
MODULI PROBLEMS AND GEOMETRIC INVARIANT THEORY

VICTORIA HOSKINS

1. Introduction

In this course, we study moduli problems in algebraic geometry and constructions of moduli
spaces using geometric invariant theory. A moduli problem is essentially a classification problem:
we want to classify certain geometric objects up to some notion of equivalence (key examples
are vector bundles on a fixed variety up to isomorphism or hypersurfaces in Pn up to projective
transformations). We are also interested in understanding how these objects deform in families
and this information is encoded in a moduli functor. An ideal solution to a moduli problem
is a (fine) moduli space, which is a scheme that represents this functor. However, there are
many simple moduli problems which do not admit such a solution. Often we must restrict
our attention to well-behaved objects to construct a moduli space. Typically the construction
of moduli spaces is given by taking a group quotient of a parameter space, where the orbits
correspond to the equivalence classes of objects.

Geometric invariant theory (GIT) is a method for constructing group quotients in algebraic
geometry and it is frequently used to construct moduli spaces. The core of this course is
the construction of GIT quotients. Eventually we return to our original motivation of moduli
problems and construct moduli spaces using GIT. We complete the course by constructing
moduli spaces of projective hypersurfaces and moduli spaces of (semistable) vector bundles
over a smooth complex projective curve.

Let us recall the quotient construction in topology: given a group G acting on a topological
space X, we can give the orbit space X/G := {G · x : x ∈ X} the quotient topology, so that the
quotient map π : X → X/G is continuous. In particular, π gives a quotient in the category of
topological spaces. More generally, we can suppose G is a Lie group and X has the structure
of a smooth manifold. In this case, the quotient X/G will not always have the structure of a
smooth manifold (for example, the presence of non-closed orbits, usually gives a non-Hausdorff
quotient). However, if G acts properly and freely, then X/G has a smooth manifold structure,
such that π is a smooth submersion.

In this course, we are interested in actions of an affine algebraic group G (that is, an affine
scheme with a group structure such that multiplication and inversion are algebraic morphisms).
More precisely, we’re interested in algebraic G-actions on an algebraic variety (or scheme of
finite type) X over an algebraically closed field k. As most affine groups are non-compact, their
actions typically have some non-closed orbits. Consequently, the topological quotient X/G will
not be Hausdorff. However one could also ask whether we should relax the idea of having an
orbit space, in order to get a quotient with better geometrical properties. More precisely, we
ask for a categorical quotient in the category of finite type k-schemes; that is, a G-invariant
morphism π : X → Y which is universal (i.e., every other G-invariant morphism X → Z factors
uniquely through π). With this definition, it is not necessary for Y to be an orbit space and so
we can allow π to identify some orbits in order to get an algebraic quotient.

Geometric invariant theory, as developed by Mumford in [25], shows that for a reductive
group G acting on a quasi-projective scheme X (with respect to an ample linearisation) one
can construct an open subvariety U ⊂ X and a categorical quotient U//G of the G-action on
U which is a quasi-projective scheme. In general, the quotient will not be an orbit space but it
contains an open subscheme V/G which is the orbit space for an open subset V ⊂ U . If X is an
affine scheme, we have that U = X and the categorical quotient is also an affine scheme and if
X is a projective scheme, the categorical quotient is also projective. We briefly summarise the
main techniques involved in GIT.
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Let X = SpecA be an affine scheme of finite type over an algebraically closed field k; then
A = O(X) := OX(X) is a finitely generated k-algebra. An algebraic G-action on X induces
G-action on the ring O(X) of regular functions on X. For any G-invariant morphism f : X → Z
of schemes, the image of the associated homomorphism f∗ : O(Z) → O(X) is contained in the
subalgebra O(X)G of G-invariant functions. In particular, if O(X)G is finitely generated as a
k-algebra, then the associated affine scheme SpecO(X)G is also of finite type over k and the
inclusion O(X)G �→ O(X) induces a morphism X → X//G := SpecO(X)G, which is categorical
quotient of the G-action on X. The affine GIT quotient X → X//G identifies any orbits whose
closures meet, but restricts to an orbit space on an open subscheme of so-called stable points.

An important problem in GIT is determining when the ring of invariants O(X)G is finitely
generated; this is known as Hilbert’s 14th problem. For G = GLn over the complex numbers,
Hilbert showed that the invariant ring is always finitely generated. However, for a group G
built using copies of the additive group Ga, Nagata gave a counterexample where O(X)G is
non-finitely generated. Furthermore, Nagata proved for any reductive group G, the ring of
invariants O(X)G is finitely generated. Consequently, (classical) GIT is concerned with the
action of reductive groups; for developments on the theory for non-reductive groups, see [6].

