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Abstract
We give a moduli-theoretic treatment of the existence and properties of moduli spaces of semistable

quiver representations, avoiding methods from geometric invariant theory. Using the existence criteria
of Alper–Halpern-Leistner–Heinloth, we show that for many stability functions, the stack of semistable
representations admits an adequate moduli space, and prove that this moduli space is proper over the
moduli space of semisimple representations. We construct a natural determinantal line bundle that
descends to a semiample line bundle on the moduli space and provide new effective bounds for global
generation. For an acyclic quiver, we show that this line bundle is ample, thus giving a modern proof
of the fact that the moduli space is projective.
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1 Introduction
Many important natural problems in linear algebra such as Jordan normal forms, the classification of
tuples of matrices up to simultaneous conjugation, and the classification of tuples of subspaces in a fixed
vector space can all be encoded as moduli problems for representations of a quiver, where properties of the
classification problem are described by the geometry of the moduli space. Moreover, quiver moduli spaces
closely interact with other important moduli spaces and play a fundamental role in representation theory.

The theory of quivers and their representations goes back to Gabriel, who showed that the quivers
for which the moduli problem is discrete are precisely the Dynkin quivers [19]. After pioneering work of
Kac [28], the study of continuous moduli problems began with King’s construction [29] of moduli spaces
of quiver representations using geometric invariant theory (GIT), in which the GIT notion of stability
obtains a reinterpretation as stability of representations with respect to a stability function. For the trivial
stability function, all quiver representations are semistable and the moduli space is just an affine GIT
quotient which classifies semisimple quiver representations. For a nontrivial stability function, the moduli
space of semistable representations is projective over the affine GIT quotient. The ring of invariants
turns out to be generated by taking traces along oriented cycles [33], so in particular when the quiver is
acyclic, the semisimple moduli space is a point and moduli spaces of semistable quiver representations are
projective varieties. An excellent survey of the geometry of these moduli spaces is given in [39]; for further
details on their GIT construction, see also [8].

In this paper, we instead take an approach that combines Alper’s theory of adequate moduli spaces with
determinantal line bundle techniques to provide a construction of projective moduli spaces of semistable
representations of an acyclic quiver that avoids the methods of GIT. Our method follows the blueprint set
out in recent papers on the projectivity of moduli spaces of stable curves [9, 30] and semistable vector
bundles on curves [4]. Let us recall the basic steps in these approaches:

(1) Interpret the moduli problem as an algebraic stackM of finite type.

(2) Prove thatM admits an adequate moduli space M , which is a proper algebraic space.

(3) Find a line bundle onM which descends to an ample line bundle on M .

In the case of stable curves [9], the second step uses the Keel–Mori theorem for proper Deligne–Mumford
stacks, whereas the analogue for the moduli space of semistable vector bundles on a curve [4] relies on the
recent existence result on adequate moduli spaces of algebraic stacks [6].

In the case of stable curves, the construction of the ample line bundle in the third step above is due to
Kollár [30], who considers the determinant of the direct image of a relative pluricanonical bundle on the
universal family over the moduli stack. The case of vector bundles on a curve [4], which similarly centers
around proving ampleness of a certain determinantal line bundle constructed from the universal vector
bundle, follows arguments in Esteves [16, Section 5] and Esteves–Popa [17, Section 3] improving upon the
original GIT-free approach of Faltings [18].

There are several good reasons for pursuing such an approach: i) it provides an intrinsic moduli-theoretic
proof, ii) it illustrates the theory of adequate moduli spaces, and iii) it can yield insight into how to
construct projective moduli spaces in situations where GIT cannot be applied. It should be noted however
that this approach does not automatically yield projectivity, and we need to rely on the properties of the
specific moduli problem.

Main results. Working over a noetherian base scheme S, we will moduli-theoretically define the stack
Md,S parameterizing families of representations of a quiver Q of dimension vector d. To a stability function
θ we associated the open substackMθ-ss

d,S ⊆Md,S of θ-semistable representations and construct a natural
determinantal line bundle Lθ on it.

We then give moduli-theoretic proofs that these stacks are Θ-reductive and S-complete and deduce
that both stacks admit adequate moduli spaces by applying the existence result of Alper–Halpern-Leistner–
Heinloth [6]. A reader who is used to working in characteristic 0 can read the word “adequate” as “good”,
since the two notions only differ in positive characteristic.

The following is a summary of the main results of the paper.
Theorem A. Let Q be an acyclic quiver and let S be a noetherian scheme.

(i) The stack Mθ-ss
d,S of θ-semistable quiver representations over S admits an adequate moduli space

Mθ-ss
d,S which is proper over S.

(ii) The line bundle Lθ onMθ-ss
d,S descends to a relatively ample line bundle Lθ on Mθ-ss

d,S . In particular,
Mθ-ss
d,S is projective over S.
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The last part of (ii) is of course well-known (when working over a field usually), but the novelty here
is that we illustrate how it can be obtained using the modern methods of algebraic stacks and adequate
moduli spaces.

Our methods yield partial results also when Q has oriented cycles. In this case we require that the
stability function θ is of the form −〈 , β〉 for a dimension vector β with 〈d, β〉 = 0, where 〈 , 〉 denotes
the Euler pairing; this condition holds for every stability function when Q is acyclic by Lemma 2.3.5.
Under this assumption we prove the analogues of (i) and (ii):

(i′) The stack Mθ-ss
d,S of θ-semistable quiver representations admits a separated adequate moduli space

Mθ-ss
d,S , and the semisimplification map Mθ-ss

d,S → Md,S on adequate moduli spaces is proper.

(ii′) When S = Spec k is the spectrum of a field, the line bundle Lθ onMθ-ss
d,k descends to a semiample

line bundle Lθ on Mθ-ss
d,k .

In this setting, there are two limitations to our approach. First, our methods are unable to handle
the true analogue of (ii) in the non-acyclic case – that Md,k is affine and the semisimplification map
Mθ-ss
d,k → Md,k is projective; this statement usually follows from the methods of GIT. Second, we can only

develop (ii′) over a field.
It should moreover be possible to remove the condition on θ in the non-acyclic case. It is currently

used to produce sections of determinantal line bundles, which we use to check local reductivity of the
stack of semistable representations in order to apply the existence criteria [6, Theorem 5.4] in arbitrary
characteristic. If S has characteristic 0, we can use good moduli spaces instead of adequate moduli spaces,
and the required local reductivity follows from [5, 6]. We also use determinantal sections in the proof of
semiampleness.

We prove (i) and (i′) in Corollary 5.5.7 and Proposition 5.6.1. The main projectivity result (ii) is given
in Theorem 6.2.1. We prove (ii′) in Proposition 6.1.1.

Our proof that the semisimplification map Mθ-ss
d,S → Md,S is proper follows an adaptation of Langton’s

semistable reduction argument for semistable coherent sheaves [32], see Proposition 5.6.2. It says that if
a representation of Q over a discrete valuation ring R has semistable generic fiber, then there exists a
subrepresentation which agrees at the generic point such that its special fiber is semistable. For an acyclic
quiver, we moreover argue moduli-theoretically that Mθ-ss

d,S is proper over S (Corollary 5.6.4) and that the
adequate moduli space Md,S of all representations is isomorphic S (Proposition 5.6.5).

The proof of projectivity in Theorem A (ii) (when Q is acyclic) is obtained by bootstrapping from Spec k
to SpecZ and finally to an arbitrary base S. The main idea over a field k is to show that the line bundle Lθ
is semiample, and that the induced map Mθ-ss

d,k → Pnk is finite, and thus the proper algebraic space Mθ-ss
d,k is

in fact a projective variety. Instead of appealing to methods from GIT, we give a new moduli-theoretic
proof of global generation of a power of Lθ inspired by the approach of Esteves [16] and Esteves–Popa
[17] for moduli of vector bundles on curves using dimension-counting techniques.

Let us outline how we produce sections of Lθ. Since Q is acyclic, we can write θ = −〈 , β〉 for
a dimension vector β with 〈d, β〉 = 0. For m > 0 and a representation N of dimension vector mβ,
we define a 2-term complex E•N on Md,S whose associated determinant line bundle is L⊗mθ and, since
〈d, β〉 = 0, comes with a section σN which is nonzero at a representation M ∈ Md,S if and only if
Hom(M,N) = Ext(M,N) = 0.

The sections constructed in this way are often called determinantal semi-invariants in the representation
theory literature, and were first studied by Schofield [40]. A key result is that determinantal semi-invariants
span the global sections of powers of determinantal line bundles; GIT-based proofs are due to Derksen–
Weyman [11], Domokos–Zubkov [14], and Schofield–Van den Bergh [42].

Interestingly, this approach enables us to produce new effective bounds for global generation, by
keeping track of the estimates in the dimension counting. This is analogous to the effective bounds from
[16, 17] for moduli of vector bundles on curves. Moreover, the bound is independent of the orientation of
the quiver. We show the following result combining Proposition 4.2.1 and Proposition 6.1.1.
Theorem B. Let k be a field and let Q be a quiver. Let λ be the negative of the minimal eigenvalue of
the Tits form. If m is a positive integer greater than λ‖d‖2, then L⊗mθ is globally generated onMθ-ss

d,k .
In Remark 6.1.2 we comment further on the context for this result.

Similarities and differences with vector bundles on curves. There is an important parallel
between moduli of semistable quiver representations and moduli of semistable vector bundles on a smooth
projective curve: both parameterize objects in a category of global dimension 1 and have smooth moduli
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stacks. Some aspects of this dictionary, including similarities between their constructions via GIT and
symplectic reduction (over k = C), are described in [25].

However, we also see several instances where this dictionary breaks down. One example, mentioned
above, is the preservation of stability under natural dualities: Serre duality preserves stability and
semistability of vector bundles on curves, but the Auslander–Reiten translations are only a partial duality,
and, although they preserve semistability, they only preserve stability under some additional assumptions
(see Lemma 4.3.4).

As a second example, the theory of elementary Hecke modifications for vector bundles on curves does
not have an immediate analogue for quiver representations (lacking a notion of torsion sheaves), meaning
that the proof in [4] cannot be directly translated to quiver representations. We can nevertheless find a
close enough analogue of Hecke modifications (as in the proof of Proposition 4.5.2), so that we can stay
close to the global structure of the proof for vector bundles.

A third difference is that for a curve of genus g ≥ 2, the moduli space of stable vector bundles of any
rank and degree is non-empty with dimension determined by the Euler pairing, the analogue of which
fails for quiver representations – the stable locus may well be empty, in which case the dimension of the
semistable locus is difficult to control. This results in us adopting an alternative approach to the dimension
counts for quiver representations in Section 4.

Structure of the paper. In Section 2 we recall quiver representations, their stability properties, and
the Auslander–Reiten translations. In Section 3 we construct the stack of quiver representations from the
ground up and prove its algebraicity moduli-theoretically, as well as explain how to produce determinantal
line bundles and their sections. Section 4 is the technical heart of the paper, where we prove the key
vanishing results required for later sections. In Section 5 we construct adequate moduli spaces for stacks of
representations by verifying the conditions for the existence result of [6]. Here we also discuss semistable
reduction. The main results, namely the projectivity of the adequate moduli space for Q acyclic as well as
the effective bounds on global generation, are finally established in Section 6. In Appendix A we explain
how one can obtain the same results using Halpern–Leistner’s theory of stability for stacks; this gives an
alternative modern proof, albeit one that still relies on methods of GIT and only works in characteristic 0.
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foundation grant no. 2019.0493, as well as the Swedish Research Council grant no. 2016-06596 during the
research program Moduli and Algebraic Cycles at Institut Mittag-Leffler.

2 Background on quiver representations
We recall here some terminology from the theory of quiver representations that will be used throughout
this paper. We refer to [12] for more details.

2.1 Quiver representations
A quiver Q = (Q0, Q1, s, t) is a finite directed graph with vertex set Q0, arrow set Q1, and maps
s, t : Q1 → Q0 that assign to each arrow its source and target. A path in a quiver is a sequence of
composable arrows; that is, the target of the previous arrow is the source of the next arrow. We formally
include a path of length 0 at every vertex i ∈ Q0. A vertex i ∈ Q0 is a source (respectively a sink) of Q
if there are no arrows whose target (respectively source) equals i. We will assume that Q is connected
throughout, and in Section 3 we will see why this is a harmless assumption to make.

An oriented cycle in a quiver is a path of positive length starting and ending at the same vertex; a
special case is a loop, which is an arrow whose source and target are equal. A quiver is acyclic if it has
no oriented cycles. Note that if Q is acyclic, there is an admissible ordering of Q0, meaning that i < j
whenever there is an arrow i→ j; in particular, an acyclic quiver has both a source and a sink.

Given a field k, a k-representation of Q is a tuple M = ((Mi)i∈Q0 , (Ma)a∈Q1) consisting of finite-
dimensional k-vector spaces Mi for each vertex i ∈ Q0 and k-linear maps Ma : Ms(a) → Mt(a) for each
arrow a ∈ Q1. The dimension vector dim(M) ∈ NQ0 of M is the tuple (dim(Mi))i∈Q0 . A morphism of k-
representations φ : M → N is a tuple of k-linear maps (φi : Mi → Ni)i∈Q0 such that φt(a) ◦Ma = Na ◦φs(a)
for every arrow a ∈ Q1. The representations of Q over k form an abelian category repkQ. If k ⊂ k′ is
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a field extension, there is a base change functor ( ) ⊗k k′ : repkQ → repk′Q that preserves dimension
vectors.

A representation M 6= 0 is called simple if it has exactly two subrepresentations 0 and M , and
semisimple if it is the direct sum of simple representations. Any representation has a filtration by simple
representations, making repkQ a category of finite length. For each vertex i ∈ Q0, there is a simple
representation S(i) with S(i)i = k and S(i)j = 0 for j 6= i. If Q is acyclic, these are the only simple
representations.

A representation M 6= 0 is called indecomposable if it cannot be written as the direct sum of two
nonzero subrepresentations. By the Krull–Remak–Schmidt theorem, every representation can be written
as a direct sum of indecomposable subrepresentations in an essentially unique way; we will use this fact
without further mention.

The Euler pairing or Euler form of Q is 〈 , 〉 : ZQ0 × ZQ0 → Z where

〈α, β〉 :=
∑
i∈Q0

αiβi −
∑
a∈Q1

αs(a)βt(a).

For representations M and N of Q, we write 〈M,N〉 := 〈dim(M),dim(N)〉. Given an ordering Q0 =
{1, 2, . . . , n} of the vertices of Q, one has an isomorphism ZQ0 ∼= Zn. Hence the Euler pairing is represented
by a matrix A ∈ Matn(Z), called the Euler matrix, which satisfies

〈α, β〉 = αTAβ for all α, β ∈ Zn.

If Q is acyclic, then for an admissible ordering of the vertices, the Euler matrix is upper unitriangular and
hence invertible over Z. In particular, when Q is acyclic, the Euler pairing is perfect.

2.2 Modules over the path algebra
Let k be a field. The path algebra of Q is the k-algebra kQ with basis given by all paths in Q, including
a path εi of length 0 at each vertex i, and multiplication given by the concatenation of paths; see for
example [11, Section 1.5]. The category repkQ of k-representations of Q is equivalent to the category
kQ-mod of finite-dimensional left modules over kQ. The path algebra is finite-dimensional if and only
if Q is acyclic. If Q is not acyclic we will also need to consider the category RepkQ of not necessarily
finite-dimensional representations, which is equivalent to the category kQ-Mod of all left modules over
the path algebra.

For each i ∈ Q0, there are projective and injective representations P (i) = kQεi and I(i) = (εikQ)∗;
thus for each j ∈ Q0

• P (i)j is the k-vector space with basis the set of paths from i to j,

• I(i)j is the k-vector space dual to the one whose basis is the set of paths from j to i.

The representation P (i) is finite-dimensional if and only if there is no path from i to any vertex in an
oriented cycle. Similarly, I(i) is finite-dimensional if and only is there is no path from any vertex in an
oriented cycle to i.

We will focus on the case of projective modules, as injective modules are the dual notion, see for
example [12, Section 2.2] and Section 2.4 below. The projective representations P (i) are indecomposable,
and in the case when Q is acyclic, these are the only indecomposable projective representations of Q up
to isomorphism. For any representation M of Q, we have a canonical isomorphism

Hom(P (i),M) ∼= Mi. (1)

The category repkQ is hereditary, meaning that any subrepresentation of a projective representation is
again projective and dually any quotient of an injective representation is injective. In particular, repkQ has
homological dimension at most one, so we will write Ext(M,N) for Ext1(M,N). In fact, any representation
M has a canonical projective resolution

0→
⊕
a∈Q1

Ms(a) ⊗ P (t(a))→
⊕
i∈Q0

Mi ⊗ P (i)→M → 0 (2)

and an analogous canonical injective resolution, working in RepkQ in case Q is not acyclic. Applying the
functor Hom( , N) to (2) and using (1) gives the useful exact sequence

0→ Hom(M,N)→
⊕
i∈Q0

Homk(Mi, Ni)→
⊕
a∈Q1

Homk(Ms(a), Nt(a))→ Ext(M,N)→ 0, (3)
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where the middle morphism is given by (fi)i∈Q0 7→ (ft(a) ◦Ma −Na ◦ fs(a))a∈Q1 . From this we deduce
that the Euler pairing computes the Euler characteristic:

〈M,N〉 = dim Hom(M,N)− dim Ext(M,N).

In particular, 〈P (i),M〉 = dim(Mi) since Ext(P (i),M) = 0 as P (i) is projective.

2.3 Stability of representations
Following [29, 37] we introduce a standard notion of stability for a representation of Q. A stability
function on Q is a linear map θ : ZQ0 → Z. By convention we will write θ(M) instead of θ(dimM) for a
representation M .

Given a stability function θ, a k-representation M of Q is called

• θ-semistable if θ(M) = 0 and θ(M ′) ≤ 0 for every subrepresentation M ′ ⊆M ;

• θ-stable if it is θ-semistable and it has exactly two subrepresentations M ′ ⊆ M with θ(M ′) = 0,
namely M ′ = 0 and M ′ = M with M 6= 0;

• geometrically θ-stable if M ⊗k k′ is stable for every field extension k′/k;

• θ-polystable if it is a direct sum of θ-stable representations;

• geometrically θ-polystable if M ⊗k k′ is polystable for every field extension k′/k

Remark 2.3.1. There is no need for a notion of geometric θ-semistability since a representation M is
θ-semistable if and only if M ⊗k k′ is for some field extension k ⊂ k′ [26, Proposition 2.4]. A representation
M is geometrically θ-stable if either one of M ⊗k ks or M ⊗k k̄ is θ-stable, where ks and k̄ denote
a separable and an algebraic closure of k respectively, see [26, Corollary 2.12]. In particular, over an
algebraically closed field, θ-stability and geometric θ-stability coincide. Over a perfect field, θ-polystability
and geometric θ-polystability coincide, although a field extension may give rise to more stable factors [38,
Lemma 4.2].

Example 2.3.2. This example shows that polystability may not be preserved under field extension when
the base field is not perfect. Consider the Jordan quiver Q:

•

Isomorphism classes of representations of Q are given by square matrices up to conjugation. We consider
the trivial stability function θ = 0 and give an example of a 2-dimensional representation M of Q which is
stable over F2(t) but not polystable over F2(

√
t). The representation M is given over F2(t) by the matrix[

1 t
1 1

]
whose only eigenvalue is 1 +

√
t, so M is simple and in particular stable over F2(t). Over F2(

√
t), this

matrix is similar to [
1 1 +

√
t

1
√
t

] [
1 t
1 1

] [√
t 1 +

√
t

1 1

]
=
[
1 +
√
t 1

0 1 +
√
t

]
and since it is a 2× 2 Jordan block, it gives a semistable representation that no longer splits into a direct
sum of simple representations.

Every θ-semistable representation M has a Jordan-Hölder filtration

0 = M0 (M1 (M2 ( · · · (Mr−1 (Mr = M

with the property that the quotients M `/M `−1 are θ-stable for ` = 1, . . . , r. The filtration is not unique,
but the isomorphism type of the associated graded representation

grM :=
r⊕
`=1

M `/M `−1
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is independent of the filtration.
To define a second type of filtration, we introduce a slope function µθ which associates to a dimension

vector d ∈ NQ0 \ {0} the rational number

µθ(d) := θ(d)∑
i∈Q0

di
.

We say that a representation M is µθ-semistable if µθ(M ′) ≤ µθ(M) for every subrepresentation M ′ ⊆M .
Observe that when θ(M) = 0, stability with respect to µθ and θ coincide. Moreover, an arbitrary
representation M has a Harder-Narasimhan filtration

0 = M0 (M1 (M2 ( · · · (Mr−1 (Mr = M

such that M i/M i−1 is µθ-semistable for every i = 1, . . . , r and

µθ(M1/M0) > µθ(M2/M1) > . . . > µθ(Mr/Mr−1).

See for example [39, Section 4]. This filtration is unique and the representation M1 is called the maximally
destabilizing subrepresentation. More generally, one can define different slope functions by giving positive
weights to the dimensions in the denominator; these give the same notion of semistability for dimension
vectors d for which θ(d) = 0 but possibly different Harder–Narasimhan filtrations [24, Section 5.2].

We record some elementary properties of semistable representations.

Proposition 2.3.3. Let M and N be µθ-semistable k-representations of the same slope.

(i) If f : M → N is any morphism, then ker(f), im(f) and coker(f) are µθ-semistable.

(ii) If M and N are θ-stable, then any nonzero morphism M → N is an isomorphism. In particular, if
M is geometrically θ-stable, then the canonical map k → End(M) is an isomorphism.

Given α, β ∈ ZQ0 we define stability functions θα, ηβ : ZQ0 → Z by

θα(d) := 〈α, d〉 and ηβ(d) := −〈d, β〉. (4)

When Q is an acyclic quiver, the matrix of the Euler form is invertible and therefore defines an isomorphism
ZQ0 ∼= (ZQ0)∨. This implies the following.

Lemma 2.3.4. Suppose Q is an acyclic quiver and let θ : ZQ0 → Z be a stability function.

(a) There is a unique α ∈ ZQ0 such that θ = θα = 〈α, 〉, given by αi = θ(I(i)).

(b) There is a unique β ∈ ZQ0 such that θ = ηβ = −〈 , β〉, given by βi = −θ(P (i)).

The next lemma shows how stability functions for acyclic quivers are in fact given by dimension vectors.

Lemma 2.3.5. Suppose Q is an acyclic quiver and let θ : ZQ0 → Z be a stability function for which there
exists a semistable representation M such that suppM = Q0.

(a) Let α ∈ ZQ0 be the unique vector such that θ = θα. Then α ∈ NQ0 .

(b) Let β ∈ ZQ0 be the unique vector such that θ = ηβ . Then β ∈ NQ0 .

Proof. We show that the entries of β are non-negative. The proof for α is analogous. As βi = −θ(P (i)),
we need to show that θ(P (i)) ≤ 0 for every i. We choose an admissible ordering of the vertices of Q and
write Q0 = {1, . . . , n}. We show the claim by descending induction on i ∈ {1, . . . , n}. For i = n, the vertex
i is a sink and therefore P (i) is simple. Choose a nonzero vector x ∈Mi and let f ∈ Hom(P (i),M) ∼= Mi

be the corresponding morphism. As f 6= 0 and P (i) is simple, f is injective. Since M is θ-semistable, we
see that θ(P (i)) ≤ 0.

Now let i < n. Again, choose any nonzero element x ∈Mi and consider the corresponding morphism
f : P (i) → M . The kernel K of f is again projective and a proper subrepresentation of P (i), and
thus K ∼=

⊕
j>i P (j)⊕mj for some multiplicities mj ≥ 0. By the inductive assumption, we know that

θ(P (j)) ≤ 0 for all j > i, which implies that θ(K) ≤ 0. Now f : P (i) → M gives rise to an injective
homomorphism

P (i)/K ↪→M

which by θ-semistability of M implies that 0 ≥ θ(P (i)/K) = θ(P (i))− θ(K), and so θ(P (i)) ≤ θ(K) ≤
0.
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Without the acyclicity assumption Lemma 2.3.5 can fail.

Example 2.3.6. Consider the quiver

Q : 1 2 .

The stability function θ given by the inner product with (−3, 3) equals θα for α = (−1, 1), and ηβ for
β = (1,−1). Note that since the Euler matrix

( 1 −2
−2 1

)
is invertible over the rationals, both α and β are

uniquely determined, but neither of them is a dimension vector. Consider the dimension vector d = (1, 1),
so that θ(d) = 0. There exists a θ-semistable representation with dimension vector d: it suffices that one of
the maps from vertex 2 to vertex 1 is non-zero. In this case there is only one non-trivial subrepresentation,
which necessarily is of dimension (1, 0) and hence does not destabilize the representation.

2.4 The Auslander–Reiten translations
The final standard construction for quivers and their representations that we need to recall is that of the
Auslander–Reiten translations. These are endofunctors of the category of quiver representations, and their
interaction with θ-stability will be discussed in Section 4.3.

The opposite quiver of a quiver Q = (Q0, Q1, s, t) is the quiver Qop := (Q0, Q1, t, s), where all arrows
have been reversed. The path algebra of Qop is canonically isomorphic to the opposite algebra of kQ.
Taking the dual k-vector space gives a contravariant functor D from the category kQ-mod to kQop-mod,
or equivalently between the category of representations of Q and Qop. The duality functor D is an
antiequivalence of categories and exchanges injective and projective modules.

Let Q be an acyclic quiver. Consider a representation M as a left module over the path algebra kQ
and kQ as a bimodule over itself. The Auslander–Reiten translates of M are the left kQ-modules

τM := D Ext(M,kQ)
τ−M := Ext(DM,kQ)

and these constructions provide two endofunctors of the category kQ-mod ∼= repkQ, called the Auslander–
Reiten translations. It follows from the construction that

τP = τ−I = 0

whenever P is projective and I is injective. The following proposition records the key properties we will
need later; for the proof, see [11, Section 6.4].

Proposition 2.4.1. Let M and N be representations of Q. The Auslander–Reiten translations τ and τ−
satisfy the following properties:

(i) Partial inverse property: We have τ−τM ∼= M and ττ−N ∼= N , provided that M has no
projective summands and N has no injective summands.

(ii) Auslander–Reiten duality: We have isomorphisms of k-vector space valued functors

Hom( , τM) ∼= Ext(M, )∨ and Hom(τ−N, ) ∼= Ext( , N)∨.

In particular τ− is the left adjoint to τ . If M has no projective summands and N has no injective
summands, we have additional isomorphisms

Ext( , τM) ∼= Hom(M, )∨ and Ext(τ−N, ) ∼= Hom( , N)∨,

and in particular
〈 , τM〉 = −〈M, 〉 and 〈τ−N, 〉 = −〈 , N〉.

3 Moduli stacks of representations and determinantal line bun-
dles

In this section, we introduce moduli stacks parameterizing representations of a quiver with fixed dimension
vector and study their first properties. Throughout d will denote a dimension vector for the fixed quiver Q.
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3.1 The moduli stack of all representations
Let S be a fixed base scheme. For an S-scheme T , a family F of quiver representations of dimension
vector d consists of locally free sheaves Fi of rank di over T for each i ∈ Q0 and homomorphisms
Fa : Fs(a) → Ft(a) of OT -modules for each a ∈ Q1. If f : T ′ → T is a morphism of S-schemes, we obtain a
family of representations FT ′ := f∗F on T ′ by pullback along f . If x ∈ T is a point, then pulling back
along the inclusion of the residue field Specκ(x) ↪→ T gives a κ(x)-representation which we denote by F|x.

Definition 3.1.1. The moduli stackMd,S of representations of Q of dimension vector d is the category
fibered in groupoids over the big étale site of the category of S-schemes whose objects are pairs (T,F),
where T is an S-scheme and F is a family of representations of Q of dimension vector d over T . A
morphism (T ′,F ′)→ (T,F) is the data of a morphism f : T ′ → T of S-schemes together with morphisms
φi : Fi → f∗F ′i of OT -modules such that the squares

Fs(a) f∗F ′s(a)

Ft(a) f∗F ′t(a)

φs(a)

f∗F ′a Fa

φt(a)

commute for every a ∈ Q1 and whose adjoints are isomorphisms f∗Fi → F ′i .

We will frequently omit one of the subscripts inMd,S when either the base scheme or the dimension
vector is clear from the context. In Section 4 and Section 6, we will take our base scheme to be S = SpecA
for a ring A, in which case we may denoteMd,S byMd,A or simplyMA. Similarly, when we below define
the substacksMθ-ss

d,S , the moduli spaces Md,S and Mθ-ss
d,S , and the representation space Rd,S , we apply that

same conventions for the subscripts.
We will make the harmless assumption that Q is connected: if Q = Q′ t Q′′ with corresponding

decomposition d = (d′, d′′) with d′ ∈ NQ′0 , d′′ ∈ NQ′′0 , thenMd,S is isomorphic to the product of moduli
stacks of representations of Q′ and Q′′ of dimension vectors d′ and d′′, respectively, and similarly for all
other constructions.

The stackMd,S commutes with base change, meaning that if S′ → S is a morphism of schemes, then
we have a cartesian diagram

Md,S′ Md,S

S′ S

where in the top horizontal map, a family of representations F on T → S′ is viewed as a family on T → S
via the composition T → S′ → S. In particular, the stackMd,Z over the final object SpecZ is universal in
the sense that for any scheme S, the stackMd,S is obtained by base change fromMd,Z by the structure
morphism S → SpecZ.

There is a universal family of representations Funiv of dimension vector d on the stackMd,S . If T
is an S-scheme and F is a family of representations of dimension vector d on T , there exists a unique
morphism f : T →Md,S such that F ∼= f∗Funiv.

Proposition 3.1.2. The diagonal of the stackMd,S is represented by affine S-schemes.

Proof. We follow a similar argument in [44, Tag 08K9]. Let F and G be two representations over an
S-scheme T and consider the 2-cartesian diagram

Isom(F ,G) T

Md,S Md,S ×Md,S

(F,G)

∆

The fiber product Isom(F ,G) is the functor associating to a T -scheme U the set of isomorphisms FU ∼= GU
of representations of Q over U . This functor is represented by an affine T -scheme constructed as follows.
First, for each i ∈ Q0, the functor of maps Fi → Gi of OT -modules is represented by the affine T -scheme

Vi := SpecOT Sym•HomOT (Fi,Gi)∨.
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Next, the functor parameterizing homomorphisms of representations F → G is represented by the closed
subscheme

Hom(F ,G) := SpecOT Sym•K ⊆
∏
i∈Q0

Vi

where K := cokerφ∨ is the cokernel of the morphism dual to the map

φ :
⊕
i∈Q0

Hom(Fi,Gi)→
⊕
a∈Q1

Hom(Fs(a),Gt(a))

(αi)i∈Q0
7→
(
Ga ◦ αs(a) − αt(a) ◦ Fa

)
a∈Q1

Finally, Isom(F ,G) is represented by the base change of the morphism

Hom(F ,G)×T Hom(G,F)→ Hom(F ,F)×T Hom(G,G), (φ, ψ) 7→ (ψ ◦ φ, φ ◦ ψ)

along the section σ : T → Hom(F ,F) ×T Hom(G,G) given by (idF , idG). As a section of a separated
morphism, σ is a closed embedding, and so Isom(F ,G) is a closed subscheme of an affine T -scheme, hence
itself affine over T .

We will next construct a smooth atlas forMd,S . For each vertex i ∈ Q0, let V di := O⊕diS denote the
standard free OS-module of rank di. For each arrow a ∈ Q1, we set

Aa,S = Aa := SpecOS Sym•OS
(
Hom(V ds(a), V

d
t(a))∨

)
∼= Ads(a)dt(a)

S .

Definition 3.1.3. The space of representations of Q of dimension vector d is the affine S-space

Rd,S = Rd :=
∏
a∈Q1

Aa.

Each affine space Aa parameterizes a universal linear map ϕa : O⊕s(a)
Aa → O⊕t(a)

Aa . Letting πa : Rd → Aa
denote the projection, we obtain a canonical family of representations Fcan on Rd as follows. For each
vertex i ∈ Q0, we set Fcan

i = O⊕diRd and for each arrow a ∈ Q1 we set

Fcan
a = π∗aϕa : O⊕ds(a)

Rd → O⊕dt(a)
Rd .

This induces a morphism ϕ : Rd →Md. We can view Rd as representing the functor on S-schemes that to
an S-scheme T associates the set of representations F over T with Fi = O⊕diT for each i ∈ Q0.

The S-group scheme
Gd,S = Gd :=

∏
i∈Q0

GLdi (5)

acts on Rd as follows. The T -points of Gd are tuples g = (gi)i∈Q0 where gi is an automorphism of O⊕diT .
If T → Rd corresponds to a representation F = (Fa : O⊕ds(a)

T → O⊕dt(a)
T )a∈A, then the action of g sends

F to the representation F ′ = (F ′a = gt(a) ◦ Fa ◦ g−1
s(a))a∈A.

Proposition 3.1.4. The morphism ϕ : Rd →Md is schematic, smooth, and surjective, and induces an
isomorphism of stacks

[Rd/Gd] ∼=Md. (6)
In particular, the stackMd is smooth and of finite type over S.

Proof. By Proposition 3.1.2, the diagonal ofMd is affine, in particular representable by schemes, and this
implies that ϕ is schematic.

Let T be an S-scheme and T →Md a morphism corresponding to a representation G over T . The
fiber product T := Rd ×Md

T is isomorphic to the functor that sends a morphism g : U → T of S-schemes
to the set of isomorphisms φ = (φi : O⊕diU

∼−→ g∗Gi)i∈Q0 of OU -modules. The group Gd(U) acts on T by
sending φ to g · φ = (φi ◦ g−1

i )i∈Q0 for g = (gi)i∈Q0 ∈ Gd(U), making T into a Gd-torsor over T . This
implies that φ is smooth and surjective. In particular,Md is smooth and of finite type over S since Rd is.

The induced morphism [Rd/Gd]→Md is given as follows. For an S-scheme T , a map T → [Rd/Gd]
corresponds to a Gd-torsor T over T and a Gd-equivariant morphism π : T → Rd. This induces a
representation G′ on T given by G′i = O⊕diT and G′a = π∗Fcan

a . From the equivariance, we deduce descent
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data for the sheaves G′i and the maps G′a on the fppf cover T → T , giving a representation G over T which
determines a map T →Md.

A quasi-inverse is given as follows. To an S-scheme T and a map T → Md corresponding to a
representation G, we assign the Gd-torsor T =

∏
i∈Q0

Isom(O⊕diT ,Gi) over T . Each vector bundle Gi
trivializes after pulling back to T , so the pullback of G provides a Gd-equivariant morphism T → Rd.

We observe that since Rd is separated and Gd is affine over S, the above proposition gives a second
proof that Md has affine diagonal. We gave a direct argument in Proposition 3.1.2 to emphasize the
moduli-theoretic point of view.

3.2 The moduli stack of semistable representations
For a stability function θ, a family F of representations over a scheme T is said to be a family of θ-
semistable, respectively geometrically θ-stable, representations if for each point x ∈ T , the restriction F|x
is a θ-semistable, respectively geometrically θ-stable, over the residue field κ(x). By Remark 2.3.1, this is
equivalent to requiring that given a field k and a morphism Spec k → T with image x, the k-representation
F|x ⊗κ(x) k is θ-semistable, respectively geometrically θ-stable.

Definition 3.2.1. The substackMθ-ss
d,S , respectivelyMθ-s

d,S , ofMd,S is the full subcategory whose objects
are those (T,F) ∈ Md,S for which F is a family of θ-semistable, respectively geometrically θ-stable,
representations.

Since θ-semistablility and geometric θ-stability are pointwise conditions on families of representations,
it is clear that both moduli stacks are preserved under base change along morphisms S′ → S. If θ = 0 is
the trivial stability function, thenMθ-ss

d =Md since every representation is θ-semistable. We will next
see that Mθ-ss

d,S ⊆ Md,S and Mθ-s
d,S ⊆ Md,S are open substacks, or equivalently that in a family F of

representations over T , the locus of points x ∈ T such that F|x is θ-semistable (respectively geometrically
θ-stable) is open.

For this, we first construct a relative version of a quiver Grassmannian as follows. For a family F of d-
dimensional representations over T and a dimension vector d′ < d, consider the functor (Sch/T )op → (Sets)
that sends f : U → T to the set of families of d′-dimensional subrepresentations F ′ ⊆ f∗F with locally
free quotient. We claim that this functor is representable by a projective T -scheme Gr(d′,F/T ). Indeed,
it is represented by a closed subscheme of the T -fiber product

∏
i∈Q0

Gri of the Grassmannian bundles
Gri := Gr(d′i,Fi) → T parameterizing rank d′i locally free subsheaves of Fi with locally free quotients.
More precisely,

Gr := Gr(d′,F/T ) ⊂
∏
i∈Q0

Gri

is the scheme-theoretic intersection over all a ∈ Q1 of the scheme-theoretic vanishing loci of the compositions

p∗s(a)Ss(a)
p∗s(a)ιs(a)
−−−−−−→ p∗Fs(a)

p∗Fa−−−→ p∗Ft(a)
p∗t(a)ηt(a)
−−−−−−→ p∗t(a)Qt(a),

where 0 → Si
ιi−→ π∗iF

ηi−→ Qi → 0 denotes the universal exact sequence on Gri and pi : Gr → Gri and
p : Gr→ T are the natural projections.

Lemma 3.2.2. In a family of quiver representations F of dimension vector d over a scheme T , the set of
θ-semistable, respectively geometrically θ-stable, representations is open.

Proof. For each nonzero dimension vector d′ < d, with let πd′ : Gr(d′,F/T ) → T denote the relative
quiver Grassmannian of d′-dimensional subrepresentations of F . Since Gr(d′,F/T ) is proper over T , the
image Td′ ⊆ T of πd′ is closed. Consider the two subsets

Z1 =
⋃

0<d′<d:
θ(d′)≥θ(d)

Td′ and Z2 =
⋃

0<d′<d:
θ(d′)>θ(d)

Td′ .

As there are only finitely many dimension vectors d′ with d′ < d, the subsets Z1 and Z2 are closed in T ,
and consequently their complements U1 = T \Z1 and U2 = T \Z2 are open. We claim that U1 and U2 are
the loci of geometrically θ-stable and θ-semistable representations parameterized by F respectively. Let
x ∈ T be a point. If x ∈ Z1, then x = πd′(y) for some d′ < d with θ(d′) ≥ θ(d) and some y ∈ Gr(d′,F/T ),
meaning that the representation F|x ⊗κ(x) κ(y) has a subrepresentation of dimension vector d′. Thus, F|x
is not geometrically θ-stable.
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Conversely, if F|x is not geometrically θ-stable, then for some field extension k/κ(x), the representation
F|x ⊗κ(x) k has a subrepresentation of dimension vector d′ with θ(d′) ≥ θ(d), which gives a map
Spec k → Gr(d′,F/T ) whose composite with πd′ has image x; thus x ∈ Z1.

The argument for Z2 is exactly the same, except by Remark 2.3.1 the question of whether F|x is
θ-semistable is insensitive to extending the residue field κ(x).

Remark 3.2.3. The following example shows that θ-stability is not an open condition. Consider the
Jordan quiver from Example 2.3.2 and the family of 2-dimensional representations over R parameterized
by A1

R with coordinate t given by the matrix Mt :=
(
t −1
1 0

)
. For the trivial stability function θ = 0, all

representations are semistable and Mt ⊗R C is polystable unless t = ±2, but over R a point Mt is stable if
and only if Mt has no real eigenvalues i.e. |t| < 2; this set is not even constructible, let alone Zariski-open.

The next result directly follows from Lemma 3.2.2.

Corollary 3.2.4. For a dimension vector d and a stability function θ, the moduli stacks

Mθ-s
d,S ⊆Mθ-ss

d,S ⊆Md,S (7)

are open substacks ofMd,S . In particular, bothMθ-s
d,S andMθ-ss

d,S are smooth and of finite type and have
affine diagonal over S.

We can express these moduli stacks as quotient stacks: the open subschemes

Rθ-s
d,S ⊆ Rθ-ss

d,S ⊆ Rd,S ,

parameterizing geometrically θ-stable and θ-semistable representations are subschemes invariant under
the action of Gd, and we obtain identifications

Mθ-s
d,S
∼= [Rθ-s

d,S/Gd], Mθ-ss
d,S
∼= [Rθ-ss

d,S /Gd]

for the open substacks in Corollary 3.2.4, similar to (6) in Proposition 3.1.4.

Remark 3.2.5. One interesting way in which the moduli theory of quiver representations differs from
that of vector bundles on a curve of genus g ≥ 2 is that the analogous moduli stacks for stable vector
bundles are always non-empty. For any integers r ≥ 1 and d there always exists a stable vector bundle of
rank r and degree d [35, Lemma 4.3], making the analogue of (7) an inclusion of dense open substacks.
However, the following standard example shows that whether or notMθ-s

d,S orMθ-ss
d,S is empty may depend

on θ.

Example 3.2.6. Consider a representation of the A2-quiver •
a−→ • over a field k of dimension vector

dn = (n, n) for a positive integer n. We can reduce the study of stability functions θ such that θ(dn) = 0
to three cases:

θ = (0, 0): all representations of dimension vector dn are semistable, but none of them can be geometrically
stable, as the unique subrepresentation of dimension vector (0, n) has slope 0.

θ = (−1, 1): no representation of dimension vector dn can be geometrically stable and even semistable, as
the unique subrepresentation of dimension vector (0, n) is a destabilizing subrepresentation.

θ = (1,−1): a representation Ma : kn → kn is semistable if and only if Ma is injective, while it is
geometrically stable if and only if n = 1 and Ma is injective.

For an acyclic quiver, a general criterion for the existence of a stable representation is given in [1].

3.3 Determinantal line bundles
In this section, we explain how to construct line bundles Lθ on the stackMd depending on a stability
function θ : ZQ0 → Z. For an S-scheme T and a family F of representations of Q over T , we define a line
bundle on T

Lθ,F :=
⊗
i∈Q0

det(Fi)⊗−θi

where θi = θ(S(i)) for i ∈ Q0. We list some basic properties of this construction.

Proposition 3.3.1. The following statements hold.
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(i) The assignment θ 7→ Lθ,F defines a homomorphism Hom(ZQ0 ,Z)→ Pic(T ).

(ii) If 0→ F ′ → F → F ′′ → 0 is a short exact sequence of families of representations on T , then there
is a canonical isomorphism Lθ,F ′ ⊗OT Lθ,F ′′ ∼= Lθ,F .

(iii) If f : T ′ → T is a morphism of S-schemes, then there is a canonical isomorphism f∗Lθ,F ∼= Lθ,f∗F .

Proof. Part (i) is clear from the definition. For part (ii), see for example [44, Tag 0FJB], and for part (iii),
see [44, Tag 0FJY].

SinceMd parameterizes families of representations, we have described how to construct a line bundle on
T associated to every map T →Md. From property (iii), it follows that this assignment gives rise to a line
bundle onMd which we denote Lθ. Equivalently, we obtain Lθ by applying the above construction to the
universal representation Funiv. Moreover, this construction defines a group homomorphism Hom(ZQ0 ,Z)→
Pic(Md), which is analogous to the one constructed in [27, Definition 8.1.1].

Proposition 3.3.2. The map Hom(ZQ0 ,Z)→ Pic(Md,Z), θ 7→ Lθ is an isomorphism.

Proof. The map corresponds to the isomorphisms

Hom(ZQ0 ,Z) ∼= X∗(Gd) ∼= PicGd(Rd) ∼= Pic(Md),

where X∗(Gd) denotes the character group of Gd.

Suppose now that we are given two families of representations F and G on an S-scheme T . We can
construct a 2-term complex of locally free sheaves concentrated in degrees −1 and 0 by setting

E•F,G :
⊕
i∈Q0

HomOT (Fi,Gi)
dF,G−−−→

⊕
a∈Q1

HomOT (Fs(a),Gt(a)) (8)

where the differential of degree one is given by

dF,G : (φi)i∈Q0 7→ (φt(a) ◦ Fa − Ga ◦ φs(a))a∈Q1 .

As a first application of (8), we see that the dimensions

dimκ(x) Hom(F|x,G|x) and dimκ(x) Ext(F|x,G|x)

are upper semicontinuous functions on T – by comparing with (3), we see that the latter vector space
is nothing but the fiber of the quasi-coherent sheaf coker(dF,G), while the former is dual to the fiber of
coker(d∨F,G), both of which are finitely presented.

Our second application of (8) is a moduli-theoretic construction of determinantal semi-invariants
mentioned in the introduction. If the two families F and G satisfy the condition 〈dimF ,dimG〉 = 0, then

rk(E−1
F,G) =

∑
i∈Q0

rk(Fi) rk(Gi) =
∑
a∈Q1

rk(Fs(a)) rk(Gt(a)) = rk(E0
F,G),

and thus we obtain a global section of the determinant of E•F,G :

σF,G = det(dF,G) : OT → det(E•F,G) = det(E−1
F,G)∨ ⊗ det(E0

F,G).

Suppose that the stability function θ : ZQ0 → Z is of the form ηβ = −〈 , β〉 for a dimension vector
β ∈ NQ0 ; that is, we have

θi = −〈dimS(i), β〉 = −βi +
∑

a∈Q1:s(a)=i

βt(a).

By applying the construction of the 2-term complex to the universal family F := Funiv onMd and a
family G of representations onMd of dimension vector mβ for m ∈ N such that Gi is free for each i ∈ Q0,
we get an associated determinantal line bundle that is isomorphic to L⊗mθ , as we have

HomOMd
(Fi,Gi) ∼= F⊕−mβii , HomOMd

(Fs(a),Gt(a)) ∼= F
⊕−mβt(a)
s(a) ,

and so
det(E•Funiv,G) := det(E−1

Funiv,G)∨ ⊗ det(E0
Funiv,G) ∼=

⊗
i∈Q0

det(Fi)⊗−mθi = L⊗mθ .
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If moreover θ(d) = −〈d, β〉 = 0 then the ranks of the two terms in the complex E•Funiv,G are equal, so the
determinant of the differential dFuniv,G gives a section

σG = σFuniv,G := det(dFuniv,G) : OMd
→ L⊗mθ .

The most important case is when G = V ⊗OMd
is a “constant family”, that is, the pullback of a family

V on S, in which case we denote the section by σV : OMd
→ L⊗mθ . The following result, corresponding to

[40, Theorem 1.1], describes the vanishing locus of σV .
Proposition 3.3.3. Let d be a dimension vector and θ a stability function with θ(d) = 0. Let k be a field
and x : Spec k →Mθ-ss

d a morphism corresponding to a representation M over k, and let y ∈ S denote its
image in S.
(a) If θ = θα for a dimension vector α and V is a family of representation of dimension vector mα on S,

then the section σV of L⊗mθ is nonzero at x if and only if
Homk(V |y ⊗κ(y) k,M) = 0, or equivalently Ext(V |y ⊗κ(y) k,M) = 0.

(b) If θ = ηβ for a dimension vector β and V is a family of representations of dimension vector mβ on
S, then the section σV of L⊗mθ is nonzero at x if and only if

Hom(M,V |y ⊗κ(y) k) = 0, or equivalently Ext(M,V |y ⊗κ(y) k) = 0.

Proof. To prove (b), we note that the fiber of the complex E•Funiv,G at x is identified with the complex⊕
i∈Q0

Homk(Mi, Vi|y ⊗κ(y) k)
⊕
a∈Q1

Homk(Ms(a), Vt(a)|y ⊗κ(y) k) ,

defined in (3) whose kernel and cokernel are the k-vector spaces Hom(M,V ) and Ext(M,V ) respectively,
and these vanish if and only if the differential of the complex is invertible, if and only its determinant is
nonzero.

For part (a) we instead consider the complex E•G,Funiv and proceed similarly.

4 Vanishing results
In this section we take our base scheme to be S = Spec k where k = k is an algebraically closed field.
The results obtained here will be used in later sections to construct adequate moduli spaces for stacks of
semistable representations and to show that they are projective when the quiver is acyclic.

The results in this section are inspired by the proof of global generation of determinantal line bundles
on the moduli of vector bundles on a curve using dimension-counting techniques in [17]. We will obtain
parallel results in the case of moduli of quiver representations. The starting point is Proposition 3.3.3, which
describes the non-vanishing locus of determinantal semi-invariants. In Section 4.1, for a given semistable
representation M over k, we will find another representation N satisfying Hom(M,N) = Ext(M,N) = 0
by showing that in the appropriate representation space, the locus of those N for which Hom(M,N) 6= 0
has positive codimension; this will enable us to show a power of the determinantal line bundle on the
moduli space of semistable representations is globally generated in Section 6. For acyclic quivers, we study
the preservation of (semi)stability under the Auslander-Reiten translations in Section 4.3 and use this
to establish generic vanishing of Ext groups in Section 4.4, in order to ultimately prove a key result in
Section 4.5 required to later show ampleness of the determinantal line bundle.

Throughout this section, we will formulate many results for stability functions of the form (a) θ = θα
and (b) θ = ηβ , where α and β are dimension vectors. This condition is automatically satisfied if Q is
acyclic and there exists a semistable representation supported on Q0, see Lemma 2.3.5. Moreover, we only
give the proof in one of these two cases, as the other is proved analogously. Since we will ultimately be
concerned with case (b) θ = ηβ in Section 6, we mostly apply these results in this case and thus give the
proofs in this case.

4.1 Characterizing semistable representations
We begin with the key dimension estimates. Let d′, d′′ ∈ NQ0 and write d = d′ + d′′. Let M and N be
representations of dimension vector d′ and d′′ respectively. Define the following subsets of Rd:

Bd′ = Bd′,d = {V ∈ Rd | there exists V ′ ⊂ V with dimV ′ = d′}, (9)
KM = KM,d = {V ∈ Rd | there exists an injection M ↪→ V }, (10)
QN = QN,d = {V ∈ Rd | there exists a surjection V � N}. (11)
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Lemma 4.1.1. We have the following estimates.

(i) codimRd Bd′ ≥ −〈d′, d′′〉,

(ii) codimRd KM ≥ 1− 〈d′, d〉,

(iii) codimRd QN ≥ 1− 〈d, d′′〉.

Proof. View Rd as parameterizing representations V where Vi = k⊕di for each i. Let V ′i ⊆ Vi be the
subspace spanned by the d′i first standard basis vectors and define the subset of all representations for
which V ′ is a subrepresentation:

S := {V ∈ Rd | Va(V ′s(a)) ⊆ V ′t(a) for all a ∈ Q1}.

A representation V ∈ Rd has a subrepresentation of dimension vector d′ if and only if it lies in the
Gd-saturation of S, that is,

Bd′ = Gd · S.
Consider the parabolic subgroup P ⊆ Gd given by

P := {g ∈ Gd | gi(V ′i ) ⊆ V ′i for all i ∈ Q0}.

The subgroup P acts on S, which implies that the action map Gd × S → Rd factors as

Gd × S

Gd ×P S Rd
∃!

where Gd×P S is the associated fiber bundle [43, Proposition 4]. Thus, from the surjection Gd×P S → Bd′

we obtain the bound
dimBd′ ≤ dim

(
Gd ×P S

)
= dimGd + dimS − dimP

and hence

codimRd Bd′ ≥ dim Rd − dimS − (dimGd − dimP ) = codimRd S − codimGd P.

Now S is a linear subspace of Rd of codimension
∑
a∈Q1

d′s(a)d
′′
t(a) and P is a subgroup of Gd of codimension∑

i∈Q0
d′id
′′
i , so we have

codimRd Bd′ ≥
∑
a∈Q1

d′s(a)d
′′
t(a) −

∑
i∈Q0

d′id
′′
i = −〈d′, d′′〉,

proving (i).
We have projection maps p : S → Rd′ and q : S → Rd′′ taking a representation V to the subrepresenta-

tion V ′ and the quotient V ′′ = V/V ′ respectively. Identifying M and N with points in Rd′ and Rd′′ and
letting OM ⊂ Rd′ and ON ⊂ Rd′′ denote their orbits under the actions of Gd′ and Gd′′ respectively, we
see that

KM = Gd · p−1(OM ), QN = Gd · q−1(ON ).
To prove (ii) and (iii), we note the group P acts on Rd′ and Rd′′ via its natural projections to Gd′

and Gd′′ , and that the projections p and q are P -equivariant under these actions. Thus, P acts on the
preimages p−1(OM ) and q−1(ON ), so we have surjections

Gd ×P p−1(OM )→ KM , Gd ×P q−1(ON )→ QN ,

from which we obtain the bounds

codimRd KM ≥ dim Rd − dim p−1(OM )− codimGd P

and
codimRd QN ≥ dim Rd − dim q−1(ON )− codimGd P.

