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6.4. Proof of the Fundamental Theorem in GIT. In order to complete our proof of the
Hilbert–Mumford Theorem, it suffices to prove the following slightly weaker version of the
Fundamental Theorem in GIT.

Theorem 6.19. Let G be a reductive group acting linearly on An and let z ∈ An be a k-point.
If 0 lies in the orbit closure of z, then there exists a 1-PS λ of G such that limt→0 λ(t) · z = 0.

Proof. Suppose that 0 ∈ G · z; then we will split the proof into 6 steps.
Step 1. We claim there is an irreducible (but not complete and not necessarily smooth)

curve C1 ⊂ G · z which contains 0 in its closure. To prove the existence of this curve, we use
an argument similar to Bertini’s Theorem and obtain the curve by intersecting hyperplanes in
a projective completion Pn of An; the argument is given in Lemma 6.20 below.

Step 2. We claim that there is a smooth projective curve C, a rational map p : C ��� G
and a k-point c0 ∈ C such that limc→c0 p(c) · z = 0. To prove this claim, we consider the
action morphism σz : G → An given by g �→ g · z and find a curve C2 in G which dominates C1

under σz (see Lemma 6.21 below) and then let C be a projective completion of the normalisation

C̃2 → C2; then the rational map p : C ��� G is defined by the morphism C̃2 → C2 → G. Finally,
as the morphism C̃2 → C1 is dominant it extends to their smooth projective completions and,
as 0 lies in the closure of C1, we can take a preimage c0 ∈ C of zero under this extension. Then
limc→c0 p(c) · z = limc→c0 σz(p(c)) = 0.

Step 3. Since C is a smooth proper curve, the completion of the local ring OC,c0 of the curve
at c0 is isomorphic to the formal power series ring k[[t]], whose field of fractions is the field of
Laurent series k((t)). As the rational map p : C ��� G is defined in a punctured neighbourhood
of c0, it induces a morphism

q : K := Spec k((t)) ∼= SpecFracÔC,c0 → SpecFracOC,c0 → G

such that limt→0[q(t) · z] = 0. In Step 5, we will relate this K-valued point of G to a 1-PS.
Step 4. Let R := Spec k[[t]] and K := Spec k((t)); then there is a natural morphism K → R

and so the R-valued points of G form a subgroup of the K-valued points (i.e. G(R) ⊂ G(K))
whose limit as t → 0 exists. More precisely, the natural map Spec k → R induces a morphism
G(R) → G(k) given by taking the specialisation as t → 0.

There is a morphism K → Gm = Spec k[s, s−1] induced by the homomorphism k[s, s−1] →
k((t)) given by s �→ t. For a 1-PS λ, we define its Laurent series expansion < λ >∈ G(K) to be
the composition of the natural morphism K → Gm with λ.

Step 5. We will use without proof the Cartan-Iwahori decomposition for G which states that
every double coset in G(K) for the subgroup G(R) is represented by a Laurent series expansion
< λ > of 1-PS of G (for example, see [25] §2.1). Therefore, as q ∈ G(K), there exists li ∈ G(R)
for i = 1, 2 and a 1-PS λ of G such that

l1 · q =< λ > ·l2
and the 1-PS λ is non-trivial, as q is not an R-valued point of G.

Step 6. Let gi := li(0) ∈ G; then following the equality in Step 5, we have

0 = g1 · 0 = lim
t→0

l1(t) · lim
t→0

(q(t) · z) = lim
t→0

[(< λ > ·l2)(t) · z] .

We claim that limt→0 λ(t) ·g2 ·z = 0 and so λ� := g−1
2 λg2 is a 1-PS of G with limt→0 λ

�(t) ·z = 0,
which would complete the proof of the theorem. To prove the claim, we use the fact that the
action of the 1-PS λ on V = An decomposes into weight spaces Vr for r ∈ Z. Since l2 ∈ G(R)
and g2 = limt→0 l2(0), we can write l2(t) · z = g2 · z + �(t), where �(t) only involves strictly
positive powers of t. Then with respect to the weight space decomposition, we have

g2 · z + �(t) =
�

r∈Z
(g2 · z)r + �(t)r.

