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1. Introduction

In this course we study methods for constructing quotients of group actions in algebraic
and symplectic geometry and the links between these areas. Often the spaces we want to
take a quotient of are a parameter space for some sort of geometric objects and the group
orbits correspond to equivalence classes of objects; the desired quotient should give a geometric
description of the set of equivalence classes of objects so that we can understand how these
objects may vary continuously. These types of spaces are known as moduli spaces and this is
one of the motivations for constructing such quotients.

For an action of a group G on a topological space X, we endow the set X/G := {G·x : x ∈ X}
of G-orbits with the quotient topology; that is, the weakest topology for which the quotient map
π : X → X/G is continuous. Then the orbit space X/G is also a topological space which we call
the topological quotient. If X has some property (for example, X is connected or Hausdorff),
then we may ask if the orbit space X/G also has this property. Sometimes this is the case: for
example, if X is compact or connected, then so is the orbit space X/G. Unfortunately, it is
not always the case that the orbit space inherits the geometric properties of X; for example,
it is easy to construct actions on a Hausdorff topological space for which the orbit space is
non-Hausdorff. However, if G is a topological group, such as a Lie group, and the graph of the
action

Γ : G×X → X ×X
(g, x)→ (x, g · x)

is proper, then X/G is Hausdorff: given two distinct orbits G ·x1 and G ·x2 as (x1, x2) is not in
the image of Γ (which is closed in X ×X) there is an open neighbourhood U1×U2 ⊂ X ×X of
(x1, x2) preserved by G which is disjoint from the image of Γ and π(U1) and π(U2) are disjoint
open neighbourhoods of x1 and x2 in X/G. More generally, if we have a smooth action of a
Lie group on a smooth manifold M for which the action is free and proper (i.e. the graph of
the action is proper), then the orbit space M/G is a smooth manifold and π : M → M/G is a
smooth submersion. In fact, this is the unique smooth manifold structure on M/G which makes
the quotient map a smooth submersion.

As we saw above, the orbit space can have nice geometric properties for certain types of
group actions. However one could also ask whether we should relax the idea of having an orbit
space, in order to get a quotient with better geometrical properties. The idea of this course is:
given a group G acting on some space X in a geometric category (for example, the category
of topological spaces, smooth manifolds, algebraic varieties or symplectic manifolds), to find
a categorical quotient; that is, a G-invariant morphism π : X → Y in this category which is
universal so that every other G-invariant morphism X → Z factors uniquely through π. With
this definition it is not necessary for Y to be an orbit space and so it may be the case that
π identifies some orbits. Of course, if the topological quotient π : X → X/G exists in the
geometric category we are working in, then it will be a categorical quotient.

In the algebraic setting, given the action of a linear algebraic group G on a algebraic variety
X the aim of Geometric Invariant Theory (GIT) is to construct a quotient for this action which
is an algebraic variety. The topological quotient X/G in general will not have the structure of
an algebraic variety. For example, it may no longer be separated (this is an algebraic notion
of Hausdorffness) as in the Zariski topology the orbits of G in X are not always closed; there-
fore, a lower dimensional orbit might be contained in the closure of another orbit and so we
cannot separate these orbits in the quotient X/G. Geometric Invariant theory, as developed by
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Mumford in [31], shows for a certain class of groups that one can construct an open subvariety
U ⊂ X and a categorical quotient of the G-action on U which is a quasi-projective variety. In
general the quotient will not be an orbit space but it contains an open subvariety V/G which
is the orbit space for an open subset V ⊂ U . In the case when X is affine, we shall see that
U = X and the categorical quotient is also an affine variety. Whereas in the case when X is
a projective variety in Pn, we see that the categorical quotient is a projective variety; however
in general this is only a categorical quotient of an open subset of X. We briefly summarise the
main results in affine and projective GIT below.

If X ⊂ An is an affine variety over an algebraically closed field k which is cut out by the
polynomials f1, . . . , fs ∈ k[x1, . . . , xn], then its coordinate ring

A(X) ∼= k[x1, . . . , xn]/(f1, . . . , fs)

is a finitely generated k-algebra of regular functions on X. If there is an action of an algebraic
group G on X, then there is an induced action of G on the coordinate ring A(X) of regular
functions on X. For any G-invariant morphism f : X → Z of affine varieties, the image of the
associated morphism of coordinate rings f∗ : A(Z)→ A(X) is contained in the ring A(X)G of
G-invariant regular functions. If A(X)G is a finitely generated k-algebra, then it corresponds to
an affine variety Y = SpecA(X)G (the idea is to use a set of generators f1, . . . , fm to construct
Y as an algebraic subvariety of Am). In this case, the morphism ϕ : X → Y corresponding to
the inclusion A(X)G ↪→ A(X) is universal as every other G-invariant morphism X → Z of affine
varieties factors uniquely through ϕ and so ϕ is a categorical quotient. The categorical quotient
is constant on orbits and also on their closures; hence, the categorical quotient identifies orbits
whose closures meet. In particular, it is not necessarily an orbit space; although, we will prove
that it contains an open subvariety Xs/G which is an orbit space of a open subvariety Xs ⊂ X
of so-called stable points.

Of course, in the above discussion we assumed that A(X)G was finitely generated so that
we were able to realise Y as an algebraic subset of Am for some finite m. We now turn our
attention to the question of whether the ring of G-invariant functions is finitely generated. This
classical problem in Invariant theory was studied by Hilbert who built much of the foundations
for the modern theory of GIT. For G = GLn(C) and SLn(C), Hilbert showed the answer is
yes. This problem, known as Hilbert’s 14th problem, has now been answered in the negative
by Nagata who gave an action of the additive group C+ for which the ring of invariants is not
finitely generated. However there are a large number of groups for which the ring of invariants
is always finitely generated. Nagata also showed that if a reductive linear algebraic group G
acts on an affine variety X, then the invariant subalgebra is finitely generated [33]. Fortunately,
many of the algebraic groups we are interested in are reductive (for example, the groups GLn
and SLn are reductive). However, more recently there has been work on non-reductive GIT by
Doran and Kirwan [12].

The affine GIT quotient serves as a guide for the general approach: as every algebraic variety
is constructed by gluing affine algebraic varieties, the general theory is obtained by gluing the
affine theory. However, we need to cover X by certain nice G-invariant open affine sets to be
able to glue the affine GIT quotients and so in general we can only cover an open subset Xss of
X of so-called semistable points. Then GIT provides a categorical quotient π : Xss → Y where
Y is a quasi-projective variety. In fact it also provides an open subset Xs/G ⊂ Y which is an
orbit space for an open set Xs ⊂ Xss of stable points.

Suppose we have an action of a reductive group G on a projective variety X ⊂ Pn which is
linearised; that is, G acts via a representation ρ : G → GL(n + 1) and so the action lifts to
the affine cone An+1 over Pn. As X is a complete variety (i.e. compact), we would like to have
a complete quotient or at least a quotient with a natural completion. In this case we use the
homogeneous graded coordinate ring of X and the inclusion R(X)G ↪→ R(X) which induces a
rational morphism of projective varieties X 99K Y ; that is, this is only a well defined morphism
on an open subset of X which we call the semistable locus and denote by Xss. More explicitly,
given homogeneous generators h0, . . . , hm of R(X)G of the same degree, we define a rational
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map

ϕ : X 99K Pm

x 7→ [ho(x) : · · · : hm(x)]

whose image Y ⊂ Pm is a projective variety. Then ϕ is undefined on points x for which all non-
constant G-invariant homogeneous functions vanish at x. The induced morphism ϕ : Xss → Y
is a categorical quotient of the G-action on the semistable locus. There is an open set Xs ⊂ Xss

of stable points and an open subset Xs/G of Y which is an orbit space of the stable locus Xs.
The nicest case is when Xss = Xs and so Y is a projective quotient which is also an orbit space.

The techniques of GIT have been used to construct many moduli spaces in algebraic geometry
and we briefly mention a few examples here to give some idea of the importance of GIT in alge-
braic geometry today. There is still no better introduction to the theory of moduli in algebraic
geometry than the excellent notes of Peter Newstead [36]. In fact, in the final chapter of this
book, there is an overview of Seshadri’s construction of the moduli space of (semi)stable (alge-
braic) vector bundles on a smooth projective curve as a GIT quotient of a subscheme of a Quot
scheme by a projective linear group. Since then, this result has been generalised in two different
directions. Firstly, one can consider higher dimensional base schemes and this generalisation
was made by Simpson [45]. Secondly, one can give the bundle some additional structure and
this generalisation was made by Schmitt [41]. Classically, Mumford was motivated in studying
moduli spaces of both vector bundles and curves and this motivated his development of GIT.
Today moduli spaces of (marked) curves have GIT constructions. An important example, is the
moduli space of elliptic curves (i.e. genus 1 curves with 1 marked point) which is constructed
as a quotient of an open subset in P9 by SL3; this quotient, is shown to be the affine line A1.
More generally, the moduli space of genus g curves is constructed as a quotient of a subscheme
of a Hilbert scheme by the action of a projective general linear group.

In the symplectic setting, suppose we have a Lie group K acting smoothly on a symplectic
manifold (X,ω) where X is a real manifold and ω is a the symplectic form on X (that is; a
closed non-degenerate 2-form on X). The symplectic form gives a duality between vector fields
and 1-forms by sending Z ∈ Vect(X) to the 1-form ω(Z,−) ∈ Ω1(X). We say the action is
symplectic if the image of the map K → Diff(X) given by k 7→ (σk : x 7→ g · x) is contained in
the subset of symplectomorphisms i.e. σ∗kω = ω. We can also consider the ‘infinitesimal action’
which is a Lie algebra homomorphism K→ Vect(X) given by

A 7→ AX,x =
d

dt
exp(tA) · x|t=0 ∈ TxX

where K = Lie K. We say the action is Hamiltonian if we can lift the infinitesimal action to a
Lie algebra homomorphism

C∞(X)

��
K //

;;

Vect(X)

where the vertical map is the composition of the exterior derivative d : C∞(X) → Ω1(X) with
the isomorphism Ω1(X) ∼= Vect(X) given by ω. The lift φ : K → C∞(X) is called a comoment
map, although often one works with the associated moment map µ : X → K∗ which is defined
by µ(x) · A = φ(A)(x) for x ∈ X and A ∈ K. If µA : X → R is given by x 7→ µ(x) · A, then by
construction the 1-form dµA corresponds under the duality defined by ω to the vector field AX
given by the infinitesimal action of A. As φ is a Lie algebra homomorphism, the moment map
is K-equivariant where K acts on K∗ by the coadjoint representation.

In general, the topological quotient X/K is not a manifold, let alone a symplectic manifold. In
fact, even if it is a manifold it may have odd dimension over R and so cannot admit a symplectic
structure. To have a hope of finding a quotient which will admit a symplectic structure we need
to ensure the quotient is even dimensional.

When a Lie group K acts on X with moment map µ : X → K∗, the equivariance of µ implies
that the preimage µ−1(0) is invariant under the action of K. We consider the symplectic
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reduction

µ−1(0)/K

of Marsden and Weinstein [26] and Meyer [28]. If 0 is a regular value of µ, then the preimage
µ−1(0) is a closed submanifold of X of dimension dimX − dimK. If the action of K on µ−1(0)
is free and proper, then the symplectic reduction is a smooth manifold of dimension dimX −
2 dimK. Furthermore, there is a unique symplectic form ωred on µ−1(0)/K such that i∗ω =
π∗ωred where i : µ−1(0) ↪→ X is the inclusion and π : µ−1(0) → µ−1(0)/K the quotient. The
symplectic reduction has a universal property (in a suitable category of symplectic manifolds)
and so can be considered as a categorical quotient.

So far it may seem that there is not much similarity between the symplectic reduction and
the GIT quotient. However, one of the key results we shall see in this course is the Kempf-Ness
Theorem which states that they give the same quotient when a complex reductive group G acts
linearly on a smooth complex projective variety X ⊂ PnC. A group G is complex reductive if
and only if it is the complexification of its maximal compact subgroup K; that is, g = K⊗R C
where g and K denote the Lie algebras of G and K respectively. Complex projective space has
a natural Kähler, and hence also symplectic, structure; therefore we can restrict the symplectic
form to X to make X a symplectic manifold. One can explicitly write down a moment map
µ : X → K∗ which shows that the action is Hamiltonian. Then the Kempf-Ness theorem states
that there is an inclusion µ−1(0) ⊂ Xss which induces a homeomorphism

µ−1(0)/K ∼= X//G.

Moreover, 0 is a regular value of µ if and only if Xs = Xss. In this case, the GIT quotient is a
projective variety which is an orbit space for the action of G on Xs.

There is a further generalisation of this result which gives a correspondence between an
algebraic and symplectic stratification of X. The Kempf-Ness Theorem and the agreement of
these stratifications can be seen as a ‘finite-dimensional version’ of many of the classical results
in gauge theory (where an infinite-dimensional set up is used); for example, the Narasimhan–
Seshadri correspondence [34] can be seen as an analogous type of result. These results show
there is a rich interplay between the fields of algebraic and symplectic geometry. Another famous
link between these fields is Kontsevich’s homological mirror symmetry conjecture, although we
will not be covering this in this course!

Notation and conventions. Throughout we fix an algebraically closed field k. On a few
occasions, we will assume the characteristic of k is zero to simplify the proofs (for example, we
only provide a proof of Nagata’s theorem in characteristic zero) and we provide references for
those interested in the proofs in positive characteristic. We work with varieties over k rather
than schemes. From a technical point of view, there is no difference between the theory for
schemes and the theory for varieties for GIT; however, we state everything in the language of
varieties as this avoids introducing the full machinery of schemes and, after all, the Kempf–Ness
theorem is a result about (smooth complex projective) varieties rather than schemes.

2. Types of algebraic quotients

In this section we consider group actions on algebraic varieties and also describe what type of
quotients we would like to have for such group actions. Since the groups we will be interested will
also have the structure of an affine variety, we start with a review of affine algebraic geometry.

2.1. Affine algebraic geometry. In this section we shall briefly review some of the terminol-
ogy from algebraic geometry. For a good introduction to the basics of algebraic geometry see
[21, 14, 16, 42]; for further reading see also [17, 30, 43].

We fix an algebraically closed field k and let An = Ank denote affine n-space over k:

An = {(a1, . . . , an) : ai ∈ k}.
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Every polynomial f ∈ k[x1, . . . xn] can be viewed as a function f : An → k which sends
(a1, . . . , an) to f(a1, . . . , an). An algebraic subset of the affine space An ∼= kn is a subset

V (f1, . . . fm) = {p = (a1, . . . , an) ∈ An : fi(p) = 0 for i = 1, . . . ,m}
defined as the set of zeros of finitely many polynomials f1, . . . , fm ∈ k[x1, . . . , xn]. As the
k-algebra k[x1, . . . , xn] is Noetherian, every ideal I ⊂ k[x1, . . . xn] is finitely generated, say
I = (f1, . . . , fm), and we write V (I) := V (f1, . . . , fm). The Zariski topology on An is given by
defining the algebraic subsets to be the closed sets.

For any subset X ⊂ An, we let

I(X) := {f ∈ k[x1, . . . , xn] : f(p) = 0 for all p ∈ X}
denote the ideal in k[x1, . . . , xn] of polynomials which vanish on X.

We have defined operators

V : {ideals of k[x1, . . . , kn]} ←→ {subsets of An} : I

but these operators are not inverse to each other. Hilbert’s Nullstellensatz gives the relationship
between V and I:

• X ⊂ V (I(X)) with equality if and only if X is a closed subset.
• I ⊂ I(V (I)) with equality if and only if I is a radical ideal.

Definition 2.1. An affine variety X over k is an algebraic subset of An(= Ank).

Often varieties are assumed to be irreducible; that is, they cannot be written as the union
of two proper closed subsets. However we shall refer to reducible (i.e. not irreducible) varieties
also as varieties. In particular, an affine variety is a topological space with its topology induced
from the Zariski topology on An.

Exercise 2.2. (1) Show V (fg) = V (f) ∪ V (g).
(2) Let X = A1 − {0} ⊂ A1; then what is V (I(X))?
(3) Let I = (x2) ∈ k[x]; then what is I(V (I))?
(4) Let f(x) ∈ k[x] and X = V (f) be the associated affine variety in the affine line A1.

When is X irreducible?

For an affine variety X, we define the (affine) coordinate ring of X as

A(X) = k[x1, . . . , xn]/I(X)

and we view elements of A(X) as functions X → k. Since we can add and multiply these
functions and scale by elements in k, we see that A(X) is a k-algebra and, moreover, that A(X)
is a finitely generated k-algebra (the functions xi provide a finite set of generators). In fact,
A(X) is a reduced k-algebra (that is, there are no nilpotents) and, if X is irreducible, then
A(X) is an integral domain (that is, there are no zero divisors). The coordinate ring of An is
k[x1, . . . , xn].

Definition 2.3. Let X ⊂ An be an affine variety and U ⊂ X be an open subset. A function
f : U → k is regular at a point p ∈ U if there is an open neighbourhood V ⊂ U containing p on
which f = g/h where g, h ∈ A = k[x1, . . . , xn] and h(p) 6= 0. We say f : U → k is regular on U
if it is regular at every point p ∈ U .

For any open set U ⊂ X, we let OX(U) := {f : U → k : f is regular on U} denote the
k-algebra of regular functions on U . For V ⊂ U ⊂ X, there is a natural morphism

OX(U)→ OX(V )

given by restricting a regular function on U to the smaller set V . For those familiar with the
terminology from category theory, OX(−) is a contravariant functor from the category of open
subsets of X to the category of k-algebras and is in fact a sheaf called the structure sheaf (we
shall not need this fact, but for those who are interested see [17] II §1 for a precise definition).

The following theorem summarises some of the results about OX which we shall use without
proof (for details of the proofs, see [17] I Theorem 3.2 and II Proposition 2.2).
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Theorem 2.4. Let X ⊂ An be an irreducible affine variety. Then:

i) The ring O(X) := OX(X) of regular functions on X is isomorphic to the coordinate
ring A(X) = k[x1, . . . , xn]/I(X) of X.

ii) There is a one-to-one correspondence between the points p in X and maximal ideals mp

in A(X) where mp is the ideal of functions which vanish at p.
iii) For f ∈ A(X), we define Xf := {x ∈ X : f(x) 6= 0} = X − V (f) and let A(X)f denote

the ring obtained by localising A(X) by the multiplicative set {fn : n ≥ 0}. Then

OX(Xf ) ∼= A(X)f .

iv) The open affine sets Xf for f ∈ A(X) form a basis for the Zariski topology on X.

Example 2.5. Let X = A1 and f(x) = x ∈ k[x] = A(X). Then Xf = A1 − {0} is an affine
variety with coordinate ring A(Xf ) = A(X)f = k[x, x−1]. We refer to A1−{0} as the punctured
line. For n ≥ 2, we note that An − {0} is no longer an affine variety.

Given an affine variety X ⊂ An, we can associate to X a finitely generated k-algebra, namely
its coordinate ring A(X) which is equal to the ring of regular functions on X. If X is irreducible,
then its coordinate ring A(X) is an integral domain (i.e. it has no zero divisors). Conversely
given a finitely generated k-algebra A, we can associate to A an affine variety SpecA (called
the spectrum of A) as follows. As A is a finitely generated k-algebra, we can take generators
x1, . . . , xn of A which define a surjection

k[x1, . . . , xn]→ A

with finitely generated kernel I = (f1, . . . , fm). Then SpecA := V (f1, . . . , fm) = V (I). One
can also define the spectrum SpecA without making a choice of generating set for A: we define
SpecA to be the set of prime ideals in A and we can also define a Zariski topology on SpecA
(for example, see [17] II §2). We use the term point to mean closed point; that is, a point
corresponding to a maximal ideal.

Definition 2.6. A morphism of varieties ϕ : X → Y is a continuous map of topological
spaces such that for every open set V ⊂ Y and regular function f : V → k the morphism
f ◦ ϕ : ϕ−1(V )→ k is regular.

Exercise 2.7. Let X be an affine variety, then show the morphisms from X to A1 are precisely
the regular functions on X.

Given a morphism of affine varieties ϕ : X → Y , there is an associated k-algebra homomor-
phism

ϕ∗ : A(Y )→ A(X)

(f : Y → k) 7→ (f ◦ ϕ : X → k).

Conversely given a k-algebra homomorphism ϕ∗ : A→ B, we can define a morphism of varieties
ϕ : SpecB → SpecA by ϕ(p) = q where mq = (ϕ∗)−1(mp) (recall that by Theorem 2.4 ii), the
points p of an affine variety correspond to maximal ideals mp in the coordinate ring).

Formally, the coordinate ring operator A(−) is a contravariant functor from the category of
affine varieties to the category of k-algebra homomorphisms and the maximal spectrum oper-
ator Spec(−) is a contravariant functor in the opposite direction. These define an equivalence
between the category of (irreducible) affine varieties over k and finitely generated reduced k-
algebras (without zero divisors).

Exercise 2.8. (1) Which affine variety X corresponds to the k-algebra A(X) = k?
(2) The inclusion k[x1, . . . , xn−1] ↪→ k[x1, . . . , xn] of k-algebras corresponds to which mor-

phism of varieties.
(3) Show V (xy) ⊂ A2 is isomorphic to the affine variety A1−{0} by showing an isomorphism

of their k-algebras. Equivalently, one could explicitly write down morphisms V (xy) →
A1 − {0} and A1 − {0} → V (xy) which are inverse to each other.
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2.2. Algebraic groups.

Definition 2.9. An affine algebraic group over k is an affine variety G (not necessarily ir-
reducible) over k whose set of points has a group structure such that group multiplication
m : G×G→ G and inversion i : G→ G are morphisms of affine varieties.

It is a classical result that every affine algebraic group over k is isomorphic to a linear algebraic
group over k; that is, a Zariski closed subset of a general linear group GLn(k) which is also
a subgroup of GLn(k) (for example, see [4] 1.10). In particular, we will use the terms affine
algebraic group over k and linear algebraic group over k interchangeably.

Remark 2.10. Let A(G) denote the k-algebra of regular functions on G. Then the above
morphisms of affine varieties correspond to k-algebra homomorphisms m∗ : A(G) → A(G) ⊗
A(G) (comultiplication) and i∗ : A(G) → A(G) (coinversion). In fact we can write down the
co-group operations to define the group structure on G.

Example 2.11. Many of the groups that we are already familiar with are algebraic groups.

(1) The additive group Ga = Spec k[t] over k is the algebraic group whose underlying variety
is the affine line A1 over k and whose group structure is given by addition:

m∗(t) = t⊗ 1 + 1⊗ t and i∗(t) = −t.
(2) The multiplicative group Gm = Spec k[t, t−1] over k is the algebraic group whose under-

lying variety is the A1 − {0} and whose group action is given by multiplication:

m∗(t) = t⊗ t and i∗(t) = t−1.

(3) The general linear group GLn(k) over k is an open subvariety of An2
cut out by the

condition that the determinant is nonzero. It is an affine variety with coordinate ring
k[xij : 1 ≤ i, j ≤ n]det(xij). The co-group operations are defined by:

m∗(xij) =

n∑
s=1

xis ⊗ xsj and i∗(xij) = (xij)
−1
ij

where (xij)
−1
ij is the regular function on GLn(k) given by taking the (i, j)th entry of the

inverse of a matrix.

Exercise 2.12. Show that any finite group G is an affine algebraic group over any field k. For
example, write down the coordinate ring of G = {id} and µn := {c ∈ k : cn = 1}.

Exercise 2.13. Show that an affine algebraic group is smooth.

2.3. Linear algebraic groups. In this section, we state a few important results about the
structure of linear algebraic groups over an algebraically closed field; for further details and
proofs, see [4, 19, 46]. As above, we continue to let G denote a linear algebraic group over the
algebraically closed field k. Our starting point is to recall the Jordan decomposition for linear
algebraic groups over (the algebraically closed field) k.

Definition 2.14. Let G be a linear algebraic group over k.

(1) An element g is semisimple (resp. unipotent) if there is a faithful linear representation
ρ : G→ GLn such that ρ(g) is diagonalizable (resp. unipotent).

(2) A unipotent subgroup is a subgroup of unipotent elements.

Theorem 2.15 (Jordan decomposition). Let G be a linear algebraic group over k. For every
g ∈ G, there exists a unique semisimple element gss and a unique unipotent element gu such
that

g = gssgu = gugss.

Furthermore, this decomposition is functorial with respect to morphisms of linear algebraic
groups.

Definition 2.16. A Borel subgroup of G is a maximal connected solvable linear algebraic
subgroup of G.
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Theorem 2.17 ([4] 11.2). All Borel subgroups in G are conjugate.

Proof. If we fix a Borel B, then we can view the quotient G/B as the set of Borel subgroups.
As B is a Borel subgroup, this quotient G/B is a projective variety (cf. [4] 11.1). Then we
apply Borel’s fixed point theorem: a solvable group action on a projective variety has a fixed
point. �

Definition 2.18. An algebraic k-torus is an affine algebraic group over k isomorphic to Gn
m
∼=

(k∗)n.

Alternatively, as we are working over an algebraically closed field, a torus is a connected
abelian semisimple group (cf. [4] 11.5). Furthermore, if G admits no nontrivial tori then it is
unipotent (this is also proved in [4] 11.5).

Often one makes use of the lattices of (co)characters of a torus. More precisely, for a torus
T , we define commutative groups

X∗(T ) := Hom(T,Gm) X∗(T ) := Hom(Gm, T )

called the character and cocharacter group respectively, where we consider homomorphisms of
linear algebraic groups over k between T and the multiplicative group Gm. As the automorphism
group of Gm can be identified with the integers Z by t 7→ tn, we see that the (co)character groups
are finite free Z-modules of rank dimT . There is a perfect pairing between these lattices given
by composition

<,>: X∗(T )×X∗(T )→ Z
where < χ, λ >:= χ ◦ λ.

An important fact about tori is that their linear representations are completely reducible.
We will often use this result to diagonalise a torus action. More precisely, we state this result
as a weight space decomposition.

Proposition 2.19. For a finite dimensional linear representation of a torus ρ : T → GL(V ),
there is a weight space decomposition

V ∼=
⊕

χ∈X∗(T )

V χ

where V χ = {v ∈ V : t · v = χ(t)v ∀t ∈ T}.

Alternatively, there is an equivalence between the category of linear representations of T and
X∗(T )-graded k-vector spaces. We refer to the collection of characters χ for which Vχ 6= 0 as
the weights for the T -action.

Any torus in G is contained in a maximal torus by dimension considerations. Moreover, as
every torus is contained in a Borel, it follows from Theorem 2.17 that all maximal tori are
conjugate.

Proposition 2.20 ([4], 11.3). All maximal tori in a linear algebraic group G over k are conju-
gate.

2.4. Group actions.

Definition 2.21. An action of an affine algebraic group G on a variety X is an action of G on
X which is given by a morphism of varieties σ : G×X → X.

Remark 2.22. If X is an affine variety over k and A(X) denotes its algebra of regular functions,
then an action of G on X gives rise to a coaction homomorphism of k-algebras:

σ∗ : A(X)→ A(G)⊗A(X)

f 7→
∑

hi ⊗ fi.
This gives rise to an action G → Aut(A(X)) where the automorphism of A(X) corresponding
to g ∈ G is given by

f 7→
∑

hi(g)fi ∈ A(X)
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where f ∈ A(X) and σ∗(f) =
∑
hi⊗ fi. The actions G→ Aut(A(X)) which arise from actions

on affine varieties are called rational actions.

Lemma 2.23. For any f ∈ A(X), the linear space spanned by the translates g · f for g ∈ G is
finite dimensional.

Proof. If we write σ∗(f) =
∑n

i=1 hi ⊗ fi for the coaction homomorphism σ∗ as above, then
g · f =

∑
i hi(g)fi and so f1, . . . , fn are a basis. �

Definition 2.24. Let G be an affine algebraic group acting on a variety X. We define the orbit
G ·x of x to be the image of the morphism σx = σ(−, x) : G→ X given by g 7→ g ·x. We define
the stabiliser Gx of x to be the fibre of σx over x.

The stabiliser Gx of x is a closed subvariety of G (as it is the preimage of a closed subvariety
of X under the continuous map σx : G→ X). In fact it is also a subgroup of G. The orbit G ·x
is a locally closed subvariety of X (this follows from a theorem of Chevalley which states that
the image of morphisms of varieties is a constructible subset; for example, see [17] II Exercise
3.19).

Lemma 2.25. Let G be a linear algebraic group acting on a variety X.

i) If Y and Z are subvarieties of X such that Z is closed, then

{g ∈ G : gY ⊂ Z}
is closed.

ii) For any subgroup, H ⊂ G the fixed point locus

XH = {x ∈ X : H · x = x}
is closed in X.

Proof. For i) we write

{g ∈ G : gY ⊂ Z} =
⋂
y∈Y

σ−1
y (Z)

where σy : G → X is given by g 7→ g · y. As Z is closed, its preimage under the morphism
σy : G → X is closed which proves i). For ii) and any h ∈ H we may consider the graph
Γh : X → X ×X of the action given by x 7→ (x, σ(h, x)), then

XH =
⋂
h∈H

Γ−1
h (∆X)

where ∆X is the diagonal in X×X. As ∆X ⊂ X×X is closed we see that XH is also closed. �

Proposition 2.26. The boundary of an orbit G · x−G ·x is a union of orbits of strictly smaller
dimension. In particular, each orbit closure contains a closed orbit (of minimal dimension).

Proof. The boundary of an orbit G · x is invariant under the action of G and so is a union of
G-orbits. As the orbit is a locally closed subvariety of G, it contains a subset U which is open
and dense in its closure G · x. The orbit G · x is the union over g of the translates gU of U
and so is open and dense in its closure G · x. Thus the boundary G · x−G · x is closed and of
strictly lower dimension than G ·x. It is clear that orbits of minimum dimension are closed and
so each orbit closure contains a closed orbit. �

Proposition 2.27. Let G be an affine algebraic group acting on a variety X. Then the dimen-
sion of the stabiliser subgroup viewed as a function dimG− : X → N is upper semi-continuous;
that is, for every n, the set

{x ∈ X : dimGx ≥ n}
is closed in X. Equivalently,

{x ∈ X : dimG · x ≤ n}
is closed in X for all n.
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Proof. Consider the graph of the action

Γ : G×X → X ×X

(g, x) 7→ (x, σ(g, x))

and the fibre product P

P
ϕ //

��

X

∆
��

G×X Γ //X ×X,
where ∆ : X → X × X is the diagonal morphism; then the fibre product P consists of pairs
(g, x) such that g ∈ Gx. The function on P given by sending p = (g, x) ∈ P to the dimension
of Pϕ(p) := ϕ−1(ϕ(p)) = (Gx, x) is upper semi-continuous; that is, for all n

{p ∈ P : dimPϕ(p) ≥ n}

is closed in P . By restricting to the closed set X ∼= {(id, x) : x ∈ X} ⊂ P , we see that the
dimension of the stabiliser of x is upper semi-continuous; that is,

{x ∈ X : dimGx ≥ n}

is closed in X for all n. Then by the orbit stabiliser theorem

dimG = dimGx + dimG · x,

which gives the second statement. �

Example 2.28. Consider the action of Gm on A2 by t · (x, y) = (tx, t−1y). The orbits of this
action are

• Conics {xy = α} for α ∈ k∗,
• The punctured x-axis,
• The punctured y-axis.
• The origin.

The origin and the conic orbits are closed whereas the punctured axes both contain the origin
in their orbit closures. The dimension of the orbit of the origin is strictly smaller than the
dimension of Gm, indicating that its stabiliser has positive dimension.

Example 2.29. Let Gm act on An by scalar multiplication: t · (a1, . . . , an) = (ta1, . . . , tan). In
this case there are two types of orbits:

• punctured lines through the origin.
• the origin.

In this case the origin is the only closed orbit and there are no closed orbits of dimension equal
to that of Gm. In fact, every orbit contains the origin in its closure.

Exercise 2.30. For Examples 2.28 and 2.29, write down the coaction homomorphism.

2.5. First notions of quotients. Let G be an affine algebraic group acting on a variety X
over k. In this section and the following section (§2.6) we discuss types of quotients for the
action of G on X; the main references for these sections are [10], [31] and [36].

The orbit space X/G = {G · x : x ∈ X} for the action of G on X unfortunately does not
always admit the structure of a variety. For example, often the orbit space is not separated
(this is an algebraic notion of Hausdorff topological space) as we saw in Examples 2.28-2.29.
Instead, we can look for a universal quotient in the category of varieties:

Definition 2.31. A categorical quotient for the action of G on X is a G-invariant morphism
ϕ : X → Y of varieties which is universal; that is, every other G-invariant morphism f : X → Z
factors uniquely through ϕ so that there exists a unique morphism h : Y → Z such that
f = ϕ ◦ h.
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As ϕ is continuous and constant on orbits, it is also constant on orbit closures. Hence, a
categorical quotient is an orbit space only if the action of G on X is closed; that is, all the
orbits G · x are closed.

Remark 2.32. The categorical quotient has nice functorial properties in the following sense:
if ϕ : X → Y is G-invariant and we have an open cover Ui of Y such that ϕ| : ϕ−1(Ui)→ Ui is
a categorical quotient for each i, then ϕ is a categorical quotient.

Exercise 2.33. Let ϕ : X → Y be a categorical quotient of the G action on X. If X is either
connected, reduced or irreducible, then show that Y is too.

Example 2.34. We consider the action of Gm on A2 as in Example 2.28. As the origin is in
the closure of the punctured axes {(x, 0) : x 6= 0} and {(0, y) : y 6= 0}, all three orbits will be
identified by the categorical quotient. The conic orbits {xy = α} for α ∈ k∗ are closed and
clearly parametrised by the parameter α ∈ k∗. Hence the categorical quotient ϕ : A2 → A1 is
given by (x, y) 7→ xy.

Example 2.35. We consider the action of Gm on An as in Example 2.29. As the origin is in
the closure of every single orbit, all orbits will be identified by the categorical quotient and so
the categorical quotient is the structure map ϕ : A2 → Spec k to the point Spec k.

We now see the sort of problems that may occur when we have non-closed orbits. In Example
2.29 our geometric intuition tells us that we would ideally like to remove the origin and then
take the quotient of Gm acting on An − {0}. In fact, we already know what we want this
quotient to be: the projective space Pn−1 = (An − {0})/Gm which is an orbit space for this
action. However, in general just removing lower dimensional orbits does not suffice in creating
an orbit space. In fact in Example 2.28, if we remove the origin the orbit space is still not
separated and so is a scheme rather than a variety (it is the affine line with a double origin
obtained from gluing two copies of A1 along A1 − {0}).

2.6. Second notions of quotient. Let G be an affine algebraic group acting on a variety X
over k. The group G acts on the k-algebra OX(X) of regular functions on X by

g · f(x) = f(g−1 · x)

and we denote the subalgebra of invariant functions by

OX(X)G := {f ∈ OX(X) : g · f = f for all g ∈ G}.
Similarly if U ⊂ X is a subset which is invariant under the action of G (that is, g · u ∈ U for all
u ∈ U and g ∈ G), then G acts on OX(U) and we write OX(U)G for the subalgebra of invariant
functions.

Ideally we want our quotient to have nice geometric properties and so we give a new definition
of a good quotient:

Definition 2.36. A morphism ϕ : X → Y is a good quotient for the action of G on X if

i) ϕ is constant on orbits.
ii) ϕ is surjective.
iii) If U ⊂ Y is an open subset, the morphism OY (U) → OX(ϕ−1(U)) is an isomorphism

onto the G-invariant functions OX(ϕ−1(U))G.
iv) If W ⊂ X is a G-invariant closed subset of X, its image ϕ(W ) is closed in Y .
v) If W1 and W2 are disjoint G-invariant closed subsets, then ϕ(W1) and ϕ(W2) are disjoint.
vi) ϕ is affine (i.e. the preimage of every affine open is affine).

If moreover, the preimage of each point is a single orbit then we say ϕ is a geometric quotient.

Remark 2.37. We note that the two conditions iv) and v) together are equivalent to:
v)′ If W1 and W2 are disjoint G-invariant closed subsets, then the closures of ϕ(W1) and

ϕ(W2) are disjoint.

Proposition 2.38. If ϕ : X → Y is a good quotient for the action of G on X, then it is a
categorical quotient.
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Proof. Part i) of the definition of a good quotient shows that ϕ is G-invariant and so we need
only prove that it is universal. Let f : X → Z be a G-invariant morphism; then we may pick
a finite affine open cover Ui of Z. As Wi := X − f−1(Ui) is closed and G-invariant, its image
ϕ(Wi) ⊂ Y is closed by iv). Let Vi := Y −ϕ(Wi); then we have an inclusion ϕ−1(Vi) ⊂ f−1(Ui).
As Ui are a cover of Z, the intersection ∩Wi is empty and so by v) we have ∩ϕ(Wi) = φ; that is,
Vi are also an open cover of Y . As f is G-invariant the homomorphism OZ(Ui)→ OX(f−1(Ui))
has image in OX(f−1(Ui))

G. We consider the composition

OZ(Ui)→ OX(f−1(Ui))
G → OX(ϕ−1(Vi))

G ∼= OY (Vi)

where the second homomorphism is the restriction map associated to the inclusion ϕ−1(Vi) ⊂
f−1(Ui) and the final isomorphism is given by property iii) of good quotients. As Ui is affine,
the algebra homomorphism OZ(Ui) → OY (Vi) defines a morphism hi : Vi → Ui (see [17] I
Proposition 3.5). Moreover, we have that

f | = hi ◦ ϕ| : ϕ−1(Vi)→ Ui.

Therefore we can glue the morphisms hi to obtain a morphism h : Y → Z such that f = h ◦ ϕ.
One can check that this morphism is independent of the choice of affine open cover of Z. �

Corollary 2.39. Let ϕ : X → Y be a good quotient; then:

i) G · x1 ∩G · x2 6= φ if and only if ϕ(x1) = ϕ(x2).
ii) For each y ∈ Y , the preimage ϕ−1(y) contains a unique closed orbit. In particular, if

the action is closed (i.e. all orbits are closed), then ϕ is a geometric quotient.

Proof. For i) we know that ϕ is continuous and constant on orbit closures which shows that
ϕ(x1) = ϕ(x2) if G · x1 ∩G · x2 6= φ and by property v) of ϕ being a good quotient we get the
converse. For ii), suppose we have two distinct closed orbits W1 and W2 in ϕ−1(y), then the
fact that their images under ϕ are both equal to y contradicts property v) of ϕ being a good
quotient. �

Corollary 2.40. If ϕ : X → Y is a good (resp. geometric) quotient, then for every open
U ⊂ Y the restriction ϕ| : ϕ−1(U) → U is also a good (resp. geometric) quotient of G acting
on ϕ−1(U).

Proof. It is clear that conditions i)-iii) and vi) in the definition of the good quotient hold also
for the restriction. For iv), if W ⊂ ϕ−1(U) is closed and G-invariant and we suppose y belongs

in the closure ϕ(W ) of ϕ(W ) in U . Then if W denotes the closure of W in X, we have that

y ∈ ϕ(W ) ⊂ ϕ(W ). As ϕ : X → Y is a good quotient, we see ϕ−1(y) ∩W 6= φ (for example,
apply v) to the unique closed orbit in ϕ−1(y) and W ). But as ϕ−1(y) ⊂ ϕ−1(U), this implies
ϕ−1(y) ∩W 6= φ and so y ∈ ϕ(W ) which proves this set is closed.

For v), let W1 and W2 be disjoint G-invariant closed subset of ϕ−1(U); we denote their
closures in X by W1 and W2. If there is a point y ∈ ϕ(W1) ∩ ϕ(W2) ⊂ U , then as ϕ is a good
quotient,

ϕ−1(y) ∩W1 ∩W2 6= φ.

However ϕ−1(y) ⊂ ϕ−1(U) and as W1 and W2 are both closed in ϕ−1(U), we have

ϕ−1(U) ∩W1 ∩W2 = W1 ∩W2 = φ.

Therefore, the restriction ϕ| : ϕ−1(U)→ U is also a good quotient. If ϕ is a geometric quotient
then it is clear that ϕ| : ϕ−1(U)→ U is too. �

Remark 2.41. The definition of good and geometric quotients are local; thus if ϕ : X → Y is
G-invariant and we have a cover of Y by open sets Ui such that ϕ| : ϕ−1(Ui)→ Ui are all good
(respectively geometric) quotients, then so is ϕ : X → Y .
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3. Affine Geometric Invariant Theory

In this section we consider an action of an affine algebraic group G on an affine variety X
over k. The main references for this section are [31] and [36] (for further reading, see also [5],
[10] and [37]).

Let A(X) denote the coordinate ring of an affine variety X; then A(X) is a finitely generated
k-algebra. In the opposite direction, the maximal spectrum operator associates to a finitely
generated k-algebra A an affine variety SpecA.

The action of G on X induces an action of G on A(X) by g · f(x) = f(g−1 · x). Of course
any G-invariant morphism f : X → Z of affine varieties induces a morphism f∗ : A(Z)→ A(X)
given by h 7→ h ◦ f whose image is contained in

A(X)G := {f ∈ A(X) : g · f = f for all g ∈ G}

the subalgebra of G-invariant regular functions on X. Therefore, if A(X)G is also a finitely
generated k-algebra, the categorical quotient is the morphism ϕ : X → Y := SpecA(X)G

induced by the inclusion A(X)G ↪→ A(X) of finitely generated k-algebras. This leads us to an
interesting problem in invariant theory which was first considered by Hilbert:

3.1. Hilbert’s 14th problem. Given a rational action of an affine algebraic group G on a
finitely generated k-algebra A, is the algebra of G-invariants AG finitely generated?

Unfortunately the answer to Hilbert’s 14th problem is not always yes, but for a very large
class of groups we can answer in the affirmative (see [33] and also Nagata’s Theorem below). In
the 19th century, Hilbert showed that for G = GLn(C), the answer is always yes. The techniques
of Hilbert were then used by many others to prove that for a very large class of groups (known
as reductive groups), the answer is yes.

3.2. Reductive groups. As mentioned above, Hilbert’s 14th problem has a positive answer for
a large class of groups known as reductive groups. In order to define reductive groups we need
to introduce the unipotent radical of a linear algebraic group G over k. A unipotent group is
isomorphic to an algebraic subgroup of the unipotent Un ⊂ GLn consisting of upper triangular
matrices with diagonal entries equal to 1. We also see that subgroups, quotients and extensions
of unipotents groups are also unipotent. Given two connected unipotent normal linear algebraic
subgroups U,U ′ ⊂ G, the normal closed subgroup U · U ′ that they generate is also unipotent.
Therefore, due to dimension reasons, there is a unique maximal connected unipotent normal
linear algebraic subgroup, called the unipotent radical. In particular, we need to impose the
term normal to get a unique unipotent radical.

Definition 3.1. Let G be a linear algebraic group over k.

(1) The unipotent radical of G, denoted Ru(G) is the maximal connected unipotent normal
linear algebraic subgroup of G.

(2) The radical of G, denoted R(G) is the maximal connected solvable normal linear alge-
braic subgroup of G.

(3) G is semisimple if it has trivial radical R(G) = {1}.
(4) G is reductive if it has trivial unipotent radical Ru(G) = {1}.

Every unipotent linear algebraic subgroup is solvable; this is a consequence of the Lie–Kolchin
Theorem (for example, see [4] 10.5): for a connected solvable linear algebraic group G over an
algebraically closed field k, any linear representation ρ : G → GLn can be conjugated to have
image in the upper triangular matrices. Furthermore, any unipotent linear algebraic group can
be realised as a closed subgroup of the strictly upper triangular matrices in GLn. In particular,
we have that Ru(G) ⊂ R(G) and every semisimple group is reductive.

Example 3.2. The general linear group GLn has radical consisting of the scalar matrices
R(GLn) ∼= Gm and trivial unipotent radical. In particular, this is reductive but not semisimple.
The special linear group and projective linear group are both semisimple (and thus reductive).
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Remark 3.3. If G is connected and reductive, then R(G) is solvable and connected; hence, as
its reductive, the radical R(G) must be a torus Gn

m. As this is a normal torus in a connected
linear algebraic group, it must in fact be central. In particular, connected reductive groups are
central extensions of connected semisimple groups by a torus.

We should mention a few further notions that are closely related to reductivity.

Definition 3.4. A linear algebraic group G is

(1) reductive if it has trivial unipotent radical Ru(G) = {1}.
(2) linearly reductive if for every finite dimensional linear representation ρ : G → GLn(k)

decomposes as a direct sum of irreducibles.
(3) geometrically reductive if for every representation ρ : G → GLn(k) and every non-zero

G-invariant point v ∈ An, there is a G-invariant non-constant homogeneous polynomial
f ∈ k[x1, . . . , xn] such that f(v) 6= 0.

Remark 3.5. An alternative and often used definition of linear reductivity is that for every
finite dimensional linear representation ρ : G → GLn(k) and every non-zero G-invariant point
v ∈ An, there is a G-invariant homogeneous polynomial f ∈ k[x1, . . . , xn] of degree 1 such that
f(v) 6= 0. The equivalence is seen as follows. If we have a representation ρ : G → GLn(k)
decomposes as a direct sum of irreducibles, then for v 6= 0 fixed by G, there is a projection
f : An → A1 onto the line spanned by v. This is clearly G-invariant and linear; i.e. corresponds
to a degree 1 homogeneous G-invariant polynomial and f(v) = v 6= 0. Conversely, if for every
v 6= 0 fixed by G, there is a projection f : An → A1 such that f(v) 6= 0, then we have a direct
sum decomposition Ank ∼= span(v)⊕ker(v). This allows us to decompose the representation into
a direct sum of irreducibles.

It is clear from the above remark that a linearly reductive group is also geometrically reduc-
tive. Nagata showed that every geometrically reductive group is reductive [33]. In characteristic
zero we have that all three notions coincide as a Theorem of Weyl shows that every reductive
group is linearly reductive. In positive characteristic, the different notions of reductivity are
related as follows:

linearly reductive =⇒ geometrically reductive ⇐⇒ reductive

where the implication that every reductive group is geometrically reductive is the most recent
result (this was conjectured by Mumford and then proved by Haboush [15]).

Example 3.6. Every torus (Gm)r and finite group is reductive. Also the groups GLn(k), SLn(k)
and PGL(n, k) are all reductive. The additive group Ga of k under addition is not reductive.
In positive characteristic, the groups GLn(k),SLn(k) and PGLn(k) are not linearly reductive
for n > 1.

Exercise 3.7. Show that the additive group Ga is not geometrically reductive by giving a
representation ρ : Ga → GL2(k) and a G-invariant point v ∈ A2 such that every non-constant
G-invariant homogeneous polynomial in two variables vanishes at v.

Lemma 3.8. Suppose G is geometrically reductive and acts on an affine variety X. If W1 and
W2 are disjoint G-invariant closed subsets of X, then there is an invariant function f ∈ A(X)G

which separates these sets i.e.

f(W1) = 0 and f(W2) = 1.

Proof. As Wi are disjoint and closed

(1) = I(φ) = I(W1 ∩W2) = I(W1) + I(W2)

and so we can write 1 = f1 + f2. Then f1(W1) = 0 and f1(W2) = 1. The linear subspace V
of A(X) spanned by g · f1 is finite dimensional by Lemma 2.23 and so we can choose a basis
h1, . . . , hn. This basis defines a morphism h : X → kn by

h(x) = (h1(x), . . . , hn(x)).
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For each i, we have that hi =
∑
ai(g)g · fi and so hi(x) =

∑
g ai(g)f1(g−1 · x). As Wi are

G-invariant, we have h(W1) = 0 and h(W2) = v 6= 0. The functions g · hi also belong to V and
so we can write them in terms of our given basis as

g · hi =
∑
j

aij(g)hj .

This defines a representation G→ GLn(k) given by g 7→ (aij(g)). We note that h : X → An is
then G-equivariant with respect to the action of G on X and GLn(k) on An; therefore v = h(W2)
is a G-invariant point. As G is geometrically reductive, there is a non-constant homogeneous
polynomial f0 ∈ k[x1, . . . , xn]G such that f0(v) 6= 0 and f0(0) = 0. Then f = cf0 ◦ h is the
desired invariant function where c = 1/f0(v). �

3.3. Nagata’s theorem. We recall that an action of G on a k-algebra A is rational if A = A(X)
for some affine variety X and this action comes from an (algebraic) action of G on X.

Theorem 3.9 (Nagata). Let G be a geometrically reductive group acting rationally on a finitely
generated k-algebra A. Then the G-invariant subalgebra AG is finitely generated.

As every reductive group is geometrically reductive, we can use Nagata’s theorem for reductive
groups. In the following section, we will prove this result for linearly reductive groups using
Reynolds operators (so in characteristic zero this also proves Nagata’s theorem). Nagata also
gave a counterexample of a non-reductive group action for which the ring of invariants is not
finitely generated (see [32] and [33]). The problem of constructing quotients for non-reductive
groups is very interesting and already there is progress in this direction; for example, see the
foundational paper on non-reductive GIT by Doran and Kirwan [12].

3.4. Reynolds operators. Given a linearly reductive group G, for any finite dimensional linear
representation ρ : G → GL(V ), we can write V = V G ⊕W where W is the direct sum of all
non-trivial irreducible sub-representations. In particular, there is a projection p : V → V G.
This motivates the following definition.

Definition 3.10. For a group G acting rationally on a k-algebra A. A linear map RA : A→ AG

is called a Reynolds operator if if it a projection onto AG and for a ∈ AG and b ∈ B we have
RA(ab) = aRA(b).

Proposition 3.11. Let G be a linearly reductive group acting rationally on a k-algebra A; then
there exists a Reynolds operator and AG is finitely generated.

Proof. As the action is rational, there is an affine variety X such that A(X) = A and the action
comes from an algebraic action on X. There is a natural homogeneous grading of A(X) and
so we write A = ⊕r≥0Ar with A0 = k. As each graded piece An is a finite dimensional vector
space and G is linearly reductive, there is a Reynold’s operator Rr : An → AGn . This allows us
to define a Reynold’s operator RA on A. In particular, AG = ⊕n≥0A

G
n is a graded k-algebra: if

we take f ∈ AG and write f = f0 + · · ·+ fd with fi homogeneous of degree m, then

f = RA(f) = RA(f0 + · · ·+ fd) = R0(f0) + · · ·+Rd(fd)

with Ri(fi) ∈ AGi .
By Hilbert’s basis theorem, A is a Noetherian ring and so the ideal I = ⊕r>0A

G
r is finitely

generated; that is, we have I =< f1, . . . , fm > for fi of degree di. We claim that the elements
f1, . . . , fm generate AG as a k-algebra. The proof is by induction on degree. The degree zero
case is trivial as we have AG0 = 0. We fix d > 0 and assume that all elements of degree strictly
less than d can be written as a polynomial in the fi with coefficients in k. Now take f ∈ AGd ;
then we can write

f = a0f0 + · · ·+ amfm
for ai ∈ A. If we replace ai by its homogeneous piece of degree d − di then the same equation
still holds and so we can assume each ai is homogeneous of degree d−di. We apply the Reynolds
operator RA to the above expression for f to obtain

f = RA(f) = RA(a0)f0 + · · ·+RA(am)fm



16 VICTORIA HOSKINS

as ai is homogeneous of degree d− di, we have that RA(ai) ∈ AG is also homogeneous of degree
d − di. Hence each RA(ai) is homogeneous of degree strictly less than d and so we deduce by
induction that they are polynomials in the fj with coefficients in k. In particular, f is also a
polynomial in the fi with coefficients in k. �

3.5. Construction of the affine GIT quotient. Let G be a reductive group acting on an
affine variety X. We have seen that this induces an action of G on the affine coordinate ring
A(X) which is a finitely generated k-algebra without zero-divisors. By Nagata’s Theorem the
subalgebra of invariants A(X)G is finitely generated.

Definition 3.12. The affine GIT quotient is the morphism ϕ : X → X//G := SpecA(X)G of
varieties associated to the inclusion ϕ∗ : A(X)G ↪→ A(X).

Remark 3.13. The double slash notation X//G used for the GIT quotient is a reminder that
this quotient is not necessarily an orbit space and so it may identify some orbits. In nice cases,
the GIT quotient is also a geometric quotient and in this case we shall often write X/G instead
to emphasise the fact that it is an orbit space.

Theorem 3.14. Let G be a reductive group acting on an affine variety X. Then the affine
GIT quotient ϕ : X → Y := X//G is a good quotient and in particular Y is an affine variety.
Moreover if the action of G is closed on X, then it is a geometric quotient.

Proof. As G is reductive and so also geometrically reductive, it follows from Nagata’s Theorem
that the algebra of G-invariant regular functions on X is a finitely generated reduced k-algebra.
Hence Y := SpecA(X)G is an affine variety. The affine GIT quotient is defined by the inclusion
A(X)G ↪→ A(X) and so is G-invariant and affine: this gives part i) and vi) in the definition of
good quotient.

To prove ii), we take y ∈ Y and want to construct x ∈ X whose image under ϕ : X → Y
is y. Let my be the maximal idea in A(Y ) = A(X)G corresponding to the point y. We choose
generators f1, . . . , fm of my and, as G is reductive, we claim that

m∑
i=1

fiA(X) 6= A(X).

In general, this claim can be deduced by using [36] Lemma 3.4.2. Here we provide a quick and
simple proof of this statement for linearly reductive groups (and so, at least in characteristic
zero, this proves the result). It suffices to prove that(

m∑
i=1

fiA(X)

)
∩A(X)G =

∑
fiA(X)G;

as the ideal my in A(X)G generated by the fi is a proper maximal ideal. The right hand side
of this expression is contained in the left hand side and to prove the opposite containment we
use the Reynold’s operator RA : A(X)→ A(X)G (which exists as G is linearly reductive). We
write f =

∑
fiai ∈ A(X)G with ai ∈ A(X) and apply the Reynold’s operator; then

f = RA(f) =
∑

RA(ai)fi

with RA(ai) ∈ A(X)G which proves the result. Then, as
∑m

i=1 fiA(X) is not equal to A(X),
it is contained in some maximal idea mx ⊂ A(X) corresponding to a closed point x ∈ X. In
particular, we have that fi(x) = 0 for i = 1, . . . ,m and so ϕ(x) = y as required.

As the open sets of the form U = Yf := {y ∈ Y : f(y) 6= 0} for non-zero f ∈ A(X)G form
a basis for the open sets of Y it suffices to verify iii) for these open sets. If U = Yf , then

OY (U) = (A(X)G)f is the localisation of A(X)G with respect to f and

OX(ϕ−1(U))G = OX(Xf )G = (A(X)f )G = (A(X)G)f = OY (U)

as localisation commutes with taking G-invariants. Hence the image of the inclusion homomor-
phism OY (U) = (A(X)G)f → OX(ϕ−1(U)) = A(X)f is OX(ϕ−1(U))G = (A(X)f )G and this
homomorphism is an isomorphism onto its image.
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By Remark 2.37 iv) and v) are equivalent to v)′ and so it suffices to prove v)′. For this, we
use the fact that G is geometrically reductive: by Lemma 3.8 for any two disjoint closed subsets
W1 and W2 in X there is a function f ∈ A(X)G such that f is zero on W1 and equal to 1 on
W2. We may view f as a regular function on Y and as f(ϕ(W1)) = 0 and f(ϕ(W2)) = 1, we
must have

ϕ(W1) ∩ ϕ(W2) = φ.

The final statement follows immediately from Corollary 2.39. �

Example 3.15. Consider the action of G = Gm on X = A2 by t · (x, y) = (tx, t−1y) as in
Example 2.28. In this case A(X) = k[x, y] and A(X)G = k[xy] ∼= k[z] so that Y = A1 and the
GIT quotient ϕ : X → Y is given by (x, y) 7→ xy. The three orbits consisting of the punctured
axes and the origin are all identified and so the quotient is not a geometric quotient.

Example 3.16. Consider the action of G = Gm on An by t · (x1, . . . , xn) = (tx1, . . . , txn) as
in Example 2.29. Then A(X) = k[x1, . . . , xn] and A(X)G = k so that Y = Spec k is a point
and the GIT quotient ϕ : X → Y = Spec k is given by the structure morphism. In this case all
orbits are identified and so this good quotient is not a geometric quotient.

Remark 3.17. We note that the fact that G is reductive was used several times in the proof,
not just to show the ring of invariants is finitely generated. In particular, there are non-reductive
group actions which have finitely generated invariant rings but for which other properties listed
in the definition of good quotient fail. For example, consider the additive group Ga acting on
X = A4 by the linear representation ρ : Ga → GL4

s 7→


1 s

1
1 s

1

 .

Even though Ga is non-reductive, the invariant ring is finitely generated:

C[x1, x2, x3, x4]Ga = C[x2, x4, x1x4 − x2x3].

However the GIT ‘quotient’ map X → X//Ga = A3 is not surjective; its image misses the
punctured line {(0, 0, λ) : λ ∈ k∗} ⊂ A3. For further differences, see [12].

3.6. Geometric quotients on open subsets. As we saw above, when a reductive group G
acts on an affine variety X in general a geometric quotient (i.e. orbit space) does not exist
because in general the action is not closed. For finite groups G, every good quotient is a
geometric quotient as the action of a finite group is always closed (every orbit is a finite number
of points which is a closed subset). For general G, we ask if there is an open subset of X for
which there is a geometric quotient.

Definition 3.18. We say x ∈ X is stable if its orbit is closed in X and dimGx = 0 (or
equivalently, dimG · x = dimG). We let Xs denote the set of stable points.

Proposition 3.19. Suppose a reductive group G acts on an affine variety X and let ϕ : X → Y
be the associated good quotient. Then Y s := ϕ(Xs) is an open subset of Y and Xs = ϕ−1(Y s)
is also open. Moreover, ϕ : Xs → Y s is a geometric quotient.

Proof. We first show that Xs is open by showing for every x ∈ Xs there is an open neighbour-
hood of x in Xs. By Lemma 2.27, the set X+ := {x ∈ X : dimGx > 0} of points with positive
dimensional stabilisers is a closed subset of X. If x ∈ Xs, then by Lemma 3.8 there is a function
f ∈ A(X)G such that

f(X+) = 0, f(G · x) = 1.

It is clear that x belongs to the open subset Xf , but in fact we claim that Xf ⊂ Xs so it is an
open neighbourhood of x. It is clear that all points in Xf must have stabilisers of dimension
zero but we must also check that their orbits are closed. Suppose z ∈ Xf has a non closed orbit
so w /∈ G · z belongs to the orbit closure of z; then w ∈ Xf too as f is G-invariant and so w
must have stabiliser of dimension zero. However, by Proposition 2.26 the boundary of the orbit
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G · z is a union of orbits of strictly lower dimension and so the orbit of w must be of dimension
strictly less than that of z which contradicts the orbit stabiliser theorem. Hence Xs is open and
is covered by sets of the form Xf .

Since ϕ(Xf ) = Yf is also open in Y and Xf = ϕ−1(Yf ), we see that Y s is open and also
Xs = ϕ−1(ϕ(Xs)). Then ϕ : Xs → Y s is a good quotient and the action of G on Xs is closed;
thus ϕ : Xs → Y s is a geometric quotient by Corollary 2.39. �

Example 3.20. We can now calculate the stable set for the action of G = Gm on X = A2 as
in Examples 2.28 and 3.15. The closed orbits are the conics {xy = a} for a ∈ k∗ and the origin,
however the origin has a positive dimensional stabiliser and so

Xs = {(x, y) ∈ A2 : xy 6= 0} = Xxy.

In this example, it is clear why we need to insist that dimGx = 0 in the definition of stability:
so that the stable set is open. In fact this requirement should also be clear from the proof of
Proposition 3.19.

Example 3.21. We may also consider which points are stable for the action of G = Gm on An
as in Examples 2.29 and 3.16. In this case the only closed orbit is the origin whose stabiliser is
positive dimensional and so Xs = φ. In particular, this example shows that the stable set may
be empty.

Example 3.22. Consider G = GL2(k) acting on the space of 2 × 2 matrices M2×2(k) by
conjugation. The characteristic polynomial of a matrix A is given by

charA(t) = det(xI −A) = x2 + c1(A)x+ c2(A)

where c1(A) = −Tr(A) and c2(A) = det(A) and is well defined on the conjugacy class of a
matrix. The Jordan canonical form of a matrix is obtained by conjugation and so lies in the
same orbit of the matrix. The theory of Jordan canonical forms says there are three types of
orbits:

• matrices with characteristic polynomial with distinct roots α, β. These matrices are
diagonalisable with Jordan canonical form(

α 0
0 β

)
.

These orbits are closed and have dimension 2 - the stabiliser of the above matrix is the
subgroup of diagonal matrices which is 2 dimensional.
• matrices with characteristic polynomial with repeated root α for which the minimum

polynomial is equal to the characteristic polynomial. These matrices are not diagonal-
isable - their Jordan canonical form is(

α 1
0 α

)
.

These orbits are also 2 dimensional but are not closed - for example

lim
t→0

(
t 0
0 t−1

)(
α 1
0 α

)(
t−1 0
0 t

)
=

(
α 0
0 α

)
.

• matrices with characteristic polynomial with repeated root α for which the minimum
polynomial is x− α. These matrices have Jordan canonical form(

α 0
0 α

)
and as scalar multiples of the identity commute with everything, their stabilisers are
full dimensional. Hence these orbits are closed and have dimension zero.

We note that every orbit of the second type contains an orbit of the third type and so will be
identified in the quotient. There are only two G-invariant functions: the trace and determinant
which define the GIT quotient

ϕ = (Tr,det) : M2×2(k)→ A2.
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The subgroup GmI2 fixes every point and so there are no stable points for this action.

Example 3.23. More generally, we can consider G = GLn(k) acting on Mn×n(k) by conjuga-
tion. If A is an n× n matrix, then the coefficients of its characteristic polynomial

charA(t) = det(tI −A) = tn + c1(A)tn−1 + · · ·+ cn(A)

are all G-invariant functions. In fact, these functions generate the invariant ring

A(Mn×n)G ∼= k[c1, . . . , cn]

(for example, see [10] §1) and the affine GIT quotient is given by

ϕ : Mn×n → An

A 7→ (c1(A), . . . , cn(A)).

As in Example 3.22 above, we can use the theory of Jordan canonical forms as above to describe
the different orbits. The closed orbits correspond to diagonalisable matrices and as every orbit
contains k∗In in its stabiliser, there are no stable points.

Remark 3.24. In situations where there is a non-finite subgroup H ⊂ G which is contained in
the stabiliser subgroup of every point for a given action of G on X, the stable set is automatically
empty. Hence, for the purposes of GIT, it is better to work with the induced action of the group
G/H. In the above example, this would be equivalent to considering the action of the special
linear group on the space of n× n matrices by conjugation.

Example 3.25 (Kleinian surface singularities). The Kleinian surface singularities (also know as
the du Val singularities) are isolated complex surface singularities that are classified by A-D-E
Dynkin diagrams:

An : 0 = x2 + y2 + zn+1

Dn : 0 = x2 + y2z + zn−1

E6 : 0 = x2 + y3 + z4

E7 : 0 = x2 + y3 + yz3

E8 : 0 = x2 + y3 + z5.

They can all be constructed as GIT quotients C2//Γ for Γ ⊂ SL2(C) a finite subgroup; thus
they are all geometric quotients. In fact, the finite subgroups Γ of SL2(C) have a corresponding
A-D-E classification. The classification of finite subgroups in SO3(R) can be used to provide a
classification of finite groups in SL2(C) up to conjugation. This classification is as follows: a
finite subgroup Γ of SL2(C) is, up to conjugation:

An : Γ =

{(
ε 0
0 ε−1

)
: εn+1 = 1

}
Dn : Γ =

{(
ε 0
0 ε−1

)
,

(
0 ε
−ε−1 0

)
: ε2(n−2) = 1

}
E6 : Γ a double cover of A4 ⊂ SO3(R)

E7 : Γ a double cover of S4 ⊂ SO3(R)

E8 : Γ a double cover of A5 ⊂ SO3(R).

The invariant ring for each Γ were calculated by Klein and in particular he showed that the
singularity of a given type occurs as the quotient C//Γ for the corresponding group.

4. Projective GIT quotients

In this section we extend the theory of affine GIT developed in the previous section to
construct GIT quotients for reductive group actions on projective varieties. The approach we
will take is to try and cover as much of X as possible by G-invariant affine open subvarieties
and then use the theory of affine GIT to construct a good quotient ϕ : Xss → Y of an open
subvariety Xss of X (known as the GIT semistable set). As X is projective we would also like
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our quotient Y to be projective (and in fact it turns out this is the case). As in the affine
case, we can restrict our attention to an open subvariety Xs of stable points for which there
is a geometric quotient Xs → Y s where Y s is an open subvariety of Y . The main reference
for the construction of the projective GIT quotient is Mumford’s book [31] and other excellent
references are [10], [29], [36], [37] and [48]. We start this section by recalling some definitions
and results about projective varieties from algebraic geometry.

4.1. Projective algebraic geometry. Let k be an algebraically closed field and let Pn = Pnk
denote projective n-space over k:

Pn = (An+1 − {0})/ ∼

where (a0, . . . , an) ∼ (b0, . . . , bn) if and only if there exists λ ∈ k∗ such that (a0, · · · , an) =
(λb0, . . . , λbn). Thus two points in An+1−{0} are equivalent if and only if they lie on the same
line through the origin. One way to think of Pn is as the space of punctured lines through
the origin in An+1. Or in terms of group actions, Pn is the orbit space for the action of the
multiplicative group Gm on An+1 − {0} by scalar multiplication. There is a natural projection
map An+1−{0} → Pn sending a point to its equivalence and we refer to An+1 as the affine cone
over Pn. For any point p of projective space we can choose a point (a0, . . . , an) ∈ An+1 − {0}
which is a representative of the equivalence class p (we say (a0, . . . , an) lies over p). We shall
often write p = [a0 : · · · : an] and say the tuple (a0, . . . , an) are homogeneous coordinates for p.

Projective n-space Pn is a variety as it can be covered by open affine varieties Ui ∼= An for
i = 0, . . . , n where

Ui = {[x0 : · · · : xn] ∈ Pn : xi 6= 0}
and the isomorphism An → U0 is given by (a1, . . . , an) 7→ [1 : a1 : · · · : an].

A polynomial f(x0, . . . , xn) in the (affine) coordinate ring A(An+1) = k[x0, . . . , xn] is homo-
geneous of degree r if for every λ ∈ k∗ we have

f(λx0, . . . , λxn) = λrf(x0, . . . , xn);

that is, f is a linear combination of monomials xr00 x
r1
1 . . . xrnn of degree r (i.e.

∑
ri = r).

Moreover, as any polynomial can be written as a sum of homogeneous polynomials we have a
decomposition

k[x0, . . . , xn] = ⊕r≥0k[x0, . . . , xn]r

into a graded k-algebra (a k-algebra R is graded if we can write R = ⊕rRr where each Rr is
a k-vector space and RrRs ⊂ Rrs). If (a0, . . . , an) ∈ An+1 lies over a point p ∈ Pn, then for a
homogeneous polynomial f we have

f(a0, . . . , an) = 0 ⇐⇒ f(λa0, . . . , λan) = 0

for all nonzero λ ∈ k. Hence whether f is zero or not at a point p ∈ Pn is a well defined notion
(it is independent of the choice of representative of the equivalence class of p). We can see a
homogeneous polynomial f as a two valued function on Pn: it is either zero or non-zero. Given
homogeneous polynomials f1, . . . , fm ∈ k[x0, . . . , xn], we define the associated algebraic subset

V (f1, . . . , fm) = {p ∈ Pn : fi(p) = 0 for i = 1, . . .m} ⊂ Pn.

An ideal I ⊂ k[x0, . . . , xn] is a homogeneous ideal if I = ⊕r≥0I ∩ k[x0, . . . , xn]r. In this case
(as k[x0, . . . , xn] is Noetherian), the ideal is finitely generated I = (f1, . . . , fm) by homogeneous
polynomials fi. Then we write V (I) = V (f1, . . . , fm). The Zariski topology on Pn is given by
letting the algebraic subsets V (f1, . . . , fm) be the closed sets.

Given X ⊂ Pn, we let I(X) denote the ideal in k[x0, . . . , xn] of homogeneous polynomials
which vanish on X. The projective Nullstellensatz describes the relationship between I and V :

• For a subset X ⊂ Pn, we have X ⊂ V (I(X)) with equality if and only if X is a closed
subset.
• For a homogeneous ideal I, we have I ⊂ I(V (I)) with equality if and only if I is a

radical ideal.
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Definition 4.1. A projective variety X ⊂ Pn is an algebraic subset of Pn with the induced
topology.

If X is a projective subvariety of Pn; then we may consider the affine cone X̃ over X which
is an affine subvariety of the affine cone An+1 over Pn:

X̃ = {0} ∪ {(x0, . . . , xn) ∈ An+1 − {0} : [x0 : · · · : xn] ∈ X}.

Thus X = (X̃−{0})/ ∼. If X is the projective variety cut out as the zero locus of homogeneous

polynomials f1, . . . , fm ∈ k[x0, . . . , xn], then X̃ = V (f1, . . . , fm) ⊂ An is the affine variety cut
out as the zero locus of the regular functions f1, . . . , fm on An+1.

For a projective variety X ⊂ Pn, we define the homogeneous coordinate ring of X by

R(X) = k[x0, . . . , xn]/I(X).

We may also write R(X) = ⊕l≥0Rl as a graded k-algebra and we call R(X)+ := ⊕l≥0Rl the
irrelevant ideal (the name comes from the fact that in Pn the irrelevant ideal is (x0, . . . , xn)
which corresponds to 0 ∈ An+1 and so does not project to a point in Pn). The homogeneous
coordinate ring R(Pn) of Pn is equal to the affine coordinate ring A(An+1) on its affine cone
An+1

R(Pn) = ⊕l≥0k[x0, . . . , xn]l = k[x0, . . . , xn] = A(An+1)

and similarly R := R(X) = R(Pn)/I(X) = A(An+1)/I(X̃) = A(X̃).

Remark 4.2. We note that the definition of R(X) depends on how we realise X as a subset of

Pn (as this choice defines the affine cone X̃) and so a different embedding X ⊂ Pm will lead to
a different homogeneous graded k-algebra. Thus strictly speaking we should write R(X ⊂ Pn)
rather than just R(X) to emphasise this dependence.

A non-constant polynomial f ∈ k[x0, . . . , xn] does not define a well defined function on Pn,
however the quotient f/g of two homogeneous polynomials of degree d is a rational morphism
on PPn (that is, it is only a well defined on the open subset Pn − V (g) where g is non-zero) as
for λ 6= 0 and [a0 : · · · : an] ∈ Pn − V (g) we check that

f

g
(λa0, . . . , λan) =

f(λa0, . . . λ, an)

g(λa0, . . . , λan)
=
λdf(a0, . . . , an)

λdg(a0, . . . , an)
=
f

g
(a0, . . . , an).

Definition 4.3. Let X ⊂ Pn be a projective variety and U an open subset of X; then a function
f : U → k is regular at p ∈ U , if there is an open neighbourhood V of p such that f = g/h on
U and g(p) 6= 0 where f, g are homogeneous polynomials of the same degree k[x0, . . . , xn]. We
say f is regular if it is regular at all point in U and denote the k-algebra of regular functions
by OX(U).

We summarise some properties of projective varieties in the following theorem (see also [17]
I Theorem 3.4 and II Proposition 2.5).

Theorem 4.4. Let X be an irreducible projective variety over k. Then

i) The ring OX(X) of regular functions on X is isomorphic to k.
ii) There is a one-to-one correspondence between the points p in X and homogeneous maxi-

mal ideals mp in R(X) which do not contain R(X)+ where mp is the ideal of homogeneous
polynomials which vanish at p.

iii) For homogeneous f ∈ R(X)+, we define Xf := {x ∈ X : f(x) 6= 0} = X − V (f) and let
(R(X)f )0 denote the degree zero piece of the localised graded k-algebra R(X)f . Then

Xf
∼= Spec(R(X)f )0

and

OX(Xf ) ∼= (R(X)f )0.

iv) The open sets Xf for homogeneous f ∈ R(X)+ form a basis for the Zariski topology of
X.
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The structure sheaf OX on a projective variety X ⊂ Pn is an invertible sheaf (i.e. line
bundle) over X and there are two other important invertible sheaves on X: the tautological
sheaf OX(−1) = OPn(−1)|X and the Serre twisting sheaf OX(1) = OPn(1)|X , which is dual to
OX(−1). The fibre of the tautological line bundle on Pn over a point x is the line in An+1 which
defines this point x ∈ Pn and so the total space of the tautological line bundle is the blow up
of An+1 at the origin.

Example 4.5. Let X = Pn and f(x0, . . . , xn) = x0. Then Xf = {[x0 : · · · : xn] : x0 6= 0} =
U0
∼= An and the regular functions on Xf are

OX(Xf ) = k

[
x1

x0
, . . . ,

xn
x0

]
∼= k[y1, . . . , yn].

The operator R(−) sends a projective variety X to its homogeneous coordinate ring R(X).
Given a reduced finitely generated graded k-algebra R = ⊕rRr, we can construct an associated
projective variety X = ProjR (called the projective spectrum) which comes with a specified
embedding in projective space as follows. A finite set of homogeneous generators of R of the
same degree define a surjection of graded k-algebras

k[x0, . . . , xn]→ R

and we let I be the homogeneous ideal equal to the kernel of this surjection. Then ProjR is the
projective variety V (I) ⊂ Pn. If R cannot be generated by homogeneous elements of the same
degree, then instead one realises X as a subvariety of a weighted projective space. Alternatively,
if one is willing to work abstractly without taking generators, then ProjR as a set is the set of
prime homogeneous ideals in R which do not contain the irrelevant ideal R+ and one can also
define the Zariski topology in this abstract setting (for example, see [17] II §2).

Given any finitely generated graded subalgebra S of R, the inclusion S ↪→ R of finitely
generated graded k-algebras induces a rational morphism (i.e. a morphism that is only well
defined on an open subset of X) of projective varieties

ϕ : X := ProjR 99K Y := ProjS

which is undefined on the nullcone:

NS(X) = {x ∈ X : f(x) = 0 ∀f ∈ S+ := ⊕l>0Sl} ⊂ X
which is a closed subvariety of X. We note the following:

• ϕ is a well defined morphism on XS := ∪f∈S+Xf = X −NS(X).

• Y = ∪f∈S+Yf and ϕ−1(Yf ) = Xf .
• Moreover, A(Yf ) ∼= (Sf )0 where (Sf )0 denotes the degree zero homogeneous piece of the

graded homogeneous algebra Sf obtained by localising S at f .
• The morphism ϕ : XS → Y is obtained by gluing the morphisms of affine algebraic

varieties ϕf : Xf → Yf for f ∈ S+ corresponding to the inclusions

A(Yf ) ∼= (Sf )0 ⊂ (Rf )0 = A(Xf ).

In the remainder of this section we recall some important properties of abstract algebraic
varieties; this can be happily ignored by those who are not interested in constructing GIT
quotients for abstract projective varieties. An abstract projective variety does not come with
a specified embedding into projective space, but if we choose a very ample line bundle L on X
then (by definition of L being very ample) we can pick global sections s0, . . . , sn ∈ H0(X,L)
such that the rational map X 99K Pn given by

x 7→ [s0(x) : · · · : sn(x)]

is a closed embedding. In fact we can write this embedding in a coordinate free way: there is
an embedding X ↪→ P(H0(X,L)∗) given by

x 7→ evx : H0(X,L)→ Lx ∼= C
where evx(s) = s(x). If i : X ↪→ Pn is the inclusion of a closed subvariety, then L = i∗OPn(1) is
a very ample line bundle on X and the associated closed embedding is equal to i.
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We say a line bundle L is ample if some tensor power of itself L⊗n for n > 0 is very ample
(this being ample is a slightly weaker notion than being very ample line). Given an ample line
bundle L on X, we can consider the associated graded k-algebra

R = R(X,L) := ⊕l≥0H
0(X,L⊗l).

Then the (maximal) “Proj construction” for graded rings allows us to recover the pair (X,L);
we recall that the points of the ProjR correspond to maximal homogeneous ideals in this
graded ring R which do not contain the irrelevant ideal R+. We can also define a topology and
structure sheaf over ProjR using R (see [17] Chapter II § 2). We note that if we replace L by
the associated very ample line bundle Ln for n > 0, then R(X,Ln) will be generated in degree
1.

4.2. Construction of the projective GIT quotient.

Definition 4.6. An action of a reductive group G on a projective variety X ⊂ Pn is said to be
linear if G acts via a homomorphism G→ GLn+1.

If we have a linear action of a reductive group G on a projective variety X ⊂ Pn, then G
acts on the affine cones An+1 and X̃ over Pn and X. In particular G acts on R := A(X̃) and

preserves the graded pieces so that RG = A(X̃)G is a homogeneous graded subalgebra of R. By
Nagata’s theorem this is also finitely generated and so we can consider the associated projective
variety Proj(RG).

Definition 4.7. For a linear action of a reductive group G on a projective variety X ⊂ Pn,
we let X//G denote the projective variety Proj(RG) associated to the finitely generated graded
k-algebra RG of G-invariant functions where R = R(X) is the homogeneous coordinate ring of
X. The inclusion RG ↪→ R defines a rational map

ϕ : X 99K X//G

which is undefined on the null cone

NRG(X) := {x ∈ X : f(x) = 0 ∀f ∈ RG+}.
We define the semistable locus Xss := X − NRG(X) to be the complement to the nullcone.
Then the projective GIT quotient for the linear action of G on X ⊂ Pn is the morphism
ϕ : Xss → X//G.

Proposition 4.8. The projective GIT quotient for a linear action of a reductive group G on a
projective variety X ⊂ Pn is a good quotient of the action of G on Xss.

Proof. We let ϕ : Xss → Y := X//G denote the projective GIT quotient. For f ∈ RG+, we have
that

A(Yf ) ∼= ((RG)f )0 = ((Rf )0)G = A(Xf )G

and so the corresponding morphism of affine varieties ϕf : Xf → Yf is a good quotient by
Theorem 3.14. The open subsets Xf cover Xss and the open subsets Yf cover Y . Moreover,
the morphism ϕ : Xss → Y is obtained by gluing the good quotients ϕf : Xf → Yf and so is
also a good quotient. �

We can now ask if there is an open subset Xs of Xss on which this quotient becomes a
geometric quotient. For this we want the action to be closed on Xs, or at least the action is
closed on some affine open G-invariant subsets which cover Xs. This motivates the definition
of stability (see also Definition 3.18):

Definition 4.9. Consider a linear action of a reductive group G on a closed subvariety X ⊂ Pn.
Then a point x ∈ X is

(1) semistable if there is a G-invariant homogeneous polynomial f ∈ R(X)G+ such that
f(x) 6= 0.

(2) stable if dimGx = 0 and there is a G-invariant homogeneous polynomial f ∈ R(X)G+
such that x ∈ Xf and the action of G on Xf is closed.
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(3) unstable if it is not semistable.

We denote the set of stable points by Xs and the set of semistable points by Xss.

Remark 4.10. The semistable set Xss is the complement of the null cone NRG(X) and so is
open in X. The stable locus Xs is open in X (and also in Xss): let Xc := ∪Xf where the union

is taken over f ∈ R(X)G+ such that the action of G on Xf is closed; then Xc is open in X and it
remains to show Xs is open in Xc. By Proposition 2.27, the function x 7→ dimGx is an upper
semi-continuous function on X and so the set of points with zero dimensional stabiliser is open.
Therefore, we have open inclusions Xs ⊂ Xc ⊂ X.

Theorem 4.11. For a linear action of a reductive group G on a closed subvariety X ⊂ Pn, we
have:

i) The GIT quotient ϕ : Xss → Y := X//G is a good quotient and a categorical quotient.
Moreover, Y is a projective variety.

ii) G · x1 ∩G · x2 ∩Xss 6= 0 if and only if ϕ(x1) = ϕ(x2).
iii) There is an open subset Y s ⊂ Y such that ϕ−1(Y s) = Xs and ϕ : Xs → Y s is a

geometric quotient.

Proof. Part i) is covered by Proposition 4.8 above and part ii) is given by Corollary 2.39 for
good quotients. For iii), we let Yc be the union of Yf for f ∈ R(X)G+ such that the G action
on Xf is closed and let Xc be the union of Xf over the same index set so that Xc = ϕ−1(Yc).

Then ϕ : Xc → Yc is constructed by gluing ϕf : Xf → Yf for f ∈ R(X)G+ such that the G
action on Xf is closed. Each ϕf is a good quotient and as the action on Xf is closed, ϕf is
also a geometric quotient (cf. Corollary 2.39). Therefore ϕ : Xc → Yc is a geometric quotient.
By definition Xs is the open subset of Xc consisting of points with zero dimensional stabilisers
and we let Y s := ϕ(Xs) ⊂ Yc. As ϕ : Xc → Yc is a geometric quotient and Xs is a G-invariant
subset of X, ϕ−1(Y s) = Xs and also Yc − Y s = ϕ(Xc − Xs). As Xc − Xs is closed in Xc,
property iv) of good quotient states that ϕ(Xc−Xs) = Yc−Y s is closed in Yc and so Y s is open
in Yc. Since Yc is open in Y , the subset Y s ⊂ Y is open and the geometric quotient ϕ : Xc → Yc
restricts to a geometric quotient ϕ : Xs → Y s. �

Remark 4.12. We see from the proof of this theorem that to get a geometric quotient we do
not have to impose the condition dimGx = 0 and in fact in Mumford’s original definition of
stability this condition was omitted. However, the modern definition of stability, which asks for
zero dimensional stabilisers, is now widely accepted. One advantage of the modern definition is
that if the semistable set is nonempty, then the dimension of the geometric quotient equals its
expected dimension.

Example 4.13. Consider the linear action of G = Gm on X = Pn by

t · [x0 : x1 : · · · : xn] = [t−1x0 : tx1 : · · · : txn].

In this case R(X) = k[x0, . . . , xn] which is graded into homogeneous pieces by degree. It is easy
to see that the invariant functions x0x1, . . . , x0xn generate the G-invariant subalgebra R(X)G,
so

R(X)G = k[x0x1, . . . , x0xn] ∼= k[y0, . . . , yn−1]

corresponds to the projective variety X//G = Pn−1. The explicit choice of generators for R(X)G

allows us to write down the rational morphism

ϕ : X = Pn 99K X//G = Pn−1

[x0 : x1 : · · · : xn] 7→ [x0x1 : · · · : x0xn]

and its clear from this description that the nullcone

NR(X)G(X) = {[x0 : · · · : xn] ∈ Pn : x0 = 0 or x1 · · ·xn = 0}
is the projective variety defined by the homogeneous ideal I = (x0x1, · · · , x0xn). In particular,

Xss =

n⋃
i=1

Xx0xi = {[x0 : · · · : xn] ∈ Pn : x0 6= 0 and (x1, . . . , xn) 6= 0} ∼= An − {0}
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where we are identifying the affine chart on which x0 6= 0 in Pn with An. Therefore

ϕ : Xss = An − {0} 99K X//G = Pn−1

is a good quotient of the action on Xss. As the preimage of each point in X//G is a single orbit,
this is also a geometric quotient. Moreover, every semistable point is stable as all orbits are
closed in An − {0} and have zero dimensional stabilisers.

In general it can be difficult to determine which points are semistable and stable as it is
necessary to have a good description of the graded k-algebra of invariant functions. The ideal
situation is as above where we have an explicit set of generators for the invariant algebra which
allows us to write down the quotient map. However, finding generators for the invariant algebra
in general can be hard. We will soon see that there are other criteria that we can use to
determine (semi)stability of points.

Lemma 4.14. A point x is stable if and only if x is semistable and its orbit G · x is closed in
Xss and has zero dimensional stabiliser.

Proof. Suppose x is stable and y ∈ G · x ∩ Xss; then ϕ(y) = ϕ(x) and so y ∈ ϕ−1(ϕ(x)) ⊂
ϕ−1(Y s) = Xs. As the action of G on Xs is closed, y ∈ G · x and so the orbit G · x is closed in
Xss.

Conversely, we suppose x is semistable with closed orbit in Xss of top dimension. As x is
semistable, there is a homogeneous f ∈ R(X)G+ such that x ∈ Xf . As G · x is closed in Xss, it
is also closed in the open affine set Xf ⊂ Xss. By Proposition 2.27, the G-invariant set

Z := {z ∈ Xf : dimG · z < dimG}

is closed in Xf . Since Z is disjoint from G · x, by Lemma 3.8, there exists h ∈ A(Xf )G such
that

h(Z) = 0 and h(G · x) = 1.

It is a (non-trivial) consequence of G being geometrically reductive, that there is a homogeneous
G-invariant polynomial h′ such that hs = h′/f r for positive integers r, s (we do not give a proof
of this fact but instead reference [36] Lemma 3.4.1). Then x ∈ Xfh′ and as Xfh′ is disjoint
from Z, every orbit G · y in Xfh′ has dimension dimG. It follows from Proposition 2.26 that
the action of G on Xfh′ is closed and so this completes the proof that x is stable. �

Definition 4.15. A semistable point x is said to be polystable if its orbit is closed in Xss. We
say two semistable points are S-equivalent if their orbit closures meet in Xss.

By Lemma 4.14 above, every stable point is polystable.

Lemma 4.16. Let x be a semistable point; then its orbit closure G · x contains a unique
polystable orbit. Moreover, if x is semistable but not stable, then this unique polystable orbit is
also not stable.

Proof. The first statement follows from Corollary 2.39. For the second statement we note that
if a semistable orbit G · x is not closed, then the unique closed orbit in G · x has dimension
strictly less than G · x and so cannot be stable. �

Corollary 4.17. Let x and x′ be semistable points; then ϕ(x) = ϕ(x′) if and only if x and x′

are S-equivalent. Moreover, there is a bijection of sets

X//G ∼= Xps/G

where Xps ⊂ Xss is the set of polystable points.

4.3. Linearisations. An abstract projective variety X does not come with a specified embed-
ding in projective space. However, an ample line bundle L on X (or more precisely some power
of L) determines an embedding of X into a projective space. In order to construct a GIT
quotient of an abstract projective variety X we need the extra data of a lift of the G-action to
a line bundle on X; such a choice is called a linearisation of the action.
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Definition 4.18. Let π : L → X be a line bundle on X. A linearisation of the action of G
with respect to L is an action of G on L such that

i) For all g ∈ G and l ∈ L, we have π(g · l) = g · π(l),
ii) For all x ∈ X and g ∈ G the map of fibres Lx → Lg·x is a linear map.

The linearisation is often also denoted by L. We say a linearisation L is (very) ample if the
invertible sheaf associated to L is (very) ample.

Remark 4.19. Let L denote the invertible sheaf associated to the line bundle L; then the
notion of a linearisation of an action σ : G × X → X can be stated in terms of sheaves as
follows. Let πX : G×X → X denote the projection onto the second factor and µ : G×G→ G
denote the group action. A linearisation of the action with respect to L is an isomorphism

Φ : σ∗L → π∗XL

which satisfies the cocycle condition:

(µ× idX)∗Φ = π∗23Φ ◦ (idG × σ)∗Φ

where π23 : G×G×X → G×X is the projection onto the last two factors.

Example 4.20. Let L = X × k be the trivial line bundle on a variety X over k; then a
linearisation of a G-action on X with respect to L corresponds to a character χ : G→ Gm. The
character χ defines a lift of the action to L by

g · (x, z) = (g · x, χ(g)z)

where (x, z) ∈ X × k. More generally, we can use a character χ : G→ Gm to modify any given
linearisation L of a G-action on X by defining

g · (x, z) = (g · x, χ(g)g · z)

for x ∈ X and z ∈ Lx.

Example 4.21. There is a natural linearisation of the SL(n + 1, k) action on Pn = P(kn+1)
with respect to L = OPn(1) such that the induced action of G on

H0(Pn,OPn(1)) = (kn+1)∗

is dual to the natural action of SL(n+ 1, k) on kn+1.

Remark 4.22. Suppose that X is a projective variety and L is a very ample linearisation.
There is an induced action of G on H0(X,L) such that the natural evaluation map

H0(X,L)⊗k OX → L

is G-equivariant. Moreover, the embedding

X ↪→ P(H0(X,L)∗)

given by x 7→ evx is G-equivariant. Hence in this case, we are in the same situation of §4.2
where we have a linear representation of G on H0(X,L)∗ and the action of G on X is induced
by the linear action of G on P(H0(X,L)∗).

Exercise 4.23. The set of line bundles on X is a group Pic(X) with multiplication given by
tensor product and inverse given by taking the dual line bundle. Show that the set of G-
linearised line bundles PicG(X) is also a group. In particular, what is the identity element and
how do we define the product of linearisations or the inverse linearisation?
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4.4. GIT for projective varieties with ample linearisations. Suppose a reductive group
G acts on a projective variety X with respect to an ample linearisation L. Let

R := R(X,L) :=
⊕
r≥0

H0(X,L⊗
r
)

denote the associated graded algebra of sections of powers of L. There is an induced action
of G on the space of sections H0(X,L⊗

r
) and we denote the graded subalgebra of G-invariant

sections by

RG =
⊕
r≥0

H0(X,L⊗
r
)G.

As R0 = k and the constant functions are G-invariant we also have RG0 = k and so ProjRG is
a projective variety over k by Nagata’s theorem.

Definition 4.24. We define the GIT quotient (for this G-action on X with respect to L) to be
the projective variety

X//LG := ProjRG.

The inclusion of the subalgebra of invariant sections induces a rational map X 99K X//LG which
is a morphism on the semistable locus Xss(L) := X−NRG(X). The morphism ϕ : Xss → X//LG
is the GIT quotient with respect to L. We define notions of (semi)stability with respect to L
as follows:

1) A point x ∈ X is semistable (with respect to L) if there is an invariant section σ ∈
H0(X,L⊗

r
)G for some r > 0 such that σ(x) 6= 0.

2) A point x ∈ X is stable (with respect to L) if dim G·x = dim G and there is an invariant
section σ ∈ H0(X,L⊗

r
)G for some r > 0 such that σ(x) 6= 0 and the action of G on

Xσ := {x ∈ X : σ(x) 6= 0} is closed.
3) The points which are not semistable are called unstable.

The open subsets of stable and semistable points with respect to L will be denoted by Xs(L)
and Xss(L) respectively.

Exercise 4.25. We have already defined notions of semistability and stability when we have a
linear action of G on X ⊂ Pn. In this case the line bundle which is used for the linearisation is
OPn(1) with the natural lift of the GLn+1 action corresponding to the natural action of GLn+1

on kn+1. In this case, show that the two notions of semistability agree; that is,

X(s)s = X(s)s(OPn(1)|X).

Theorem 4.26. Let G be a reductive group acting on a projective variety X and L be an ample
linearisation of this action. Then the GIT quotient

ϕ : Xss(L)→ X//LG = Proj
⊕
r≥0

H0(X,L⊗
r
)G

is a good quotient and hence also a categorical quotient. The GIT quotient X//LG is also a
projective variety. Furthermore, there is an open subset Y s ⊂ X//LG such that ϕ−1(Y s) =
Xs(L) and ϕ : Xs(L)→ Y s is a geometric quotient for the G-action on Xs(L).

Proof. As L is ample, the open sets Xσ are affine and so we can use the affine theory to construct
the quotient (we omit the proof as it is very similar to that of Theorem 4.11). �

Remark 4.27 (Variation of geometric invariant theory quotient). It is important to remember
that in the case of projective GIT we have a choice to make (that of a linearisation) and so
the quotient will depend on this choice. Once can study how the semistable locus Xss(L) and
the GIT quotient X//LG vary with the linearisation L; this area is known as variation of GIT.
A key result in this area is that there are only finitely many distinct GIT quotients produced
by varying the ample linearisation of a fixed G-action on a projective normal variety X (for
example, see [11] and [47]).
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Remark 4.28. For an ample linearisation L, we know that some power of L is very ample. Since
Xss(L) = Xss(L⊗n) and Xs(L) = Xs(L⊗n), we will often assume without loss of generality
that L is very ample and so X ⊂ Pn and G acts linearly.

Definition 4.29. We say two semistable points x and x′ are S-equivalent if the orbit closures
of x and x′ meet in the semistable subset Xss(L). We say a semistable point is polystable if its
orbit is closed in the semistable locus Xss(L).

Corollary 4.30. Let x and x′ be points in Xss(L); then ϕ(x) = ϕ(x′) if and only if x and x′

are S-equivalent. Moreover, we have a bijection of sets between the points of the GIT quotient

X//LG ∼= Xps(L)/G

and the G-orbits in the polystable locus Xps(L).

4.5. GIT for general varieties with linearisations. In this section we state the most general
theorem of Mumford for constructing GIT quotients of G-actions on varieties with respect to a
(not necessarily ample) linearisation. First we give notions of (semi)stability:

Definition 4.31. Let X be a variety with an action by a reductive group G and L be a
linearisation of this action.

1) A point x ∈ X is semistable (with respect to L) if there is an invariant section σ ∈
H0(X,L⊗

r
)G for some r ≥ 0 such that σ(x) 6= 0 and Xσ = {x ∈ X : σ(x) 6= 0} is affine.

2) A point x ∈ X is stable (with respect to L) if dim G·x = dim G and there is an invariant
section σ ∈ H0(X,L⊗

r
)G for some r ≥ 0 such that σ(x) 6= 0 and Xσ is affine and the

action of G on Xσ is closed.

The open subsets of stable and semistable points with respect to L are denoted Xs(L) and
Xss(L) respectively.

Remark 4.32. If X is projective and L is ample, then this agrees with Definition 4.24 as Xσ

is affine for any non-constant section σ.

In this case the GIT quotient is constructed by covering Xss by affine G-invariant open
subvarieties Xσ and gluing the GIT quotients of these affine varieties.

Theorem 4.33. (Mumford) Let G be a reductive group acting on a variety X and L be a
linearisation of this action. Then there is a quasi-projective variety X//LG and a good quotient
ϕ : Xss(L) → X//LG of the G-action on Xss(L). Furthermore, there is an open subset Y s ⊂
X//LG such that ϕ−1(Y s) = Xs(L) and ϕ : Xs(L)→ Y s is a geometric quotient for the G-action
on Xs(L).

4.6. Linearisations for affine varieties. Often when a reductive group G acts on an affine
variety X, the affine GIT quotient X//G collapses too many orbits as no unstable points are
removed. As we saw in Example 2.28, if the origin is contained in the closure of every orbit then
the affine GIT quotient collapses to a point. We can instead consider the trivial line bundle
L = X × k with linearisation Lχ given by a character χ : G→ Gm so that

g · (x, c) = (g · x, χ(g)c)

for (x, c) ∈ L = X × k and g ∈ G; then the associated GIT quotient X//LχG often provides
a better quotient of an open subset of X of ‘χ-semistable points’. An application of this
construction is King’s construction of moduli spaces of χ-semistable quiver representations [24].

More generally, toric varieties are constructed as a linearised GIT quotient of an affine space
by a torus action where the linearisation is given by a character of a torus.

5. Criteria for (semi)stability

If a reductive group G acts on a projective variety X with respect to an ample linearisation L,
then the definitions of (semi)stability with respect to L require us to calculate the G-invariant
sections of all powers of L. In fact since the notions of (semi)stability with respect to L
and L⊗n agree, we can assume without loss of generality that L is very ample and so defines
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an embedding X ↪→ Pn. For a linear action of a reductive group G on a projective variety
X ⊂ Pn, we know by Nagata’s theorem that the invariant graded k-subalgebra R(X)G ⊂ R(X)
is finitely generated. However, this result does not give a method for finding a set of generators.
The original definitions of (semi)stability require us to know this subalgebra of G-invariant
homogeneous polynomials. In this section we give some alternative criteria for (semi)stability
which do not require us to calculate R(X)G. The main references for the material covered in
this section are [10], [31], [36] and [48].

5.1. A topological criterion. If G is a reductive group which acts linearly on a projective
variety X ⊂ Pn, then there is an action of G on the affine cone X̃ ⊂ An+1. By definition
Xss = X −NR(X)G(X) where NR(X)G(X) is the nullcone consisting of points x ∈ X such that

every non-constant invariant function f ∈ R(X)G = A(X̃)G vanishes on x.

Proposition 5.1. Let x̃ ∈ X̃ be a point lying over x. Then:

i) x is semistable if and only if 0 /∈ G · x̃.

ii) x is stable if and if dimGx̃ = 0 and G · x̃ is closed in X̃.

Proof. i) If x is semistable, then there is a G-invariant homogeneous polynomial f ∈ R(X)G

which is nonzero on x. We can view f as a G-invariant function on X̃ such that f(x̃) 6= 0. As
invariant functions are constant on orbits and also their closures we see that f(G · x̃) 6= 0 and
so there is a function which separates the closed subvarieties G · x̃ and 0; that is, these closed
subvarieties are disjoint.

For the converse, if G · x̃ and 0 are disjoint G-invariant closed subsets, then there exists a
G-invariant polynomial f ∈ R(X̃)G such that

f(G · x̃) = 1, f(0) = 0

by Lemma 3.8. The polynomial f is a sum of G-invariant homogeneous polynomials fr and so
there must be a homogeneous piece fr of f which does not vanish on G · x̃; therefore fr(x) =
fr(x̃) 6= 0 for fr a homogeneous G-invariant polynomial which proves that x is semistable.

ii) If x is stable, then dimGx = 0 and there is a G-invariant homogeneous polynomial
f ∈ R(X)G such that x ∈ Xf and G · x is closed in Xf . As Gx̃ ⊂ Gx, the stabiliser of x̃ is also

zero dimensional. We can view f as a function on X̃ and consider the closed subvariety

Z := {z ∈ X̃ : f(z) = f(x̃)}

of X̃. Then it suffices to show that G·x̃ is a closed subset of Z. The projection map X̃−{0} → X
restricts to a surjective finite morphism π : Z → Xf . The preimage of the closed orbit G · x
in Xf under this morphism π : Z → Xf is closed and G-invariant; since π is also finite, the
preimage π−1(G·x) is a finite number of G-orbits. The finite number of G-orbits in the preimage
all lie over G · x and so all have dimension equal to dimG. In particular, these orbits must
all be closed as otherwise they would contain lower dimensional orbits in their closure and so
G · x̃ ⊂ π−1(G · x) is closed in Z.

Conversely suppose that dimGx̃ = 0 and G · x̃ is closed in X̃; then 0 /∈ G · x̃ = G · x̃ and
so x is semistable by i). As x is semistable there is a non-constant G-invariant homogeneous
polynomial f such that f(x) 6= 0. As above, we consider

Z := {z ∈ X̃ : f(z) = f(x̃)}

and the finite surjective morphism π : Z → Xf . As π(G · x̃) = G · x, we see that x must have
finite dimensional stabiliser and G · x must be closed in Xf too. This is true for all f such that
f(x) 6= 0 and so G · x is closed in Xss = ∪fXf . Hence x is stable by Lemma 4.14. �

Exercise 5.2. Let C∗ act on P1 by t · [x : y] = [tx : t−1y]. By studying the orbits and their
closures in the affine cone A2 over P1 determine which points are (semi)stable (see also Examples
2.28 and 4.13).
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5.2. The Hilbert–Mumford criterion. Suppose we have a linear action of a reductive group
G on a projective variety X ⊂ Pn. In this section we describe a numerical criterion which can
be used to determine (semi)stability of a point x. Following the topological criterion above, we
see that it is important to understand the orbit closure of a point lying over x. The test objects
for studying the orbit closure are 1-parameter subgroups:

Definition 5.3. A 1-parameter subgroup (1-PS) of G is a nontrivial group homomorphism
λ : Gm → G.

We have an embedding Gm ↪→ P1 given by sending a ∈ Gm = k∗ to [1 : a] ∈ P1 and we refer
to the points [1 : 0] and [0 : 1] in P1 as zero and infinity respectively. For any 1-PS λ of G and
x ∈ X we can define a morphism

λ(−) · x : Gm → X

induced by the action of λ. As X is a complete variety, this morphism extends to a unique
morphism P1 → X and we let limt→0 λ(t) · x and limt→∞ λ(t) · x denote the images of zero and

infinity under this morphism. We may also lift x to a point x̃ lying over x in the affine cone X̃
and consider the morphism

σx̃ := λ(−) · x̃ : Gm → X̃

which may no longer extend to P1. We can study the closure σx̃(Gm) of the image of σx̃ and its

boundary σx̃(Gm)−σx̃(Gm), or equivalently, the closure of the orbit λ(Gm) · x̃ and its boundary.
We note that if the boundary is nonempty then any point in the boundary is equal to either
limt→0 λ(t) · x or limt→∞ λ(t) · x. In particular, if σx̃ is non-constant (i.e. λ(Gm) * Gx̃), then
the image is closed if and only if neither limit exists.

The 1-PS λ : Gm → G induces an action of Gm on An+1 which is diagonalisable; that is,
there is a basis e0, ..., en of An+1 such that

λ(t) · ei = triei for ri ∈ Z.

We call the ri the λ-weights of this action on An+1. For x ∈ X we can pick x̃ ∈ X̃ lying above
this point and write x̃ =

∑n
i=0 aiei with respect to this basis; then

λ(t) · x̃ =

n∑
i=0

triaiei .

Definition 5.4. We define the Hilbert-Mumford function µ of x at λ by

µ(x, λ) := −min{ri : ai 6= 0}.
Remark 5.5. It is easy to check that the Hilbert–Mumford function is independent of the
choices we made (such as the lift x̃ and the basis ei).

Exercise 5.6. Check the Hilbert–Mumford function has the following properties:

(1) µ(x, λ) is the unique integer µ such that limt→0 t
µλ(t) · x̃ exists and is nonzero.

(2) µ(x, λn) = nµ(x, λ) for positive n.
(3) µ(g · x, gλg−1) = µ(x, λ) for all g ∈ G.
(4) µ(x, λ) = µ(x0, λ) where x0 = limt→0 λ(t) · x.

.

We note that:

• µ(x, λ) < 0 if and only if

x̃ =
∑
ri>0

airi

if and only if the limit limt→0 λ(t) · x̃ exists and is equal to zero.
• µ(x, λ) = 0 if and only if ri0 = 0 for some i0 and

x̃ = ai0ei0 +
∑
ri>0

airi

where ai0 6= 0. This is if and only if the limit limt→0 λ(t) · x̃ exists and is equal to
ai0ei0 6= 0.
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• µ(x, λ) > 0 if and only if limt→0 λ(t) · x̃ does not exist.

We can use λ−1 to study limt→∞ λ(t) · x̃ as

lim
t→0

λ−1(t) · x̃ = lim
t→∞

λ(t) · x̃.

Then:

• µ(x, λ−1) < 0 if and only if

x̃ =
∑
ri<0

airi

if and only if the limit limt→∞ λ(t) · x̃ = limt→0 λ
−1(t) · x̃ exists and is equal to zero.

• µ(x, λ−1) = 0 if and only if ri0 = 0 for some i0 and

x̃ = ai0ei0 +
∑
ri<0

airi

where ai0 6= 0. This is if and only if the limit limt→∞ λ(t) · x̃ = limt→0 λ
−1(t) · x̃ exists

and is equal to ai0ei0 6= 0.
• µ(x, λ−1) > 0 if and only if limt→∞ λ(t) · x̃ = limt→0 λ

−1(t) · x̃ does not exist.

Following the discussion above and the topological criterion (see Proposition 5.1), we have
the following results for (semi)stability with respect to the action of the subgroup λ(Gm) ⊂ G:

Lemma 5.7. Let G be a reductive group acting linearly on a projective variety X ⊂ Pn. Suppose
x ∈ X and x̃ ∈ X̃ is a point lying over x; then

i) x is semistable for the action of λ(Gm) if and only if µ(x, λ) ≥ 0 and µ(x, λ−1) ≥ 0.
ii) x is stable for the action of λ(Gm) if and only if µ(x, λ) > 0 and µ(x, λ−1) > 0.

Exercise 5.8. Let C∗ act on P2 by t · [x : y : z] = [tx : y : t−1z]. For every point x ∈ P2 and the
1-PS λ(t) = t, calculate µ(x, λ±1) and then by using Lemma 5.7 above or otherwise, determine
Xs and Xss.

If x is (semi)stable for G, then it is (semi)stable for all subgroups H of G as every G-invariant
function is also H-invariant. Hence

x is semistable =⇒ µ(x, λ) ≥ 0 ∀ 1-PS λ of G,

x is stable =⇒ µ(x, λ) > 0 ∀ 1-PS λ of G.

The Hilbert-Mumford criterion gives the converse to these statements; the idea is that because
G is reductive it has enough 1-PSs to detect semistability (see also Theorem 5.10 below).

Theorem 5.9. (Hilbert–Mumford Criterion) Let G be a reductive group acting linearly on a
projective variety X ⊂ Pn. Then

x ∈ Xss ⇐⇒ µ(x, λ) ≥ 0 for all 1-PSs λ of G,
x ∈ Xs ⇐⇒ µ(x, λ) > 0 for all 1-PSs λ of G.

It follows from the topological criterion given in Proposition 5.1 and also from Lemma 5.7,
that the Hilbert–Mumford criterion is equivalent to the following fundamental theorem in GIT.

Theorem 5.10. Let G be a reductive group acting on an affine space An+1. If x ∈ An+1 and
y ∈ G · x, then there is a 1-PS λ of G such that limt→0 λ(t) · x = y.

Remark 5.11. The proof of the above fundamental theorem relies on a theorem of Iwahori
about the abundance of 1-PSs of reductive groups [20] and was given by Mumford in [31] §2.1.

Example 5.12. We consider the action of G = Gm on X = Pn as in Example 4.13. As the
group is a 1-dimensional torus, we need only calculate µ(x, λ) and µ(x, λ−1) for λ(t) = t as was
the case in Lemma 5.7. Suppose x̃ = (x0, . . . , xn) lies over x = [x0 : · · · : xn] ∈ Pn. Then

lim
t→0

λ(t) · x̃ = (t−1x0, tx1 . . . , txn)

exists if and only if x0 = 0. If x0 = 0, then µ(x, λ) = −1 and otherwise µ(x, λ) > 0. Similarly

lim
t→0

λ−1(t) · x̃ = (tx0, t
−1x1 . . . , t

−1xn)
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exists if and only if x1 = · · · = xn = 0. If x1 = · · · = xn = 0, then µ(x, λ) = −1 and otherwise
µ(x, λ) > 0. Therefore, the GIT semistable set and stable coincide:

Xss = Xs = {[x0 : · · · : xn] : x0 6= 0 and (x1, . . . , xn) 6= 0} ⊂ Pn.

5.3. Hilbert–Mumford for ample linearisations. In this section we consider the following
more general set up: suppose X is a projective variety with a G-action and ample linearisation
L. If λ is a 1-PS of G and x ∈ X, then the limit

x0 = lim
t→0

λ(t) · x

exists in X as X is complete. The limit x0 is fixed by the Gm-action induced by λ and so Gm

acts on the fibre Lx0 by a character t 7→ tr. We call this the weight of the λ-action on Lx0 and
define

µL(x, λ) := r.

Remark 5.13. We should check that when X ⊂ Pn and the action of G is linear that this
definition is consistent with the old definition; that is,

µOPn (1)|X (x, λ) = µ(x, λ).

Let us assume we have chosen a basis e0, . . . , en of An such that λ(t) · ei = triei. If we let
x̃ =

∑
i aiei be a point lying over x = [a0 : · · · : an], then by definition

µ(x, λ) := −min{ri : ai 6= 0}.

Let x0 = limt→0 λ(t) · x; then we may write x0 = [b0 : · · · : bn] and note that

bi =

{
ai if ri = −µ(x, λ)
0 otherwise.

Then if x̃0 = (b0, . . . , bn) lies over x0 we have

λ(t) · x̃0 = t−µ(x,λ) · x̃0.

As OPn(−1) is the tautological line bundle over Pn, the fibre over a given point x0 is the line
consisting of points x̃0 ∈ An+1 lying over x0. In particular λ(Gm) acts on the fibre of OPn(−1)

over the fixed point x0 by a character t 7→ t−µ(x,λ). Since OPn(1) is the dual line bundle, the

subgroup λ(Gm) acts on the fibre of OPn(1) over the fixed point x0 by a character t 7→ tµ(x,λ)

and so

µOPn (1)|X (x, λ) = µ(x, λ).

Exercise 5.14. Fix x ∈ X and a 1-PS λ of G; then show µ•(x, λ) : PicG(X) → Z is a group
homomorphism where PicG(X) is the group of G-linearised line bundles on X.

Theorem 5.15. (Hilbert–Mumford Criterion for ample linearisations) Let G be a reductive
group acting on a projective variety X and L be an ample linearisation of this action. Then

x ∈ Xss(L)⇐⇒ µL(x, λ) ≥ 0 for all 1-PSs λ of G,
x ∈ Xs(L)⇐⇒ µL(x, λ) > 0 for all 1-PSs λ of G.

Proof. (Assuming Theorem 5.9) As L is ample, there is n > 0 such that L⊗n is very ample.
Then since

µL
⊗n

(x, λ) = nµL(x, λ)

it suffices to prove the statement for L very ample. If L is very ample then it induces a G-
equivariant embedding i : X ↪→ Pn such that L ∼= i∗OPn(1). Then we can just apply the first
version of the Hilbert–Mumford criterion (cf. Theorem 5.9 and Remark 5.13). �
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5.4. Weight polytopes for torus actions. In this section we restate the Hilbert–Mumford
criterion in terms of a geometrical condition for weight polytopes for points with respect to
a maximal torus T of G. We use some basic notions from representation theory; see [13] for
further details.

