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6. Criteria for (semi)stability

Let us suppose that we have a reductive group G acting on a projective schemeX with respect
to an ample linearisation L. In order to determine the GIT semistable locus Xss(L) ⊂ X, we
need to calculate the algebra of G-invariant sections of all powers of L. In practice, there are
very few examples in which one can compute these rings of invariants by hand (or even with
the aid of a computer). In this section, we will give alternative criteria for determining the
semistability of a point. The main references for the material covered in this section are [4],
[25], [31] and [42].

We first observe that we can simplify our situation by assuming thatX ⊂ Pn and the G-action
is linear. Indeed, by replacing L by some power L⊗r, we get an embedding

X ⊂ Pn = P(H0(X,L⊗r)∗)

such that OPn(1)|X = L⊗r and G acts linearly on Pn. Furthermore, by Remark 5.26, we have

an agreement of (semi)stable sets X(s)s(L) = X(s)s(L⊗r).

6.1. A topological criterion. Let G be a reductive group acting linearly on a projective
scheme X ⊂ Pn. Then as G acts via G → GLn+1, the action of G lifts to the affine cones
X̃ ⊂ An+1. We let R(X) = O(X̃) denote the homogeneous coordinate ring of X.

Proposition 6.1. Let x ∈ X(k) and choose a non-zero lift x̃ ∈ X̃(k) of x. Then:

i) x is semistable if and only if 0 /∈ G · x̃;
ii) x is stable if and if dimGx̃ = 0 and G · x̃ is closed in X̃.

Proof. i) If x is semistable, then there is a G-invariant homogeneous polynomial f ∈ R(X)G

which is non-zero at x. We can view f as a G-invariant function on X̃ such that f(x̃) �= 0. As
invariant functions are constant on orbits and also their closures we see that f(G · x̃) �= 0 and
so there is a function which separates the closed subschemes G · x̃ and 0; therefore, these closed
subschemes are disjoint.

For the converse, suppose that G · x̃ and 0 are disjoint. Then as these are both G-invariant
closed subsets of the affine variety X̃ and G is geometrically reductive, there exists a G-invariant
polynomial f ∈ R(X̃)G which separates these subsets

f(G · x̃) = 1 and f(0) = 0

by Lemma 4.29. In fact, we can take f to be homogeneous: if we decompose f into homogeneous
elements f = f0 + · · · + fr, then as the action is linear, each fi must be G-invariant and, in
particular, there is at least one G-invariant homogeneous polynomial fi which does not vanish
on G · x̃. Hence, x is semistable.

ii) If x is stable, then dimGx = 0 and there is a G-invariant homogeneous polynomial
f ∈ R(X)G such that x ∈ Xf and G · x is closed in Xf . Since Gx̃ ⊂ Gx, the stabiliser of x̃ is

also zero dimensional. We can view f as a function on X̃ and consider the closed subscheme

Z := {z ∈ X̃ : f(z) = f(x̃)}

of X̃. It suffices to show that G · x̃ is a closed subset of Z. The projection map X̃ − {0} → X
restricts to a surjective finite morphism π : Z → Xf . The preimage of the closed orbit G · x
in Xf under π is closed and G-invariant and, as π is also finite, the preimage π−1(G · x) is a
finite number of G-orbits. Since π is finite, the finite number of G-orbits in the preimage of
G ·x all have dimension equal to dimG, and so these orbits must be closed in the preimage (see
Proposition 3.15). Hence G · x̃ is closed in Z.

Conversely suppose that dimGx̃ = 0 and G · x̃ is closed in X̃; then 0 /∈ G · x̃ = G · x̃ and
so x is semistable by i). As x is semistable there is a non-constant G-invariant homogeneous
polynomial f such that f(x) �= 0. As above, we consider the finite surjective morphism

π : Z := {z ∈ X̃ : f(z) = f(x̃)} → Xf .
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Since π(G · x̃) = G ·x and π is finite, x has zero dimensional stabiliser group and G ·x is closed in
Xf . Since this holds for all f such that f(x) �= 0, it follows that G · x is closed in Xss = ∪fXf .
Hence x is stable by Lemma 5.9. �

6.2. The Hilbert–Mumford Criterion. Suppose we have a linear action of a reductive group
G on a projective scheme X ⊂ Pn as above. In this section, we give a numerical criterion which
can be used to determine (semi)stability of a point x.

Following the topological criterion above, we see that to determine semistability, it is impor-
tant to understand the closure of an orbit. One way to study the closure of an orbit is by using
1-parameter subgroups of G.

