
SEMINAR ON A1-HOMOTOPY THEORY OF SCHEMES

VICTORIA HOSKINS

Our seminar takes place on Wednesday afternoons, 16:15 - 17:45 in Arnimallee 3, SR 005.
The first seminar will take place on the 16th April 2014. All are welcome to attend and please
let me know if you would like to give a talk.

Introduction

In algebraic topology, the notion of homotopy equivalence is important as many invariants (for
example, the singular homology groups) are homotopy invariant. In algebraic geometry, the idea
of A1-homotopy theory is to do homotopy theory for schemes where the affine line plays the role
of the unit interval. The framework for doing this is to work with the ‘A1-homotopy category’
by abstracting ideas from algebraic topology. The basic idea is that we want to construct this
category by inverting certain morphisms, but the details are more subtle: we need to enlarge
the category of smooth varieties so we can take colimits of diagrams and, moreover, introduce a
model category structure that allows us to invert the desired class of morphisms. Several talks
are devoted to the careful construction of the (unstable) A1-homotopy category.

In this seminar, we focus our attention on the unstable theory as this suffices for us to achieve
our main aim: to provide a homotopical classification of vector bundles on a smooth k-scheme.
We recall that in algebraic topology, the classifying space of GL(n,C) can be constructed as the
infinite grassmannian Grn of n-planes and, moreover, isomorphism classes of (topological) rank
n complex vector bundles on a space X are in bijection with homotopy classes of maps from
X to Grn. Our goal is to provide an algebraic version of this statement using the (unstable)
A1-homotopy category. This aim seems appropriate for our seminar as it is closely linked to
the research interests of our group and will also give us a good introduction to the ideas and
potential of A1-homotopy theory.

The plan for the seminar is to start from the basics and keep in mind the following goals.

(1) To motivate the desire for an A1-homotopy theory of k-schemes from the point of view
of homotopy theory in algebraic topology.

(2) To construct the A1-homotopy category (for this, we will need to make a digression into
Quillen’s theory of homotopical algebra) and understand why this category is the right
one to consider.

(3) To provide a homotopical classification of vector bundles on a smooth k-scheme.

Description of the talks

Talk 1: Introduction. We recall the notion of homotopy in algebraic topology and state the
classification of principal G-bundles in terms of homotopy classes of maps to the classifying
space BG (this will be proved in Talk 2). Our focus is on vector bundles and we recall that the
classifying space BGL(n,C) can be described as the infinite Grassmannian of complex n-planes
Grn. We also discuss the stable version of this result that relates the topological Grothendieck
group of (complex) vector bundles on X to homotopy classes of maps from X to Gr× Z where
Gr is the colimit of Grn over n.

We then give an overview of the ideas involved in constructing a homotopy theory in algebraic
geometry. The first point to address is what should play the role of the unit interval [0, 1]. The
algebraic analogue of this is the affine line A1 and we describe some of the similarities and dif-
ferences between these two different interval objects. Using the affine line as our interval object,
we give the naive notion of homotopy for schemes (known as strict A1-homotopy equivalences).
A more subtle question, is which category of ‘spaces’ should we work with and is this category
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sufficiently well-behaved. The category of smooth k-varieties V is too small (for example, not all
diagrams have colimits) and so we consider the larger category of sheaves on V (for a suitable
topology). The choice of topology is important: we take the Nisnevich topology which is finer
than the Zariski topology and weaker than the étale topology as it has many useful properties
of both. We want to invert a certain class of morphisms and one way to do this is to use
techniques from homotopical algebra (e.g. model structures, see Talk 3). In order to be able
to introduce a model structure and do homotopy theory, we must consider simplicial sheaves
on V in the Nisnevich topology. The (unstable) A1-homotopy category H(k) is constructed
by inverting a class of morphisms that essentially play the role of homotopies (the so-called
A1-weak equivalences). Morphism groups in the A1-homotopy category are notoriously difficult
to calculate. For example, even calculating the maps from Speck to a variety X is problematic;
conjecturally this should agree with the set of k-points X(k) modulo naive A1-homotopy.

We end by stating the goal of the seminar: the homotopical classification of algebraic vector
bundles. We emphasise the similarities with the classification in algebraic topology.

Talk 2 : Classification of principal bundles in algebraic topology. The goal of this talk
is to prove, for a topological group G, that there is a classifying space BG such that homotopy
classes of maps from a given (paracompact) space X to BG are in bijective correspondence with
the set of isomorphism classes of principal G-bundles on X

[X,BG] ∼= BunG(X).

The first step is to prove the homotopy invariance of fibre bundles i.e. given a fibre bundle
E → B and two homotopic maps fi : X → B, we have as isomorphism f∗0 (E) ∼= f∗i (E). For a
fixed principal G-bundle P → B, pulling back P along a map X → B gives a well defined map

ΦP : [X,B]→ BunG(X).

A principal G-bundle p : EG→ BG is universal if the induced map ΦEG : [X,BG]→ BunG(X)
is a bijection for all X. Hence, the goal of this talk is to prove the existence of a universal prin-
cipal G-bundle (and, time permitting, that the classifying space BG is unique up to homotopy
type). A key ingredient is the recognition principle: a principal G-bundle p : P → B whose
total space P is aspherical (i.e. its homotopy groups are all trivial) is universal.

For G = GL(n,C) and G = U(n), we realise BG as the infinite Grassmannian of complex
n-planes Grn (the observation that BG coincides for both groups reflects the fact that every
complex vector bundle admits a Hermitian metric). Then we deduce a construction of BG for
all subgroups G ⊂ GL(n,C). Finally, we describe stabilisation of vector bundles in algebraic

topology and the representation of the topological Grothendieck group Ktop
0 in homotopy theory.

If time permits, we’ll give a few corollaries: i) if f : X → Y is a homotopy equivalence,
it induces isomorphisms BunG(X) ∼= BunG(Y ), ii) a fibre bundle over a contractible space is
trivial, and iii) complex line bundles are classified via BunU(1)(X) ∼= [X,CP∞] ∼= H2(X,Z) and

real line bundles are classified via BunO(1)(X) ∼= [X,RP∞] ∼= H2(X,Z2).
References. The literature on this topic is vast; for example, see [2], Chapter 1 for the
homotopical classification and [4], Chapter 9 for stabilisation results for vector bundles.

Talk 3: An introduction to homotopical algebra. We define the simplicial category ∆
and, for any category C, the category of simplicial (resp. cosimplicial) objects in C denoted ∆opC
(resp. ∆C). For the category of topological spaces T op , we construct a cosimplicial topological
space ∆T op and use this to define for any topological space X a simplicial set S(X) ∈ ∆opSet
called the singular simplicial set of X. This functor S : T op → ∆opSet has a left adjoint, the
realisation functor, which we also describe.

We give the definition of a model structure on a category C and its associated homotopy
category HoC obtained by inverting the weak equivalences. We also define fibrant and cofibrant
objects in a model category and state an extremely useful result that allows us to compute
morphism groups in the homotopy category between cofibrant and fibrant objects. Examples:
the model structure on the category of topological spaces T op; the model structure on the
category of simplicial sets sSet := ∆opSet. For example, every simplicial set is cofibrant
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and simplicial groups are fibrant. We see that there is an equivalence of categories between
H := Ho T op and Hs := Ho sSet.

Finally, for a model category C, we give a notion for a cosimplicial object ∆• of C to be compat-
ible with the model structure on C. We show such an object defines a ‘simplicial homotopy rela-
tion’ on morphism groups HomC(X,Y ) and let π(X,Y ) denote the quotient by this relation. We
end with an important result: for X cofibrant and Y fibrant, we have π(X,Y ) = HomHo C(X,Y ).
References The basic notions are given in [8] p369–370 and §2.3 (p373–378); for a more detailed
approach, see [3] §1.1-1.2, §2.4 and §3.1-3.2 and see also [1] §2. A concise description of the
model category structures on simplicial sets and topological spaces is given in [6], §17.