We start with the case when G = Gm is a one-dimensional torus which acts linearly on a
projective variety X ⊂ Pn. The action of G = Gm on V := An+1 gives us a weight decomposition

V = ⊕r∈ZVr
where

Vr = {v ∈ V : t · v = trv}.
We let X∗(G) = Hom(G,Gm) denote the set of characters of G. As G is a one-dimensional
torus, X∗(G) ∼= Z where an integer r defines a character χr : G → Gm given by t 7→ tr.
Therefore we can see this decomposition as being indexed by a finite number of characters χr
of G. We refer to the set {χr : Vr 6= 0} as the Gm-weights of this action.

Definition 5.16. If x ∈ X then we can choose x̃ ∈ V lying over x and write x̃ =
∑

r vr, then
we define the Gm-weight set of x to be

wtGm(x) := {χr ∈ X∗(Gm) : vr 6= 0}.
We define the weight polytope of x to be the convex hull in R ∼= X∗(Gm) ⊗Z R of its weights

and denote this by wtGm(x).

We let X∗(G) = Hom(Gm, G) denote the set of cocharacters of G, which is also isomorphic
to Z. Let λ denote the 1-PS corresponding to 1 ∈ Z. For n > 0 we have

µ(x, λn) = nµ(x, λ),

and so the Hilbert–Mumford criterion for G = Gm is simply:

x ∈ Xss ⇐⇒ µ(x, λ) ≥ 0 and µ(x, λ−1) ≥ 0.
x ∈ Xs ⇐⇒ µ(x, λ) > 0 and µ(x, λ−1) > 0.

By definition

µ(x, λ) = −min{r : vr 6= 0} and µ(x, λ−1) = −min{−r : vr 6= 0}.
Hence

(1) µ(x, λ) ≥ 0⇐⇒ x̃ 6=
∑

r>0 xr.
(2) µ(x, λ) > 0⇐⇒ x̃ 6=

∑
r≥0 xr.

(3) µ(x, λ−1) ≥ 0⇐⇒ x̃ 6=
∑

r<0 xr.

(4) µ(x, λ−1) ≥ 0⇐⇒ x̃ 6=
∑

r≤0 xr.

In conclusion:

x is semistable ⇐⇒ there exist r1 ≤ 0 ≤ r2 such that xri 6= 0 for i = 1, 2.

x is stable ⇐⇒ there exist r1 < 0 < r2 such that xri 6= 0 for i = 1, 2.

We summarise the above by using the weight polytope of x.

Proposition 5.17. (Hilbert–Mumford criterion for Gm) Let G = Gm act linearly on a projective
variety X ⊂ Pn and let x ∈ X and x̃ lie over x. Then:

i) x ∈ Xss ⇐⇒ 0 ∈ wtGm(x).

ii) x ∈ Xs ⇐⇒ 0 ∈ Int(wtGm(x)).

Exercise 5.18. Consider the linear action of G = Gm on P2 corresponding to the representation
Gm → GL3(k) given by

t 7→ diag(t, 1, t−1).

Write down the weights χ for this action and by drawing the possible weight polytopes or
otherwise determine which points are stable, semistable and unstable. What is the GIT quotient
for this action?
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We now assume G = T = (Gm)r is an r-dimensional torus which acts linearly on a projective
variety X ⊂ Pn. In this case the character lattice is X∗(T ) := Hom(T,Gm) ∼= Zr. As T is
commutative, the action of T on V = An+1 gives a weight decomposition

V = ⊕χ∈X∗(T )Vχ

where

Vχ = {v ∈ V : t · v = χ(t)v for all t ∈ T}.

Definition 5.19. If x ∈ X and x̃ ∈ V lies over x, then we may write x̃ =
∑

χ vχ. We define
the T -weight set of x to be

wtT (x) := {χ ∈ X∗(T ) : vχ 6= 0}

and the T -weight polytope of x to be the convex hull of its weights in Rr ∼= X∗(T )⊗Z R which

we denote by wtT (x).

Since X∗(T ) ∼= Zr ∼= X∗(T ) := Hom(Gm, T ), we can use the dot product on Zr as an
inner product which allows us to identify characters and cocharaters and define a norm for
characters and cocharacters. There are other choices of inner products that we could use, but
for (semi)stability we are only interested in the sign of µ(x, λ) and so we will see that the choice
of inner product is not important for determining (semi)stability.

For any 1-PS λ of T we have that λ(t) acts on x̃ by

λ(t) ·
∑
χ

vχ =
∑
χ

χ ◦ λ(t)vχ

and we let < λ, χ > denote the integer r such that χ ◦ λ(t) = tr. Then

µ(x, λ) = −min{< λ, χ >: χ ∈ wtT (x)}.

Since we are interested in only the sign of this quantity we can divide by ||λ|| > 0 and consider
the quantity µ(x, λ)/||λ||. We have that

< λ, χ >= ||χ|| ||λ|| cos θ

where θ ∈ [0, π] is the angle between the two vectors. If we let pλ(χ) denote the orthogonal
projection of χ onto the line spanned by λ, then:

• For θ ∈ [0, π/2), we have dist(0, pλ(χ)) = ||pλ(χ)|| = ||χ|| cos θ:

-χ�
�
�
�
�
�
��

λ

qpλ(χ)

θ

Therefore,

< λ, χ >

||λ||
= dist(0, pλ(χ)).

• For θ = π/2, we have pλ(χ) = 0 and so

0 =
< λ, χ >

||λ||
= dist(0, pλ(χ)).

• For θ ∈ (π/2, π], we have dist(0, pλ(χ)) = ||pλ(χ)|| = ||χ|| cos(π − θ):
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�χ �
�
���

λ

` pλ(χ)

θ

Therefore,

< λ, χ >

||λ||
= −dist(0, pλ(χ)).

Hence,

< λ, χ >

||λ||
=

{
dist(0, pλ(χ)) if θ ∈ [0, π/2]
−dist(0, pλ(χ)) if θ ∈ [π/2, π]

Remark 5.20. We note that if we chose a different norm, then the quantity

< λ, χ >

||λ||

may change, but for the moment we are only interested in the sign of this quantity which will
not change and so we see that the choice of norm is not important for (semi)stability.

Let λ− wtT (x) := {pλ(χ) : χ ∈ wtT (x)} = pλ(wtT (x)); then these points all lie on the line
spanned by λ and we have

i) µ(x, λ) ≥ 0 and µ(x, λ−1) ≥ 0⇐⇒ 0 ∈ λ− wtT (x).

ii) µ(x, λ) > 0 and µ(x, λ−1) > 0⇐⇒ 0 ∈ Int(λ− wtT (x)).

Therefore:

Proposition 5.21. (Hilbert–Mumford criterion for tori) Let T = (Gm)r act linearly on a
projective variety X ⊂ Pn. Suppose x ∈ X and pick x̃ lying over x. Then:

i) x ∈ Xss ⇐⇒ 0 ∈ wtT (x).

ii) x ∈ Xs ⇐⇒ 0 ∈ Int(wtT (x)).

Example 5.22. We suppose T is a two dimensional torus and draw some pictures of weight
polytopes for x:
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In the first picture x is stable, in the second picture x is semistable but not stable and in the
third picture x is unstable.

Exercise 5.23. Consider the linear action of G = G2
m on P3 corresponding to the representation

G2
m → GL4(k) given by

(s, t) 7→ diag(st, s−1t, s−1t−1, st−1).

Write down the weights χ for this action and by drawing the possible weight polytopes or
otherwise determine which points are stable, semistable and unstable. Finally, give the GIT
quotient for this action (perhaps by explicitly calculating the invariant functions).
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Finally, let G be a reductive group which acts linearly on a projective variety X ⊂ Pn. The
image of any 1-PS of G is a commutative subgroup of G and so is contained in a maximal torus
of G; hence

X∗(G) =
⋃
T⊂G

X∗(T )

where the union is over all maximal tori T of G. By the Hilbert–Mumford criterion we have

XG−(s)s =
⋂
T⊂G

XT−(s)s.

As any two maximal tori are conjugate we can fix a maximal torus T of G and if λ is a 1-PS
of G, then gλg−1 is a 1-PS of T for some g ∈ G. Since

µ(x, λ) = µ(g · x, gλg−1)

and the second quantity can be evaluated by looking at the T -weight polytope of g · x, we see
that x is (semi)stable for the action of G if and only if g · x is (semi)stable for the action of T
for all g ∈ G.

Theorem 5.24. (Hilbert-Mumford criterion) If G is a reductive group which acts linearly on a
projective variety X ⊂ Pn and T is a maximal torus of G, then

i) x ∈ Xss(L) ⇐⇒ 0 ∈ wtT (g · x) for all g ∈ G,
ii) x ∈ Xs(L) ⇐⇒ 0 ∈ IntwtT (g · x) for all g ∈ G.

5.5. Instability in GIT. Let G be a reductive group acting on a projective variety X and
suppose L is an ample linearisation of this action. If x ∈ X −Xss(L) is unstable, then, by the
Hilbert–Mumford criterion, there exists a 1-PS λ such that µL(x, λ) < 0. We would ideally like
to see which 1-parameter subgroups(s) are most responsible for the instability of x, but

µL(x, λn) = nµL(x, λ)

and so the quantity µL(x,−) is unbounded. However if we pick a norm for 1-PSs such that
||λn|| = n||λ||, then

µL(x, λ)

||λ||
=
µL(x, λn)

||λn||
and so we may instead try to work with this normalised version of the Hilbert–Mumford function.

As we are now interested in the value of this function, rather than just the sign, we see that
the choice of norm is important (cf. Remark 5.20). We turn to the question of how to choose
such a norm which is invariant under the conjugation action of G. As the conjugacy classes of
G are equal to the Weyl group orbits in a maximal torus T , we can instead pick a norm on the
set of 1-PSs of a fixed maximal torus T which is invariant under the action of the Weyl group
W = NG(T )/T . In particular, given any norm on X∗(T ) ∼= Zn, we can produce a norm which
is W -invariant by averaging this norm over the finite group W .

Example 5.25. If G = GLn, then we can take the maximal torus T consisting of diagonal
matrices with respect to the standard basis of kn. Then under the natural identification Zn ∼=
X∗(T ) given by

(m1, . . . ,mn) 7→ λ(t) = diag(tm0 , . . . , t
m
n ),

we claim that the dot product on Zn gives an inner product on X∗(T ) (and hence also a norm)
which is W -invariant. The Weyl group W is the symmetric group on n elements and its action
(by conjugation) on T corresponds to permuting the diagonal entries. Hence the norm of a 1-PS
λ and σ · λ for a permutation σ ∈W agree.

Remark 5.26. If G is a Lie group over k, then we can take the derivative of a 1-PS λ : Gm → G
to get an element dλ : k → g where g is the Lie algebra of G and k is the Lie algebra of Gm.
Then to find a G-invariant inner product on the set of 1-PSs of G, it suffices to give a G-invariant
inner product on g, where G acts on its Lie algebra by the adjoint representation. The Killing
form κ(−,−) is a G-invariant inner product on the Lie algebra g and is given by

κ(A,B) = Tr(adA ◦ adB)
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where Tr denotes the trace of an endomorphism and adA is the adjoint endomorphism of g
defined by adA(C) = [A,C].

For the rest of this section we fix a G-invariant norm || − || on the set of conjugacy classes of
1-PSs of G.

Definition 5.27. For all x ∈ X, we define

ML(x) := inf
λ 6=0∈X∗(G)

µL(x, λ)

||λ||
.

Then the Hilbert–Mumford criterion can be rephrased as

x ∈ Xss(L) ⇐⇒ ML(x) ≥ 0,

x ∈ Xs(L) ⇐⇒ ML(x) > 0.

Proposition 5.28. Let G be a reductive group acting on a projective variety X and suppose L
is an ample linearisation. The function ML(−) on X is bounded.

Proof. We can assume without loss of generality that G acts linearly on a projective variety
X ⊂ Pn (for example, see Remark 4.28). Fix a maximal torus T of G; then the action of T
on An+1 has a finite number of weights χ ∈ X∗(T ). As all maximal tori are conjugate we have
that

ML(x) = inf
g∈G

inf
λ 6=0∈X∗(T )

µL(g · x, λ)

||λ||
However, it follows form Section 5.4 that

infλ 6=0∈X∗(T )
µL(x,λ)
||λ|| = dist(0, ∂ wtT (g · x))

where ∂wtT (g · x) denotes the boundary of the T -weight polytope. Since there are only finitely
many T -weights, there are only finitely many possible T -weight polytopes (which are by defini-
tion the convex hull of some non-empty subset of the T -weights) and so we see there are only
finitely many possible values for |ML(x)|. �

If x is unstable with respect to L, then ML(x) < 0. We know this quantity is bounded below
(in fact the above proposition really shows that ML takes only finitely many values) and so we
can ask which one parameter subgroups achieve the value of ML(x). This leads to Kempf’s
notion of adapted 1-PSs [23]:

Definition 5.29. A 1-PS λ for which

µL(x, λ)

||λ||
= ML(x)

is said to be an adapted to x. We let ∧L(x) denote the set of non-divisible 1-PSs which are
adapted to x.

Lemma 5.30. For g ∈ G, we have ∧L(g.x) = g ∧L (x)g−1 and so ML(−) is G-invariant.

Proof. This follows from the fact that the norm || − || is invariant under the conjugation action
of G and µ(x, λ) = µ(g · x, gλg−1). �

Definition 5.31. For any 1-PS λ of G we define a parabolic subgroup

P (λ) :=
{
g ∈ G : lim

t→0
λ(t)gλ(t−1) exists inG

}
of G.

We state without proof some properties of adapted 1-PSs due to Kempf [23] (see also [39]):

Theorem 5.32. Let G be a reductive group acting on a projective variety X and suppose L is
an ample linearisation. If x ∈ X −Xss(L) is an unstable point, then

1) ∧L(x) is nonempty.
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2) There is a parabolic subgroup PLx such that PLx = P (λ) for all λ ∈ ∧L(x).
3) All elements of ∧L(x) are conjugate to each other by elements of PLx .
4) Let T ⊂ PLx be a maximal torus of G, then there is a unique 1-PS of T which belongs

to ∧L(x).
5) If λ ∈ ∧L(x) and x0 = limt→0 λ(t) · x, then λ ∈ ∧L(x0) and ML(x) = ML(x0).

Example 5.33. Suppose G is a two dimensional torus, then we may draw in R2 ∼= X∗(G)⊗ZR
the weight polytope wt(x) of an unstable point x. The Hilbert–Mumford criterion (cf. Propo-
sition 5.21) states that as x is unstable, the origin is disjoint from the weight polytope. Then

ML(x) := inf
λ

µ(x, λ)

||λ||
= inf

λ

(
−min

{
< λ, χ >

||λ||
: χ ∈ wt(x)

})
< 0

where the infimum is taken over all 1-PSs of G. If pλ(χ) denotes the orthogonal projection of
χ onto the line spanned by λ and θ denotes the angle between λ and χ, then

< λ, χ >

||λ||
= ||χ|| cos θ = δ(χ, λ)dist(0, pλ(χ)

where δ(χ, λ) = 1 if θ ∈ [0, π/2] and δ(χ, λ) = −1 otherwise. Therefore

ML(x) = − sup
λ

dist(0, pλ(wt(x)))

where the supremum is taken over 1-PSs λ such that the projection pλ(wt(x)) of the weight
polytope onto the line spanned by λ is contained in the positive ray spanned by λ. In particular
we see that the λ which achieves this value (i.e. is adapted to x) must be an integral point on
the unique ray ρ through the origin which meets the weight polytope orthogonally.

-

6rχ1

r
χ2

r χ3r β@
@
@@��

��
�
��

�
�
�
�
��ρ

As the vertices of the weight polytope are integral, the closest point β in ∂ wt(x) to the origin
is actually a rational weight. In particular some positive multiple of β is integral and is thus
corresponds to an adapted 1-PS to x.

5.6. Hesselink’s stratification of the null cone. Following the work of Kempf on adapted
1-PSs, Hesselink considered a stratification of the null cone Xus := X − Xss by (conjugacy
classes) of adapted 1-PSs [18] (see also the stratifications considered by Bilaynicki-Birula [3]).
By a stratification we mean a finite decomposition of Xus for which there is a strict partial
ordering < on the index set such that the boundary of a given stratum is a union of higher
strata (i.e. strata with larger indices). As we can have points x and y with ML(x) < ML(y),
and the same 1-PS λ being adapted to both x and y, we must also use the quantity ML(x) to
index the stratification.

Let < λ > be a conjugacy class of a 1-PS and d > 0, then we define

Sd,<λ> := {x ∈ X : ML(x) = −d and gλg−1 ∈ ∧L(x)}

and can write

Xus =
⊔

d,<λ>

Sd,<λ>.

There is a partial order < on the indices where (d,< λ >) < (d′, < λ′ >) if d < d′.
If we fix a maximal torus T of G, then there is a representative from the conjugacy class

< λ > which is a 1-PS of T . We denote this 1-PS by λ and define

Sd,λ := {x ∈ X : ML(x) = −d and λ ∈ ∧L(x)}.

Then Sd,<λ> = GSd,λ and Hesselink refers to the subsets Sd,λ as “blades”.
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By Theorem 5.32 v), these blades can be described by their limit sets

Zd,λ := {x ∈ X : ML(x) = −d and λ ∈ ∧L(x) and λ(Gm) ⊂ Gx}
and there is a retraction

pd,λ : Sd,λ → Zd,λ

given by taking the limit of x under the action of λ(t) as t→ 0. The limit set of Sd,<λ> is then
Zd,<λ> := GZd,λ.

The conjugacy classes in G correspond to the Weyl group orbits in T ; hence we can fix a
representative λ ∈ X∗(T ) for each Weyl group orbit and write

Xus =
⊔
d,λ

GSd,λ

where the union is over d > 0 and λ ∈ X∗(T )/W .

Remark 5.34. If we are working with a Lie group G, then we can fix a positive Weyl chamber
t+ in the Lie algebra of a maximal torus T and only consider 1-PS λ of T which correspond to
points in this positive Weyl chamber (see also Remark 5.26). As the Weyl group W permutes
the positive Weyl chambers this is the same as fixing a representative in each Weyl group orbit.

Lemma 5.35. There are only finitely many strata Sd,<λ> = GSd,λ which are nonempty.

Proof. It suffices to show there are only finitely many limit sets Zd,λ which are nonempty. Since
we have fixed a maximal torus T , there are only finitely many T weights and hence only finitely
many possible T -weight polytopes for points (these are given by taking the convex hull of a
subset of the T -weights). As the T -weight polytope uniquely determines the ray of 1-PSs which
are adapted to a given point (for example, see Example 5.33), we see that there are only finitely
many possible non-divisible 1-PSs λ of T which can be 1-PSs which are adapted to unstable
points. In particular, there are only finitely many possible Zd,λ. �

Theorem 5.36. (Hesselink) There is a stratification

X −Xss =
⊔
d,λ

Sd,<λ>

into G-invariant locally closed subvarieties such that

Sd,<λ> − Sd,<λ> ⊂
⊔

(d′,λ′)>(d,λ)

Sd′,<λ′>

Example 5.37. (3 points on P1) The group G = SL(2) acts on P1 by(
a b
c d

)
· [x : y] = [ax+ by : cx+ dy].

In this example we consider the action of G on X = (P1)3 by

g · (p1, p2, p3) = (g · p1, g · p2, g · p3)

where G acts on P1 as above. The Segre embedding (P1)3 ↪→ P7 allows us to realise X = (P1)3

as a closed subvariety of projective space and with respect to this embedding the action is linear
((in fact the linearisation on X is given by the exterior product OP1(1)�3). We fix a maximal
torus

T =

{(
t 0
0 t−1

)
: t ∈ C∗

}
⊂ G

and note that any 1-PS of T is conjugate to a 1-PS of T . Moreover, as

λ(t) =

(
t 0
0 t−1

)
and λ−1(t) =

(
t−1 0
0 t

)
are conjugate, we see that any 1-PS of G is conjugate to λr for r ≥ 1. In particular, there
is only one conjugacy class of non-divisible 1-PSs given by < λ >. To calculate Hesselink’s
stratification, we can therefore find which values of d give non-empty Zd,λ. As Zd,λ is contained
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in the fixed point locus of λ(Gm), we see that p = (p1, p2, p3) is in Zd,<λ> only if each pi is fixed
by λ; that is, pi is either [1 : 0] or [0 : 1]. This gives 23 possible choices and we list the points p
for which µ(p, λ) < 0:

(1) If p = ([1 : 0], [1 : 0], [1 : 0]), then µ(p, λ) = −3.
(2) If p = ([1 : 0], [1 : 0], [0 : 1]) or ([1 : 0], [0 : 1], [1 : 0]) or ([0 : 1], [1 : 0], [1 : 0]), then

µ(p, λ) = −1.

We use the natural norm, so that ||λ|| = 1. Then there are two unstable strata indexed by
(1, < λ >) < (3, < λ >):

S1,<λ> = {(p1, p2, p3) : exactly 2 of the 3 pi agree}
and

S3,<λ> =
{

(p, p, p) : p ∈ P1
}
.

Hence the semistable locus consists of mutually distinct points (p1, p2, p3).

Exercise 5.38. Consider the linear action of G = Gm on P2 given by the representation
Gm → GL3(k)

t 7→ diag(t, 1, t−1).

as in Exercise 5.18. By considering the weight polytopes of points, write down the adapted 1-
PSs for all unstable points and write down Hesselink’s stratification by adapted 1-PSs. We note
that as the group is commutative, the conjugacy class of a 1-PS consists of that single 1-PS and
the blades of a stratum are equal to the whole stratum. Finally note that the different unstable
strata correspond to the different possible unstable weight polytopes in R ∼= X∗(C∗)⊗Z R.

Exercise 5.39. Write down Hesselink’s stratification for the linear action of G = G2
m on P3

given in Exercise 5.23.

6. Examples

6.1. Projective hypersurfaces. Given a homogeneous degree d polynomial F in n + 1 vari-
ables x0, . . . , xn, we associate to F a projective degree d hypersurface in Pn as follows. If F
is irreducible then the associated (irreducible) hypersurface is the set of zeros of F which is
an irreducible closed subvariety of Pn of codimension 1. If F is reducible, then the associated
(reducible) hypersurface is a union of irreducible subvarieties of Pn of codimension 1 (whose
points are equal to the zeros of F ) counted with multiplicities. For example, we can consider
the d-fold point in P1 as a degree d reducible hypersurface defined by F (x0, x1) = xd0.

The space k[x0, . . . , xn]d of such polynomials is an affine space of dimension ( n+d
d

). As any
nonzero scalar multiple of F defines the same hypersurface, we are really interested in the
projectivisation of this space

Xd,n = P(k[x0, . . . , xn]d).

To avoid some difficulties associated with fields of positive characteristic we assume that the
characteristic of k is coprime to d.

Definition 6.1. A point p in Pn is a singular point of a projective hypersurface defined by a
polynomial F ∈ k[x0, . . . , xn]d if

F (p) = 0 and
∂F

∂xi
(p) = 0 for i = 0, . . . , n.

We say a hypersurface is non-singular or smooth if it has no singular points.

By using the Euler formula
n∑
i=0

xi
∂F

∂xi
= d F

and the fact that d is coprime to the characteristic of k, we see that p ∈ Pn is a singular point
of F if and only if all partial derivatives ∂F/∂xi vanish at p.

We recall that the resultant polynomial of a collection of polynomials is a function in the
coefficients of these polynomials which vanishes if and only if these polynomials all have a
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common root. Given F ∈ k[x0, . . . , xn]d, we define the discriminant ∆(F ) of F to be the
resultant of the polynomials ∂F/∂xi. In fact ∆ is a homogeneous polynomial on Xn,d and is
non-zero at F if and only if F defines a smooth hypersurface.

The natural action of SL(n+1) on Pn corresponding to a change of homogeneous coordinates,
gives an action of SL(n+1) on the space of hypersurfaces Xd,n = P(k[x0, . . . , xn]d) by g ·F (x) =
F (g−1xt) where x = (x0, . . . , xn). We say two hypersurfaces are projectively equivalent if they
are in the same orbit for this action. We want to construct a ‘moduli space’ for degree d
hypersurfaces in Pn up to projective equivalence as a quotient for this action of SL(n + 1)
on Xd,n using GIT. We use the natural linearisation OXd,n(1) on Xd,n and consider the GIT
quotient

Xss
d,n → Xd,n//SL(n+ 1)

which is a good quotient and is a compactification of the geometric quotient

Xs → Xs/SL(n+ 1).

We want to determine the semistable and stable locus for this action using the tools we’ve
developed above. For small values of (d, n) we shall see that this is possible, although as both
values get larger the problem becomes increasingly difficult. We’ve already seen that there is
one SL(n+ 1)-invariant homogeneous polynomial on Xd,n: the discriminant ∆.

Example 6.2. If d = 1, then X1,n
∼= Pn and as the only SL(n + 1)-invariant homogeneous

polynomials are the constants:

k[x0, . . . , xn]SL(n+1) = k,

there are no semistable points for the action of SL(n+1) on X1,n. In particular, the discriminant
∆ is constant on X1,n. Alternatively, as the action of SL(n + 1) on Pn is transitive to show
Xss

1,np(Pn)ss = φ, it suffices to show a single point x = [1 : 0 : · · · : 0] ∈ Pn is unstable. For this,

one can use the Hilbert-Mumford criterion: it is easy to check that if λ(t) = diag(t, t−1, 1, . . . , 1),
then µ(x, λ) < 0.

For d > 1, the discriminant is a non-constant SL(n+ 1)-invariant homogeneous polynomials
on Xd,n and as its nonzero for all smooth hypersurfaces we have:

Proposition 6.3. For d > 1, every smooth degree d hypersurface in Pn is semistable for the
action of SL(n+ 1) on Xd,n.

To determine whether a semistable point is stable we can check whether its stabiliser subgroup
is finite.

Example 6.4. If d = 2, then we are considering the space X2,n of quadric hypersurfaces in Pn.
Given F =

∑
i,j aijxixj ∈ k[x0, . . . , xn]2, we can associate to F a symmetric (n + 1) × (n + 1)

matrix B = (bij) where bij = bji = aij and bii = 2aii. This procedure defines an isomorphism
between X2,n and the space P(Sym(n+1)×(n+1)(k)) where Sym(n+1)×(n+1)(k) denotes the space

of symmetric (n + 1) × (n + 1) matrices. The discriminant ∆ on Xn,d corresponds to the
determinant on P(Sym(n+1)×(n+1)(k)); thus F is smooth if and only if its associated matrix is
invertible. In fact if F corresponds to a matrix B of rank r+1, then F is projectively equivalent
to the quadratic form

x2
0 + · · ·+ x2

r .

As all non-singular quadratic forms F (x0, . . . , xn) are equivalent to x2
0 + . . . x2

n (after a change
of coordinates), we see that these points cannot be stable: the stabiliser of x2

0 + . . . x2
n is equal to

the special orthogonal group §0(n+1) which is positive dimensional. Moreover, the discriminant
generates the ring of invariants (for example, see [36] Example 4.2) and so the semistable locus
is just the set of non-singular quadratic forms. In this case, the GIT quotient consists of a
single point and this represents the fact that all non-singular quadratic forms are projectively
equivalent to x2

0 + . . . x2
n.
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The projective automorphism group of a hypersurface is the subgroup of the automorphism
group PGL(n+ 1) of Pn which leaves this hypersurface invariant. For d > 2, it is a well-known
fact that the projective automorphism group of any irreducible degree d hypersurface is finite.
As PGL(n+1) is a quotient of SL(n+1) by a finite subgroup, this implies the stabiliser subgroup
of a point in Xd,n corresponding to an irreducible hypersurface is finite dimensional. For smooth
hypersurfaces, we have the following result (cf. [31] §4.3):

Proposition 6.5. For d > 2, every degree d smooth hypersurface is stable.

To determine the (semi)stable points for the action of SL(n + 1) on Xd,n, we can use the
Hilbert–Mumford criterion. Any 1-PS of SL(n+ 1) is conjugate to a 1-PS of the form

λ(t) =


tr0

tr1

. . .

trn


where ri are integers such that

∑n
i=0 ri = 0 and r0 ≥ r1 ≥ · · · ≥ rn. Then given F =

∑
aIxI ∈

k[x0, . . . , xn] where I = (m0, . . . ,mn) is a tuple of non-negative integers which sum to d and
xI = xm0

0 xm1
1 . . . xmnn , we have

µ(F, λ) = −min{−
∑

rimi : I = (m0, . . . ,mn) and aI 6= 0}

= max{
∑

rimi : I = (m0, . . . ,mn) and aI 6= 0}.

For general (d, n), there is not always a nice description of the semistable locus. However for
certain small values, we shall see that this has a nice description. In Section 6.2 below we discuss
the case when n = 1; in this case, a degree d hypersurface corresponds to d unordered points
(counted with multiplicity) on P1. Then in Section 6.3 we discuss the case when (d, n) = (3, 2);
that is, cubic curves in the projective plane P2. Both of these classical examples were studied
by Hilbert and can also be found in [31] and [36].

6.2. Binary forms of degree d. A binary form of degree d is a degree d homogeneous poly-
nomial in 2 variables x, y. The set of zeros of a binary form F determine d points (counted with
multiplicity) in P1. In this section we study the action of SL(2) on

Xd,1 = P(k[x, y]d) ∼= Pd ∼= SymdP1.

Our aim is to describe the (semi)stable locus and the GIT quotient. One method to determine

the semistable and stable locus is to compute the ring of invariants R(Xd,1)SL(2) for this action.
For general d, the ring of invariants is still unknown today, which shows how difficult it can be
in general to produce generators for the ring of invariants. However, for some low values of d
the ring of invariants is known and the computations of the generators goes back to the work
of Hilbert.

Remark 6.6. If d = 1, then this corresponds to the action of SL(2) on P1, for which there are
no semistable points as the only invariant functions are constant (see also Example 6.2).

Therefore, we assume d ≥ 2 and use the Hilbert–Mumford criterion for semistability. We
consider the maximal torus T ⊂ SL(2) given by

T =

{(
t 0
0 t−1

)
: t ∈ C∗

}
.

By the Hilbert–Mumford criterion, F ∈ Xd,1 is semistable if and only if µ(F, λ) ≥ 0 for all 1-PSs
λ. A 1-PS of G is conjugate to a 1-PS of T of the form

λ(t) =

(
tr 0
0 t−r

)
for an integer r ≥ 1. If F (x, y) =

∑
i aix

d−iyi, then

λ(t) · F (x, y) =
∑

tr(2i−d)aix
d−iyi.
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Therefore
µ(F, λ) = min{r(d− 2i) : ai 6= 0} = r(d− 2i0)

where i0 is the largest integer for which ai 6= 0. Hence

(1) µ(F, λ) ≥ 0 if and only if i0 ≤ d/2 if and only if [0 : 1] occurs with multiplicity at most
d/2.

(2) µ(F, λ) > 0 if and only if i0 < d/2 if and only if [0 : 1] occurs as a root with multiplicity
strictly less than n/2.

For a general 1-PS λ′ we can write λ = g−1λ′g, then

µ(F, λ′) = µ(g · F, λ).

If F has roots p1, . . . , pd ∈ P1, then g · F has roots g · p1, . . . , g · pd. As SL(2) acts transitively
on P1, we deduce the following result.

Proposition 6.7. Let F ∈ Xd,1; then:

i) F is semistable if and only if all its roots have multiplicity less than or equal to d/2.
ii) F is stable if and only if all its roots have multiplicity strictly less than d/2. In particular,

if d is odd then Xss
d,1 = Xs

d,1 and the GIT quotient is a projective variety which is a

geometric quotient of the space of stable degree d hypersurfaces in P1.

Remark 6.8. In particular, this example shows how the Hilbert–Mumford criterion allows us
to calculate the semistable set even though the ring of invariants is unknown. It is also possible
to calculate Hesselink’s stratification for this GIT problem. As we saw in Example 5.37, every
(non-divisible) 1-PS of SL(2) is conjugate to

λ(t) =

(
t 0
0 t−1

)
and hence the stratification is indexed by pairs (e, λ) for positive numbers e and the 1-PS λ
above.

Example 6.9. If d = 2, then the semistable locus corresponds to forms F with two distinct
roots and the stable locus is empty. Given any two distinct points (p1, p2) on P1, there is a
mobius transformation taking these points to any other two distinct points (q1, q2). However
this mobius transformation is far from unique; in fact given points p3 distinct from (p1, p2) and
q3 distinct from (q1, q2), there is a unique mobius transformation taking pi to qi. Hence all
semistable points have positive dimensional stabilisers and so can never be stable (cf. Example
??). As the action on the semistable locus is transitive, the GIT quotient is just the point
Spec k.

Example 6.10. If d = 3, then the stable locus (which coincides with the stable locus) consists
of forms with 3 distinct roots (cf. Example 5.37). We recall that given any 3 distinct points
(p1, p2, p3) on P1, there is a unique mobius transformation taking these points to any other 3
distinct points. Hence the GIT quotient is the projective variety P0 = Spec k. In fact, the
SL(2)-invariants have a single generator: the discriminant

∆(
∑

aix
n−iyi) := 27a2

0a
2
3 − a2

1a
2
2 − 18a0a1a2a3 + 4a0a

3
2 + 4a3

1a3

which is zero if and only if there is a repeated root.

Example 6.11. If d = 4, then we are considering binary quartics. In this case the semistable
locus is the set of forms F with at most 2 repeated roots and the stable locus is the set of points
in which all 4 roots are distinct. The strictly semistable points have either one or two double
roots and correspond to two orbits. The orbit consisting of one double root is not closed and its
closure contains the orbit of points with two double roots (imagine choosing a family of mobius
transformations ht that sends (p, p, q, r) to (1, 1, 0, t), then as t→ 0 we see the point (1, 1, 0, 0)
lies in this orbit closure). There are two independent generators for the SL(2)-invariants of
binary quartics (called the I and J invariants - for example, see [36] or [10] where they are
called S and T ) and the good quotient is ϕ : Xss

4,1 → P1. The two strictly semistable orbits
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both represent the point at infinity in the GIT quotient so that the map Xs
4,1 → A1 is a good

quotient.

Remark 6.12. For d = 5, 6 and 8, the ring of invariants is also known. The case for d = 5 and
6 are classical results from invariant theory, whereas for d = 8, the result is more recent and
due to [44]. For all other values of d, the rings of invariants is still today unknown. However,
thanks to the Hilbert–Mumford criterion, it is still possible for us to calculate the semistable
and stable locus as above.

6.3. Plane cubics. We now consider the case of degree 3 hypersurfaces in P2; that is, plane
cubic curves. We write a degree 3 homogeneous polynomial F in variables x0, x1, x2 as

F =
3∑
i=0

3−i∑
j=0

aijx
3−i−j
0 xi1x

j
2.

We want to describe all irreducible and reducible plane cubic curves up to projective equivalence;
that is, describe the quotient for the action of SL(3) on X3,2. For simplicity we assume that the
characteristic of k is not equal to 2 or 3.

If F is reducible, then it is either the union of an irreducible conic with a line or a union
of three lines. In the first case the line can either meet the conic at two distinct points or a
single point (so that the line is tangent to the conic). In fact as any irreducible conic in P2

is projectively equivalent to x0x2 + x2
1 = 0 and the projective automorphism of this conic act

transitively on the set of tangents to this conic and also on the set of lines meeting the conic at
two distinct points, we have that a reducible cubic of this form is either defined by

(x0x2 + x2
1)x1 (the line meets the conic in two distinct points), or

(x0x2 + x2
1)x2 (the line meets the conic tangentially).

In the second case of three lines, there are four possibilities: one line occurring with multiplicity
three; a union of a double line with another distinct line; a union of three lines meeting in a
single point; a union of three lines with no common intersection. In these cases the plane cubic
conic is projectively equivalent to

x3
1 or x2

1(x1 + x2) or x1x2(x1 + x2) or x0x1x2

respectively.

Definition 6.13. A singular point at p of cubic curved defined by F (x0, x1, x2) is a triple point
if all second order partial derivatives ∂2F/∂xi∂xj vanish at p; otherwise we say p is a double
point.

As we saw above all reducible cubics contain a singular point: the cubics defined by x3
1,

x2
1(x1 + x2) and x1x2(x1 + x2) all contain a triple point at p = [1 : 0 : 0]; the cubic defined by
x0x1x2 contains three double points; the cubic defined by (x0x2 + x2

1)x1 contains two double
points and the cubic defined by (x0x2 + x2

1)x0 contains a double point (with a single tangent
direction).

There are two possible types of double points on an irreducible plane cubic:

• nodes (or ordinary double points); that is, a double point where the curve intersects
itself in two branches which have distinct tangents.
• cusps; that is, a double point which is not given by a self intersection point of the curve

(so there is a single tangent direction at this point).

Example 6.14. Let F1(x0, x1, x2) = x0x
2
2 + x3

1 + x2
1x0 and F2(x0, x1, x2) = x0x

2
2 + x3

1. Then
these cubics are irreducible and have a singular point at p = [1 : 0 : 0]. The point p is a double
point which is a node of the first cubic corresponding to F1 and a cusp of the second cubic
corresponding to F2.

Exercise 6.15. Let F be as above and consider the point p = [1 : 0 : 0] ∈ P2. Then p is a point
of the curve C defined by F if and only if a00 = 0. In addition to this verify that:

i) p is a singular point of F if and only if a00 = a10 = a01 = 0.
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ii) p is a triple point of F if and only if a00 = a10 = a01 = a11 = a20 = a02 = 0.

Finally, recall that if p = [p1 : p2 : p3] is a double point of F , then its tangent lines are defined
by the equation ∑

i,j

∂2F

∂xi∂xj
(xi − pi)(xj − pj) = 0.

Show is p = [1 : 0 : 0] is a double point of F , then its tangent lines are defined by

a20x
2
1 + a11x1x2 + a02x

2
2 = 0.

Then write down the tangent planes for the cubics defined by F1 and F2 in Example 6.14 and
verify that for the node there are two distinct tangent lines whereas for the cusp the two lines
coincide.

Remark 6.16. If p is a singular point of F , then g · p is a singular point of g · F . Moreover, p
is a double (resp. triple) point of F if and only if g · p is a double (resp. triple) point of g · F .

We use the Hilbert–Mumford criterion to give a complete description of the (semi)stable
locus. Any 1-PS of SL(3, k) is conjugate to a 1-PS of the form

λ(t) =

 tr0

tr1

tr2


where ri are integers such that

∑2
i=0 ri = 0 and r0 ≥ r1 ≥ r2. It is easy to calculate that

µ(F, λ) = max{(3− i− j)r0 + ir1 + jr2 : aij 6= 0}.

Lemma 6.17. A plane cubic curve C defined by F is semistable if and only if it has no triple
point and no double point with a unique tangent. A plane cubic curve C is stable if and only if
it is smooth.

Proof. If F is unstable (that is, not semistable), then by the Hilbert–Mumford criterion there
is a 1-PS λ of SL(3) such that µ(F, λ) < 0. For some g ∈ G, the 1-PS λ′ := gλg−1 is of the form
λ(t) = diag(tr0 , tr1 , tr2) for integers r0 ≥ r1 ≥ r2 which satisfy

∑
ri = 0. Then

µ(g · F, λ′) = µ(F, λ) < 0

and if we write F ′ := gF =
∑

i,j a
′
ijx

3−i−j
0 xi1x

j
2, then the relations between the ri imply that

a′00 = a′10 = a′20 = a′11 = 0. Thus p = [1 : 0 : 0] is a singular point of F ′ by Exercise 6.15 and
g−1 · p is a singular point of F = g−1 · F ′. Moreover, if a02 = 0 also then this point p is a triple
point and if a02 6= 0 then this is a double point with a single tangent.

Conversely if F =
∑
aijx

3−i−j
0 xi1x

j
2 has a double point with a unique tangent or triple point,

then we can assume without loss of generality (by using the action of SL(3)) that this point is
p = [1 : 0 : 0] and that a00 = a10 = a01 = a20 = a11 = 0. Then if λ(t) = diag(t3, t−1, t−2), we
see

µ(F, λ) ≤ max{−3,−4,−5,−6,−1} < 0.

Therefore F is semistable if and only if it has no triple point or double point with a unique
tangent.

If F has a singular point p, then we can assume without loss of generality that p = [1 : 0 : 0]
and so a00 = a10 = a01 = 0. Then if λ(t) = diag(t2, t−1, t−1) we have

µ(F, λ) ≤ max{−3, 0} ≤ 0

and so F is not stable.
Thus it remains to show that if F is not stable then F is not smooth. Without loss of

generality, using the Hilbert–Mumford criterion and the action of SL(3) we can assume that
µ(F, λ) ≤ 0 for λ(t) = diag(tr0 , tr1 , tr2) where r0 ≥ r1 ≥ r2 and

∑
ri = 0. It follows from this

relation and inequalities that a00 = a10 = 0. If also a01 = 0, then p = [1 : 0 : 0] is a singular
point as required. If a01 6= 0, then

(1) 0 ≥ µ(F, λ) ≥ 2r0 + r2.
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The inequalities between the ri imply that we must have equality in (1) and so r1 = r0 and
r2 = −2r0. Then

µ(F, λ) = max{(3− 3j)r0 : aij = 0} ≤ 0

where r0 > 0 and so this implies a20 = a30 = 0. In particular, x2 divides F and so F is a
reducible, and hence singular, cubic. �

Hence there are three strictly semistable orbits: nodal cubics, cubics which are a union of
a conic and a (non-tangential) line, cubics which are the union of three distinct lines with no
common intersection. The orbit consisting of nodal cubics contains in its closure the other
two orbits. In particular the compactification of the geometric quotient Xs

3,2 → Xs
3,2/SL(3) of

smooth cubics is given by adding a single point corresponding to these three orbits. In fact, the
geometric quotient is A1 and its compactification, which is a good quotient of Xss

3,2, is P1 (for

example, see [10] Chapter 10). The unstable orbits can also be listed: cuspidal cubics, cubics
which are the union of a conic and a tangent line, cubics which are the union of three lines
with a common intersection, cubics which are the union of a double line with a distinct line and
cubics which are given by a single line with multiplicity three.

7. Symplectic geometry

In this section we cover the basics that we need from symplectic geometry. Good references
for the material in this section are [8], [27], [40] and [49].

7.1. Symplectic vector spaces.

Definition 7.1. A symplectic form ω on a real vector space V is a skew-symmetric bilinear
form ω : V × V → R which is non-degenerate (that is, if v ∈ V and for all u ∈ V we have
ω(v, u) = 0 then v = 0). We call (V, ω) a symplectic vector space.

Exercise 7.2. Show that the form ω defines an isomorphism V ∼= V ∗.

Remark 7.3. The notion of a skew-symmetric bilinear form on V agrees with the notion of a
2-form on V (that is, a section of ∧2(T ∗V )) where we identify the cotangent space T ∗v V at v
with V .

Exercise 7.4. Show that a real vector space admits a symplectic form only if it is even di-
mensional. It may help to consider the determinant of the n × n real matrix A = (ω(ei, ej))
associated to ω with respect to a basis e1, . . . , en of V .

Example 7.5. The standard symplectic vector space is the pair (R2n, ω0) where ω0 is the
standard symplectic form whose associated matrix with respect to a basis x1, . . . , xn, y1, . . . , yn
is

A =

(
0 In
−In 0

)
.

As a 2-form we may write this as

ω0 =
n∑
i=1

dxi ∧ dyi.

Example 7.6. Any complex vector space V with Hermitian inner product H : V × V → C
can be viewed as a symplectic vector space by taking the imaginary part of the Hermitian inner
product as a symplectic form on V . In particular if V = Cn then we can use the standard
Hermitian inner product on Cn

H(z, w) =
n∑
k=1

zkwk

which has imaginary part

ω(z, w) =

n∑
k=1

Re(wk)Im(zk)− Re(zk)Im(wk).
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Let z1, . . . , zn be a basis of Cn and write zk = xk + iyk; then this basis gives a natural identifi-
cation of Cn with R2n. With respect to this basis we have that

ω =

n∑
k=1

dyk ∧ dxk =
1

2i

n∑
k=1

dzk ∧ dzk

We note that this ‘natural’ symplectic form on Cn is equal to minus the standard symplectic
form on R2n (although we can also identify Cn with R2n so that the symplectic forms on Cn
and R2n agree).

Definition 7.7. Let W be a subspace of a symplectic vector space (V, ω); then we define the
symplectic orthogonal of W to be

Wω := {v ∈ V : ω(v, w) = 0 for all w ∈W}.

We say W is

i) symplectic if ω|W is non-degenerate.
ii) isotropic if ω|W ≡ 0.
iii) coisotropic if Wω ⊂W .
iv) Lagrangian if Wω = W .

Example 7.8. Let x1, x2, y1, y2 denote the standard basis of the standard symplectic vector
space (R4, ω) of dimension 4. Then

i) W = Span(x1, y1) is symplectic.
ii) W = Span(x1) is isotropic.
iii) W = Span(x1, x2, y1) is coisotropic.
iv) W = Span(x1, x2) is Lagrangian.

Exercise 7.9. Let W be a subspace of a symplectic vector space (V, ω); then show

i) dimW + dimWω = dimV.
ii) W is symplectic if and only if Wω ∩W = {0} if and only if V = Wω ⊕W .
iii) W is isotropic if and only if W ⊂Wω.
iv) W is Lagrangian if and only if W is both isotropic and coisotropic if and only if W is

isotropic and dimW = dimV/2.

7.2. Symplectic manifolds.

Definition 7.10. A symplectic manifold is a pair (X,ω) where X is a real manifold and ω is
a closed non-degenerate 2-form on X which we call the symplectic form.

A 2-form is a smooth section of the second exterior power of the cotangent bundle of X; or
equivalently, skew-symmetric bilinear forms ωx : TxX × TxX → R which vary smoothly with
x ∈ X. If we take local coordinates (x1, . . . , xn) on X, then we can locally write ω as

ω =
∑

1≤i,j≤n
fi,j dxi ∧ dxj .

The exterior derivative of a 2-form ω is a 3-form dω given locally by

d

 ∑
1≤i,j≤n

fi,j dxi ∧ dxj

 =
n∑
k=1

∑
1≤i,j≤n

∂fi,j
∂xk

dxk ∧ dxi ∧ dxj

and we say that ω is a closed form if dω = 0. A 2-form ω is non-degenerate if and only if
the bilinear forms ωx are non-degenerate for all x ∈ X. In particular ωx allows us to identify
TxX ∼= T ∗xX by sending ζ to ωx(ζ,−) and combining these isomorphisms over all x in X we get
an isomorphism

Vect(X) := Γ(TX) ∼= Γ(T ∗X) =: Ω1(X)

between the spaces of smooth sections of the tangent and cotangent bundles.
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Remark 7.11. There is an associated n × n skew-symmetric matrix A = (fij) of smooth
functions fi,j : X → R associated to ω where fi,j = −fj,i are locally determined by expressing
ω with respect to local coordinates (x1, . . . , xn) as

ω =
∑
i<j

fi,j dxi ∧ dxj .

As ω is non-degenerate, its associated matrix A is invertible and so it follows that n = dimRX
is even (cf. Exercise 7.4).

Example 7.12. Any symplectic vector space is trivially a symplectic manifold: the symplec-
tic form ω : V × V → R corresponds to a ‘constant’ two form where we make the natural
identification TvV ∼= V and define ωv := ω : V × V → R.

(1) If we take coordinates x1, . . . , xn, y1, . . . yn on R2n, then the standard symplectic form
ω0 on this vector space can be expressed as a 2-form as

ω0 =
n∑
i=1

dxi ∧ dyi.

We evaluate this 2-form at u, v ∈ V by

ω0(u, v) =
n∑
i=1

dxi(u)dyi(v)− dxi(v)dyi(u)

and one can check that ω0(xi, xj) = 0, ω0(xi, yj) = δij and so on.
(2) For the symplectic form ω = ImH on Cn where H denotes the standard Hermitian inner

product on Cn, with respect to the standard coordinates zk = xk + iyk for k = 1, . . . , n
we have

ω =
n∑
k=1

dyk ∧ dxk =
1

2i

n∑
k=1

dzk ∧ dzk =
1

2i
∂∂

n∑
k=1

|zk|2

where ∂ and ∂ are the dolbeault operators defined by the splitting of the exterior deriva-
tive d = ∂+∂ into a holomorphic and antiholomorphic part (coming from the additional
complex structure we have on Cn).

Example 7.13. Let Y be an n-dimensional real manifold, then its cotangent space X = T ∗Y
is a real manifold of dimension 2n and we may equip it with a symplectic form ω as follows.
We can take local coordinates (y1, . . . , yn) at a point y in Y and induced local coordinates
(y1, . . . , yn, ζ1, . . . , ζn) at a point x = (y, ζ) in X = T ∗Y . There is a universal 1-form α on X
where αx : TxX → R is the composition

αx = ζ ◦ dxπ : TxX → TyY → R

η 7→ ζ(dxπ(η))

where dxπ : TxX → TyY is the derivative of the projection π : X = T ∗Y → Y at x ∈ X. With
respect to the local coordinates given above we have

α =
n∑
k=1

ζkdyk.

We define a 2-form ω := −dα on X which is given locally by

ω =

n∑
k=1

−dζk ∧ dyk =

n∑
k=1

dyk ∧ dζk.

The 2-form is closed and non-degenerate and so defines a symplectic from on the cotangent
bundle of Y . We note that the appearance of the minus sign is so that when Y = Rn, the
symplectic form on X = T ∗Y ∼= R2n is equal to the standard symplectic form on this vector
space.
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Example 7.14. Complex projective space Pn = P(Cn+1) is a smooth complex (and so also a
smooth real) manifold. In this exercise we shall describe an atlas for Pn. Later on we shall see
that Pn is symplectic (in fact it is actually a Kähler manifold) by giving it a symplectic form
ωFS called the Fubini–Study form. The open sets Ui = {[z0 : · · · : zn] : zi 6= 0} cover Pn and we
define charts ϕi : Ui → Cn by

ϕi[z0 : · · · : zn] =

(
z0

zi
, . . . ,

ẑi
zi
, . . . ,

zn
zi

)
where the notation hat signifies that we omit this entry. It is easy to see that ϕi is a homeomor-
phism and so it remains to check that the transition functions ψij = ϕj ◦ ϕ−1

i : ϕi(Ui ∩ Uj) →
ϕj(Ui ∩ Uj) are smooth. Without loss of generality we assume i < j and so

ϕi(Ui ∩ Uj) = {(a0, . . . , âi, . . . , aj , . . . , an) ∈ Cn : aj 6= 0}
and

ψij(a0, . . . , âi, . . . , aj , . . . , an) =

(
a0

aj
, . . . ,

1

aj
, . . . ,

âj
aj
, . . . ,

an
aj

)
is smooth.

Example 7.15. We now construct a symplectic form ωFS , the ‘Fubini–Study’ form, on complex
projective space Pn = P(Cn+1) which comes from the standard Hermitian inner product H on
Cn+1. Let S2n+1 = {p = (z0, . . . , zn) ∈ Cn+1 : ||p||2 := H(p, p) = 1} denote the sphere of (real)
dimension 2n+ 1 in Cn+1; then we have two constructions of Pn:

Pn = (Cn+1 − {0})/C∗ = S2n+1/S1.

The idea is that we want to use the imaginary part of H (which is a symplectic form on Cn+1) to
obtain a symplectic form on the quotient. In fact this will be our first example of the Marsden–
Weinstein–Meyer theorem which allows us to construct symplectic forms on manifolds realised
as such quotients. In order for our symplectic form to descend to the quotient we need it to be
invariant under the group action with respect to which we are quotienting. Unfortunately, the
Hermitian inner product is not invariant under the natural scaling action of C∗ on Cn+1; that
is, it is not the case that

H(cu, cv) = H(u, v) for all c ∈ C∗.
However, this is true if we replace C∗ by S1 ∼= U(1); that is, H is S1-invariant (or in terms
of the language we shall introduce later on, the action of S1 on (Cn+1, ImH) is ‘symplectic’).
Therefore we use the construction Pn = S2n+1/S1. We let ωS2n+1 denote the restriction of the
symplectic form ImH on Cn to S2n+1 ⊂ Cn (we note that the sphere S2n+1 is not symplectic
as it has odd (real) dimension but we can still restrict the symplectic form nevertheless). For
p ∈ S2n+1, the tangent space T[p]Pn fits into a short exact sequence

(2) 0→ Tp(S
1 · p)→ Tp(S

2n+1)→ T[p]Pn → 0

where the final map is the derivative dpπ of the projection π : S2n+1 → Pn. We want to define
the Fubini–Study form ωFS on Pn so that π∗ωFS = ωS2n+1 ; i.e.

(3) π∗ωFS,[p](ζ, ξ) := ωFS,[p](dpπ(ζ), dpπ(ξ)) = ωS2n+1,p(ζ, ξ).

To check that this is well-defined, using the short exact sequence (2), it remains to check that
ωS2n+1(ζ, ξ) = 0 if either ζ or ξ are tangent vectors in Tp(S

1 · p). However as Tp(S
1 · p) ∼= 2πipR

and (TpS
2n+1)ω = 2πipR, we see that this is the case. Therefore (3) defines a 2-form ωFS on

Pn. The fact that this 2-form is closed and non-degenerate follows from the fact that ImH is
closed and non-degenerate (we shall see a proof of this when we give the proof of the Marsden–
Weinstein–Meyer theorem).

Finally we describe the Fubini–Study form on a chart ϕ0 : U0
∼= Cn. We factor the inverse of

this homeomorphism via the sphere S2n+1:

ϕ−1
0 : Cn → S2n+1 → U0

z = (z1, . . . , zn) 7→ 1√
1 + ||z||2

(1, z1, . . . , zn) 7→ [1 : z1 : · · · : zn]
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and let f = (f0, . . . , fn) : Cn → S2n+1 ⊂ Cn+1 denote the first map in this factorisation. Then
(ϕ−1

0 )∗ωFS |U0 = (π ◦ f)∗ωFS |U0 = f∗ωS2n+1 |π−1(U0); that is,

(ϕ−1
0 )∗ωFS |U0 =

1

2i

n∑
k=0

dfk ∧ dfk

which after carefully writing down dfk and dfk in terms of the coordinates zj on Cn becomes

(ϕ−1
0 )∗ωFS |U0 =

1

2i

 1

1 + ||z||2
n∑
k=1

dzk ∧ dzk +
1

(1 + ||z||2)2
(
n∑
k=1

zkdzk) ∧ (
n∑
j=1

zjdzj)


or, with respect to the Dolbeault operators,

(ϕ−1
0 )∗ωFS |U0 =

1

2i
∂∂ log(1 + ||z||2).

Therefore at [p] = [1 : 0 : 0 · · · : 0] ∈ Pn we have

ωFS,[p] =
1

2i

n∑
k=1

dzk ∧ dzk

with respect to the local coordinates (z1, . . . , zn) 7→ [1 : z1 : · · · : zn] at [p].

Remark 7.16. One can alternatively ‘glue’ the Fubini–Study on Pn by pulling back ‘the Fubini–
Study form’ on Cn via the charts ϕ : Ui ∼= Cn. Of course one must check that on the overlaps
we get the same form and it is for this reason that we must use the Fubini–Study form on Cn
rather than the standard symplectic form on Cn (which is equal to the imaginary part of the
standard Hermitian inner product on Cn). For a description of the Fubini–Study form on Pn
and how this gluing procedure works, see for example [8].

It follows from this example that any smooth closed complex subvariety of Pn is symplectic
with symplectic form obtained by pulling back the Fubini–Study form on Pn.

Example 7.17. Let be G be a compact and connected real Lie group; its Lie algebra g is a
vector space that is by definition the tangent space to G at the identity. The adjoint action of
G is a representation of G on its Lie algebra g which we write as Ad : G→ GL(g) where Adg is
the derivative at the identity of the map G→ G corresponding to conjugation by g. We can also
consider the coadjoint representation Ad∗ : G→ GL(g∗) which is the dual representation to the
adjoint representation. We note that in order to get a left action we define (Ad∗)g = (Adg−1)∗

so that (Ad∗)h(Ad∗)g = (Ad∗)hg. Let Der(g) denote the Lie algebra of GL(g) which is equal to
the derivation algebra of g; then the infinitesimal version of the adjoint representation of G is
a representation of the Lie algebra ad : g→ Der(g) given by taking the derivative of Ad. More
precisely, for A,B ∈ g we have

adAB :=
d

dt
Adexp(tA)(B)|t=0 = [A,B].

We call the representation ad : g → Der(g) the adjoint representation of g and the coadjoint
representation of g is the dual of this representation, which we denote by ad∗.

Let η ∈ g∗ and O ⊂ g∗ denote the coadjoint orbit of η for the action of G on g∗; thus O is
the image of G under the map

Ad∗−(η) : G→ g∗ g 7→ Ad∗g(η)

and the kernel of this map is the stabiliser Gη of η for this action. The tangent space TηO is
then the image of g under the map

ad∗−(η) : g→ g∗ A 7→ ad∗A(η)

and the kernel is the isotropy group gη := {A ∈ g : ad∗A(η) · B = 0 ∀ B ∈ g}. In particular, we
have a short exact sequence

0→ gη → g→ TηO → 0.



GEOMETRIC INVARIANT THEORY AND SYMPLECTIC QUOTIENTS 51

We use the Lie bracket [−,−] to define a symplectic form ω on the coadjoint orbit O of η by

ωη(ad∗Aη, ad∗Bη) = η · [A,B]

where · : g∗ × g → R is the natural evaluation map. To check this is well-defined we must
check that ωη(ad∗Aη, ad∗Bη) = 0 if either A or B belong to the isotropy group gη; this follows
immediately as if say A ∈ gη, then 0 = ad∗A(η) ·B = η · ad−A(B) = −η · [A,B] for all B ∈ g. It
is easy to see from this description that ω is non-degenerate.

Exercise 7.18. Prove that the form defined above on the coadjoint orbit O is closed.

Corollary 7.19. Every coadjoint orbit associated to a compact and connected Lie group is even
dimensional.

7.3. Morphisms in symplectic geometry. We need a notion of morphisms between sym-
plectic manifolds so that we can construct a symplectic category. The initial notion is given by
symplectomorphisms:

Definition 7.20. A symplectomorphism f : (M,ω) → (M ′, ω′) of symplectic manifolds is a
diffeomorphism f : M →M ′ such that f∗ω′ = ω.

Theorem 7.21. (Darboux) Any symplectic manifold of dimension 2n is locally symplectomor-
phic to R2n equipped with the standard symplectic form.

As a symplectomorphism is a diffeomorphism, there are only symplectomorphisms between
manifolds of the same dimension. In particular, this notion of morphism is rather restrictive.
As we are interested in construction symplectic quotients we want to allow morphisms be-
tween manifolds of different dimensions. A more general notion of morphisms is given by using
Lagrangian correspondences.

Definition 7.22. A submanifold L of a symplectic manifold X is Lagrangian if 2 dimL = dimX
and i∗ω = 0 where i : L ↪→ X is the inclusion. Equivalently, L is Lagrangian if for all x ∈ L the
vector space TxL is a Lagrangian subspace of TxX; that is,

(TxL)ωx = {η ∈ TxX : ωx(η, ζ) = 0 ∀ ζ ∈ TxL} = TxL.

A Lagrangian correspondence between symplectic manifolds (X1, ω1) and (X2, ω2) is a La-
grangian submanifold L12 of (X1 ×X2,−ω1 � ω2) where −ω1 � ω2 := −π∗1ω1 + π∗2ω.

Example 7.23. We view Lagrangian correspondences as morphisms in the symplectic category.

(1) The identity morphism on (X,ω) is given by the diagonal ∆X ⊂ (X ×X,−ω � ω).
(2) Given any symplectomorphism φ : (X1, ω1) → (X2, ω2), the graph Γ(φ) ⊂ (X1 ×

X2,−ω1 � ω2) is a Lagrangian submanifold. Therefore, the notion of symplectic corre-
spondence generalises that of symplectomorphisms.

As we want to view Lagrangian correspondences as morphisms between symplectic manifold
we need to define the composition of two Lagrangian correspondence. Given Lagrangian sub-
manifolds L12 ⊂ (X1×X2,−ω1�ω2) and L23 ⊂ (X2×X3,−ω2�ω3), we define the composition
L13 = L23 ◦L12 to be the Lagrangian submanifold L13 := π13L12×X2 L23 of (X1×X3,−ω1�ω3)
given by

L13 = {(x1, x3) ∈ X1 ×X3 : ∃x2 ∈ X2 such that (x1, x2) ∈ L12 and (x2, x3) ∈ L23}.

Then, following [49], we define morphisms in the symplectic category to consist of chains of
symplectic correspondences.

7.4. Hamiltonian vector fields. Let X be a smooth manifold of dimension n. We denote
the (infinite dimensional) Lie algebra of smooth vector fields on X by Vect(X), where the Lie
bracket [−,−] on Vect(X) is given by the commutator, and we denote the differential graded
algebra of smooth forms on X by

Ω∗(X) = ⊕r≥0Ωr(X)
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where Ωr(X) = Γ(∧rT ∗X) and the differential d : Ωr(X) → Ωr+1(X) is given by the exterior
derivative:

d

 ∑
I=(i1,...,ir)

fIdxI

 =
n∑
j=1

∑
I

dfI
dxj

dxj ∧ dxI .

We recall that for a vector field ζ we have the Lie derivative Lζ : Ωr(X)→ Ωr(X) defined by

Lζ = d ◦ ιζ + ιζ ◦ d
where ιζ : Ωr(X)→ Ωr−1(X) is given by contracting with ζ:

ιζα(ζ1, . . . , ζr−1) = α(ζ, ζ1, . . . ζn).

For f ∈ Ω0(X) = C∞(X) and a vector field ζ on X, this satisfies

Lζ(f) = df(ζ).

Now suppose (X,ω) is a symplectic manifold. Given a smooth function H : X → R, we can
construct an associated vector field ζH using the duality defined by the symplectic form ω: recall
that there is ζH ∈ Vect(X) which corresponds under the duality defined by ω to dH ∈ Ω1(X);
that is,

ιζHω = dH.

Definition 7.24. A vector field ζ on a symplectic manifold (X,ω) is Hamiltonian if ζ = ζH for
some smooth function H : X → R (or equivalently, ιζω is exact). A vector field ζ is symplectic
if Lζω = 0 (or equivalently, ιζω is closed).

As exact forms are closed, every Hamiltonian vector field is a symplectic vector field.

8. Actions in symplectic geometry

In this section we consider actions of Lie groups on symplectic manifolds. We shall assume
basic familiarity with Lie groups and Lie algebras (for example, see [6], [9] and [13]). Good
references for the results in this section on actions in symplectic geometry are [2],[8], [27], [48]
and [50].

8.1. Symplectic actions. Let K be a real Lie group and X be a real smooth manifold. A
smooth action of K on X is an action K ×X → X which is smooth. In particular this gives a
group homomorphism from K to the group of diffeomorphisms of X

K → Diff(X)

k 7→ (x 7→ k · x)

which we call the action homomorphism.

Definition 8.1. Let (X,ω) be a symplectic manifold and let K be a lie group which acts
smoothly on X. We say the action is symplectic if K acts by symplectomorphisms i.e. the
image of the action map K → Diff(X) is contained in the subgroup Sympl(X,ω) of symplecto-
morphisms of X.

8.2. Hamiltonian actions. The infinitesimal version of the Lie group K is its Lie algebra K
which is by definition the tangent space at the identity of G. For A in K, we may consider
the associated real 1-PS exp(−A) : R→ K which induces an diffeomorphism X → X given by
x 7→ exp(tA) · x. If we fix x ∈ X and A ∈ K then we can take the derivative of the smooth map
exp(−A) · x : R→ X at 0 ∈ R to get a linear map d0 exp(−A) · x : R→ TxX whose evaluation
at 1 ∈ R we refer to as the infinitesimal action of A on x:

Ax := (d0 exp(−A) · x) (1) =
d

dt
exp(tA) · x|t=0 ∈ TxX.

Letting x vary, we get a vector field AX on X such that AX,x is the infinitesimal action Ax as
above. The resulting Lie algebra homomorphism

K→ Vect(X)
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A 7→ AX

obtained by differentiating the action homomorphism is referred to as the infinitesimal action
homomorphism.

Definition 8.2. Let K be a Lie group acting on a symplectic manifold (X,ω). The action is

i) infinitesimally symplectic if AX is a symplectic vector field for all A ∈ K.
ii) weakly Hamiltonian if AX is a Hamiltonian vector field for all A ∈ K.

Given a symplectic action of K on X for which the exponential map K → K is surjective
(for example, this is the case if K is compact and connected), we have for all k ∈ K the map
k : X → X given by x 7→ k · x is a symplectomorphism i.e. k∗ω = ω. On differentiating the
condition exp(tA)∗ω = ω, we get LAXω = 0 (or equivalently dιAXω = 0). Hence in this case,
the symplectic action is infinitesimally symplectic.

For a weakly Hamiltonian action the infinitesimal action K → Vect(X) can be pointwise
lifted to a map K→ C∞(X) as a Hamiltonian vector field corresponds (under ω) to the exterior
derivative of a smooth function on X. Of course in general, this lift is non-unique as there may
be several smooth functions with the same exterior derivative. We can define a Lie algebra
structure on C∞(X) using ω by

{F,H}(x) := ωx(ζF,x, ζH,x)

where ζF is the vector field which corresponds under the duality defined by ω to the 1-form dF .
Then we can ask if there is a way to lift the infinitesimal action so that the lift is a Lie algebra
homomorphism.

Definition 8.3. If we have a symplectic action of a Lie group K on (X,ω) such that the
infinitesimal action K → Vect(X) can be lifted to a Lie algebra homomorphism K → C∞(X),
then we say the action is Hamiltonian. The map φ : K→ C∞(X) is called the comoment map.

8.3. Moment map. Hamiltonian actions can also be described by using a moment (or mo-
mentum) map. As the name suggest the moment(um) map first arose in classical mechanics
(for a description of the moment map from the viewpoint of classical mechanics see the notes
of Butterfield [7]).

Definition 8.4. A smooth map µ : X → K∗ is called a moment map if it is K-equivariant with
respect to the action of the given K on X and the coadjoint action of K on K∗ and in addition

(4) dµx(ζ) ·A = ωx(Ax, ζ)

for all x ∈ X, ζ ∈ TxX and A ∈ K.

Remark 8.5. There is still no consistent choice of sign conventions for the moment map and
so often a minus sign may appear in the condition (4) used to define a moment map.

A comoment map φ defines a moment map µ by µ(x) ·A = φ(A)(x) for x ∈ X and A ∈ K.

Remark 8.6. The moment map is not necessarily unique (see Example 8.7 below), although
for certain groups we will see that it is unique (cf. part (1) of Example 8.8 ).

8.4. Examples of moment maps.

Example 8.7. Let K = U(n) be the unitary group of n×n matrices and consider its standard
representation on Cn. The infinitesimal action is given by

Ax =
d

dt
exp(tA) · x|t=0 = Ax

for x ∈ Cn and A a skew-Hermitian matrix in u(n). Let H : Cn ×Cn → C denote the standard
Hermitian inner product on Cn: if we write z ∈ Cn as a row vector (z1, . . . zn), then

H(z, v) = zvt = vzt = Tr(ztv) = Tr(vtz)
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where vt denotes the transpose of a matrix. We take the symplectic inner product ω : Cn×Cn →
R equal to the imaginary part of this Hermitian inner product:

ω(z, v) =
1

2i

(
H(z, v)−H(z, v)

)
=

1

2i
(H(z, v)−H(v, z)) .

The Hermitian inner product is U(n)-invariant (that is, H(Az,Av) = H(z, v) for all unitary
matrices A ∈ U(n)) and so it follows that the action of U(n) on (Cn, ω) is symplectic. In fact
this action is Hamiltonian and there is a canonical choice of moment map µ : Cn → u(n)∗ which
is defined by

µ(z) ·A =
1

2
ω(Az, z) =

1

2i
H(Az, z)

for A ∈ u(n). The second equality follows from the fact that

(5) H(Az, v) +H(z,Av) = Tr(ztAtv) + Tr(ztAv) = Tr(zt(At +A)v) = Tr(0) = 0

for all z, v ∈ Cn and A ∈ u(n). We shall now carefully check that this is a moment map. Firstly
it is U(n)-equivariant:

µ(k · z) ·A =
1

2
ω(Ak · z, k · z) =

1

2
ω(k−1Ak · z, ·z) = µ(z) · k−1Ak = (Ad∗)kµ(x) ·A

where A ∈ u(n), z ∈ Cn and k ∈ U(n). To verify condition (4), we may identify TzCn ∼= Cn
and then this condition becomes

dµz(v) ·A = ω(Az, v)

for v ∈ Cn ∼= TzCn and A ∈ u(n). We can verify that

dµz(v) ·A :=
d

dt
µ(z + tv) ·A|t=0

=
1

2

d

dt
ω(A(z + tv), z + tv)|t=0 =

1

2
[ω(Az, v) + ω(Av, z)]

=
1

4i
[H(Az, v)−H(v,Az) +H(Av, z)−H(z,Av)]

=
1

2i
[H(Az, v)−H(v,Az)] =: ω(Az, v)

where the equality on the final line comes from the relation given at (5). We note that the
moment map for this symplectic action is not unique, although it is unique up to addition by
an element η of u(n)∗ which is fixed by the coadjoint action U(n)→ GL(u(n)) (we call such η a
central element). Every character of U(n) is a power of the determinant det : U(n)→ S1 whose
derivative is give by the trace Tr : u(n) → Lie S1 ∼= 2πiR. Hence such a central element η of
u(n)∗ must be equal to ciTr for some c ∈ R and the associated moment map is

µη(z) ·A =
1

2i
H(Az, z) + η ·A.

Example 8.8. In fact if K is a Lie group which acts on Cn by a representation ρ : K → U(n),
then we can write down the moment map µK for the action of K on Cn using ρ and the moment
map µU(n) : Cn → u(n)∗ for the U(n)-action on Cn constructed in Example 8.7. The moment
map for the action of K is given by

µK = ρ∗µU(n)

where ρ∗ : u(n)∗ → K∗ is the dual to the inclusion ρ : K → u(n). We consider the following
special cases:

(1) If K = SU(n) acts on Cn by the standard inclusion into U(n), then its moment map is
given by

µ(z) ·A =
1

2
ω(Az, z) =

1

2i
H(Az, z)

for A ∈ su(n). However, there are no non-zero central elements of su(n) which we can
use to shift the moment map by and so this moment map is unique.
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(2) If K = (S1)n acts on Cn via the representation

(t1, . . . , tn) 7→ diag(t1, . . . , tn),

then the moment map is given by

µ(z) · (A1, . . . , An) =
1

2
ω(diag(A1, . . . , An)z, z)

for Ak ∈ LieS1 ∼= 2πiR. If we write z = (z1, . . . , zn) ∈ Cn and Ak = 2πiak for real
numbers ak then

µ(z) · (2πia1, . . . , 2πian) = π
n∑
k=1

ak|zk|2.

Of course the group K = (S1)n is commutative and so every element in central and so it
follows that all elements in K ∼= (2πiR)n are central. We can shift the standard moment
map by any n-tuple (c1, . . . , cn) of real numbers to get

µ(z) · (2πia1, . . . , 2πian) = π

n∑
k=1

(ak|zk|2 + ck).

(3) We may also consider K = (S1)n acting on Cn via the representation

(t1, . . . , tn) 7→ diag(tr11 , . . . , t
rn
n )

for integers rk. In this case the moment map (shifted by real numbers ci) is given by

µ(z) · (2πia1, . . . , 2πian) = π

n∑
k=1

(akrk|zk|2 + ck).

Exercise 8.9. Consider the action of K = U(m) on the space of l × m-matrices over the
complex numbers Ml×m(C) ∼= Clm given by k ·M = Mk−1 where we take the natural symplectic
structure given by the imaginary part of the standard Hermitian inner product on Clm. Then
if M ∈Ml×m and A ∈ u(m) show

µ(M) ·A =
i

2
Tr(MAM∗)

is a moment map for this action.

So far the only examples of moment maps that we have seen are for affine spaces. As we
will eventually be interested in comparing projective GIT quotients with symplectic quotients,
we should of course verify that these sorts of actions are Hamiltonian. Often we will be in
the situation of a Lie group K acting on a smooth complex projective variety X ⊂ Pn via a
representation K → U(n+1). In order to construct a moment map for such an action it suffices
to construct a moment map for the standard action of U(n+ 1) on Pn.

Example 8.10. Consider U(n + 1) acting on complex projective space Pn by acting on its
affine cone Cn+1 in the standard way. The symplectic form on Pn is the Fubini-Study form ωFS

constructed in Example 7.15 from the standard Hermitian inner productH on Cn+1. It is easy to
see this from is U(n+1)-invariant (that is, the action is symplectic). As the Fubini-Study form is
preserved by the action of U(n+1) and the unitary group is compact and connected, the action
is infinitesimally symplectic so that dιAXωFS = 0. Moreover, as H1(Pn) = 0, every closed 1-form
is exact and so the action is weakly Hamiltonian. It turns out that this action is Hamiltonian
and we can write down a moment map explicitly as follows. Let p = (p0, . . . , pn) ∈ Cn+1−{0},
then we claim that

µ([p]) ·A =
Trp∗Ap

2i||p||2
defines a moment map where [p] ∈ Pn and A ∈ u(n+ 1) and p∗ denotes the complex conjugate
transpose. We leave the U(n + 1)-equivariance of µ for the reader to check. As the action of
U(n+ 1) on Pn is transitive, we need only verify the condition (4) at a single point [p] = [1 : 0 :
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· · · : 0] ∈ Pn. Following Example 7.15, we can identify T[p]Pn with the orthogonal space to p in

Cn+1 with respect to the standard Hermitian product on Cn+1:

T[p]Pn = TpS
2n+1/Tp(S

1 · p) ∼= {(0, z1, . . . , zn) ∈ Cn+1} ∼= Cn.

With respect to the coordinates (z1, . . . , zn) 7→ [1 : z1 : · · · : zn] at [p], the Fubini-Study form
can be expressed locally as

ωFS,[p] =
1

2i

n∑
k=1

dzk ∧ dzk;

that is, for v, w ∈ T[p]Pn, we have

ωFS,[p](v, w) = ImH(v, w) =
1

2i
[H(v, w)−H(w, v)].

Let v ∈ T[p]Pn and A ∈ u(n+ 1); then

d[p]µ(v) ·A :=
d

dt
µ(p+ tv) ·A|t=0 =

1

2i

d

dt

Tr((p+ tv)∗A(p+ tv))

||p+ tv||2
|t=0

=
1

2i

Tr(v∗Ap+ p∗Av)||p||2 − (pv∗ + vp∗)Tr(p∗Ap)

||p||4

(a)
=

1

2i
[H(Ap, v)−H(v,Ap)]

= ωFS,[p](Ap, v)

where (a) follows as H(p, v) = p∗v = 0 for v ∈ T[p]Pn.

Exercise 8.11. Let K be a compact and connected Lie group; then a coadjoint orbit O ⊂ K∗

for the action of K on K∗ has a symplectic form ω by Example 7.17. Describe the infinitesimal
action for the natural action of K on O and show that the inclusion µ : O ↪→ K∗ is a moment
map for this action.

9. Symplectic quotients

Given an action of a Lie group K on (X,ω) we can ask whether a quotient exists. The
topological quotient always exists, but it will only be a manifold if the action is free and proper.
Even if the action is free and proper, the resulting quotient manifold may have odd dimension
over R and so will not admit a symplectic form. Hence, the topological quotient X/K does not
in general provide a suitable quotient in symplectic geometry.

In this section we define the symplectic reduction associated to a Hamiltonian action and
show that in nice cases it is a symplectic manifold and also has a universal property amongst all
symplectic quotients. The central theorem in this section is a result of Marsden and Weinstein
[27] and Meyer [27] on the symplectic reduction; although other good references are [8], [27]
and [50].

9.1. Properties of moment maps. Suppose K is a Lie group acting on a symplectic manifold
(X,ω). For x ∈ X, we let K · x := {kx : k ∈ K} denote the orbit of x and Kx = {k : k · x = x}
denote the stabiliser of x. Then Kx := {A ∈ K : Ax = 0} is the Lie algebra of Kx.

If the action is Hamiltonian, then there is an associated moment map µ : X → K∗ and one
can naturally ask what other properties of the action are encoded by the moment map.

Lemma 9.1. Suppose we have a Hamiltonian action of a Lie group K on a symplectic manifold
(X,ω) with associated moment map µ : X → K∗ . Then for all x ∈ X:

i) kerdµx = (Tx(K · x))ωx := {ζ ∈ TxX : ωx(η, ζ) = 0 ∀η ∈ Tx(K · x)},
ii) Imdµx = AnnKx := {η ∈ K∗ : η ·A = 0 ∀A ∈ Kx}.

Proof. i) The tangent space Tx(K · x) to the orbit K · x at x consists of tangent vectors γ′(0)
where γ : R → K · x is a smooth curve such that γ(0) = x. We recall for each A ∈ K, we can
define a smooth curve γA(t) = exp(tA) · x such that γA(0) = x and whose associated tangent
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vector γ′(0) = Ax is the infinitesimal of A on x; therefore Tx(K · x) = {Ax : A ∈ K}. A tangent
vector ζ ∈ TxX is in the kernel of dxµ if and only if for all A ∈ K we have

0 = dxµ(ζ) ·A = ωx(Ax, ζ);

that is, if and only if ζ ∈ Tx(K · x)ωx := {ζ ∈ TxX : ωx(ζ, η) = 0 ∀η ∈ Tx(K · x)}.
ii) By definition, an element A ∈ K belongs to Kx if and only if the infinitesimal action of A

at x is trivial i.e. Ax = 0 ∈ TxX. If η = dxµ(ζ) ∈ Imdxµ where ζ ∈ TxX, then for all A ∈ K we
have that

η ·A = dxµ(ζ) ·A = ωx(Ax, ζ).

In particular, if A ∈ Kx, then Ax = 0 and so we see that η ∈ AnnKx. Hence we have an
inclusion Imdxµ ⊂ AnnKx and we count dimensions to verify these vector spaces are equal.
Suppose the kernel of dxµ has dimension n and TxX has dimension d, so that the image Imdxµ
has dimension d− n. By i), the kernel is equal to Tx(K · x)ωx and so its symplectic orthogonal
Tx(K · x) has dimension d− n. By the orbit stabiliser theorem:

(6) dimK = dimKx + dimTx(K · x).

The inclusion AnnKx ⊂ K∗ induces a short exact sequence

0→ AnnKx → K∗ → K∗x → 0

and so

dim AnnKx = dimK− dimKx

which in turn is equal to dimTx(K ·x) = d−n by (6). Therefore, the inclusion of vector spaces
Imdxµ ⊂ AnnKx of the same dimension must be an equality. �

We recall that the action of K on X is free if all stabilisers Kx are trivial. We say an action
is locally free at x if the stabiliser Kx is finite.

Corollary 9.2. Suppose we have a Hamiltonian action of a Lie group K on a symplectic
manifold (X,ω) with associated moment map µ : X → K∗. Then:

i) The action is locally free at x ∈ X if and only if Kx = 0, or equivalently, if and only if
dµx is onto i.e. x is a regular point of µ.

ii) Let η be an element in K∗ which is fixed by the coadjoint action of K. Then at every
point of µ−1(η) the K-action is locally free if and only if η is a regular value of µ.

iii) If η is a regular value of µ, then µ−1(η) ⊂ X is a closed submanifold of codimension
equal to the dimension of K and Txµ

−1(η) = kerdµx for all x ∈ µ−1(η). Moreover,
Txµ

−1(η) and Tx(K · x) are orthogonal with respect to the symplectic form ωx on TxX.

Proof. i) The stabiliser Kx of a point x is finite if and only if its Lie algebra Kx = 0 is zero. By
Lemma 9.1 ii), we have that Imdxµ = AnnKx which is equal to K∗ if and only if Kx = 0. Hence
the action is locally free at x if and only if dxµ is surjective i.e. x is a regular point of µ. Then
ii) follows from i) and the definition of regular value. For iii), we use the preimage theorem for
smooth manifolds: if µ : X → K∗ is a smooth map of smooth manifolds, then the preimage of a
regular value is a closed submanifold of dimension dimX − dimK∗. As µ|µ−1(η) = η is constant,

dxµ = 0 on Txµ
−1(η) for all x ∈ µ−1(η). Therefore Txµ

−1(η) ⊂ kerdxµ. Since η is a regular
value, dxµ is surjective and so

dim kerdxµ = dimTxX − dimK∗ = dimX − dimK∗ = dimµ−1(η);

thus Txµ
−1(η) = kerdxµ. The final statement of iii) follows from Lemma 9.1. �

9.2. Symplectic reduction. We suppose as above that we have a Hamiltonian action of a Lie
group K on a symplectic manifold (X,ω) with associated moment map µ : X → K∗. We want
to construct a quotient of the K-action on X (or a submanifold of X on which the action is
free) in the symplectic category.
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Given η ∈ K∗ which is fixed by the coadjoint action, equivariance of µ implies that the
preimage µ−1(η) is preserved by the action of K. We define the symplectic reduction at η to
be the orbit space

Xred
η := µ−1(η)/K.

This orbit space was considered by Marsden and Weinstein [26] and Meyer [28] as a possible
symplectic quotient. In general this quotient is just a topological space: its topology is the
weakest topology for which the quotient map µ−1(η) → µ−1(η)/K is continuous. If η is a
regular value of µ, then the preimage µ−1(η) is a submanifold of X of dimension equal to
dimX−dim(K). However, the action of K on µ−1(η) may not be free and hence the symplectic
reduction will be an orbifold rather than a manifold (recall that if η is a regular value we know
the action of K is locally free at each point and so the stabilisers are all finite). If η is a regular
value and the action of K on µ−1(η) is free and proper, then the symplectic reduction is a
manifold of dimension dimX − 2 dimK. In this situation, we shall shortly see that there is a
natural symplectic form on µ−1(η)/K (this is a theorem of Marsden and Weinstein [26] and
Meyer [28]).

Remark 9.3. If η is a regular value of µ, but is not necessarily fixed by the coadjoint action,
then we can instead consider the symplectic reduction

Xred
η = µ−1(η)/Kη

where Kη = {k ∈ K : Ad∗kη = η} is the stabiliser group of η for the coadjoint action.

There is one point of particular interest which is always fixed by the coadjoint action, namely
the origin 0 ∈ K∗ and so we may consider the symplectic reduction

Xred
0 := µ−1(0)/K.