Definition 6.2. A 1-parameter subgroup (1-PS) of G is a non-trivial group homomorphism
λ : Gm → G.

Fix x ∈ X(k) and a 1-PS λ : Gm → G. Then we let λx : Gm → X be the morphism given by

λx(t) = λ(t) · x.
We have a natural embedding of Gm = A1−{0} �→ P1 given by t �→ [1 : t]. Since X is projective,
it is proper over Spec k and so, by the valuative criterion for properness, the morphism λx :
Gm → X extends uniquely to a morphism λ̂x : P1 → X:

Gm� �

��

λx ��X

��
P1 ��

∃!λ̂x

��

Spec k.

We use suggestive notation for the specialisations of this extended morphism at the zero and
infinity points of P1:

lim
t→0

λ(t) · x := λ̂x([1 : 0]) and lim
t→∞

λ(t) · x := λ̂x([0 : 1]).

In fact, we can focus on the specialisation at zero, as

lim
t→∞

λ(t) · x = lim
t→0

λ−1(t) · x.

Let y := limt→0 λ(t) · x; then y is fixed by the action of λ(Gm); therefore, on the fibre over y
of the line bundle O(1) := OPn(1)|X , the group λ(Gm) acts by a character t �→ tr.

Definition 6.3. We define the Hilbert-Mumford weight of the action of the 1-PS λ on x ∈ X(k)
to be

µO(1)(x,λ) = r

where r is the weight of the λ(Gm) on the fibre O(1)y over y := limt→0 λ(t) · x.
From this definition, it is not so straight forward to compute this Hilbert–Mumford weight;

therefore, we will rephrase this in terms of the weights for the action on the affine cone. Recall
that OPn(1) is the dual of the tautological line bundle on Pn. Let An+1 be the affine cone over

Pn; then OPn(−1) is the blow up of An+1 at the origin. Pick a non-zero lift x̃ ∈ X̃ of x ∈ X.
Then we can consider the morphism

λx̃ := λ(−) · x̃ : Gm → X̃

which may no longer extend to P1, as X̃ is not proper. If it extends to zero (or infinity), we
will denote the limits by

lim
t→0

λ(t) · x̃ (or lim
t→∞

λ(t) · x̃).

Any point in the boundary λx̃(Gm)− λx̃(Gm) must be equal to either of these limit points.
The action of the 1-PS λ(Gm) on the affine cone An+1 is linear, and so diagonalisable by

Proposition 3.12; therefore, we can pick a basis e0, ..., en of kn+1 such that

λ(t) · ei = triei for ri ∈ Z.
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We call the integers ri the λ-weights of the action on An+1. For x ∈ X(k) we can pick x̃ ∈ X̃(k)
lying above this point and write x̃ =

�n
i=0 xiei with respect to this basis; then

λ(t) · x̃ =
n�

i=0

trixiei

and we let λ-wt(x) := {ri : xi �= 0} be the λ-weights of x (note that this does not depend on
the choice of lift x̃).

Definition 6.4. We define the Hilbert-Mumford weight of x at λ to be

µ(x,λ) := −min{ri : xi �= 0}.
We will soon show that this definition agrees with the above definition. However, we first

note some useful properties of the Hilbert–Mumford weight.

Exercise 6.5. Show that the Hilbert–Mumford weight has the following properties.

(1) µ(x,λ) is the unique integer µ such that limt→0 t
µλ(t) · x̃ exists and is non-zero.

(2) µ(x,λn) = nµ(x,λ) for positive n.
(3) µ(g · x, gλg−1) = µ(x,λ) for all g ∈ G.
(4) µ(x,λ) = µ(y,λ) where y = limt→0 λ(t) · x.

Lemma 6.6. The two definitions of the Hilbert–Mumford weight agree:

µO(1)(x,λ) = µ(x,λ).

Proof. Pick a non-zero lift x̃ in the affine cone which lies over x. Then we assume that we have
taken coordinates on An+1 as above so that the action of λ(t) is given by

λ(t) · x̃ = λ(t) · (x0, . . . , xn) = (tr0x0, . . . , t
rnxn).

Since µ(x,λ) + ri ≥ 0 for all i such that xi �= 0, with equality for at least one i with xi �= 0, we
see that

ỹ := lim
t→0

tµ(x,λ)λ(t) · x̃ = (y0, . . . , yn)

exists and is non-zero. More precisely, we have

yi =

�
xi if ri = −µ(x,λ)
0 else.