The affine GIT quotient serves as a guide for the general approach: as every scheme is con-
structed by gluing affine schemes, the general theory is obtained by gluing affine GIT quotients.
Ideally, we would to cover X by G-invariant open affine sets and glue the corresponding affine
GIT quotients. The open G-affine sets are given by non-vanishing loci of invariant sections of
a line bundle L on X, to which we have lifted the G-action. However, usually we cannot cover
the whole of X with such open subsets, but rather only an open subset Xss of X of so-called
semistable points. In this case, we have a categorical quotient of Xss which restricts to an orbit
space on the stable locus Xs.

The definitions of (semi)stability are given in terms of the existence of invariant sections of a
line bundle with certain properties. However, as calculating rings of invariants is difficult, one
often instead makes use of a numerical criterion for semistability known as the Hilbert–Mumford
criterion. More precisely, the Hilbert–Mumford criterion reduces the semistability of points in
a projective scheme to the study of the weights of all 1-dimensional subtori Gm ⊂ G.

The techniques of GIT have been used to construct many moduli spaces in algebraic geometry
and finally we return to the construction of some important moduli spaces. The main examples
we cover in this course are the GIT construction of moduli spaces of hypersurfaces and the
moduli spaces of (semistable) vector bundles on a smooth complex projective curve.

The main references for this course are the books of Newstead [31] and Mukai [24] on moduli
problems and GIT, and the book of Mumford [25] on GIT.

Notation and conventions. Throughout we fix an algebraically closed field k; at certain
points in the text we will assume that the characteristic of the field is zero in order to simplify
the proofs. By a scheme, we always mean a finite type scheme over k. By a variety, we mean
a reduced separated (finite type) scheme over k; in particular, we do not assume varieties are
irreducible. We let O(X) := OX(X) denote the ring of regular functions on a scheme X.
For a projective scheme X with ample line bundle L, we let R(X,L) denote the homogeneous
coordinate ring of X given by taking the direct sum of the spaces of sections of all non-negative
powers of L.
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2. Moduli problems

2.1. Functors of points. In this section, we will make use of some of the language of category
theory. We recall that a morphism of categories C and D is given by a (covariant) functor
F : C → D, which associates to every object C ∈ C an object F (C) ∈ D and to each morphism
f : C → C � in C a morphism F (f) : F (C) → F (C �) in D such that F preserves identity
morphisms and composition. A contravariant functor F : C → D reverses arrows: so F sends
f : C → C � to F (f) : F (C �) → F (C).

The notion of a morphism of (covariant) functors F,G : C → D is given by a natural trans-
formation η : F → G which associates to every object C ∈ C a morphism ηC : F (C) → G(C) in
D which is compatible with morphisms f : C → C � in C, i.e. we have a commutative square

F (C)

F (f)
��

ηC ��G(C)

G(f)
��

F (C �) ηC�
��G(C �).

We note that if F and G were contravariant functors, the vertical arrows in this square would
be reversed. If ηC is an isomorphism in D for all C ∈ C, then we call η a natural isomorphism
or simply an isomorphism of functors.

Remark 2.1. The focus of this course is moduli problems, rather than category theory and so
we are doing naive category theory (in the sense that we allow the objects of a category to be
a class). This is analogous to doing naive set theory without a consistent axiomatic approach.
However, for those interested in category theory, this can all be handled in a consistent manner,
where one pays more careful attention to the size of the set of objects. One approach to this
more formal category theory can be found in the book of Kashiwara and Schapira [18]. Strictly
speaking, in this case, one should work with the category of ‘small’ sets.

Let Set denote the category of sets and let Sch denote the category of schemes (of finite type
over k).

Definition 2.2. The functor of points of a schemeX is a contravariant functor hX := Hom(−, X) :
Sch → Set from the category of schemes to the category of sets defined by

hX(Y ) := Hom(Y,X)
hX(f : Y → Z) := hX(f) : hX(Z) → hX(Y )

g �→ g ◦ f.
Furthermore, a morphism of schemes f : X → Y induces a natural transformation of functors
hf : hX → hY given by

hf,Z : hX(Z) → hY (Z)
g �→ f ◦ g.

Contravariant functors from schemes to sets are called presheaves on Sch and form a cate-
gory, with morphisms given by natural transformations; this category is denoted Psh(Sch) :=
Fun(Schop, Set), the category of presheaves on Sch. The above constructions can be phrased as
follows: there is a functor h : Sch → Psh(Sch) given by

X �→ hX (f : X → Y ) �→ hf : hX → hY .

In fact, there is nothing special about the category of schemes here. So for any category C,
there is a functor h : C → Psh(C).
Example 2.3. For a scheme X, we have that hX(Spec k) := Hom(Spec k,X) is the set of
k-points of X and, for another scheme Y , we have that hX(Y ) is the set of Y -valued points of
X. Let X = A1 be the affine line; then the functor of points hA1 associates to a scheme Y the
set of functions on Y (i.e. morphisms Y → A1). Similarly, for the scheme Gm = A1 − {0}, the
functor hA1 associates to a scheme Y the set of invertible functions on Y .
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Lemma 2.4 (The Yoneda Lemma). Let C be any category. Then for any C ∈ C and any
presheaf F ∈ Psh(C), there is a bijection

{natural transformsations η : hC → F} ←→ F (C).

given by η �→ ηC(IdC).

Proof. Let us first check that this is surjective: for an object s ∈ F (C), we define a natural
transformation η = η(s) : hC → F as follows. For C � ∈ C, let ηC� : hC(C

�) → F (C �) be the
morphism of sets which sends f : C � → C to F (f)(s) (recall that F (f) : F (C) → F (C �)). This
is compatible with morphisms and, by construction, ηC(idC) = F (idC)(s) = s.

For injectivity, suppose we have natural transformations η, η� : hC → F such that ηC(IdC) =
η�C(IdC). Then we claim η = η�; that is, for any C � in C, we have ηC� = η�C� : hC(C

�) → F (C �).
Let g : C � → C, then as η is a natural transformation, we have a commutative square

hC(C)

hC(g)
��

ηC ��F (C)

F (g)
��

hC(C
�) ηC�

��F (C �).

It follows that
(F (g) ◦ ηC)(idC) = (ηC� ◦ hC(g))(IdC) = ηC�(g)

and similarly, as η� is a natural transformation, that (F (g) ◦ η�C)(idC) = η�C�(g). Hence

ηC�(g) = F (g)(ηC(idC)) = F (g)(η�C(idC)) = η�C�(g)

as required. �
The functor h : C → Psh(C) is called the Yoneda embedding, due to the following corollary.

Corollary 2.5. The functor h : C → Psh(C) is fully faithful.

Proof. We recall that a functor is fully faithful if for every C,C � in C, the morphism

HomC(C,C �) → HomPsh(C)(hC , h
�
C)

is bijective. This follows immediately from the Yoneda Lemma if we take F = h�C . �
Exercise 2.6. Show that if there is a natural isomorphism hC → h�C , then there is a canonical
isomorphism C → C �.

The presheaves in the image of the Yoneda embedding are known are representable functors.

Definition 2.7. A presheaf F ∈ Psh(C) is called representable if there exists an object C ∈ C
and a natural isomorphism F ∼= hC .

Question: Is every presheaf F ∈ Psh(Sch) representable by a scheme X?

The question has a negative answer, as we will soon see below. However, we are most
interested in answering this question for special functors F , known as moduli functors, which
classify certain geometric families. Before we introduce these moduli functors, we start with
the naive notion of a moduli problem.

2.2. Moduli problem. A moduli problem is essentially a classification problem: we have a
collection of objects and we want to classify these objects up to equivalence. In fact, we want
more than this, we want a moduli space which encodes how these objects vary continuously in
families; this information is encoded in a moduli functor.

Definition 2.8. A (naive) moduli problem (in algebraic geometry) is a collection A of objects
(in algebraic geometry) and an equivalence relation ∼ on A.

Example 2.9.

(1) Let A be the set of k-dimensional linear subspaces of an n-dimensional vector space and
∼ be equality.
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(2) Let A be the set of n ordered distinct points on P1 and ∼ be the equivalence relation
given by the natural action of the automorphism group PGL2 of P1.

(3) Let A to be the set of hypersurfaces of degree d in Pn and ∼ can be chosen to be either
equality or the relation given by projective change of coordinates (i.e. corresponding to
the natural PGLn+1-action).

(4) Let A be the collection of vector bundles on a fixed scheme X and ∼ be the relation
given by isomorphisms of vector bundles.