Now the map p is a projection along a linear subspace of dimension
∑
a∈Q1

d′′s(a)dt(a) so

dim p−1(OM ) = dimOM +
∑
a∈Q1

d′′s(a)dt(a).
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On the other hand,

dimOM = dimGd′ − dimStabGd′ (M) ≤ dimGd′ − 1 =
∑
i∈Q0

(d′i)2 − 1,

as the stabilizer of any representation contains the multiplicative group Gm. Thus,

codimRd KM ≥ dim Rd − dimGd′ + 1− codimGd P

=
∑
a∈Q1

ds(a)dt(a) −
∑
i∈Q0

(d′i)2 + 1−
∑
a∈Q1

d′′s(a)dt(a) −
∑
i∈Q0

d′id
′′
i

= 1 +
∑
a∈Q1

d′s(a)dt(a) −
∑
i∈Q0

d′idi

= 1− 〈d′, d〉,

proving (ii).
Similarly, as q is a projection along a linear subspace of dimension

∑
a∈Q1

ds(a)d
′
t(a) and dimON ≤

dim Gd′′ − 1, the corresponding calculation yields (iii).

As in [41] we say that a property of representations holds for a general representation of dimension
vector d if there exists a nonempty open substack U ofMd such that the property holds for all M in U .
This is equivalent to giving a nonempty Gd-invariant open subscheme of Rd. Note that since Md is
irreducible, any nonempty open substack is dense, and in particular any finitely many general properties
will hold simultaneously on a dense open substack.

Let θ : ZQ0 → Z be a stability function. We will use Lemma 4.1.1 to relate various vanishing results
with θ-semistability for representations.

Lemma 4.1.2. Let M be a θ-semistable representation and let ε ∈ NQ0 .

(a) Suppose θ = θα for a dimension vector α. If m is sufficiently large, then for a general representation
V of dimension vector mα+ ε, every nonzero map f : V →M satisfies θ(im f) = 0. In fact, it suffices
to take

m >
〈γ, γ〉 − 〈ε, γ〉
〈α, γ〉

(12)

for the finitely many dimension vectors 0 < γ < dimM such that 〈α, γ〉 < 0.

(b) Suppose θ = ηβ for a dimension vector β. If m is sufficiently large, then for a general representation
V of dimension vector mβ+ ε, every nonzero map f : M → V satisfies θ(im f) = 0. In fact, it suffices
to take

m >
〈γ, γ〉 − 〈γ, ε〉
〈γ, β〉

(13)

for the finitely many dimension vectors 0 < γ < dimM such that 〈γ, β〉 < 0.

Proof. We only prove (b), as (a) is dual. Since M is θ-semistable, if f : M → V is any nonzero map, then
θ(im f) ≥ 0, so it suffices to rule out the case θ(im f) > 0.

Let 0 < γ < dimM be the dimension vector of a quotient representation of M such that θ(γ) =
−〈γ, β〉 > 0. The subset

B := {V ∈ Rmβ+ε | there exists f ∈ Hom(M,V ) such that dim im f = γ}

is contained in the set Bγ,mβ+ε defined in (9) so from Lemma 4.1.1 we deduce that

codimRmβ+ε B ≥ codimRmβ+ε Bγ,mβ+ε

≥ −〈γ,mβ + ε− γ〉
= −m〈γ, β〉 − 〈γ, ε〉+ 〈γ, γ〉.

If m satisfies the inequality in (13), we see that codimRmβ+ε B > 0, so for a general representation V of
dimension vector mβ + ε, there are no maps f : M → V with dim im f = γ.

Using the above lemma, we obtain Hom-vanishing conditions for stable and semistable representations
with respect to θα and ηβ .
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Corollary 4.1.3. Let M be a θ-stable representation of dimension d and let ε ∈ NQ0 .

(a) Suppose θ = θα for some α ∈ NQ0 and assume that 〈ε, d〉 ≤ 0. Ifm satisfies (12), then Hom(V,M) = 0
for a general representation V of dimension vector mα+ ε.

(b) Suppose θ = ηβ for some β ∈ NQ0 and assume that 〈d, ε〉 ≤ 0. Ifm satisfies (13), then Hom(M,V ) = 0
for a general representation V of dimension vector mβ + ε.

Proof. We prove (b). By Lemma 4.1.2 we have θ(im f) = 0 for a general representation V of dimension
vector mβ + ε and any nonzero map f : M → V , so since M is θ-stable, any such nonzero map is injective.
However, by Lemma 4.1.1(ii), the locus KM ⊆ Rmβ+ε defined in (10) of representations V for which there
exists an injection M ↪→ V has codimension

codimRmβ+ε KM ≥ 1− 〈d,mβ + ε〉 = 1− 〈d, ε〉 ≥ 1

since by assumption 〈d, β〉 = 0 and 〈d, ε〉 ≤ 0. Thus, a general representation V does not admit such an
injection.

The proof of (a) is dual and uses QM as defined in (11) in place of KM .

Corollary 4.1.4. Let M be a θ-semistable representation and let ε ∈ NQ0 .

(a) Suppose that θ = θα for a dimension vector α and assume that 〈ε, γ〉 ≤ 0 for the dimension vectors γ
of all θ-stable subquotients ofM . If m satisfies (12), then for a general representation V of dimension
vector mα+ ε, we have Hom(V,M) = 0.

(b) Suppose that θ = ηβ for a dimension vector β and assume that 〈γ, ε〉 ≤ 0 for the dimension vectors γ
of all θ-stable subquotients ofM . If m satisfies (13), then for a general representation V of dimension
vector mβ + ε, we have Hom(M,V ) = 0.

Proof. We show the (b), as (a) is analogous. Let M1, . . . ,Mr denote the θ-stable subquotients of a Jordan-
Hölder filtration of M . By assumption 〈dimM `, ε〉 ≤ 0, so by Corollary 4.1.3, a general representation V
of dimension vector mβ + ε satisfies

Hom(M `, V ) = 0
for each `. By breaking up the Jordan-Hölder filtration of M into short exact sequences, we inductively
deduce that Hom(M,V ) vanishes for a general V of dimension vector mβ + ε.

Corollary 4.1.4 can be used to derive a characterization of semistability in terms of vanishing of Hom
and Ext. Note that for representations M and N such that 〈dimM, dimN〉 = 0, we have Hom(M,N) = 0
if and only if Ext(M,N) = 0.

Proposition 4.1.5. Let θ be a stability function and let M be a representation with θ(M) = 0.

(a) If θ = θα for a dimension vector α, then M is θ-semistable if and only if there exists m > 0 and a
representation V of dimension vector mα such that Hom(V,M) = 0.

(b) If θ = ηβ for a dimension vector β, then M is θ-semistable if and only if there exists m > 0 and a
representation V of dimension vector mβ such that Hom(M,V ) = 0.

Proof. We will prove (b), as the proof of (a) is dual. The forward implication of (b) is a special case of
Corollary 4.1.4 with ε = 0. For the other direction, let M ′ ⊆ M be a subrepresentation of dimension
vector d′. After applying Hom( , V ) to the short exact sequence

0→M ′ →M →M/M ′ → 0,

we get Ext(M ′, V ) = 0, and therefore

mηβ(dimM ′) = −〈dimM ′,mβ〉 = − dim Hom(M ′, V ) + dim Ext(M ′, V )
= −dim Hom(M ′, V ) ≤ 0.

This shows that M is ηβ-semistable.

Remark 4.1.6. Proposition 4.1.5 appears as [42, Corollary 1.1] in characteristic 0, using possibly infinite-
dimensional representations when Q is not acyclic, and with a proof using GIT methods. Our result
stays completely within the realm of finite-dimensional representations and holds in all characteristics. In
arbitrary characteristic the forward implication is proved in [10, Corollary 2].

In addition, Proposition 4.1.5 is the quiver analogue of Faltings’s characterization of semistability for
vector bundles, and more generally Higgs bundles, on a curve [18, Theorem I.2].
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4.2 Effective bounds for vanishing of Hom
We use the inequalities of Lemma 4.1.2 to derive an upper bound for the vanishing of Hom and Ext that
only depends on the underlying undirected graph of Q. This will turn into an upper bound for global
generation of determinantal line bundles in Section 6.

Recall from Section 2.1 that we denote the Euler matrix of Q by A for a choice of an ordering of
the vertices. Let B = 1

2
(
A+AT) be the symmetrization of A. These matrices A and B define the same

quadratic form, called the Tits form, that for any vector x ∈ ZQ0 associates its self-pairing:

〈x, x〉 = xTAx = xTBx.

Notice that the Tits form is independent of the orientation of the quiver. In addition to the Euler pairing,
we will also use the standard inner product on ZQ0 and write the induced norm of x as ‖x‖.

Proposition 4.2.1. Let d ∈ NQ0 be a dimension vector and let θ be a stability function such that θ(d) = 0.
Denote

λ := −min{µ | µ eigenvalue of B}
and let m be a positive integer greater than λ‖d‖2.

(a) If θ = θα = 〈α, 〉 for a dimension vector α, then for every θ-semistable representation M of
dimension vector d, a general representation V of dimension vector mα satisfies

Hom(V,M) = Ext(V,M) = 0.

(b) If θ = ηβ = −〈 , β〉 for a dimension vector β, then for every θ-semistable representation M of
dimension vector d, a general representation V of dimension vector mβ satisfies

Hom(M,V ) = Ext(M,V ) = 0.

Proof. We will only prove (b), as the argument for (a) is identical and leads to the same bound. Given a
θ-semistable representation M of dimension vector d and a positive integer m, Corollary 4.1.4 with ε = 0
implies that as soon as

m > f(γ) := 〈γ, γ〉
〈γ, β〉

for the finitely many dimension vectors 0 < γ < d for which 〈γ, β〉 < 0, we have Hom(M,V ) = Ext(M,V ) =
0 for a general representation V of dimension vector mβ.

Clearly it is enough to consider only those γ for which 〈γ, γ〉 < 0, since otherwise f(γ) ≤ 0. If Q is
either a Dynkin or extended Dynkin quiver, there are no such γ, and we may take any m ≥ 1. Hence we
will assume that Q is not of these types, or equivalently λ > 0. We now prove the claim by showing that
f(γ) ≤ λ||d||2 for all dimension vectors 0 < γ < d for which 〈γ, β〉 < 0 and 〈γ, γ〉 < 0.

Since the denominator of f(γ) is assumed to be negative, in order to obtain an upper bound for f(γ),
we need to minimize the numerator. Notice that since B is symmetric, the minimal value of the Tits form
on the unit sphere is

−λ = min
{
〈ρ, ρ〉 | ρ ∈ RQ0 , ‖ρ‖ = 1

}
.

For γ < d that satisfies 〈γ, β〉 < 0 and 〈γ, γ〉 ≤ 0, write γ = ‖γ‖γ0 where ‖γ0‖ = 1. We now have the
following inequalities between nonnegative numbers

‖γ‖ < ‖d‖, 1
|〈γ, β〉|

≤ 1, |〈γ0, γ0〉| ≤ λ,

where the third one follows from the assumption 〈γ, γ〉 < 0. Combining these inequalities gives the estimate

f(γ) = 〈γ, γ〉
〈γ, β〉

≤ ‖γ‖
2 · |〈γ0, γ0〉|
|〈γ, β〉|

≤ ‖d‖
2λ

|〈γ, β〉|
≤ λ‖d‖2.

Example 4.2.2. The n-Kronecker quiver

Q : 1 2...

has Tits matrix
(

1 −n2
−n2 1

)
. It follows that its eigenvalues are 1± n

2 and so λ = n
2 − 1, which is positive

when n = 1 and zero when n = 2.
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Remark 4.2.3. In Example 4.2.2, the case where n = 1, 2 is a Dynkin, resp. extended Dynkin quiver.
As observed in the proof of Proposition 4.2.1 any m ≥ 1 will work. This is consistent with the effective
basepoint-freeness results following from Proposition 4.2.1 discussed in Section 6.1, because by [13,
Theorem 3.1] the moduli spaces are all affine or projective spaces.

In certain cases, the effective bounds described in Proposition 4.2.1 are not optimal. For instance let
Q be the (n+ 1)-Kronecker quiver, d = (1, 1), and θ = ηβ with β = (n, 1). Proposition 4.2.1 shows that
Hom(M,V ) = 0 for M a θ-semistable representation of Q of dimension d and V a general representation
of dimension mβ for m ≥ 2(n− 1). A direct computation shows that it is in fact enough to let m be any
positive integer.

4.3 Auslander–Reiten translations and semistability
In this section we investigate how stability behaves under the Auslander–Reiten translations, and therefore
assume throughout that Q is acyclic. For this reason, whenever we write θ = θβ or θ = ηβ , we implicitly
assume that β is a dimension vector.

Only Lemma 4.3.1 from this section is used as an ingredient to our main theorem. The other results
are included to give a complete picture of the interaction between stability and the translation functors,
which does not seem to appear in the literature.

Let τ, τ− : repkQ→ repkQ denote the Auslander–Reiten translations defined in Section 2.4. Let θ be
a stability function for Q; recall from Lemma 2.3.4 that since Q is acyclic, the stability function θ can be
identified with θα (resp. ηβ) for a unique dimension vector α (resp. β).

Lemma 4.3.1. Let M be a θ-semistable representation of Q.

(a) If θ = θα, then τ−M is ηα-semistable.

(b) If θ = ηβ , then τM is θβ-semistable.

Proof. We only show the second assertion, as the first follows similarly. By Proposition 4.1.5 (b) there
exists m > 0 and a representation V of dimension vector mβ such that Hom(M,V ) = 0. Assume first
that M has no projective summands. By Auslander–Reiten duality we have

Ext(V, τM) ∼= Hom(M,V )∨ = 0.

Moreover, from Proposition 2.4.1 (ii) we have

dim Hom(V, τM)− dim Ext(V, τM) = 〈V, τM〉 = −〈M,V 〉 = −m〈dimM,β〉 = 0

sinceM is ηβ-semistable. Hence also Hom(V, τM) = 0, and so τM is θβ-semistable by Proposition 4.1.5 (a).
In the general case, we can decompose M into indecomposable summands and this decomposition is

unique up to isomorphism. Thus, we can write M = U ⊕P , where P is projective and U has no projective
summands. Since M is ηβ-semistable, both summands U and P are also ηβ-semistable. As U has no
projective summands, we conclude that τU is θβ-semistable. Moreover,

τM = τU ⊕ τP = τU,

and so τM is θβ-semistable as well.

Lemma 4.3.2. Let M be a θ-stable representation.

(a) Suppose θ = θα. If suppM 6⊂ suppα, then suppM \ suppα = {j} and M ∼= IQ′(j), where IQ′(j)
is the indecomposable injective of the full subquiver Q′ supported on suppα ∪ {j}, viewed as a
representation of Q.

(b) Suppose θ = ηβ . If suppM 6⊂ suppβ, then suppM \ suppβ = {j} and M ∼= PQ′(j), where PQ′(j)
is the indecomposable projective of the full subquiver Q′ supported on suppβ ∪ {j}, viewed as a
representation of Q.

Proof. We again only show (b). Assume that suppM 6⊂ suppβ. Let Q′′ ⊂ Q′ ⊆ Q denote the full
subquivers on suppM \ suppβ and suppM ∪ suppβ respectively. We first observe that if V and W are
representations supported on Q′, then it follows from (3) that

HomQ(V,W ) = HomQ′(V,W ) and ExtQ(V,W ) = ExtQ′(V,W ),
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so we may drop the subscripts. The subquiver Q′′ is also acyclic so it has a sink j, and by assumption
βj = 0 and dimMj > 0. Consider the projective representation PQ′(j) of Q′. For any representation V
supported on Q′, we have

〈PQ′(j), V 〉 = dim Hom(PQ′(j), V ) = dimVj

because Ext(PQ′(j), V ) = 0 and Hom(PQ′(j), V ) ∼= Vj . This implies that

ηβ(PQ′(j)) = −〈dimPQ′(j), β〉 = −βj = 0

whereas Hom(PQ′(j),M) ∼= Mj 6= 0. Let f ∈ Hom(PQ′(j),M) be a nonzero homomorphism and consider
its kernel P . We have P ( PQ′(j), and since the category repkQ′ is hereditary, P is again a projective
representation of Q′.

Suppose that P 6= 0. Any indecomposable direct summand of P is of the form PQ′(i) for some vertex
i ∈ Q′0 for which there exists a path j → i in Q′ because it must embed into PQ′(j), and this path cannot
have length 0 because Pj = 0. As j is a sink of Q′′, we must have i ∈ suppβ. This shows that

ηβ(PQ′(i)) = −βi < 0.

We conclude that ηβ(P ) < 0 and therefore ηβ(PQ′(j)/P ) > 0. However, PQ′(j)/P embeds into M via f ,
which contradicts the fact that M is stable. Thus, we have P = 0 and the map f : PQ′(j)→M is injective.
Since the image of f is a nonzero subrepresentation of M with ηβ(im f) = ηβ(PQ′(j)) = 0, we conclude
that f must also be surjective and thus M ∼= PQ′(j).

If j′ is another sink of Q′′, then the same argument shows that also M ∼= PQ′(j′), which implies that
j = j′ and so Q′′ = {j} as claimed.

Lemma 4.3.3. Let M be a θ-stable representation of dimension vector d and let ε ∈ NQ0 .

(a) If θ = θα and 〈ε, d〉 > 0, then mα+ ε ≥ d for m� 0.

(b) If θ = ηβ and 〈d, ε〉 > 0, then mβ + ε ≥ d for m� 0.

Proof. As above, we just prove the second claim. The result is clear if supp d ⊆ suppβ. By Lemma 4.3.2,
the only other case is that suppM \ suppβ = {j} and M ∼= P ′(j), the indecomposable projective of the
full subquiver on suppβ ∪ {j}. In this case we have dj = (dimP ′(j))j = 1, while εj = 〈d, ε〉 > 0, so in
particular εj ≥ dj .

Lemma 4.3.4. Let M be a θ-stable representation.

(a) If θ = θα, then either τ−M is ηα-stable, or M is isomorphic to an injective representation I of the
full subquiver Q′ supported on suppM ∪ suppα, viewed as a representation of Q.

(b) If θ = ηβ , then either τM is θβ-stable, or M is isomorphic to a projective representation P of the
full subquiver Q′ supported on suppM ∪ suppβ, viewed as a representation of Q.

Proof. We again only show (b). Suppose that M is not of the form P as in the statement. We know by
Lemma 4.3.1 (b) that τM is θβ-semistable and want to conclude that it is θβ-stable. Viewing M as a
representation of the full subquiver Q′ supported on suppM ∪ suppβ, our assumption means that M is
not projective. Therefore, by Lemma 4.3.2 (b), we have suppβ = Q′0. Let τM � U be a surjection such
that θβ(U) = 0 and write U =

⊕
` U

` as a direct sum of indecomposables. Each U ` is a quotient of the
semistable representation τM , so θβ(U `) ≥ 0, and since these quantities sum to 0, we have θβ(U `) = 0 for
each `. Thus, we may assume that U is itself indecomposable.

The quotient U cannot be injective, because if U ∼= I(i) for some i ∈ Q′, then

0 = θβ(U) = 〈β,dim I(i)〉 = βi,

whereas βi > 0 since i ∈ suppβ. Thus, U ∼= ττ−U by Proposition 2.4.1 (i). By Proposition 2.4.1 (ii),
the functor τ− is a left adjoint, thus right exact, so τ−U is a quotient of M , as τ−τM is in any case a
quotient of M . Using Proposition 2.4.1 (ii) we obtain

ηβ(τ−U) = −〈dim τ−U, β〉 = 〈β,dimU〉 = θβ(U) = 0.

As M is ηβ-stable, we have either τ−U = 0 or τ−U = M , and since U ∼= ττ−U , we conclude that either
U = 0 or U = τM which proves the claim.
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4.4 Generic vanishing of Ext
We continue to assume that Q is acyclic.

Lemma 4.4.1. Let M be a θ-semistable representation and let ε ∈ NQ0 .

(a) If θ = θα and ε = dimP for some projective representation P , then for all sufficiently large integers
m, a general representation V of dimension vector mα + ε satisfies Ext(V,M) = 0. In fact, it is
enough that

m >
〈γ, γ〉
〈γ, α〉

for all dimension vectors γ < dim τ−M.

(b) If θ = ηβ and ε = dim I for some injective representation I, then for all sufficiently large integers m,
a general representation V of dimension vector mβ + ε satisfies Ext(M,V ) = 0. In fact, it is enough
that

m >
〈γ, γ〉
〈β, γ〉

for all dimension vectors γ < dim τM.

Proof. We prove (b). By Lemma 4.3.1, the representation τM is θβ-semistable, so Corollary 4.1.4 (a) with
ε = 0 implies that for m satisfying the inequality, there exists a representation V ′ of dimension vector mβ
such that Hom(V ′, τM) = 0. By Auslander-Reiten duality, this implies Ext(M,V ′) ∼= Hom(V ′, τM)∨ = 0.

Now the representation V = V ′ ⊕ I has dimension vector mβ + ε and satisfies

Ext(M,V ) = Ext(M,V ′)⊕ Ext(M, I) = 0

since I is injective. Thus, by upper semicontinuity this must hold for a general representation of dimension
vector mβ + ε.

4.5 Separating stable representations
In this section, we assume that Q is acyclic and θ = ηβ for concreteness, and leave formulating the dual
statements for θ = θα to the reader. Our aim is to prove the following result.

Theorem 4.5.1. Let M0,M1, . . . ,Mr be non-isomorphic ηβ-stable representations. For all sufficiently
large integers m, there exists a representation N of dimension vector mβ such that

Hom(M0, N) 6= 0, and Hom(M `, N) = 0 for ` = 1, . . . , r. (14)

This will be used in Theorem 6.2.1 below by considering two polystable representations M and M ′
such that M1, . . . ,Mr are the non-isomorphic stable summands of M ′ while M0 appears as a stable
summand of M . In view of Proposition 3.3.3, we will see that σN separates the polystable representations
M and M ′; this will ultimately enable us to prove ampleness of the determinantal line bundle on the
moduli space of semistable representations in Section 6.

Our argument is inspired by the proof of a similar statement for moduli of vector bundles on a curve,
due to Esteves [16, Section 5] and Esteves–Popa [17, Section 3].

We break up the proof of Theorem 4.5.1 into several steps.

Proposition 4.5.2. For M0,M1, . . . ,Mr as in Theorem 4.5.1 and for all sufficiently large integers m,
there exists a representation N such that

(i) Hom(M0, N) 6= 0;

(ii) Hom(M `, N) = 0 for ` = 1, . . . , r;

(iii) dimN = mβ+ε, where ε is the dimension vector of an injective representation and supp ε∩suppM0 =
∅.

Before proving Proposition 4.5.2 we first use it to establish Theorem 4.5.1.

Proof of Theorem 4.5.1. Let N be as in Proposition 4.5.2. If ε = 0, we are already done, so assume ε > 0.
It suffices to find a subrepresentation N ′ ⊂ N that satisfies properties (i)-(iii) with ε′ < ε, since repeating
the construction results in a sequence of subrepresentations with the same properties, and the sequence
must terminate at a subrepresentation with ε = 0.
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By assumption we have ε = dim I for some nonzero injective representation I. Since 〈V, I〉 =
dim Hom(V, I) ≥ 0 for any representation V , and since β is a dimension vector since Q is acyclic,
we have

dim Hom(N, I) = 〈N, I〉 = 〈mβ + ε, ε〉 ≥ 〈ε, ε〉 = dim Hom(I, I) ≥ 1,
so there is a nonzero map f : N → I. Let N ′ ⊂ N and I ′ denote the kernel and cokernel of f respectively
and set ε′ = dim I ′. Note that ε′ < ε. We claim that N ′ satisfies properties (i)-(iii).

To verify (i) and (ii) for N ′, we apply Hom(M `, ) to the exact sequence

0→ N ′ → N
f−→ I

to get
0→ Hom(M `, N ′)→ Hom(M `, N)→ Hom(M `, I).

Since Hom(M `, N) = 0 for ` ≥ 1, we also have Hom(M `, N ′) = 0, giving (ii). For (i), we have
Hom(M0, I) = 0 since supp I ∩ suppM0 = ∅, and so

Hom(M0, N ′) ∼= Hom(M0, N) 6= 0.

For (iii), from the exact sequence 0→ N ′ → N → I → I ′ → 0 we obtain

dimN ′ = dimN − dim I + dim I ′ = mβ + ε− ε+ ε′ = mβ + ε′.

Clearly supp ε′ ∩ suppM0 = ∅ since supp ε′ ⊆ supp ε, and moreover, as I ′ is a quotient of I, it is also
injective since repkQ is hereditary. Thus, we have proven (iii) for N ′.

The rest of the section is devoted to proving Proposition 4.5.2. Fix an admissible ordering of Q0 as in
Section 2.1, let i0 ∈ suppM0 be the minimal vertex in the support of M0, and set ε0 := dim I(i0). Note
that for any dimension vector ξ we have

〈ξ, ε0〉 = ξi0

and that supp ε0 ∩ suppM0 = {i0} by the choice of i0.

Lemma 4.5.3. Let M0,M1, . . . ,Mr be as in Theorem 4.5.1 and let m` = dim(M `)i0 , where i0 is the
minimal vertex in suppM0. For all sufficiently large integersm, there exists a representation V of dimension
vector mβ + ε0 such that

• Ext(M `, V ) = 0 for each ` = 0, . . . , r, and so

dim Hom(M `, V ) = 〈dimM `,mβ + ε0〉 = 〈dimM `, ε0〉 = m`;

• For ` = 0, . . . , r, every nonzero map M ` → V is injective;

• For ` = 1, . . . , r, every nonzero map f : M0 ⊕M ` → V satisfies

〈dim ker f, β〉 = 0.

Proof. Since each M ` and each M0 ⊕M ` is ηβ-semistable and ε0 is the dimension vector of an injective
representation, we obtain the claim by applying Lemma 4.4.1(b) to each M ` for ` = 0, . . . , r, and by
applying Lemma 4.1.2 (b) to each M ` for ` = 0, . . . , r as well as each M0 ⊕M ` for ` = 1, . . . , r.

Denote the cokernel of φ by W , so that we have an exact sequence

0 M0 V W 0.φ

Lemma 4.5.4. If ` ≥ 1 and ψ : M ` → V is a nonzero map, then the induced map ψ : M ` → W is
injective.

Proof. By Lemma 4.5.3, the map ψ is injective and the kernel K of the induced map

(φ, ψ) : M0 ⊕M ` −→ V

satisfies 〈dimK,β〉 = 0. Since M0 and M ` are ηβ-stable and non-isomorphic, the only nonzero subrepre-
sentations of M0 ⊕M ` with this property are M0,M `, and M0 ⊕M `. Since both φ and ψ are injective,
we must have K = 0. The successive inclusions

M0 M0 ⊕M ` V
(φ,ψ)
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induce a short exact sequence

0 M ` W V/(M0 ⊕M `) 0,ψ

so we see that the induced map ψ : M ` ψ−→ V →W is injective.

Lemma 4.5.5. There exists a hyperplane H ⊂ Vi0 such that φi0(M0
i0

) ⊆ H but ψi0(M `
i0

) * H for every
` ≥ 1 and every nonzero ψ : M ` → V .

Proof. As before, let m` := dim(M `)i0 . Consider the Grassmannian Gr(m`,Wi0) of m`-dimensional
subspaces of the vector space Wi0 . By Lemma 4.5.4, we obtain a morphism

P(Hom(M `, V )) −→ Gr(m`,Wi0)

that sends a map ψ : M ` → V to the subspace im(ψ)i0 ⊆ Wi0 . The image X` ⊆ Gr(m`,Wi0) of this
morphism has dimension at most dimP(Hom(M `, V )) = m` − 1.

For a hyperplane P ⊆Wi0 , denote by Y`,P ⊆ Gr(m`,Wi0) the Schubert variety of subspaces contained
in P . Since the codimension of Y`,P is m`, by the Bertini–Kleiman theorem there exists a hyperplane P
such that Y`,P ∩X` = ∅ for each ` = 1, . . . , r. The preimage H ⊆ Vi0 of this P satisfies the conditions in
the lemma.

Proof of Proposition 4.5.2. Let H ⊂ Vi0 be a hyperplane as in Lemma 4.5.5 and let p : Vi0 → k be a
linear map with kernel equal to H. Recall that restricting to Vi0 gives an isomorphism HomQ(V, I(i0)) ∼−→
Homk(Vi0 , k). Let π be the unique map V → I(i0) corresponding to p under this isomorphism. We claim
that the representation N = kerπ satisfies conditions (i)-(ii) in the statement.

Note that a morphism f : M ` → V factors through N if and only if the composition π ◦ f : M ` → I(i0)
is zero, if and only if the composition p ◦ fi0 : M `

i0
→ I(i0)i0 is zero, if and only if fi0(M `

i0
) ⊂ H. Thus, it

follows from the choice of H that φ : M0 → V factors through N but no nonzero map M ` → V does for
` = 1, . . . , r, which proves (i) and (ii).

For (iii), we note that the representation I = cokerπ is injective, as it is a quotient of I(i0) and the
category of representations is hereditary. Setting ε = dim I, the exact sequence

0→ N → V
π−→ I(i0)→ I → 0.

implies that
dimN = dimV − dim I(i0) + dim I = mβ + ε0 − ε0 + ε = mβ + ε.

Finally, since supp I(i0)∩suppM0 = {i0} and (im π)i0 = (I(i0))i0 , we must have supp ε∩suppM0 = ∅.

5 Moduli spaces of quiver representations
In this section we show that under certain assumptions (see Remark 5.5.8), stacks of semistable quiver
representations admit adequate moduli spaces by verifying the existence criteria of [6].

Throughout this section we let S denote a noetherian scheme. The locally noetherian hypothesis is
required for the notions of Θ-reductivity and S-completeness to be well-defined and for the existence
criteria to be applicable as in Section 5.2, while we add a quasi-compactness condition to ensure that
points specialize to closed points, so that the local reductivity in Section 5.4 is better behaved.

5.1 Good and adequate moduli spaces
We begin by recalling the definition of good and adequate moduli spaces due to Alper [2, 3].

Definition 5.1.1. Let X be a quasi-separated algebraic stack over S. An adequate moduli space is a
quasi-compact quasi-separated morphism f : X → X to an algebraic space X over S such that

(i) f is adequately affine, meaning that for every surjection A → B of quasi-coherent OX -algebras and
every section s of f∗B over an affine étale neighborhood U of X, some power of s lifts to a section
of f∗A over U , and

(ii) the natural morphism OX → f∗OX is an isomorphism.

The map f is a good moduli space if instead of (i), we have the stronger hypothesis

23



(i′) f is cohomologically affine, meaning that the functor f∗ : QcohX → QcohX is exact.

The notion of a good moduli space is inspired by good quotients in GIT.

Example 5.1.2. [2, Section 13] If G is a linearly reductive algebraic group over a field k acting on
an affine k-scheme Spec(A), then a good moduli space of the quotient stack is given by the affine GIT
quotient:

[Spec(A)/G]→ Spec(A) // G := Spec(AG).
More generally, if G acts on a quasi-projective k-scheme X with a fixed ample G-linearization and
Xss → X // G denotes the corresponding GIT quotient, then

[Xss/G]→ X // G

is a good moduli space.

In this example, it is vital that G is linearly reductive, since π : BG→ Spec(k) is cohomologically affine
if and only if G is linearly reductive, that is, the functor π∗, which corresponds to taking G-invariants, is
exact [2, Proposition 12.2]. In characteristic 0, the notions of linearly reductive and reductive coincide;
however, in positive characteristic, many reductive groups, GLn among them, are not linearly reductive.

In order to bridge this gap, Alper introduced the broader notion of adequate moduli spaces in [3]
which also covers many interesting cases in positive characteristic. In particular a flat, separated, finitely
presented group scheme G over S is reductive if and only if the morphism BG→ S is adequately affine.
Consequently, Alper’s notion of adequate moduli space enables a generalization of GIT to stacks for all
reductive groups in arbitrary characteristic.

Example 5.1.3. [3, Section 9] If G is a smooth affine reductive group over a field k acting on an affine
k-scheme Spec(A), then

[Spec(A)/G]→ Spec(A) // G := Spec(AG)
is an adequate moduli space. More generally, for a reductive k-group G acting on a quasi-projective
k-scheme X with an ample G-linearization,

[Xss/G]→ X // G

is an adequate moduli space.

Since the stacksMd andMθ-ss
d can both be described as quotient stacks via such a GIT setup (see

Proposition 3.1.4), one can conclude that these moduli stacks have adequate moduli spaces given by the
GIT quotient. We will instead take a modern approach which avoids GIT and establish the existence of
adequate moduli spaces by applying the criteria of [6].

We summarize some of the properties of good and adequate moduli spaces that will be relevant for us.
Recall that S is assumed to be noetherian, hence quasi-separated, which is a standing assumption in the
works we build on.

Theorem 5.1.4. Let X be an algebraic stack of finite type over S, and let f : X → X be an adequate
moduli space.

(i) [3, Theorems 5.3.1 and 7.2.1] The map f is surjective, universally closed, and initial for maps to
schemes and to separated algebraic spaces over S.
[2, Theorem 6.6] If f is a good moduli space, it is initial for maps to algebraic spaces.
In particular, adequate moduli spaces which are schemes and good moduli spaces are unique up to a
unique isomorphism.

(ii) [3, Theorem 6.3.3] The algebraic space X is of finite type over S.

(iii) [3, Theorem 5.3.1] For an algebraically closed OS-field k, the map f ×S k identifies two k-points
x, y : Spec k → X ×S k if and only if the closures of {x} and {y} in |X ×S k| intersect.

(iv) [3, Proposition 5.2.9 (1)] If X ′ → X is a flat morphism of algebraic spaces, then X ×XX ′ → X ′ is an
adequate moduli space. In particular, if S′ → S is a flat morphism of schemes, then X×SS′ → X×SS′
is an adequate moduli space.
[2, Proposition 4.7 (i)] If X → X is a good moduli space, then for any morphism X ′ → X the base
change X ×X X ′ → X ′ is a good moduli space.
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(v) [3, Proposition 5.2.9 (3)] More generally, if X ′ → X is any morphism of algebraic spaces, then the
morphism X ×X X ′ → X ′ is a universal homeomorphism. In particular, if S′ → S is any morphism
of schemes, then the closed points of X ×S S′ are in natural bijection with those of X ×S S′.

Condition (ii) in Definition 5.1.1 allows us to prove the following.

Lemma 5.1.5. Let X be an algebraic stack over a scheme S and let f : X → X be an adequate moduli
space.

(i) The pullback f∗ is fully faithful for vector bundles on X.

In particular, given a vector bundle F on X , there is up to isomorphism at most one vector bundle F on
X such that F ∼= f∗F . If such an F exists, we say that F descends to X.

(ii) Let X ′ → X be an fpqc cover, let X ′ → X ′ be the base change of X along X ′ with the second
projection morphism u : X ′ → X , and let F be a vector bundle on X . If u∗F descends to X ′, then
F descends to X.

(iii) If a line bundle L on X is generated by finitely many global sections, then L descends to X.

Proof. (i) Given vector bundles F and G on X, using the projection formula and the condition f∗OX = OX ,
we have

HomX (f∗F, f∗G) = HomX(F, f∗f∗G) = HomX(F, f∗OX ⊗G) = HomX(F,G).
(ii) The vector bundle F ′ = u∗F comes equipped with a canonical descent datum; that is, there is

a canonical isomorphism σ : pr∗1F ′
∼−−→ pr∗2F ′, where pr1,pr2 : X ′ ×X X ′ → X ′ are the projections, and

σ satisfies the cocycle condition on X ′ ×X X ′ ×X X ′. By assumption, F ′ descends to a vector bundle
F ′ on X ′, and by Theorem 5.1.4 (iv), X ′ is an adequate moduli space of X ′, so it follows from (i) that
σ descends to an isomorphism τ : pr∗1F ′ ∼= pr∗2F ′, where pr1,pr2 : X ′ ×X X ′ → X ′ are the projections.
Moreover X ′×XX ′×XX ′ is an adequate moduli space for X ′×X X ′×X X ′, so the isomorphism τ satisfies
the cocycle condition on X ′ ×X X ′ ×X X ′. In other words, we obtain a descent datum for F ′, so there
exists a unique vector bundle F on X whose restriction to X ′ is F ′, and since the descent datum for F
pulls back to that of F , it follows that f∗F ∼= F .

(iii) Let s0, . . . , sn ∈ Γ(X ,L) be global sections that generate L and denote by φ : X → Pn the
morphism induced by these sections. Since the adequate moduli space f : X → X is initial for maps to
separated algebraic spaces, there is a map ψ : X → Pn such that φ = ψ ◦ f . This implies that the line
bundle L := ψ∗OPn(1) satisfies f∗L = L, proving the claim.

If f : X → X is a good moduli space, then a more general result holds: the pullback f∗ is fully faithful
for all quasi-coherent sheaves, and in fact quasi-coherent sheaves satisfy descent along f [34, Lemma 2.12].
We do not know if the analogous result holds for adequate moduli spaces.

5.2 Existence criteria for moduli spaces
The existence criteria for good and adequate moduli spaces of [6] are expressed in terms of two valuative
criteria for algebraic stacks, known as Θ-reductivity and S-completeness, that we now recall. Both are
certain codimension-2 filling conditions and, in order to specify them, we introduce two quotient stacks
associated to a given discrete valuation ring.

For a DVR R with uniformizer π ∈ R, fraction field K, and residue field κ, we define

ΘR = [Spec(R[t])/Gm] and STR =
[

Spec
(
R[s,t]
st−π

)/
Gm

]
,

where Gm acts with weight 1 on s and weight −1 on t. We denote by 0 ∈ ΘR and 0 ∈ STR the unique
closed point in each stack.

Definition 5.2.1. An algebraic stack X of finite type over S is Θ-reductive, respectively S-complete, if
for any discrete valuation ring R and any commutative diagram of solid arrows on the left, respectively on
the right,

ΘR \ {0} X

ΘR S

∃!
STR \ {0} X

STR S

∃! (15)

there exists a unique dashed arrow making the diagram commute.
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Remark 5.2.2. A stack X satisfies Hartogs’s principle if for any regular local ring A of dimension 2 with
closed point 0 ∈ SpecA and any map SpecA \ {0} → X , there exists a unique extension SpecA → X
[6, Remark 3.51]. In particular, it follows from descent that X satisfying Hartogs’s principle is both
Θ-reductive and S-complete. Moreover, if X has affine diagonal, any such extension is unique if it exists.

We can now state the existence criteria of Alper–Halpern-Leistner–Heinloth (in a slightly more
restrictive version).

Theorem 5.2.3 ([6, Theorem 5.4]). Let X be an algebraic stack of finite type, with affine stabilizers and
separated diagonal, over a noetherian scheme S.

(i) If S is a scheme of characteristic 0, then X admits a separated good moduli space over S if and only
if X is Θ-reductive and S-complete.

(ii) If X is locally reductive (see Definition 5.2.4 below), then X admits a separated adequate moduli
space if and only if X is Θ-reductive and S-complete.

When X has affine diagonal – as it will have in our case – the condition that it has affine stabilizers
and separated diagonal is automatic.

Definition 5.2.4. A quasi-separated algebraic stack X with affine stabilizers is locally reductive if every
point of X specializes to a closed point and for every closed point x ∈ X , there exists a pointed étale
morphism ([Spec(A)/GLn], w)→ (X,x) inducing an isomorphism of stabilizers at w.

If X is S-complete, the automorphism group of any closed point is reductive [6, Proposition 3.47]. In
characteristic 0, this implies that X has étale local presentations by quotient stacks of the form [Spec(A)/G]
with G linearly reductive [5]. In positive characteristic, one instead has to assume the existence of such local
presentations. In Section 5.5, we show that the stacksMd,S andMθ-ss

d,S are Θ-reductive and S-complete,
which implies that they have good moduli spaces when S is a scheme of characteristic 0. However, to
obtain adequate moduli spaces in positive characteristic, we show in Section 5.4 that Mθ-ss

d,S is locally
reductive under the additional assumption θ = θβ or θ = ηβ for a dimension vector β.

5.3 Points of moduli spaces of quiver representations
In this section, we describe closed points of the moduli stacksMd,S andMθ-ss

d,S .

Lemma 5.3.1. Let k be a field and let M be a θ-semistable representation of dimension vector d. The
point | grM | ∈ |Mθ-ss

d,k | corresponding to the associated graded object grM of the Jordan-Hölder filtration
lies in the closure of |M |. Consequently, a closed point of |Mθ-ss

d,k | corresponds to a geometrically polystable
representation.

Proof. Given a nonsplit short exact sequence 0→ N ′ → N → N ′′ → 0 of representations where dimN = d,
the line A1 in Ext(N ′′, N ′) spanned by this class parameterizes a family of representations N such that
Nt ∼= N for t 6= 0 and N0 ∼= N ′ ⊕ N ′′. Considering the induced map A1 →Md, we see that the point
|N ′ ⊕N ′′| ∈ |Md| is in the closure of the point |N |.

If now
0 = M0 ⊂M1 ⊂M2 ⊂ · · · ⊂Mr−1 ⊂Mr = M

is a Jordan-Hölder filtration of M , then by inductively applying the above argument, we see that the
closure of |M | contains the point corresponding to(

i⊕
`=1

M `/M `−1

)
⊕M/M i

for each i = 1, . . . , r, hence in particular the point | grM |.
Now if M corresponds to a closed point in |Mθ-ss

d,k |, then it defines the same point as its base change
M ′ to an algebraically closed field. By the above, | grM ′| lies in the closure of |M ′| which only contains
one point, hence M ′ = grM ′, and so M is geometrically polystable.

Proposition 5.3.2. Let π : Mθ-ss
d,S → S denote the structure morphism and let p ∈ |Mθ-ss

d,S | be a point. If
π(p) ∈ S is closed and p is represented by a geometrically polystable representation M defined over a
finite extension L of the residue field κ(π(p)), then p is closed. If S is a Jacobson scheme, the converse
holds.
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Proof. Suppose that π(p) is closed and that p is represented by a geometrically polystable representation
M defined over a finite extension L of κ(π(p)). Since π is continuous, the fiber π−1(π(p)) is closed, so
we may assume S = Spec k where k = κ(π(p)). Suppose for a contradiction that p is not closed. The
closed substack with underlying set {p} with its reduced substack structure is of finite type over k, hence
contains a closed point p′ represented by a map SpecL′ →Mθ-ss

d,k corresponding to a representation M ′.
If M ′ is not geometrically polystable, then there is a finite extension L′′ such that M ′ ⊗L′ L′′ is not
polystable, and by Lemma 5.3.1, the point | gr(M ′ ⊗L′ L′′)| is in the closure of p′, contrary to the fact
that p′ is closed. Thus, M ′ is geometrically polystable.

Let now K be a compositum of L and L′ over k. On the one hand, by assumption p 6= p′, so M ⊗K
and M ′ ⊗K are not isomorphic. On the other hand, for any stable summand E of M ⊗K, by upper
semicontinuity we have

dim Hom(E,M ⊗K) ≤ dim Hom(E,M ′ ⊗K).

Since both M ⊗K and M ′ ⊗K are polystable of the same dimension vector and the above dimensions
give the multiplicities of the stable summand E, we conclude they must be isomorphic, which gives a
contradiction. Thus, p is closed.

Conversely, suppose that S is Jacobson and p ∈ |Mθ-ss
d | is closed. Since π is of finite type, the image

point π(p) ∈ S is closed by [44, Tag 01TB]. On the other hand since p is in particular closed in the fiber
π−1(π(p)) =Mθ-ss

d,κ(π(p)), by the Nullstellensatz p is represented by a map SpecL→Mθ-ss
d corresponding

to a representation M over L, where L is a finite extension of κ(π(p)). If M is not geometrically polystable,
then there is a finite extension L′ of L such that the point | gr(M ⊗ L′)| is distinct from p but lies in the
closure of p by Lemma 5.3.1. Thus, M must be geometrically polystable.

If S is not Jacobson, the image of a closed point p ∈ |Mθ-ss
d,S | in S may not be closed. As an example,

given a discrete valuation ring R with uniformizer π and fraction field K, the representation K → K of
the Jordan quiver given by multiplication by π−1 corresponds to a closed point inM1,SpecR whose image
in SpecR is not closed.

Corollary 5.3.3. Over an algebraically closed field k, the closed points of Md are in bijection with
isomorphism classes of semisimple k-representations.

Proof. We haveMd =Mθ-ss
d for the stability function θ = 0, with respect to which a representation is

polystable if and only if it is semisimple.

Remark 5.3.4. As an application of the classification of closed points ofMθ-ss
d , one can show that the line

bundle Lθ onMθ-ss
d descends to the moduli space Mθ-ss

d (whose existence we will obtain in Corollary 5.5.7
and Remark 5.5.8), provided we work over a noetherian base of characteristic 0, so that we can apply [2,
Theorem 10.3]. Indeed it suffices to show the stabilizer of any closed geometric point x : Spec k →Mθ-ss

d

acts trivially on x∗Lθ and since such closed points correspond to θ-polystable representations, whose
automorphism groups are products of general linear groups, one can directly check the action on x∗Lθ is
trivial. We do not give the details, as we will prove in greater generality that Lθ descends in Section 6.

5.4 Local reductivity
We first give a criterion to ensure that points on a stack specialize to closed points.

Lemma 5.4.1. If X is a quasi-compact algebraic stack with quasi-compact diagonal, then every point in
the topological space |X | specializes to a closed point.

Proof. By [44, Tag 0DQN], |X | is a spectral topological space, and by [23, Theorem 6], a spectral
topological space underlies some affine scheme, meaning that there is a homeomorphism |X | ∼= |SpecA|
for some commutative ring A. But on an affine scheme, every point specializes to a closed point.

We remark that Lemma 5.4.1 is not true for arbitrary quasi-compact stacks, not even algebraic spaces.
For example, if k is a field of characteristic 0 and X is the quotient of A1

k by the free action of Z given by
the dual action n · x 7→ x+ n on k[x], then X has infinitely many points but the trivial topology.

Now we will start applying Lemma 5.4.1 by proving that the moduli stack of all representations is
locally reductive.

Lemma 5.4.2. The stackMd,S is locally reductive.
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Proof. Since the stackMd,S is of finite type over the noetherian base scheme S, it is quasi-compact, and
by Proposition 3.1.2 the diagonal ofMd,S is affine, hence quasi-compact, so it follows from Lemma 5.4.1
that every point of |X | specializes to a closed point.

Thus, it remains to find étale local quotient presentations. By covering S by affine open subschemes,
we may assume that S itself is affine. SinceMd,S is now a global quotient stack of the affine scheme Rd,S
by the reductive group scheme Gd,S , by choosing an embedding Gd,S ↪→ GLN,S , we have

Md,S
∼= [Rd,S/Gd,S ] ∼= [X/GLN,S ],

where X is the quotient of the affine scheme Rd,S ×S GLN,S by the free diagonal action of Gd,S . Since X
is an affine scheme, this presentation shows thatMd,S is locally reductive.

We next show thatMθ-ss
d,Z is locally reductive using the determinantal sections constructed in Section 4.1.

We comment on the (non-)necessity of the condition on the stability function θ in Remark 5.5.8. First we
make an observation that will be used in the proof of Proposition 5.4.4 and Theorem 6.3.1.

Remark 5.4.3. (i) Let k be a field, B � k a surjection of rings, and let V be a representation of
dimension vector d over k. We can extend V to a representation V over SpecB as follows. Since Vi
is free for each vertex i, we can take Vi = B⊕di , and since each map Va : Vs(a) → Vt(a) is represented
by a matrix with entries in k, we can lift these matrices to B to obtain Va.

(ii) If x ∈ SpecA is a point in an affine scheme and k is a finite separable extension of the residue field
κ(x), we can find an étale morphism SpecB → SpecA whose fiber over x is Spec k. For instance,
we can take A = Aa[T ]/(f), where f ∈ A[T ] is a monic polynomial whose image in κ(x)[T ] is the
minimal polynomial of a primitive element of k over κ(x) and a ∈ A is chosen suitably.

Proposition 5.4.4. If θ = θβ or θ = ηβ for a dimension vector β, then the stackMθ-ss
d,S is locally reductive.

Proof. We consider the case θ = ηβ . By Corollary 3.2.4, Mθ-ss
d,S is quasi-compact with quasi-compact

diagonal, so by Lemma 5.4.1 every point specializes to a closed point. We are again left with finding
étale local quotient presentations as in Definition 5.2.4. The question is Zariski local on S, so we
may assume S = SpecC is affine. We begin by reducing to the case S = SpecZ. Namely, suppose
[SpecA/GLN ]→Mθ-ss

d,Z is étale and consider the diagram

[ SpecA/GLN ]×SpecZ SpecC [ SpecA/GLN ]

Mθ-ss
d,C Mθ-ss

d,Z

SpecC SpecZ

The top-left vertical arrow is étale, and moreover

[SpecA/GLN ]×SpecZ SpecC ∼= [Spec(A⊗Z C)/GLN ]

is of the required form, so base changing an étale cover of Mθ-ss
d,Z by quotient presentations yields the

desired cover ofMθ-ss
d,C . Thus, we may assume S = SpecZ.

Since SpecZ is Jacobson, by Proposition 5.3.2 any closed point of Mθ-ss
d,Z is represented by a map

x : Spec k →Mθ-ss
d,Z corresponding to a θ-semistable representation M defined over a finite field k. Using

Proposition 4.1.5, we can find a representation V over k̄ with dimV = mβ for some m > 0 such that

Hom(M ⊗ k̄, V ) = Ext(M ⊗ k̄, V ) = 0.

The representation V is defined over some finite extension k′ of k, meaning that V ∼= V ′ ⊗k′ k̄ for some
representation V ′ over k′. Note that

Hom(M ⊗ k′, V ′)⊗ k̄ = Hom(M ⊗ k̄, V ) = 0,

hence Hom(M ⊗ k′, V ′) = 0. We now replace k by k′ and M by M ⊗k k′, as the two define the same
point ofMθ-ss

d,Z . Since k is separable over its prime field Fp, using Remark 5.4.3 we can find an étale map
SpecB → SpecZ whose fiber over SpecFp is Spec k and an extension V of V to SpecB.

28



Now consider the cartesian diagram

Mθ-ss
d,B Mθ-ss

d,Z

SpecB SpecZ

f

The bottom morphism is étale, hence so is the top morphism f . Moreover, f induces an isomorphism on
automorphism groups because it arises as the base change of a morphism of schemes [44, Tag 0DUB].
Observe that the map x can be factored through f since we chose B that admits a quotient isomorphic to
k. Now the representation V defines a section σ of the line bundle L⊗mθ on the larger stackMd,B and
by Proposition 3.3.3 this section is nonzero at x. Let U ⊂Md,B be the nonvanishing locus of σ. Using
Proposition 4.1.5(b) we see that in fact U ⊆Mθ-ss

d,B .
We claim that U is of the desired form [SpecA/GLN ]. To see this, recall thatMd,B

∼= [Rd,B/Gd,B]
and let ϕ : Rd,B →Md,B denote the quotient map. The preimage U = ϕ−1(U) ⊂ Rd,B is Gd,B-invariant,
and moreover U is the nonvanishing locus of the section ϕ∗σ, hence affine since ϕ∗Lθ ∼= ORd,B . Thus, we
see that U ∼= [U/Gd,B ]. Finally, since we can embed Gd,B into GLN,B as a closed subgroup for a suitable
N , we can write [U/Gd,B] ∼= [SpecA/GLN,B] as in Lemma 5.4.2. In conclusion, we have exhibited an
étale neighborhood [SpecA/GLN ]→Mθ-ss

d,Z of the point x.

5.5 Θ-reductivity and S-completeness for quiver representations
In this section we give a direct moduli-theoretic proofs that the stacksMd,S andMθ-ss

d,S are Θ-reductive
and S-complete. First, we show that the stack Md,S satisfies Hartogs’s principle. For this, we use the
following version of Hartogs’s lemma.

Lemma 5.5.1. Let A be a regular local ring of dimension 2 with closed point 0 ∈ SpecA.

(i) Any locally free sheaf F of finite rank on SpecA \ {0} is free.

(ii) If F is a free sheaf of finite rank on SpecA, then any automorphism of F over SpecA \ {0} extends
uniquely to SpecA.

Proof. For (i), note that since SpecA is noetherian, the coherent sheaf F on SpecA\{0} admits a coherent
extension G to all of SpecA. The double dual G∨∨ is reflexive, hence free since A is regular local of
dimension 2. Since G∨∨ agrees with G wherever G is locally free, we see that G∨∨ is also an extension of
F , and so F is free itself.

For (ii), let n = rkF . After choosing an isomorphism F ∼= O⊕n, an automorphism φ of F|SpecA\{0}
corresponds to an invertible n× n matrix consisting of functions on SpecA \ {0}. By the usual Hartogs’s
lemma, these functions extend uniquely to functions on all of SpecA. The determinant of the resulting
matrix is nonzero at every codimension 1 point of SpecA, hence is a unit of A, so the corresponding
endomorphism of F is invertible.

Proposition 5.5.2. For any regular local ring A of dimension 2 with closed point 0 ∈ SpecA, any
morphism SpecA \ {0} → Md,S extends uniquely to SpecA → Md,S . In particular, Md,S is both
Θ-reductive and S-complete by Remark 5.2.2.

Proof. The morphism SpecA \ {0} →Md corresponds to a family

F = ((Fi)i∈Q0 , (Fa : Fs(a) → Ft(a))a∈Q1)

over SpecA \ {0}. By Lemma 5.5.1, each vector bundle Fi on SpecA \ {0} extends uniquely to F̃i on
SpecA and each map Fa extends uniquely to F̃a : F̃s(a) → F̃t(a) on SpecA. This family F̃ thus defines
the unique morphism SpecA→Md extending the given one.

We are now in a position to apply Theorem 5.2.3 to Md,S , which we know is locally reductive by
Lemma 5.4.2, and has affine diagonal by Proposition 3.1.2.

Corollary 5.5.3. The stackMd,S admits a separated adequate moduli space Md,S .

We next turn our attention to the stackMθ-ss
d,S of θ-semistable representations. As the following example

shows, the stackMθ-ss
d,S does not in general satisfy Hartogs’s principle.
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Example 5.5.4. Consider the 2-Kronecker quiver

Q : 1 2

and the stability function θ(n1, n2) = n1 − n2. Let k be a field and F be the family of representations
of Q of dimension vector d = (1, 1) over A2 = Spec k[x, y], where the arrows are multiplication by x and
multiplication by y. The representation Ft is stable when t ∈ A2 \ {0} but unstable when t = 0, as it is
destabilized by the subrepresentation k ⇒ 0. In other words, the family F gives a map A2 \ {0} →Mθ-s

d

whose unique extension to a map A2 →Md does not factor throughMθ-ss
d .

In order to establish Θ-reductivity and S-completeness, we need a moduli-theoretic interpretation of
families of representations over ΘR and STR. Throughout we will use R to denote a DVR with fraction
field K and residue field κ = R/π, where π is a uniformizer of R.

Proposition 5.5.5. The stackMθ-ss
d,S is Θ-reductive.

Proof. Since ΘR \ {0} is the union of Spec(R) and ΘK over Spec(K), a morphism ΘR \ {0} →Mθ-ss
d is

given by a family F of θ-semistable representations over Spec(R) with a filtration

0 = F0
K ⊂ F1

K ⊂ · · · ⊂ FrK = FK

of the generic fiber FK such that the successive quotients F`K/F`−1
K are θ-semistable.

Since Md is Θ-reductive by Proposition 5.5.2, the filtration F•K extends uniquely to a filtration
F• of F . Thus it suffices to verify that the associated graded of this filtration over the special fiber is
θ-semistable, or equivalently that F`κ/F`−1

κ are all θ-semistable. Since θ is constant in flat families, we
have θ(F`κ) = θ(F`K) = 0, and as F`κ is a subrepresentation of the θ-semistable representation Fκ of the
same slope, it is also θ-semistable and consequently all the F`κ/F`−1

κ are θ-semistable.

Proposition 5.5.6. The stackMθ-ss
d,S is S-complete.

Proof. Let STR \ {0} →Mθ-ss
d be a morphism. By Proposition 5.5.2 the morphism extends uniquely to

STR →Md, so we must show that the image of 0 ∈ STR is contained inMθ-ss
d .

The morphism STR →Md is equivalent to a diagram of representations

· · · F`−1 F` F`+1 · · ·
s s

t

s

t

s

t t

of Q over SpecR, such that

• each map s and t is injective,

• s ◦ t = t ◦ s = π,

• s is an isomorphism for `� 0 and t is an isomorphism for `� 0,

• the induced maps s : F`−1/tF` → F`/tF`+1 and t : F`+1/sF` → F`/sF`−1 are injective.

The restriction to STR \ {0} ∼= SpecR
∐

SpecK SpecR corresponds to the two θ-semistable representations

E := colim(F`−1 t←− F`) and F := colim(F` s−→ F`+1)

such that the restrictions EK and FK to SpecK are isomorphic. Over the closed subsets Θκ
s=0
↪−−→ STR

and Θκ
t=0
↪−−→ STR we obtain filtrations

· · · t
↪−→ F`+1/sF` t

↪−→ F`/sF`−1 t
↪−→ · · · ↪→ Eκ

and
· · · s

↪−→ F`−1/tF` s
↪−→ F`/tF`+1 s

↪−→ · · · ↪→ Fκ
respectively. The image of 0 ∈ STR corresponds to the common associated graded

⊕
`∈Z

F`/tF`+1

s(F`−1/tF`)
∼=
⊕
`∈Z

F`/sF`−1

t(F`+1/sF`)
∼=
⊕
`∈Z

F`

sF`−1 + tF`+1 ,
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which we must show is θ-semistable.
By assumption we have for all `

0 = θ(Eκ) ≥ θ(F`/sF`−1) = θ(F`)− θ(F`−1),

since F`−1 ∼= sF`−1 ⊆ F`. Similarly,

0 = θ(Fκ) ≥ θ(F`/tF`+1) = θ(F`)− θ(F`+1).

Thus, we must have θ(F`) = θ(F`+1) for all `. Moreover, as the value of θ is constant in flat families
and F`K ∼= FK , we must have θ(F`) = 0 for all `. Thus, the quotients F`/tF`+1 are all semistable with
θ(F`/tF`+1) = 0, and the same is true for the quotients (F`/tF`+1)/s(F`−1/tF`).

Similarly to Corollary 5.5.3 we obtain the following.

Corollary 5.5.7. If θ = θβ or θ = ηβ for a dimension vector β, then the stackMθ-ss
d,S admits an adequate

moduli space Mθ-ss
d,S , separated over S.

Proof. We have verified thatMθ-ss
d,S is locally reductive in Proposition 5.4.4, Θ-reductive in Proposition 5.5.5,

and S-complete in Proposition 5.5.6. It moreover has affine diagonal, and thus affine stabilizers and separated
diagonal. Therefore, it admits an adequate moduli space Mθ-ss

d,S , separated over S, by [6, Theorem 5.4] (see
Theorem 5.2.3).

Recall that, if Q is acyclic, then any stability function θ for which there exists a semistable representation
supported on Q0 can be written in this form by Lemma 2.3.5.

Remark 5.5.8. It follows from the GIT construction that Mθ-ss
d,S is locally reductive for an arbitrary

stability function θ. We are currently unable to remove the hypothesis θ = θβ or θ = ηβ using our methods.
When the base scheme S has characteristic 0, S-completeness implies local reductivity [6, Proposi-

tion 3.47, Theorem 2.2], and it follows that the stackMθ-ss
d,S admits a separated good moduli space for any

choice of θ.

Corollary 5.5.7 also follow from GIT, as explained in [7, Theorem 1.5]. We have given a purely
moduli-theoretic argument by appealing to the existence result for adequate moduli spaces.

5.6 Langton’s semistable extension theorem for quiver representations
In this section we will show that when Q is an acyclic quiver, the adequate moduli space Mθ-ss

d,S is proper
over S, where S is a noetherian scheme. This is a particular instance of Proposition 5.6.1 describing
properness of maps between adequate moduli spaces.

Proposition 5.6.1. Let Q be a (not necessarily acyclic) quiver and let θ be a stability function. The
morphism

Mθ-ss
d,S → Md,S

on adequate moduli spaces is proper whenever the adequate moduli space Mθ-ss
d,S exists (see Corollary 5.5.7).

The proof of Proposition 5.6.1 relies on the following result, which is an analogue of the main result of
[32].

Proposition 5.6.2. Let R be a DVR with uniformizer π, fraction field K and residue field κ. Let M be a
representation over R such that the generic fiber M ⊗RK is θ-semistable. There exists a subrepresentation
M ′ ⊆M such that M ′ ⊗R K and M ⊗R K are isomorphic, and M ′ ⊗R κ is θ-semistable.

Proof. If M := M ⊗R κ is θ-semistable, then there is nothing to prove. If this is not the case, let F be the
maximal destabilizing subrepresentation of M . This defines a subrepresentation M (1) ⊂M of Q in the
following way. For every i ∈ Q0, let (f1

i , . . . , f
si
i , e

si+1
i , . . . , edii ) be a basis ofM i extending a basis f1

i , . . . , f
si
i

of F . We can further lift these to bases of each Mi, which we denote by (f̃1
i , . . . , f̃

si
i , ẽ

si+1
i , . . . , ẽdii ). For

every i ∈ Q0, we define M (1)
i as the subset of Mi spanned by (f̃1

i , . . . , f̃
si
i , πẽ

si+1
i , . . . , πẽdii ). For every

a : i → j, the restriction of Ma to M (1)
i lands in M (1)

j , thus this defines a representation M (1) of Q. If
M (1) is θ-semistable, then we are done. Otherwise, let F 1 be the maximal destabilizing subrepresentation
of M (1) which, following the above procedure, defines a subrepresentation M (2) ⊂M (1). We can apply
the arguments of [32, Section 5] to show that this procedure will terminate, i.e., there is an n such that
M (n) is θ-semistable.
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Proof of Proposition 5.6.1. The map Mθ-ss
d,S → Md,S is separated and of finite type over S since both Mθ-ss

d,S

and Md,S are, so it suffices to show that it is universally closed. Moreover, since the adequate moduli
space mapMθ-ss

d,S → Mθ-ss
d,S is surjective, it is enough to show that the mapMθ-ss

d,S → Md,S is universally
closed. This is local on the base scheme S, so since the formation of the adequate moduli space commutes
with base change along open embeddings, we may assume that S = SpecB for a noetherian ring B.

To show that Mθ-ss
d,S → Md,S is universally closed, we verify the valuative criterion for universal

closedness [44, Tag 0H2C]: if for any DVR R with fraction field K and the square of solid arrows in the
diagram

SpecK ′ SpecK Mθ-ss
d,S

SpecR′ SpecR Md,S

commutes, there exists a field extension K ′ of K, a DVR R′ ⊂ K ′ dominating R, and a dashed diagonal
arrow SpecR′ →Mθ-ss

d,S making the whole diagram commute, then the rightmost morphism is universally
closed.

Since S = SpecB is affine, we have by Proposition 3.1.4 thatMd,S = [SpecA/GLN ], where A is a
polynomial ring over B. Moreover, since B is noetherian, the map π : Md,S →Md,S is of finite type by
Theorem 5.1.4 (ii). Thus, we may apply [6, Theorem A.8] to find a finite extension K ′ of K, a DVR
R′ ⊇ R dominating R, and a morphism ψ : SpecR′ →Md,S such that the diagram of solid arrows

SpecK ′ SpecK Mθ-ss
d,S

Md,S

SpecR′ SpecR Md,S

ι

π

ψ

ψ′

commutes.
The map ψ : SpecR′ →Md,S corresponds to a family of representations over R′ with θ-semistable

generic fiber. By Proposition 5.6.2, there exists another morphism ψ′ : SpecR′ →Mθ-ss
d,S such that the

restrictions of ψ and ψ′ to SpecK ′ agree. Since R′ is a DVR and Md,S is separated, this implies that the
two morphisms π ◦ ψ and π ◦ ι ◦ ψ′ are equal [44, Tag 03KU]. Thus, the top and bottom rows together
with the arrow ψ′ in the above diagram are what we set out to construct.

If Q is not acyclic, then Md,k is not proper over Spec(k). Consider for instance the Jordan quiver:

•

In this case all representations are θ-semistable, since the only stability function is the zero function. For
an explicit example (using the notation of Proposition 5.6.2) that illustrates how the valuative criterion for
properness fails it suffices to consider the one-dimensional representation Ma : K → K, 1 7→ π−1 over K.
Then M has no lift to any representation over R. In fact, the space of d-dimensional representations of Q
where d = (1) is represented by the affine line, because the group Gd,k

∼= Gm acts trivially on Rd,k = A1.

Proposition 5.6.3. If Q is acyclic, the stackMθ-ss
d,S is universally closed over S.

Proof. We check the valuative criterion [44, Tag 0H2C], which translates to: for a discrete valuation ring
R with uniformizer π and fraction field K, if M is a semistable representation over K, there exists a
semistable representation N over R and an isomorphism φ : M ∼−→ N |K . By Proposition 5.6.2, it suffices
to find such a family N without requiring that N ⊗R (R/π) is semistable.

Choose an admissible ordering of Q0 = {1, . . . , n} and a K-basis of Mi for each i ∈ Q0. In these bases,
the maps Ma : Ms(a) →Mt(a) are given by matrices Aa over K. For each i, let Ni be a free R-module with
the same basis. We define integers mi for i ∈ Q0 by setting m1 = 0 and inductively choosing mi in such a
way that for each arrow a with t(a) = i, the matrix Na = πmi−ms(a)Aa has entries in R. Now we can set
N = ({Ni}i∈Q0 , {Na}a∈Q1), and φ : M ∼−→ N |K is given by taking φi to be multiplication by πmi .

Corollary 5.6.4. If Q is acyclic, the adequate moduli space Mθ-ss
d,S is proper over S.
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Proof. The map Mθ-ss
d,S → S is separated by Corollary 5.5.7, so it suffices to show that it is universally

closed, and since the mapMθ-ss
d,S → Mθ-ss

d,S is surjective, this is equivalent toMθ-ss
d,S → S being universally

closed, which is Proposition 5.6.3.

The following gives a complete description of the moduli space Md,S when Q is acyclic.

Proposition 5.6.5. If Q is acyclic, the structure morphism Md,S → S is an isomorphism.

Proof. Consider first the case S = Spec k for a field k. We claim that the stackMd,k has a unique closed
point. Indeed, by Proposition 5.3.2, any closed point is represented by a semisimple representation M
defined over a finite extension L of k. Since Q is acyclic, the only such semisimple representation is⊕

i∈Q0
S(i)⊕di which is already defined over k. Thus, by Theorem 5.1.4 (iii), the adequate moduli space

Md has a unique closed point which is defined over k, and since Md is of finite type over k, this point must
be the only one. Finally, as the stackMd is reduced, so is Md, and thus we conclude that Md

∼= Spec k.
Let now S be a noetherian scheme. For any point x ∈ S, the base change map

Md,κ(x) → Md,S ×S Specκ(x)

is bijective by Theorem 5.1.4 (v), and by the above Md,κ(x) is isomorphic to Specκ(x). Since Md,S → S
is also proper by Corollary 5.6.4, it is finite by Zariski’s Main Theorem [44, Tag 0A4X]. Thus, we have
Md,S

∼= SpecOSA for a sheaf A of finite OS-algebras. Moreover, since for any x ∈ S, the induced map
OS |x → A|x is an isomorphism, the structure map OS → A is surjective, so Md,S → S is a closed
embedding. On the other hand, the compositionMd,S → Md,S → S is scheme-theoretically surjective,
hence so is Md,S → S, so it must be an isomorphism.

A more general result regarding the structure of Md,S is proved using GIT-methods by Donkin in [15,
Theorem and Remark], generalizing the result for fields in characteristic 0 due to Le Bruyn–Procesi [33,
Theorem 1].

6 Projectivity of the adequate moduli space
The aim of this section is to prove that the moduli space Mθ-ss

d,S is projective over S when the quiver Q is
acyclic. Recall that we defined a line bundle Lθ onMθ-ss

d in Section 3.3. We begin by showing that Lθ is
semiample even if Q is not acyclic, which will imply Theorem B from the introduction. After this, we
show with increasing generality that Lθ is relatively ample over S.

6.1 Global generation over a field
Let Q be a quiver, d a dimension vector, and θ a stability function such that θ(d) = 0.

Proposition 6.1.1. Suppose k is a field and the stability function θ is of the form θ = θβ or θ = ηβ for a
dimension vector β. The line bundle Lθ onMθ-ss

d,k is semiample and descends to a line bundle Lθ on the
moduli space Mθ-ss

d,k . In fact, if m ∈ N satisfies the inequality (13), then L⊗mθ is generated by finitely many
global sections, and if k is algebraically closed, these sections can be taken to be of the form σV for a
representation V of dimension vector mβ.

Proof. We give the proof when θ = ηβ , the other case follows similarly. Assume first that k is alge-
braically closed. Let p ∈Mθ-ss

d,k be a closed point corresponding to a θ-semistable representation M . By
Corollary 4.1.4 (b), a general representation V of dimension vector mβ satisfies Hom(M,V ) = 0, and by
Proposition 3.3.3, the associated section σV of L⊗mθ is nonzero at the point p. SinceMθ-ss

d,k is quasi-compact,
the non-vanishing loci of finitely many such sections coverMθ-ss

d,k .
Let now k be an arbitrary field. By the above, the pullback of L⊗mθ toMθ-ss

d,k̄
is generated by finitely

many global sections when m satisfies (13), so the same holds for L⊗mθ by for example [45, Exercise 19.2.I].
To prove that Lθ descends to Mθ-ss

d,k , we let m > 0 be an integer satisfying (13) so that both L⊗mθ
and L⊗m+1

θ are generated by finitely many globally sections. It follows from Lemma 5.1.5 (iii) that
L⊗mθ and L⊗m+1

θ descend to line bundles Lm and Lm+1 on Mθ-ss
d,k . Now Lθ := Lm+1 ⊗ L∨m pulls back to

L⊗m+1
θ ⊗ (L⊗mθ )∨ = Lθ, so we see that Lθ itself descends.