Therefore, λ(t) · ỹ = t−µ(x,y)ỹ. Furthermore, ỹ lies over y := limt→0 λ(t) · x and the weight of
the λ-action on ỹ is −µ(x, y). Since OPn(−1) is the blow up of An+1 at 0, we see that −µ(x,λ)
is the weight of the λ(Gm)-action on O(−1)y. Hence, the weight of the λ(Gm)-action on O(1)y
is µ(x,λ) and this completes the proof of the claim. �

From the second definition of the Hilbert–Mumford weight, we easily deduce the following
lemma.

Lemma 6.7. Let λ be a 1-PS of G and let x ∈ X(k). We diagonalise the λ(Gm)-action on the
affine cone as above and let x̃ =

�n
i=0 xiei be a non-zero lift of x.

i) µ(x,λ) < 0 ⇐⇒ x̃ =
�

ri>0 xiei ⇐⇒ limt→0 λ(t) · x̃ = 0.
ii) µ(x,λ) = 0 ⇐⇒ x̃ =

�
ri≥0 xiei and there exists ri = 0 such that xi �= 0 ⇐⇒

limt→0 λ(t) · x̃ exists and is non-zero.
iii) µ(x,λ) > 0 ⇐⇒ x̃ =

�
ri
xiei and there exists ri < 0 such that xi �= 0 ⇐⇒

limt→0 λ(t) · x̃ does not exist.

Remark 6.8. We can use λ−1 to study limt→∞ λ(t) · x̃ as

lim
t→0

λ−1(t) · x̃ = lim
t→∞

λ(t) · x̃.

Then it follows that

i) µ(x,λ−1) < 0 ⇐⇒ x̃ =
�

ri<0 xiei ⇐⇒ limt→∞ λ(t) · x̃ = 0.
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ii) µ(x,λ−1) = 0 ⇐⇒ x̃ =
�

ri≤0 xiei and there exists ri = 0 such that xi �= 0 ⇐⇒
limt→∞ λ(t) · x̃ exists and is non-zero.

iii) µ(x,λ−1) > 0 ⇐⇒ x̃ =
�

ri
xiei and there exists ri > 0 such that xi �= 0 ⇐⇒

limt→∞ λ(t) · x̃ does not exist.

Following the discussion above and the topological criterion (see Proposition 6.1), we have
the following results for (semi)stability with respect to the action of the subgroup λ(Gm) ⊂ G.

Lemma 6.9. Let G be a reductive group acting linearly on a projective scheme X ⊂ Pn. Suppose
x ∈ X(k); then

i) x is semistable for the action of λ(Gm) if and only if µ(x,λ) ≥ 0 and µ(x,λ−1) ≥ 0.
ii) x is stable for the action of λ(Gm) if and only if µ(x,λ) > 0 and µ(x,λ−1) > 0.

Proof. For i), by the topological criterion x is semistable for λ(Gm) if and only if 0 /∈ λ(Gm) · x̃,
where and x̃ ∈ X̃(k) is a point lying over x. Since any point in the boundary λ(Gm) · x̃ −
λ(Gm) · x̃ is either

lim
t→0

λ(t) · x̃ or lim
t→∞

λ(t) · x̃ = lim
t→0

λ−1(t) · x̃,
it follows from Lemma 6.7 that x is semistable if and only if

µ(x,λ) ≥ 0 and µ(x,λ−1) ≥ 0.

For ii), by the topological criterion x is stable for λ(Gm) if and only if dimλ(Gm)x̃ = 0 and
λ(Gm) · x̃ is closed. The orbit is closed if and only if the boundary is empty; that is, if and only
if both limits

lim
t→0

λ(t) · x̃ and lim
t→∞

λ(t) · x̃ = lim
t→0

λ−1(t) · x̃
do not exist, i.e.

µ(x,λ) > 0 and µ(x,λ−1) > 0.

Furthermore, if these inequalities hold, then λ(Gm) cannot fix x̃ (as otherwise the above limits
would both exist) and so we must have that dimλ(Gm)x̃ = 0. �
Exercise 6.10. Let Gm act on P2 by t · [x : y : z] = [tx : y : t−1z]. For every point x ∈ P2

and the 1-PS λ(t) = t, calculate µ(x,λ±1) and then by using Lemma 6.9 above or otherwise,
determine Xs and Xss.

If x is (semi)stable for G, then it is (semi)stable for all subgroups H of G as every G-invariant
function is also H-invariant. Hence, for a k-point x, we have

x is semistable =⇒ µ(x,λ) ≥ 0 ∀ 1-PS λ of G,

x is stable =⇒ µ(x,λ) > 0 ∀ 1-PS λ of G.