Talk 4: Sheaves in the Nisnevich topology. Let V denote the category of smooth, sep-
arated, finite type schemes over a perfect field k. We define the étale, Nisnevich and Zariski
topologies on V. For a Grothendieck topology τ , we recall the definition of the category of
sheaves of sets in the τ -topology, denoted Shτ (V). We note that we have a sequence of full
embeddings

V ⊂ Shét(V) ⊂ ShNis(V) ⊂ ShZar(V) ⊂ Presh(V)

where the leftmost inclusion is given by sending a scheme to its functor of points. We give
a comparison between the Zariski, Nisnevich and étale topologies and see that the Nisnevich
topology has many useful properties (it sits between the Zariski and étale topologies and has
many desirable features of both topologies).

We then define distinguished squares for the Nisnevich topology. One of the many reasons
for working with the Nisnevich topology is that one can check if a presheaf is a sheaf using
distinguished squares (cf. [8] Lemma 2.1.6). We define τ -points and τ -neighbourhoods of τ -
points in V; this allows us to define the fibre of a presheaf. We also show distinguished squares
that define a square in ShNis(V) that is both cartesian and cocartesian give rise to a canonical
isomorphism of sheaves (cf. [8] Lemma 2.1.13).
References For an overview, see [8] §2.1 (p364–368) and also p371–372. See also the start of
Section 3 in [10] (p94-95) which gives several properties of the Nisnevich topology that explain
its use in the construction of the A1-homotopy category.

Talk 5: The simplicial homotopy category of sheaves. We define the category ∆opShτ (V)
of simplicial sheaves in the τ -topology (we are ultimately interested in the case when τ = Nis).
We see that we can associate to any sheaf, a corresponding constant simplicial sheaf. For any
set S, we can consider the associated constant sheaf S and similarly for simplicial sets we obtain
a simplicial sheaf; i.e. sSet ↪→ ∆opShτ (V). The n-simplex ∆n and n-sphere Sn = ∆n/∂∆n can
then be defined in the category of simplicial sheaves ∆opShτ (V). We let ∅ and ∗ denote the
initial and final objects in ∆opShτ (V). We remark that one can analogously define a category
of pointed simplicial sheaves in order to define smash products. Then we introduce a model
structure on ∆opShτ (V) such that the weak equivalences are those whose fibres at τ -points
are weak equivalences of simplicial sets. We define the simplicial homotopy category Hτs (V) of
sheaves in the τ -topology to be the associated homotopy category. We also note that there is a
pointed analogue, denoted Hτs,•(V).

We then make a digression back into the theory of homotopical algebra and give notions
of Quillen functors and derived functors (we remark that these can be computed by taking
(co)fibrant resolutions). We show the following functors are Quillen functors: i) the functor
given by taking a product with a fixed simplicial sheaf and ii) the functor given by taking the
smash product with a fixed pointed simplicial sheaf.

Finally, we describe the B.G. property for a simplicial presheaf (a notion that was first
introduced in the Zariski topology by Brown and Gersten). We remark that fibrant simplicial
sheaves in the Nisnevich topology have the B.G. property (this generalises a result from last
week: the sheaf property in the Nisnevich topology can be checked on distinguished squares).
We give a result that, for a pointed simplicial sheaf X with the B.G. property, allows us to relate
certain morphism groups in HNis

s,• (V) with the homotopy groups of the simplicial set X (U) for
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U ∈ V (this follows from a general result in homotopical algebra that describes the morphisms
between cofibrant and fibrant objects).
References. For an overview, see [8] §2.3 (p378–382). Further details can be found in [10].

Talk 6: The A1-homotopy category of smooth k-schemes H(k). Henceforth, we work
with the Nisnevich topology and so (simplicial) sheaf means (simplicial) sheaf for the Nisnevich
topology. We start by recalling the naive homotopy equivalence relation, denoted ∼A1 given by
strict A1-homotopy equivalences; then we define a more general notion of A1-weak equivalences.
An object X in ∆opShNis(V) is A1-local if, under the natural projection X × A1 → X , the
morphisms groups from X ×A1 and X agree in the simplicial homotopy category Hτs (V). Using
this notion, we define A1-weak equivalences; these are the morphisms we invert to construct
the A1-homotopy category and these include simplicial weak equivalences and projection maps
X×A1 → X . Morel and Voevodsky prove that there is a model structure on ∆opShNis(V) whose
weak equivalences are A1-weak equivalences and then construct the A1-homotopy category H(k)
of smooth k-schemes as the homotopy category of this model category. Again, we remark that
there is a pointed version H•(k) of H(k) which has a suspension functor (given by taking a
smash product with S1).

We describe two natural cosimplicial objects that are compatible with this model structure:
the standard cosimplicial simplex and an algebraic version ∆•alg. For the algebraic version,
we observe that the associated simplicial homotopy equivalence relation on morphism groups
coincides with the the notion of strict A1-homotopy equivalence ∼A1 . We recall from the talk
on model categories that for X cofibrant and Y fibrant

HomH(k)(X,Y ) = π(X,Y ) := Hom∆opShNis(V)(X,Y )/∼A1 .

Let HNis
s,A1(V) ⊂ HNis

s (V) be the full subcategory consisting of A1-local simplicial sheaves;

then, this inclusion has a left adjoint, the A1-localisation functor LA1 : HNis
s (V) → HNis

s,A1(V)

which induces an equivalence of categories H(k)→ HNis
s,A1(V).

When we have a complex (resp. real) embedding of k, we see there is an induced functor
H(k) → H (resp. two non-isomorphic induced functors). Analogously to the notation in
algebraic topology, we denote the morphism group in the homotopy category by

[X ,Y] := HomH(k)(X ,Y);

in general, it is very hard to compute these groups. Morel and Voevodsky conjecture that
for affine X the morphism group from X to Y in H(k) is the naive A1-homotopy classes of
morphisms from X to Y .
References. For an overview, see [8] §3.1 (p383–386) and for the proofs, see [10]. We skip the
proof of the model structure, as this is quite dry and technical.

Talk 7 : K0 and K1 for rings. We recall the construction of the Grothendieck group K0 of
an exact category A (i.e. an additive category that has a class of ‘short exact sequences’, but
is not necessarily abelian). For a ring R, we define K0(R) to be the Grothendieck group of the
category of finitely generated projective R-modules. For a scheme X, we define K0(X) to be
the Grothendieck group of the category of locally free OX -modules. For a Noetherian scheme
X, we define G0(X) (often also denoted K ′0) to be the Grothendieck group of the category of
coherent sheaves on X and observe that if X is also regular then G0(X) = K0(X). We define

the reduced K0-group K̃0(X) to be the kernel of the rank map K0(X) → H0(X,Z) and note

that there are maps from the set Φn(X) of rank n vector bundles over X to K̃0(X) given by
E 7→ [E]− [OnX ].

It is not necessary for us to define the higher K-theory groups of a scheme; however, we will
need to define K1 of a ring. Fortunately, we can bypass the formalism used by Quillen and
instead define K1 of a ring R via the short exact sequence

1→ [GL(R),GL(R)]→ GL(R)→ K1(R)→ 1

where GL(R) = colimn GLn(R). In particular K1(R) is an abelian group and every homomor-
phism from GL(R) to an abelian group factors through K1(R). When R = F is a field, we see
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that SL(F ) = [GL(F ),GL(F )] and K1(F ) = F×. We prove Whitehead’s lemma which states
that the commutator group [GL(R),GL(R)] is the group of elementary matrices E(R) ⊂ GL(R).

Finally, we define K0 and K1-regularity of a ring and prove that if R is a regular ring then
it is both K0 and K1-regular (in fact K1-regularity implies K0-regularity).
References. The main reference is [11], Chapters II and III. For Whitehead’s lemma, see [11]
III 1.3.3 and for the proof of K1-regularity of a regular ring, see [11] III 3.8 (and also II 6.5, for
K0-regularity) and [7] p45–48.

Talk 8 : Excision for Picard groups and Karoubi-Villamayor K-theory. We recall
that the Picard group of a regular scheme can be calculated from an exact sequence of groups.
Then we show that distinguished squares of schemes in V give rise to an exact sequence relating
their Picard groups. We also prove that K0(X)-regularity implies Pic regularity (cf. [7], Lemma
4.1.7).