We shall often write simply Xred for the reduction at 0 and refer to this as the symplectic
reduction. If 0 is a regular value of µ and the action of K on µ−1(0) is free and proper, then
this is a manifold whose dimension is dimX − 2 dim(K).

9.3. Marsden-Weinstein-Meyer Theorem.

Theorem 9.4. Given a Hamiltonian action of a Lie group K on a symplectic manifold (X,ω)
with moment map µ : X → K∗ and a regular value η ∈ K∗ of the moment map µ which is fixed
by the coadjoint action. If the action of K on µ−1(η) is free and proper, then

i) The symplectic reduction Xred
η = µ−1(η)/K is a smooth manifold of dimension dimX−

2 dimK.
ii) There is a unique symplectic form ωred on Xred

η such that π∗ωred = i∗ω where i :

µ−1(η) ↪→ X denotes the inclusion and π : µ−1(η)→ µ−1(η)/K the quotient map.

Remark 9.5. The assumption that the action of K on µ−1(η) is free and proper is only
required so that the quotient is a manifold. In Section 10, we will consider symplectic quotients
constructed by actions of compact Lie groups in which case the action is always proper. Of
course, if η is a regular value, we already know that the action is locally free and so the
topological quotient is at least an orbifold.

Before we prove this result we need a few lemmas:

Lemma 9.6. With the assumptions of the above theorem, for all x ∈ µ−1(η), the subspace
Tx(K · x) of TxX is an isotropic subspace.

Proof. We recall that Tx(K ·x) is an isotropic subspace of the symplectic vector space (TxX,ωx)
if ω|Tx(K·x) ≡ 0 or, equivalently, if Tx(K · x) ⊂ Tx(K · x)ωx . The subspaces ker dxµ = Txµ

−1(η)

and Tx(K ·x) of TxX are symplectic orthogonal complements with respect to ωx for x ∈ µ−1(η)
by Corollary 9.2. As η is fixed by the coadjoint action, this implies µ−1(η) is K-invariant and
so K · x ⊂ µ−1(η). Therefore

Tx(K · x) ⊂ Txµ−1(η) = Tx(K · x)ωx

which completes the proof that Tx(K · x) is an isotropic subspace of (TxX,ωx). �
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Lemma 9.7. Let I be an isotropic subspace of a symplectic vector space (V, ω). Then ω induces
a unique symplectic form ω′ on the quotient Iω/I.

Proof. We define
ω′([v], [w]) = ω(v, w)

and check this definition is well defined:

ω′(v + i, w + j) = ω(v, w) + ω(i, w) + ω(v, j) + ω(i, j)

= ω(v, w) + 0 + 0 + 0

for i, j ∈ I. The non-degeneracy of ω′ follows from that of ω: if [u] ∈ Iω/I and ω′([u], [v]) = 0
for all v ∈ Iω/I, then ω(u, v) = 0 for all v ∈ Iω and so u ∈ (Iω)ω = I i.e. [u] = 0. �

Proof. (Marsden-Weinstein-Meyer Theorem) The preimage theorem shows that µ−1(η) is a
closed smooth submanifold of X of dimension dimX−dimK. Furthermore, as K acts on µ−1(η)
freely and properly, the quotient Xred

η is a smooth manifold of dimension dimX − 2 dimK. We

shall construct a non-degenerate 2-form ωred on Xred
η such that π∗ωred = i∗ω, by constructing

symmetric forms ωred
p on TpX

red
η for all p ∈ Xred

η . Let p = π(x) where π : µ−1(η)→ Xred
η ; then

we have a short exact sequence of vector spaces

0→ Tx(K · x)→ Txµ
−1(η)→ TpX

red
η → 0.

By Lemma 9.6, the subspace Tx(K · x) is isotropic whose symplectic orthogonal complement
(with respect to ωx) is Tx(µ−1(η)). It then follows from Lemma 9.7 that there is a canonical
symplectic form ωred

p on

Tx(K · x)ω/Tx(K · x) = Txµ
−1(η)/Tx(K · x) ∼= TpX

red
η .

By construction this is a non-degenerate 2-form such that π∗ωred = i∗ω and so it remains to
check that this symplectic form is closed. As the exterior derivative d commutes with pullback
we have that

π∗dωred = dπ∗ωred = di∗ω = i∗dω = 0.

The pullback map on 3-forms

π∗ : Ω3(Xred
η )→ Ω3(µ−1(η))

is injective as π is surjective and hence dωred = 0. �

Example 9.8. Consider the action of U(1) ∼= S1 on Cn by multiplication s · (a1, . . . , an) =
(sa1, . . . , san). We can take the standard symplectic form on Cn and use the Killing form on
u(1) to identify u(1)∗ ∼= u(1) ∼= R and write the moment map for this action as

µ(x1, . . . , xn) =
1

2

(
n∑
k=1

|xk|2 − C

)
where C is any real number. If we take C = 1, then

µ−1(0) = S2n−1 = {(x1, . . . , xn) :
∑
|xk|2 = 1}

and the symplectic reduction is µ−1(0)/S1 = S2n−1/S1 = Pn−1. The canonical symplectic
form ω induced from the standard symplectic form on Cn (by which we mean the imaginary
part of the standard Hermitian inner product H on Cn) is then the Fubini–Study form that
we constructed in Example 7.15. In fact, if you revisit our construction of the Fubini–Study
form given in Example 7.15, then you will now see that it was actually constructed using the
Marsden–Weinstein–Meyer theorem.

Example 9.9. Consider the action of K = U(m) on the space of l × m-matrices over the
complex numbers Ml×m(C) ∼= Clm as in Example 8.9 where l > m. We recall that the moment
map is given by

µ(M) ·A =
i

2
Tr(MAM∗)
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for M ∈ Ml×m and A ∈ u(m). If we use the Killing form on u(m) then we can identify
u(m)∗ ∼= u(m) and view the moment map as a morphism µ : Ml×m → u(m) given by

µ(M) =
i

2
M∗M.

Let η = iIm/2 denote the skew-Hermitian matrix which is an (imaginary) scalar multiple of
the identity matrix Im; then clearly η is fixed by the adjoint action of U(m) on u(m). The
preimage µ−1(η) = {M ∈ Ml×m : M∗M = Im} consists of l ×m matrices whose m columns
are linearly independent and define a length m unitary frame of Cl. The symplectic reduction
µ−1(η)/U(m) is the grassmannian Gr(m, l) of m-planes in Cl.

There is a more general version of the Marsden-Weinstein-Meyer Theorem which allows us
to take reductions at points which are not fixed by the coadjoint action:

Proposition 9.10. Given a Hamiltonian action of a Lie group K on a symplectic manifold
(X,ω) with moment map µ : X → K∗ and an orbit O for the coadjoint action of K on K∗. If the
orbit consists of regular values of µ and the action of K on µ−1(O) is free and proper, then the
symplectic reduction Xred

O = µ−1(O)/K is a symplectic manifold of dimension dimX+dimO−
2 dimK.

Proof. The assumption that every point of O is a regular value of the moment map means that
the preimage µ−1(O) is a closed submanifold of X of dimension dimX+dimO−dimK. Recall
from Example 7.17, that the coadjoint orbit has a natural symplectic form which we denote by
ωO. Consider the natural action of K on the product (X ×O,−ω�ωO), for which the moment
map µ′ : X ×O → K∗ is given by

µ′(x, η) = −µ(x) + η.

The proposition follows by applying the original version of the Marsden-Weinstein-Meyer The-
orem to the regular value 0 of µ′ and the fact that µ−1(O) ∼= (µ′)−1(0). �

Remark 9.11. If η ∈ K∗ is not fixed by the coadjoint action of K on K∗, then

Kη = {k ∈ K : Ad∗kη = η}

acts on µ−1(η). Then the symplectic reduction Xred
Oη constructed above for the coadjoint orbit

Oη of η is equal to the quotient µ−1(η)/Kη.

Remark 9.12. Suppose X is a Kähler manifold (i.e. it has a complex structure which is
compatible with the symplectic structure) and the action of the Lie group K preserves this
complex structure (as well as preserving the symplectic structure). If the action is Hamiltonian
with moment map µ and K acts freely and properly on µ−1(0) where 0 is a regular value of
the moment map, then the symplectic reduction µ−1(0)/X also has a Kähler structure (i.e. the
almost complex structure induced on the quotient is integrable and compatible with the induced
symplectic form).

9.4. Universality of the symplectic reduction. We recall that the notion of morphism in
the symplectic category is given by chains of Lagrangian correspondences (see Definition 7.22
and [49]). Given a Hamiltonian action of a Lie group K on a symplectic manifold (X,ω) with
moment map µ : X → K∗, the aim of this section is to show (under the assumptions of the
Marsden-Weinstein-Meyer theorem) that the symplectic reduction (Xred

0 = µ−1(0)/K, ωred) is
a universal quotient of the K-action on (X,ω) in the symplectic category. We recall that the
symplectic form ωred is the unique symplectic form such that π∗ωred = i∗ω where i : µ−1(0) ↪→ X
denotes the inclusion and π : µ−1(η) → µ−1(η)/K the quotient map. First of all we need to
construct a morphism between (X,ω) and (Xred

0 , ωred).

Lemma 9.13. Under the set up of the Marsden-Weinstein-Meyer Theorem with regular value
η = 0, if Lµ denotes the image of the map i × π : µ−1(0) → X × µ−1(0)/K, then Lµ is a

Lagrangian submanifold of (X × µ−1(0)/K,−ω � ωred).
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Proof. As Lµ is diffeomorphic to µ−1(0) we have

dimLµ = dimX − dimK =
1

2
dimX × µ−1(0)/K.

If j : Lµ ↪→ X × µ−1(0)/K, then j∗ω ≡ 0 if and only if −i∗ω + π∗ωred = 0 which holds by the
Marsden-Weinstein-Meyer theorem. �

In particular, this lemma gives a morphism in the symplectic category (X,ω) and (Xred
0 , ωred).

However, we want this morphism to be K-equivariant and so we should define what it means
for a Lagrangian correspondence to be K-invariant (or in fact more generally K-equivariant):

Definition 9.14. A Lagrangian correspondence between symplectic manifold with Hamiltonian
K-actions which is given by a Lagrangian submanifold L ⊂ (X1×X2,−ω1�ω2) is said to be K-
equivariant if L is a K-invariant submanifold and if µ12(L) = 0 where µ12 denotes the moment
map for the K-action on (X1 × X2,−ω1 � ω2). A K-invariant Lagrangian correspondence
between a symplectic manifold (X1, ω1) with Hamiltonian K-action and a symplectic manifold
(X2, ω2) is then a K-equivariant Lagrangian correspondence when we give (X2, ω2) the trivial
K-action.

It is immediate that:

Lemma 9.15. The Lagrangian correspondence defined by Lµ in Lemma 9.13 is K-invariant.

Proposition 9.16. Given a Hamiltonian action of a Lie group K on a symplectic manifold
(X,ω) for which the assumptions of the Marsden-Weinstein-Meyer Theorem hold for η = 0,
we let Lµ denote the K-invariant Lagrangian correspondence between (X,ω) and (Xred

0 , ωred)
given above. Then every other K-invariant symplectic morphism from (X,ω) to a symplectic
manifold (Y, ω′) with trivial K-action factors through the morphism corresponding to the K-
invariant Lagrangian Lµ.

Proof. It suffices to prove the result when the morphism from (X,ω) to (Y, ω′) is given by a single
K-invariant Lagrangian correspondence i.e. a Lagrangian submanifold L′ ⊂ (X × Y,−ω � ω′)
which is preserved by the action of K and on which µXY : X×Y → K∗ is zero. As the K-action
on Y is trivial, so is the moment map µY and so µXY is the projection X × Y followed by
µ = µX : X → K∗. In particular L′ ⊂ µ−1(0) × Y . To show L′ factors through Lµ, it suffices
to produce a Lagrangian correspondence L′′ between µ−1(0)/K and Y such that L′ = L′′ ◦ Lµ.
One checks that L′′ := L′/K ⊂ µ−1(0)/K × Y is the Lagrangian submanifold we require for
this correspondence. �

10. Kempf-Ness theorem

If K is a real compact Lie group, we recall that its complexification G := KC is a complex Lie
group which contains K and the Lie algebra g of G is the complexification of the Lie algebra K
of K (g = K⊗RC ∼= K⊕ iK). We shall make use of the following standard result about complex
reductive groups (for a proof see, for example, [38] Theorem 2.7):

Theorem 10.1. The operation of complexification defines a one-to-one correspondence between
isomorphism classes of compact real Lie groups and complex reductive groups.

Example 10.2. We list a few examples of pairs (G,K) consisting of a complex reductive group
G and its maximal compact torus: ((C∗)r, (S1)r), (GLn(C),U(n)) and (SL(n,C),SU(n)) .

Suppose G is a complex reductive group acting on a smooth complex projective variety
X ⊂ Pn via a representation ρ : G → GLn+1(C). Let K be the maximal compact subgroup of
G, so that G is the complexification of K. Then K also acts on Pn and as K is compact, we
can choose coordinates on Pn so ρ restricts to a unitary representation ρ : K → U(n + 1) of
K; that is, the associated Fubini–Study form ω for this choice of coordinates is the preserved
by the action of K. Therefore the action of K on both X and Pn is symplectic. In this
case we know that the action is Hamiltonian and we can explicitly write down a moment map
µ : X → K∗ (by restricting to X the U(n)-moment map constructed on Pn in Example 8.10 and
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then composing with the projection ρ∗ : u(n)∗ → K∗). In nice cases (cf. the Marsden–Weinstein–
Meyer theorem), the symplectic reduction µ−1(0)/K at 0 ∈ K∗ is a symplectic manifold of
dimension dimX − 2 dimK = dimX − dimG.

Alternatively, one can consider the geometric invariant theory (GIT) quotient X//G which in
nice cases is an orbit space for the G-action on a (Zariski) open subset of X and has dimension
dimX − dimG. In this section our aim is to compare the symplectic reduction with the GIT
quotient and in particular to prove the Kempf–Ness Theorem [22] below (see also [31] §8, [48]
and [50]). We recall that a semistable point is polystable if and only if its orbit is closed in Xss

and we denote the polystable locus by Xps. We have inclusions Xs ⊂ Xps ⊂ Xss and in nice
cases all three subsets coincide and the GIT quotient is a geometric quotient of the G-action on
Xss = Xs.

Theorem 10.3 (Kempf–Ness theorem). Let G = KC be a complex reductive group acting
linearly on a smooth complex projective variety X ⊂ Pn and suppose its maximal compact
subgroup K is connected and acts symplectically on X (where the restriction of the Fubini–
Study form on Pn is used to give X its symplectic structure). Let µ : X → K∗ denote the
associated moment map; then:

i) Gµ−1(0) = Xps.
ii) If x ∈ X is polystable, then its orbit G · x meets µ−1(0) in a single K-orbit.
iii) x ∈ X is semistable if and only if its orbit closure G · x meets µ−1(0).

Before giving the proof we give a corollary:

Corollary 10.4. The inclusion µ−1(0) ⊂ Xss induces a homeomorphism

µ−1(0)/K → X//G.

Proof. We first show as sets these are isomorphic. The GIT quotient X//G as a set is the
semistable set Xss modulo S-equivalence where x1 and x2 are S-equivalent if and only if their
orbit closures meet in Xss (cf. Corollary 4.30). By Lemma 4.16, the closure of every semistable
orbit contains a unique polystable orbit, and so the GIT quotient as a set is isomorphic to the
set of G-orbits in Xps. By part i) of the Kempf-Ness theorem, every polystable orbit meets the
level set µ−1(0) in a unique K-orbit and so we get the required bijection of sets. As µ−1(0) is
a closed subset of a compact space, it is compact and so is the symplectic reduction µ−1(0)/K.
The inclusion µ−1(0) ⊂ Xss induces a continuous bijection from a compact space to a Hausdorff
space and so is a homeomorphism. �

Remark 10.5. In fact one can construct a continuous inverse to the map µ−1(0)/K → X//G
by using the gradient flow of the norm square of the moment map. For more details on the
norm square of the moment map and the Morse-type stratifications induced by the gradient
flow see [25] and [35].

Example 10.6. Consider the linear action of G = C∗ on complex projective space X = Pn by

t · [x0 : x1 : · · · : xn] = [t−1x0 : tx1 : · · · : txn]

as in Example 4.13. In Example 4.13 we saw that the semistable locus and stable locus coincide
and are given by

Xs = Xss = {[x0 : · · · : xn] ∈ Pn : x0 6= 0 and (x1, . . . , xn) 6= 0} ∼= An − {0}

and the GIT quotient

ϕ : Xss = An − {0} 99K X//G ∼= Pn−1

is a geometric quotient. As G is a complex reductive group it is equal to the complexification
of its maximal compact subgroup K = U(1) ∼= S1. We use the Fubini–Study form to consider
X = Pn as a symplectic manifold (X,ω) as in Example 7.15. The action is Hamiltonian with
moment map µ : X → K∗ formed from the natural representation U(1)→ U(n+1) associated to
this action and the standard moment map for the action of U(n+ 1) given in Example 8.10. By
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using the Killing form to identify K∗ ∼= K and using the natural identification K = LieS1 ∼= 2πiR,
we can instead consider the induced map µ̃ : X → 2πiR given by

µ̃([x0 : · · · : xn]) =
−|x0|2 + |x1|2 + · · · |xn|2

2i
∑n

i=0 |xi|
.

Then µ−1(0) = µ̃−1(0) which is equal to

{[x0 : · · · : xn] : |x0| =
n∑
i=1

|xi|} ∼= {(x1, . . . , xn) ∈ Cn ∼= Pnx0 6=0 :

n∑
i=1

|xi|2 = 1} ∼= S2n−1.

In particular we see that µ−1(0) ⊂ Xss. The symplectic reduction

µ−1(0)/K ∼= S2n−1/S1 ∼= Pn−1 ∼= X//G

agrees with the GIT quotient for the action of the complexified group G.

10.1. The proof of the Kempf-Ness theorem. For the proof of the theorem, we shall
assume for simplicity that X = Pn as the version for general X follows from the version for Pn.
We let H : Cn+1 × Cn+1 → C be the K-invariant Hermitian inner product on Cn+1 such that
the Fubini–Study form ω on Pn is constructed via the projection Cn+1 − {0} → Pn from the
imaginary part of H; that is, if v ∈ Cn+1−{0} and we identify T[v]Pn with the orthogonal space

to v in Cn+1, then

ωFS,[v](u,w) =
ωCn+1(u,w)

||v||2
=

1

2i||v||2
[H(u,w)−H(w, u)].

Then the moment map µ : Pn → K∗ is given by

µ([v]) ·A =
TrvtAv

2i||v||2
=

1

2
ωFS,[v](Av, v).

We let || − || denote the norm associated to the Hermitian inner product. Then as in [22], we
consider the non-negative function

pv : G→ R
g 7→ ||g · v||2.

We recall that a point g ∈ G is a critical point of pv if the derivative dgpv of pv at g is zero.
The relationship between this function and the moment map is given by the following lemma.

Lemma 10.7. Let v ∈ Cn+1 − {0} and pv : G→ R be as above; then

i) pv is constant on K.
ii) Let e denote the identity of G; then pv(g) = pg·v(e) and so dgpv = depg·v : g→ R.
iii) If A ∈ K, then depv(iA) = −4||v||2µ([v]) ·A and so depv = 0 (that is, e is a critical point

of pv) if and only if µ([v]) = 0.
iv) Moreover, g ∈ G is a critical point of pv if and only if µ(g · [v]) = 0.
v) The second derivatives of pv are non-negative and so pv is convex. In particular every

critical point of pv is a minimum.

Proof. i) holds as the Hermitian inner product is K-invariant and ii) is immediate. As g = K⊕iK
and pv is constant on K, to study the first order derivatives of pv we need only calculate depv(iA)
for A ∈ K. In this case we have

depv(iA) :=
d

dt
|| exp(itA) · v||2|t=0

= H(
d

dt
exp(itA) · v|t=0, v) +H(v,

d

dt
exp(itA) · v|t=0)

= H(iAv, v) +H(v, iAv) = i[H(Av, v)−H(v,Av)]

(5)
= 2iH(Av, v)

= −4||v||2µ([v]) ·A.
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Therefore e is a critical point of pv if and only if µ([v]) = 0 and more generally g is a critical
point of pv if and only if e is a critical point of pg·v which is if and only if µ(g · [v]) = 0. For v),
the second derivative of pv at e is given by:

d2

dt2
pv(exp(itA))|t=0 =

d

dt
H(iA exp(itA) · v, exp(itA) · v) +H(exp(itA) · v, iA exp(itA) · v)|t=0

= H((iA)2v, v) +H(iAv, iAv) +H(iAv, iAv) +H(v, (iA)2v)

= 2H(Av,Av)− [H(A2v, v) +H(v,A2v)]

(5)
= 2H(Av,Av) ≥ 0.

It follows from this calculation and part ii) that all second derivatives of pv are non-negative.
Hence pv is convex and every critical point is a minimum. �

Lemma 10.8. The norm function ||−||2 : Cn+1 → R is proper. Furthermore, if G ·v is a closed
orbit where v ∈ Cn+1 − {0}, then pv achieves its minimum at some g ∈ G and µ([g · v]) = 0.

Proof. The norm is continuous and the preimage of a bounded set is bounded so it is proper. If
G ·v is a closed orbit, then ||G ·v||2 is also closed as the norm is a proper function on a manifold.
If c = infg pv(g), then

c ∈ ||G · v||2 = ||G · v||2

and so there is g ∈ G for which ||g · v||2 = c. Finally by Lemma 10.7 above, this minimum g is
a critical point of pv and so µ(g · [v]) = 0. �

Remark 10.9. As G is the complexification of K, every element g ∈ G has a Cartan decom-
position g = k exp(iA) for k ∈ K and A ∈ K (for example every invertible matrix M ∈ GLn(C)
has a decomposition A = UH as a product of a unitary matrix U and a Hermitian matrix H).

Lemma 10.10. Let v ∈ Cn+1 − {0}. If G · v is not closed, then pv : G → R does not attain a
minimum.

Proof. Firstly, if the orbit closure of v in Cn+1 contains zero then 0 = infg pv(g) and pv does
not attain its minimum. Hence we suppose the orbit closure does not contain zero. Since
pv(g) = pg·v(e) and the action of U(n + 1) on Pn is transitive, it suffices to show that e is not

a minimum of pv. As the orbit is not closed, there is a nonzero point u ∈ G · v − G · v. It is
a fundamental result of GIT (see Theorem 5.10) that there is a 1-PS λ(t) : C∗ → G such that
u = limt→0 λ(t) · v and moreover we can assume (by conjugating λ) that λ(S1) ⊂ K.

We can diagonalise the action of λ to get a decomposition

V := Cn+1 = ⊕r∈ZVr
into weight spaces Vr := {v ∈ V : λ(t) · v = trv} and this decomposition is orthogonal with
respect to the Hermitian inner product H on V = Cn+1 by the assumption that the image of
S1 under λ is contained in K. We can write v =

∑
r vr with respect to the above orthogonal

decomposition and the assumption that limt→0 λ(t) · v exists means that vr = 0 for r < 0. If
vr = 0 for all r > 0, then limt→0 λ(t) · v = v ∈ G · v. Hence, there is at least one r > 0 for which
vr 6= 0. Let

A =
d

dt
λ(exp(2πit))|t=0 ∈ K;

then the infinitesimal action is given by Avr = 2πirvr and

µ([v]) ·A =
H(Av, v)

2i||v||2
=

1

2i||v||2
∑
r,s

H(2πirvr, vs)

=
π

||v||2
∑
r≥0

rH(vr, vr) > 0.

By part ii) of Lemma 10.7, we conclude that e is not a critical value of pv and pv does not
obtain a minimum at e. �
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Proof. (Kempf-Ness Theorem) i) If x ∈ Pn, then we let v ∈ Cn+1 − {0} be a point lying over
x. We recall that x is semistable if the origin is not contained in the closure of G · v and x is
polystable if G · v is closed. By Lemma 10.7, g · x ∈ µ−1(0) if and only if pv attains a minimum
at g and this is if and only if G · v is closed by Lemmas 10.8 and 10.10); that is x is polystable.

ii) Clearly if x is polystable and µ(x) = 0, then µ(K · x) = 0 by equivariance of µ. If x
and y are both points in the same polystable G-orbit for which µ(x) = µ(y) = 0, then for ii)
it remains to show that x and y belong to the same K-orbit. We can write x = gy and let
v, u ∈ Cn+1 be points such that [v] = x and [u] = y; then pu and pv both attain their minimum
at e and pu(e) = pv(e) = pu(g). We use a Cartan decomposition and write g = k exp(iA). As
the Hermitian inner product is K-invariant, we have

pu(g) = ||g · u||2 = || exp(iA) · u||2 = pu(exp(iA)).

By Lemma 10.7 iii), pu is convex and so pu(exp(itA)) ≤ pu(exp(iA)) = pu(e) for t ∈ [0, 1]. But
pu(e) is the unique global minimum of the convex function pu and so this must be an equality;
that is, pu is not strictly convex along exp(itA) or, equivalently,

0 =
d2

dt2
pu(exp(itA))|t=0 =

π

||u||2
H(Au,Au).

Therefore the infinitesimal action Ay = Au is zero and iA ∈ iKy ⊂ gy = LieGy. In particular x
and y belong to the same K-orbit:

x = g · y = k exp(iA) · y = k · y.

For iii), we note that for every semistable orbit G · x, there is a unique polystable orbit G · y
in G · x which is closed in Xss by Lemma 4.16. By part i) of the Kempf-Ness theorem, this
polystable orbit meets µ−1(0). Conversely, if G · x meets the level set µ−1(0) in a point y, then
G · y is polystable by i). Hence x is also semistable by the openness of the GIT semistable set
Xss ⊂ X. �

Remark 10.11. Many gauge theoretic moduli spaces also have an algebraic description; for
example, the gauge theoretic moduli space of flat unitary connections on a rank n degree zero
vector bundle on a compact Riemann surface can be seen as the moduli space of semistable alge-
braic rank n degree zero vector bundles on the associated smooth projective complex algebraic
curve by a theorem of Narasimhan–Seshadri and Donaldson. The gauge theoretic constructions
often arise as (infinite dimensional) symplectic reductions, whereas the algebraic description
appear as a GIT quotients. In this case, we can view such correspondences as infinite dimen-
sional analogues of the Kempf–Ness theorem. For a brief overview of this area, see [31] §8 and
for further details, see [1].

Corollary 10.12. The origin is a regular value of µ if and only if Xss = Xs.

Proof. The origin is not a regular value of µ if and only if there is x ∈ µ−1(0) for which
dxµ : TxX → K∗ is not surjective. The derivative dxµ : TxX → K∗ is not surjective if and only
if there is nonzero A ∈ K such that 0 = dxµ · A = ωx(Ax,−) and this is if and only if Ax = 0;
that is, A ∈ Kx. Hence the origin is not a regular value of µ if and only if exp(tA) ⊂ Gx for
some x ∈ µ−1(0) and nonzero A ∈ K.

If 0 is not a regular value of the moment map µ, then by above there is x ∈ µ−1(0) with
positive dimensional stabiliser. By the Kempf-Ness theorem x is polystable, but x is not stable
as its stabiliser is positive dimensional.

Conversely, if x is semistable but not stable, then we can assume without loss of generality
that x is polystable but not stable (cf. Lemma 4.16). In this case x has positive dimensional
stabiliser. By the Kempf-Ness theorem, we can also assume without loss of generality that
x ∈ µ−1(0). As x has positive dimensional stabiliser, the argument above shows 0 is not a
regular value of the moment map. �
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