Since limt→0[(< λ > ·l2)(t) · z] = 0, it follows that (g2 · z)r = 0 for r ≤ 0, which proves the claim
and completes our proof. �
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Lemma 6.20. With the notation and assumptions of the previous theorem, there exists an
irreducible curve C1 ⊂ G · z which contains the origin in its closure.

Proof. Fix an embedding An �→ Pn and let p ∈ Pn denote the image of the origin. Let Y denote
the closure of G · z in Pn. We claim there exists a complete curve C �

1 in Y containing the point
p ∈ Pn and which is not contained entirely in the boundary Z := Y − G · z. Assuming this
claim, we obtain the desired curve C1 ⊂ G · z, by removing points of C �

1 that lie in Z. To
prove the claim, let d = dimY ; then we can assume d > 1 as otherwise Y is already a curve.
Then also n > 1. In the following section, we will see that hyperplanes in Pn are parametrised
by Pn = P(k[x0, . . . , xn]1) and the space of hyperplanes containing p is a closed codimension 1
subspace Hp ⊂ Pn. Let H be the non-empty open subset of the product of (d− 1)-copies of Hp

consisting of hypersurfaces (H1, . . . , Hd−1) such that

(1) ∩iHi ∩ Y is a curve (generically, dim∩d−1
i=1Hi ∩ Y = dimY − (d− 1) = 1 and so this is a

non-empty open condition), and
(2) ∩iHi ∩ Y is not entirely contained in Z (this is also a non-empty open condition, as

Z � Y is a closed subscheme).

Hence, H is a non-empty open subset of (Hp)
d−1, which has dimension (n− 1)(d− 1) > 0, and

so the desired curve exists: we take C �
1 := ∩iHi ∩ Y , for (H1, . . . , Hd−1) ∈ Hp �= ∅. �

Lemma 6.21. With the notation and assumptions of the previous theorem, there exists a curve
C2 ⊂ G that dominates the curve C1 ⊂ G · z under the action morphism σz : G → G · z.
Proof. Let η be the generic point of C1. As η is not a geometric point and the above arguments
about the existence of curves requires an algebraically closed field, we pick a geometric point η
over η corresponding to a choice of an algebraically closed finite field extension of k(C1). We
let σ−1

z (C1)η and σ−1
z (C1)η be the base change of the preimage to k(C1) and its fixed algebraic

closure. Then by Lemma 6.20, there exists a curve C �
2 ⊂ σ−1

z (C1)η. The curve C �
2 maps to a

curve C2 ⊂ σ−1
z (C1)η under the finite map σ−1

z (C1)η → σ−1
z (C1)η. By construction, C2 is a

curve in σ−1
z (C1) ⊂ G which dominates C1 under σz. �

7. Moduli of projective hypersurfaces

In this section, we will consider the moduli problem of classifying hypersurfaces of a fixed
degree d in a projective space Pn up to linear change of coordinates on Pn; that is, up to the
action of the automorphism group PGLn+1 of Pn. To avoid some difficulties associated with
fields of positive characteristic, we assume that the characteristic of k is coprime to d.

7.1. The moduli problem. A non-zero homogeneous degree d polynomial F in n+1 variables
x0, . . . , xn determines a projective degree d hypersurface (F = 0) in Pn. If F is irreducible then
the associated hypersurface is an irreducible closed subvariety of Pn of codimension 1. If F
is reducible, then the associated hypersurface is a union of irreducible subvarieties of Pn of
codimension 1 counted with multiplicities. For example, the polynomial F (x0, x1) = xd0 gives a
degree d reducible hypersurface in P1: the d-fold point.

Hypersurfaces of degree d in Pn are parametrised by points in the space k[x0, . . . , xn]d − {0}
of non-zero degree d homogeneous polynomials in n+ 1 variables. This variety has dimension

�
n+ d
d

�
.