The Hilbert-Mumford criterion gives the converse to these statements; the idea is that because
G is reductive it has enough 1-PSs to detect points in the closure of an orbit (see Theorem 6.13
below).

Theorem 6.11. (Hilbert–Mumford Criterion) Let G be a reductive group acting linearly on a
projective scheme X ⊂ Pn. Then, for x ∈ X(k), we have

x ∈ Xss ⇐⇒ µ(x,λ) ≥ 0 for all 1-PSs λ of G,
x ∈ Xs ⇐⇒ µ(x,λ) > 0 for all 1-PSs λ of G.

Remark 6.12. A 1-PS is primitive if it is not a multiple of any other 1-PS. By Exercise 6.5
ii), it suffices to check the Hilbert–Mumford criterion for primitive 1-PSs of G.

It follows from the topological criterion given in Proposition 6.1 and also from Lemma 6.9,
that the Hilbert–Mumford criterion is equivalent to the following fundamental theorem in GIT.

Theorem 6.13. [Fundamental Theorem in GIT] Let G be a reductive group acting on an affine
space An+1. If x ∈ An+1 is a closed point and y ∈ G · x, then there is a 1-PS λ of G such that
limt→0 λ(t) · x = y.
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The proof of the above fundamental theorem relies on a decomposition theorem of Iwahori
which roughly speaking says there is an abundance of 1-PSs of reductive groups [17]. The proof
of this theorem essentially follows from ideas of Mumford [25] §2.1 and we delay the proof until
the end of this section.

Example 6.14. We consider the action of G = Gm on X = Pn as in Example 5.8. As the
group is a 1-dimensional torus, we need only calculate µ(x,λ) and µ(x,λ−1) for λ(t) = t as was
the case in Lemma 6.9. Suppose x̃ = (x0, . . . , xn) lies over x = [x0 : · · · : xn] ∈ Pn. Then

lim
t→0

λ(t) · x̃ = (t−1x0, tx1 . . . , txn)

exists if and only if x0 = 0. If x0 = 0, then µ(x,λ) = −1 and otherwise µ(x,λ) > 0. Similarly

lim
t→0

λ−1(t) · x̃ = (tx0, t
−1x1 . . . , t

−1xn)

exists if and only if x1 = · · · = xn = 0. If x1 = · · · = xn = 0, then µ(x,λ) = −1 and otherwise
µ(x,λ) > 0. Therefore, the GIT semistable set and stable coincide:

Xss = Xs = {[x0 : · · · : xn] : x0 �= 0 and (x1, . . . , xn) �= 0} ⊂ Pn.

6.3. The Hilbert–Mumford Criterion for ample linearisations. In this section we con-
sider the following more general set up: suppose X is a projective scheme with an action by a
reductive group G and ample linearisation L.

Definition 6.15. The Hilbert–Mumford weight of a 1-PS λ and x ∈ X(k) with respect to L is

µL(x,λ) := r

where r is the weight of the λ(Gm)-action on the fibre Ly over the fixed point y = limt→0 λ(t) ·x.
Remark 6.16. We note that when X ⊂ Pn and the action of G is linear that this definition is
consistent with the old definition; that is,

µOPn (1)|X (x,λ) = µ(x,λ).

Exercise 6.17. Fix x ∈ X and a 1-PS λ of G; then show µ•(x,λ) : PicG(X) → Z is a group
homomorphism where PicG(X) is the group of G-linearised line bundles on X.

Theorem 6.18. (Hilbert–Mumford Criterion for ample linearisations) Let G be a reductive
group acting on a projective scheme X and L be an ample linearisation of this action. Then,
for x ∈ X(k), we have

x ∈ Xss(L) ⇐⇒ µL(x,λ) ≥ 0 for all 1-PSs λ of G,
x ∈ Xs(L) ⇐⇒ µL(x,λ) > 0 for all 1-PSs λ of G.

Proof. (Assuming Theorem 6.11) As L is ample, there is n > 0 such that L⊗n is very ample.
Then since

µL⊗n
(x,λ) = nµL(x,λ)

it suffices to prove the statement for L very ample. If L is very ample then it induces a G-
equivariant embedding i : X �→ Pn such that L ∼= i∗OPn(1). Then we can just apply the first
version of the Hilbert–Mumford criterion (cf. Theorem 6.11 and Remark 6.16). �


