ′ = S−{C}∪ {{l}}. S ′ is unsatisfiable because any assignment
satisfying it satisfies S. Since C contains more than one literal, E(S ′) < E(S).
Since □ /∈ S also □ /∈ S ′, hence for any S ′′ ⊆ S ′ we have E(S ′′) ⩽ E(S ′).
Taking S ′′ ⊆ S ′ minimally unsatisfiable, by induction we obtain a linear proof
of □ from S ′′ ⊆ S ∪ {{l}} starting with {l}. (Note that S ′′ must contain {l}
because S ′ − {{l}} = S − {C} is satisfiable.) Combining this with the proof of
{l} from S gives the desired proof.
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