For a commutative ring R, we construct an associated simplicial group GL(R) and define
the Karoubi-Villamayor K-theory groups of R by taking homotopy groups. More precisely,
we define KV0(R) := K0(R) and KVn(R) := πn−1GL(R), for n ≥ 1. We see that there is a
canonical epimorphism K1(R) → KV1(R) and prove that this is an isomorphism when R is
K1-regular. We deduce some consequences (e.g., [7] Lemma 4.1.12 and Corollary 4.1.15) that
show certain cartesian squares of commutative rings give rise to natural long exact sequences
in Karoubi-Villamayor K-theory groups KVn (and, moreover, a long exact sequence mixing the
KVn-groups with the K0 and K1-groups).
References. See [7], §4.1.1 and §4.1.4 (see p44–51) and the references therein.

Talk 9: Anodyne extensions I. We introduce an alternative construction of the A1-homotopy
category given by Morel in [7]. The construction of the A1-homotopy category H(k) given above
follows the construction given by Morel and Voevodsky in [10]; this is the construction used
by most working in the field today. Unfortunately, we need to use the alternative construc-
tion of Morel in [7] to prove that the infinite Grassmannian is fibrant (cf. Talk 11) which is
an important step towards the homotopical classification result. By [7] Remark 2.2.15, both
constructions lead to equivalent categories.

As motivation, we give the description of anodyne extensions for simplicial sets. We state
Morel’s notion of quasi-simplicial categories (a weaker notion than simplicial model categories,
but which allow us to invert a class of morphisms to obtain a reasonably behaved homotopy
category). This is the tool Morel uses for his construction of the A1-homotopy category. Morel
inverts a class of morphisms in the category of ‘k-spaces’ Ek := Fun(AfSmop

k ,Set); that is,
presheaves on the category AfSmk of smooth affine schemes of finite type over k. The quasi-
simplicial category structure on Ek is specified by giving a cosimplicial object ∆•alg and classes
of elementary cofibrations and elementary anodyne extensions. We start defining these class of
morphisms; the remaining definitions will be given in the following talk.
References. [7] §2.2.1 (p14–20). The notion of anodyne extensions first arose from the model
structure on simplicial sets; for example, see [6], 17.5 and [3] §3.2-3.3.

Talk 10: Anodyne extensions II. We continue with the definition of the quasi-simplicial
structure on the category of k-spaces Ek := Fun((AfSmk)

op,Set). It remains to define the class
of fundamental geometric anodyne extensions (we recall that the class of anodyne extensions
is defined so it contains two special classes of morphisms: the fundamental simplicial anodyne
extensions and the fundamental geometric anodyne extensions). We define the fundamental
geometric anodyne extensions and show that any section of a vector bundle over a k-space is a
fundamental geometric anodyne extension.

We define the cofibrations, trivial fibrations and anodyne extensions using theses classes
of elementary cofibrations and elementary anodyne extensions. We obtain a description of the
cofibrant objects and, in particular, note that every smooth affine scheme and the infinite general
linear group are both cofibrant. In Talk 11, we see that the (doubly) infinite Grassmannian is
fibrant and in Talk 12, we see that the constant presheaf associated to any set is also fibrant.



6 VICTORIA HOSKINS

Morel constructs H(k) by inverting all anodyne extensions between cofibrant objects and
trivial fibrations in Ek (the class of inverted maps are referred to as weak equivalences). We
show that any naive A1-homotopy equivalence is a weak equivalence and note (again) that the
morphism group in H(k) from a cofibrant k-space X to fibrant k-space Y are precisely the
naive homotopy classes of maps X → Y (cf. [7] Proposition 2.2.14). Then we compare this
construction of Morel with the construction of Morel and Voevodsky covered in Talks 4-6.

Finally, we state a technical result that we will need in the following talks: for an elementary
anodyne extension X → Y , the associated simplicial map GL(A(Y )) → GL(A(X)) is a weak
equivalence. The idea is to prove GL(A(Y ))→ GL(A(X)) is a trivial fibration (and so a weak
equivalence) by firstly showing that is true for a fundamental geometric anodyne extensions and
then to use an inductive argument to prove the general case. Moreover, it follows that for an
elementary anodyne extension as above, we have isomorphisms

K0(A(Y )) ∼= K0(A(X)) and A(Y )× ∼= A(X)× and Pic(X) ∼= Pic(Y ).

References. [7] §2.2.1 (p14–20) and §4.2.1 (p51–54).

Talk 11 : Homotopic properties of the canonical GLn-torsor on the Grassmannian
Grn. We start this talk with a brief digression about vector bundles and GLn-torsors. For us,
an important example is the GLn-torsor Vn,r → Grn,r over the Grassmannian of n-planes in
An+r. By taking the colimit (over r) we get the canonical GLn-torsor Vn → Grn over the infinite
Grassmannian of n-planes. For n = 1, we get the canonical Gm-torsor A∗ := V1 → P∞ := Gr1.
By taking the colimit of the canonical GLn-torsors Vn → Grn over n we get a GL-torsor V → Gr
over the infinite Grassmannian.

Then the aim of this talk is to prove the following.

(1) the canonical GL-torsor V → Gr is a fibration.
(2) the canonical Gm-torsor A∗ → P∞ is a fibration.
(3) the infinite projective space P∞ and Grassmannian Gr are both fibrant.

We first show that the infinite general linear group GL and multiplicative group Gm are fibrant.
Then we prove that the GL-torsor V → Gr is a fibration (the proof for the canonical Gm-
torsor is similar). To prove that Gr is fibrant we need to show, for an elementary anodyne
extension X → Y , that and map X → Gr can be lifted to Y . The proof of this final part
involves the defining properties of Grassmannian as well as the fact (proved last week) that
K0(A(Y )) ∼= K0(A(X)). The argument for the infinite projective space is similar.
References. [7] §2.1.5 (p9–13) and §4.2.2 (p54–58).

Talk 12: Homotopic classification of vector bundles on smooth k-schemes. The goal
of this talk is to prove that for a smooth k-scheme X, there are natural bijections:

(1) [X,Z×Gr] ∼= K0(X);
(2) [X,P∞] ∼= Pic(X).

We firstly prove the result for a smooth affine k-scheme as these are cofibrant (for Morel’s
construction). The idea is to use the fact that the morphism group in the homotopy category
between a cofibrant and fibrant object is the group of naive homotopy classes of maps (cf. [7],
Proposition 2.2.14). Last week we proved that Gr and P∞ are fibrant and we show that Z is
also fibrant (see [7], Lemma 4.2.8); therefore the codomains Z × Gr and P∞ are both fibrant.
Then for affine X we deduce the homotopical classification by computing the naive homotopy
groups π(X,Z × Gr) and π(X,P∞) (this computation mostly relies on standard properties of
Grassmannians, cf. [7] Proposition 4.2.11).

Unfortunately smooth k-schemes are not always cofibrant (for Morel’s construction) and so
we need to do some extra work to deduce the homotopic classification in this case. The idea
is to use the Jouanolou-Thomason theorem: for any smooth separated k-scheme X, there is
a vector bundle E → X and a E-torsor T → X such that T is affine (the notion of a torsor
under a vector bundle is given in [7] §2.1.5, p13). As T → X is a torsor under a vector bundle,
it follows that T → X is a weak equivalence (see [7], Corollary 2.3.2) and so [X,B] → [T,B]
is bijective. The idea is then to deduce the case for X from the case for the affine smooth
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scheme T proved above by using strong A1-homotopy invariance for K0; that is, we want to
use homotopy invariance to show that K0(X) ∼= K0(T ). We recall that for a regular scheme
X we have that K0(X × An) ∼= K0(X) (this is strong A1-homotopy invariance for K0). It
follows that, for a vector bundle E → X, we have K0(X) ∼= K0(E) by using induction on
the number of open sets needed to trivialise with the Mayer-Vietoris property for K0. More
generally, for a torsor T → X under a vector bundle, we deduce that K0(X) ∼= K0(T ) (and
similarly Pic(X) ∼= Pic(T )).
References. See [7] §4.2.3.1-4.2.3.2 (p58–61) and Appendix B.4 for details of the Jouanolou-
Thomason theorem.
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