Our aim is to find a scheme M whose k-points are in bijection with the set of equivalence
classes A/ ∼. Furthermore, we want M to also encode how these objects vary continuously in
‘families’. More precisely, we refer to (A,∼) as a naive moduli problem, because there is often
a natural notion of families of objects over a scheme S and an extension of ∼ to families over
S, such that we can pullback families by morphisms T → S.

Definition 2.10. Let (A,∼) be a naive moduli problem. Then an extended moduli problem is
given by

(1) sets AS of families over S and an equivalence relation ∼S on AS , for all schemes S,
(2) pullback maps f∗ : AS → AT , for every morphism of schemes T → S,

satisfying the following properties:

(i) (ASpec k,∼Spec k) = (A,∼);
(ii) for the identity Id : S → S and any family F over S, we have Id∗F = F ;
(iii) for a morphism f : T → S and equivalent families F ∼S G over S, we have f∗F ∼T f∗G;
(iv) for morphisms f : T → S and g : S → R, and a family F over R, we have an equivalence

(g ◦ f)∗F ∼T f∗g∗F .

For a family F over S and a point s : Spec k → S, we write Fs := s∗F to denote the corre-
sponding family over Spec k.

Lemma 2.11. A moduli problem defines a functor M ∈ Psh(Sch) given by

M(S) := {families over S}/ ∼S M(f : T → S) = f∗ : M(S) → M(T ).

We will often refer to a moduli problem simply by its moduli functor. There can be several
different extensions of a naive moduli problem.

Example 2.12. Let us consider the naive moduli problem given by vector bundles (i.e. locally
free sheaves) on a fixed scheme X up to isomorphism. Then this can be extended in two different
ways. The natural notion for a family over S is a locally free sheaf F over X × S flat over S,
but there are two possible equivalence relations:

F ∼�
S G ⇐⇒ F ∼= G

F ∼S G ⇐⇒ F ∼= G ⊗ π∗
SL for a line bundle L → S

where πS : X×S → S. For the second equivalence relation, since L → S is locally trivial, there
is a cover Si of S such that F|X×Si

∼= G|X×Si . It turns out that the second notion of equivalence
offers the extra flexibility we will need in order to construct moduli spaces.

Example 2.13. Let A consist of 4 ordered distinct points (p1, p2, p3, p4) on P1. We want to
classify these quartuples up to the automorphisms of P1. We recall that the automorphism group
of P1 is the projective linear group PGL2, which acts as Möbius transformations. We define our
equivalence relation by (p1, p2, p3, p4) ∼ (q1, q2, q3, q4) if there exists an automorphisms f : P1 →
P1 such that f(pi) = qi for i = 1, . . . , 4. We recall that for any 3 distinct points (p1, p2, p3) on
P1, there exists a unique Möbius transformation f ∈ PGL2 which sends (p1, p2, p3) to (0, 1,∞)
and the cross-ratio of 4 distinct points (p1, p2, p3, p4) on P1 is given by f(p4) ∈ P1 − {0, 1,∞},
where f is the unique Möbius transformation that sends (p1, p2, p3) to (0, 1,∞). Therefore, we
see that the set A/ ∼ is in bijection with the set of k-points in the quasi-projective variety
P1 − {0, 1,∞}.

In fact, we can naturally speak about families of 4 distinct points on P1 over a scheme S: this is
given by a proper flat morphism π : X → S such that the fibres π−1(s) ∼= P1 are smooth rational
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curves and 4 disjoint sections (σ1, . . . ,σ4) of π. We say two families (π : X → S,σ1, . . . ,σ4) and
(π� : X � → S,σ�

1, . . . ,σ
�
4) are equivalent over S if there is an isomorphism f : X → X � over S

(i.e. π = π� ◦ f) such that f ◦ σi = σ�
i.

There is a tautological family over the scheme S = P1−{0, 1,∞}: let π : P1−{0, 1,∞}×P1 →
P1 be the projection map and choose sections (σ1(s) = 0,σ2(s) = 1,σ3(s) = ∞,σ4(s) = s). It
turns out that this family over P1 − {0, 1,∞} encodes all families parametrised by schemes S
(in the language to come, U is a universal family and P1 − {0, 1,∞} is a fine moduli space).

Exercise 2.14. Define an analogous notion for families of n ordered distinct points on P1 and
let the corresponding moduli functor be denoted M0,n (this is the moduli functor of n ordered
distinct points on the curve P1 of genus 0). For n = 3, show that M0,3(Spec k) is a single
element set and so is in bijection with the set of k-points of Spec k. Furthermore, show there is
a tautological family over Spec k.