Proof of Theorem B. This now follows from Proposition 4.2.1 and Proposition 6.1.1, with the bound in
Theorem B being derived just from the Euler matrix for Q and the dimension vector d, and not the more
implicit bound in (13).
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Remark 6.1.2. Effective basepoint-freeness results as in Theorem B are of interest in general, and for
moduli spaces in particular. For moduli of vector bundles on (smooth projective) curves there has been
significant progress; for an overview, see [36, Section 7.2]. The moduli space MC(r,L) of semistable vector
bundles of rank r and fixed determinant L on a curve C of genus g has Picard rank 1 and its Picard group
is generated by a determinantal line bundle. The best known bound on the basepoint-freeness of the linear
system associated to the kth multiple of the generator is quadratic in the rank r (but independent of the
genus g). These bounds are similar to the one in Theorem B, which are also quadratic in the entries of
the dimension vector.

Conjecturally [36, Section 7.5] the true bound for basepoint-freeness on moduli of vector bundles is
linear in the rank, and thus of the same order as the square root of the dimension of the moduli space.

For moduli of quiver representations one also expects room for improvement. Consider the following
two ways in which Pn can be realized as a moduli space of quiver representations. First, using dimension
vector (1, 1) for the (n+ 1)-Kronecker quiver as in Example 4.2.2 and stability function (1,−1) we obtain a
bound linear in n, yet the Picard group is generated by the very ample line bundle O(1), hence the bound
should be constant. On the other hand, following [22, page 218] we can also realize it as the moduli space
for the 2-Kronecker quiver using dimension vector (n, n). Again using Example 4.2.2 we see that λ = 0,
and thus the effective basepoint-freeness bound says that the generator is globally generated. See also
Remark 4.2.3 for the case of general Dynkin and extended Dynkin quivers.

In general, Fujita’s conjecture predicts a bound linear in the dimension of the moduli space. We obtain
a bound that is quadratic in the entries of the dimension vector, and thus of the same order as the
dimension of the moduli space which also grows quadratically in the entries of the dimension vector. This
can be compared to Kollár’s general effective basepoint-freeness result [31, Theorem 1.1], which is very far
from the predicted bound.

6.2 Projectivity over a field
From now on, we assume that Q is acyclic, in which case Lemma 2.3.5 (b) implies that θ = ηβ for a unique
dimension vector β ∈ NQ0 . We now prove Theorem A (ii) over a field.

Theorem 6.2.1. Let k be a field and assume that Q is acyclic. The line bundle Lθ descends to an
ample line bundle Lθ on the moduli space Mθ-ss

d,k . In particular, the moduli space Mθ-ss
d,k of θ-semistable

representations with dimension vector d is a projective variety.

Proof. Suppose first that k is algebraically closed. By Proposition 6.1.1, the line bundle Lθ is semiample
and descends to a line bundle Lθ. To show that Lθ is ample, it suffice to show that for m satisfying (13),
the map φ : Mθ-ss

d → Pn induced by the complete linear series of L⊗mθ is finite. For convenience, we denote
L = L⊗mθ and L = L⊗mθ . We first claim that φ has finite fibers. If not, there exists a smooth, proper,
connected curve C and a nonconstant map γ : C → Mθ-ss

d,k such that the composition φ ◦ γ : C → Pn is
constant. This means that the line bundle γ∗L has degree 0 on C, so any section of any power of γ∗L is
constant. We will show that this is impossible.

By Theorem 5.1.4 (iii) and Proposition 5.3.2, the k-points of Mθ-ss
d,k correspond to θ-polystable represen-

tations under the adequate moduli space map f :Mθ-ss
d,k → Mθ-ss

d,k . Given a polystable representation, there
are only finitely many polystable representations of the same dimension vector with the same isomorphism
classes of stable summands. Thus, since the image of C in Mθ-ss

d,k contains infinitely many k-points, it in
particular contains two points p and p′ corresponding to polystable representations M and M ′ such that
one of the stable summands of M does not appear in M ′. By Theorem 4.5.1, there exists m′ > 0 and a
representation V of dimension vector mm′β such that

Hom(M,V ) 6= 0 and Hom(M ′, V ) = 0.

The representation V induces a section σV of L⊗m′ , and by Proposition 3.3.3 we have σV (M) = 0 but
σV (M ′) 6= 0. There is a section t ∈ Γ(Pn,OPn(m′)) such that σV = f∗φ∗t, and the section s = φ∗t ∈
Γ(Mθ-ss

d,k , L
⊗m′) has the property that s(p) = 0 but s(p′) 6= 0. Hence, γ∗(s) is a nonconstant section of

γ∗L⊗m
′ , which gives a contradiction. Thus, φ has finite fibers.

Since Mθ-ss
d,k is proper by Corollary 5.6.4, the map φ is proper, hence finite by Zariski’s Main Theorem

[44, Tag 0A4X]. Thus, Mθ-ss
d,k is projective and Lθ is ample. This concludes the case when k is algebraically

closed.
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Now let k be an arbitrary field and let k̄ be an algebraic closure. By the case of an algebraically closed
field, Lθ,k̄ descends to an ample line bundle Lθ,k̄ on Mθ-ss

d,k̄
. Consider the diagram

Mθ-ss
d,k̄

Mθ-ss
d,k

Mθ-ss
d,k̄

Mθ-ss
d,k

Spec k̄ Spec k

By Theorem 5.1.4 (iv), the base change morphism Mθ-ss
d,k̄
→ Mθ-ss

d,k ×Spec k Spec k̄ is an isomorphism, so it
follows from Lemma 5.1.5 (ii) that there exists a line bundle Lθ on Mθ-ss

d,k whose pullback to Mθ-ss
d,k̄

is Lθ.
Finally, we claim that Lθ is ample. Since Mθ-ss

d,k is proper over k, by [44, Tag 0D38], it suffices to show
that for any coherent sheaf F on Mθ-ss

d,k , there exists n0 such that

Hi(Mθ-ss
d,k , F ⊗ L⊗nθ ) = 0

for all i > 0 and all n ≥ n0. By flat base change, we have

Hi(Mθ-ss
d,k , F ⊗ L⊗nθ )⊗k k̄ ∼= Hi(Mθ-ss

d,k̄
, F ⊗ L⊗nθ ),

where F denotes the pullback of F to Mθ-ss
d,k̄

. By the first part of the proof, Lθ is ample, and so such an n0
exists.

6.3 Projectivity over a general base
We are now ready to prove Theorem A (ii), namely that Mθ-ss

d,S is projective over an arbitrary noetherian
base scheme S. Here we use the notion of projectivity from [44, Tag 01W8] (and not the stronger notion
of H-projectivity).

Theorem 6.3.1. Suppose Q is acyclic and S is a noetherian scheme. The line bundle Lθ descends to an
S-ample line bundle Lθ on the moduli space Mθ-ss

d,S . In particular, Mθ-ss
d,S is projective over S.

Proof. Recall that Mθ-ss
d,S is proper over S Corollary 5.6.4. We begin by reducing to the case when the base

scheme is SpecZ. Consider the commuting diagram

Mθ-ss
d,S Mθ-ss

d,Z

Mθ-ss
d,S Mθ-ss

d,Z × S Mθ-ss
d,Z

S SpecZ

ιM

fS
fZ|S

fZ

g

πS

ιM

πZ|S πZ

ι

(16)

Suppose we know that Lθ,Z descends to a Z-ample line bundle Lθ,Z on Mθ-ss
d,Z . This means that there exists

a closed embedding j : Mθ-ss
d,Z ↪→ PnZ such that j∗O(1) = L⊗mθ for some m > 0, and in particular Mθ-ss

d,Z is a
scheme. By base change, we obtain a closed embedding jS : Mθ-ss

d,Z × S ↪→ PnS such that j∗SO(1) = ι∗ML
⊗m
θ,Z .

Moreover, since
f∗Sg
∗ι∗MLθ,Z = ιMf

∗
ZLθ,Z = ιMLθ,Z = Lθ,S ,

we see that Lθ,S descends to the line bundle Lθ,S = g∗ι∗MLθ,Z and that L⊗mθ,S = g∗j∗SO(1).
Now by Theorem 5.1.4 (v), the map g has finite fibers, and it is proper since Mθ-ss

d,S is. Thus, g is finite
by [44, Tag 0A4X]. This implies firstly that Mθ-ss

d,S is affine over the scheme Mθ-ss
d,Z ×S, hence itself a scheme,

and secondly by [44, Tag 0B5V] that Lθ,S is ample.
We now proceed to prove the theorem over SpecZ. First of all, we show that Lθ,Z descends to the

moduli space Mθ-ss
d,Z . As in the proof Proposition 6.1.1, it suffices to show that L⊗mθ,Z descends for all

sufficiently large integers m, and by combining Lemma 5.1.5 (ii) and Lemma 5.1.5 (iii), it is enough to
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show that for all such m > 0, there exists an étale cover of SpecZ by affine schemes SpecA → SpecZ
such that L⊗mθ,A is globally generated.

By Proposition 6.1.1, for all sufficiently large integers m > 0 and for all primes p the line bundle
L⊗m
θ,Fp

is generated by determinantal sections σ0, . . . , σn corresponding to representations V0, . . . , Vn of
dimension vector mβ over Fp. These representations are defined over a finite extension k of Fp, and using
Remark 5.4.3 we can find an étale neighborhood SpecB → SpecZ of Spec k and extensions Vi of each Vi
to B. The representations Vi define global sections σ̃i of L⊗mθ,B overMθ-ss

d,B which pull back to σi inMθ-ss
d,Fp

.
Thus, the locus U onMθ-ss

d,B over which the σ̃i generate L⊗mθ,B containsMθ-ss
d,k .

Since the structure morphism Mθ-ss
d,B → SpecB is closed by Proposition 5.6.3, the image of the

complement of U is closed in SpecB and does not contain Spec k, so replacing SpecB by an affine open
neighborhood of Spec k, we may assume that the sections σ̃i generate L⊗md,B . Choosing such an étale
neighborhood SpecB for each prime p provides us with the required étale cover of SpecZ.

Let LZ denote the line bundle on Mθ-ss
d,Z whose pullback toMθ-ss

d,Z is LZ = Lθ,Z, and similarly define
LFp on Mθ-ss

d,Fp
. We know that Mθ-ss

d,Z → SpecZ is proper, so by [44, Tag 0D3A] it suffices to show that the
restriction of LZ to Mθ-ss

d,Z ×Z Fp is ample, and to do this, it suffices to show that the pullback of LZ to
Mθ-ss
d,Z ×Z Fp is ample.
Now consider the diagram (16) with S = SpecFp. As above, the base change morphism g is finite, so

it follows that if g∗ι∗MLZ is ample on Mθ-ss
d,Fp

, then ι∗MLZ is ample on Mθ-ss
d,Z ×Z Fp. Now, onMθ-ss

d,Fp
we have

isomorphisms of line bundles

f∗Fp
LFp = LFp = ι∗MLZ = ι∗Mf

∗
ZLZ = f∗Fp

g∗ι∗MLZ,

which by Lemma 5.1.5 (i) implies that LFp = g∗ι∗MLZ. However, we know from Theorem 6.2.1 that LFp is
ample on Mθ-ss

d,Fp
, so ι∗ML is ample on Mθ-ss

d,Z ×Z Fp.

A Projectivity using Theta-stability
In this section we present a short argument for projectivity that uses Halpern–Leistner’s theory of stability
for stacks. Using this theory gives a shorter argument than King’s or the GIT-free approach outlined in
the body of this paper, albeit it relies on a theorem ([21, Theorem 5.6.1 (2)]) that we treat as a black
box, and only holds in characteristic 0. The theorem says that if a stackM admits a good moduli space,
then its semistable locus does too, and the latter good moduli space is projective over the former. In
particular, if the good moduli space ofM is a point, then the good moduli space of the semistable locus
is a projective variety.

Let k be a field, which we assume to be of characteristic 0, so that in the context of Theorem A.2, we
get a good (and not merely adequate) moduli space. As in Section 5.5, we define the stack Θk as [A1

k/Gm].
We will denote the closed point of Θk by 0, and let 1 denote the point corresponding to the open orbit
A1 \ {0}. As explained in [6, Corollary 7.13], a morphism f : Θk →M to a moduli stack of objects in an
abelian category corresponds to a filtration, and the closed point corresponds to the associated graded
of the filtration. As in [21, Section 3.2], we will say that a filtration is non-degenerate if the induced
morphism Gm → Aut(f(0)) of sheaves of groups has finite kernel.

For a k-scheme T we write ΘT = Θk × T . Following [20, Tag 00F3] and [6, Corollary 7.13], for an
algebraic stack X , we define FiltX , called the stack of Z-weighted filtrations, to be the stack corresponding
to the pseudofunctor:

FiltX : T → Maps(ΘT ,X ).

From now on, let X be an algebraic stack locally of finite type and with affine automorphism groups
over a noetherian base scheme S.

If L is an invertible sheaf on X , then we can define a locally constant weight function wtL : |FiltX| → Z:

wtL :
(
f : Θk → X

)
7→ wtGm

(
L|f(0)

)
,

where the Gm-action on L|f(0) is induced by Gm = AutΘk(0)→ AutX (f(0)).
Having a weight function allows one to define a notion of semistability for points of stacks; see [21,

Section 4.1] or [6, Section 7.3]. We say that a point p ∈ |X | is:

(i) L-unstable (or Θ-unstable as in [6, Section 7.3]) if there is a nondegenerate filtration f ∈ FiltX with
f(1) = p and wtL(f) < 0;
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(ii) L-semistable if it is not L-unstable.

Let Q be a quiver, possibly with oriented cycles. We fix a dimension vector d and a stability function θ
such that θ(d) = 0. LetMd,S be the moduli stack of representations of Q of dimension vector d over a
noetherian scheme S (Definition 3.1.1). Let Funiv be the universal family onMd,S . Recall that we have
the following line bundle onMd (Section 3.3):

Lθ =
⊗
i∈Q0

(detFuniv
i )⊗−θi .

This line bundle induces a weight function and hence a notion of semistability onMd,S which we will
show coincides with King’s notion of θ-stability (Section 2.3).

Lemma A.1. Fix a dimension vector d and a stability function θ such that θ(d) = 0.

(i) The weight function for a filtration f : Θk →Md,S has the following formula:

wtLθ (f) = −
∑
n∈Z

n · θ (grnM) = −
∑
n∈Z

θ (FnM) ,

where f corresponds to a representation M with filtration . . . ⊂ Fn+1M ⊂ FnM ⊂ . . . and
grnM := FnM/Fn+1M so that f(0) = grM .

(ii) A representation M is θ-semistable if and only if it is Lθ-semistable.

Proof. To prove the first part, the weight calculation is as follows:

wtLθ (f) = wtGm

⊗
i∈Q0

(detFuniv
i )⊗−θi

∣∣∣∣∣
f(0)

= wtGm

⊗
i∈Q0

(det(grM)i)⊗−θi


= −
∑
i∈Q0

θi · wtGm det ((grM)i) .

The Gm-weight corresponds to the grading weight, so wtGm(det grnMi) = ndimMi, and therefore:

wtLθ (f) = −
∑
i∈Q0

θi ·
∑
n∈Z

n dim grnMi = −
∑
n∈Z

n · θ (grnM) .

The second equality follows from the fact that θ is additive in short exact sequences, so θ (dim grnM) =
θ (dimFnM)− θ (dimFn+1M).

Both equalities are used to prove the equivalence in the second part. Suppose first that M is θ-unstable,
so that there is a subrepresentation M ′ ⊂ M such that θ(dimM ′) > 0. We can view it as a two-step
filtration f = (M ′ ⊂ M) with f(1) = M whose associated graded factors are gr0 = M/M ′, gr1 = M ′

while all other components are zero. Then by (i):

wtLθ (f) = −θ(gr1M) = −θ(M ′) < 0.

This shows that M is Lθ-unstable.
Conversely, assume that M is Lθ-unstable and let f be the destabilizing filtration with wtLθ(f) < 0.

By (i), this is equivalent to ∑
n∈Z

θ(FnM) > 0,

so there exists at least one value of n for which θ(FnM) > 0. Since θ(M) = θ(d) = 0 by assumption, we
see that FnM ⊂M is a proper subrepresentation that destabilizes M .

Theorem A.2. Let Q be a quiver, d a dimension vector and θ a stability function with θ(d) = 0. Fix a
noetherian scheme S defined over Q. Then Mθ-ss

d,S is an algebraic space which is projective over Md,S . In
particular, if S = Spec k for a field k of characteristic 0 and Q is acyclic, then Mθ-ss

d,k is a projective variety.

Proof. By Corollary 5.5.3 and since S is of characteristic 0, the stackMd,S admits a good moduli space
Md,S . By Lemma A.1 (ii), the substack Mθ-ss

d,S ⊂ Md,S coincides with the substack of Lθ-semistable

37



objects, so we can apply [21, Theorem 5.6.1(2)] to π = idMd
: Md →Md and conclude that this substack

admits a good moduli space Mθ-ss
d,S , yielding the commutative diagram

Mθ-ss
d,S Md,S

Mθ-ss
d,S Md,S

where vertical arrows are good moduli spaces and the bottom morphism Mθ-ss
d,S → Md,S is projective.

Using the descriptionMd,S
∼= [Rd,S/Gd,S ] from Proposition 3.1.4 and the fact that the good moduli

space of such a global quotient stack is given by the ring of invariants, then we can also get a more
streamlined proof for quivers with cycles that the good moduli space Mθ-ss

d,S is projective-over-affine. It
would be interesting to find a proof that Md,S is affine without methods from GIT.
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