As any non-zero scalar multiple of a homogeneous polynomial F defines the same hypersurface,
the projectivisation of this space

Yd,n = P(k[x0, . . . , xn]d)

is a smaller dimensional parameter space for these hypersurfaces.
The automorphism group PGLn+1 of Pn acts naturally on Yd,n = P(k[x0, . . . , xn]d) as follows.

The linear representation GLn+1 → GL(kn+1) given by acting by left multiplication induces a
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linear action of GLn+1 on Pn. Consequently, there is an induced GLn+1-action on the homoge-
neous coordinate ring R(Pn) = k[x0, . . . , xn] which preserves the graded pieces k[x0, . . . , xn]d.
This determines a linear action of GLn+1 on P(k[x0, . . . , xn]d) by

(g · F )(p) = F (g−1 · p)
for g ∈ GLn+1, F ∈ k[x0, . . . , xn]d and p ∈ An+1 (we note that the inverse here makes this a
left action). This descends to an action

PGLn+1 × P(k[x0, . . . , xn]d) → P(k[x0, . . . , xn]d).
One may expect that a moduli space for degree d hypersurfaces in Pn is given by a categor-
ical quotient of this action and we will soon show that this is the case, by proving that Yd,n
parametrises a family with the local universal property. However, the PGLn+1-action on Yn,d
is not linear, but the actions of GLn+1 and SLn+1 are both linear. Since we have a surjection
SLn+1 → PGLn+1 with finite kernel, the SLn+1-orbits are the same as the PGLn+1-orbits, and
the only small changes is that for SLn+1 there is now a global finite stabiliser group, but from the
perspective of GIT finite groups do not matter. Therefore, we will work with the SLn+1-action.

To prove the tautological family over Yd,n has the local universal property in order to apply
Proposition 3.35, we need to introduce a notion of families of hypersurfaces. Let us start
formulating a reasonable notion of families of hypersurfaces. One natural idea for a family
of hypersurfaces over S is that we have a closed subscheme X ⊂ S × Pn such that Xs =
X ∩ {s} × Pn is a degree d hypersurface. For S = Ar = Spec k[z1, . . . , zr], this is given by
H ∈ k[z1, . . . , zr, x0, . . . , xn] which is homogeneous of degree d in the variables x0, . . . , xn and
is non-zero at each point s ∈ S. In this case, a family of hypersurfaces is given by a degree
d homogeneous polynomial in n + 1 variables with coefficients in O(S). In fact, we can take
this as a local definition for our families and generalise this notion to allow coefficients in an
arbitrary line bundle L over S.

Definition 7.1. A family of degree d hypersurfaces in Pn over S is a line bundle L over S and
a tuple of sections

σ := (σi0...in : ij ≥ 0,

n�

j=0

ij = d)

of L such that for each k-point s ∈ S, the polynomial

F (L,σ, s) :=
�

i0...in

σi0...in(s)x
i0
0 . . . xinn

is non-zero.

We note that to make sense of this final sentence, we must trivialise L locally at s. Then the
tuple of constants σ(s) are determined up to multiplication by a non-zero scalar. In particular,
we can determine whether F (L,σ, s) is non-zero and the associated hypersurface is uniquely
determined. We denote the family by (L,σ) and the hypersurface over a k-point s by (L,σ)s :
F (L,σ, s) = 0.

Definition 7.2. We say two families (L,σ) and (L�,σ�) of degree d hypersurfaces in Pn over S
are equivalent over S if there exists an isomorphism φ : L → L� of line bundles and g ∈ GLn+1

such that φ ◦ σ = g · σ�.

We note that with this definition of equivalence the families (L,σ) and (L,λσ) are equivalent
for any non-zero scalar λ.

Exercise 7.3. Show that Yd,n = P(k[x0, . . . , xn]d) parametrises a tautological family of degree
d hypersurfaces in Pn with the local universal property. Deduce that any coarse moduli space
for hypersurfaces is a categorical quotient of SLn+1 acting on Yd,n as above.

Since SLn+1 is reductive, we can take a projective GIT quotient of the action on Yd,n which
is a good (and categorical) quotient of the semistable locus Y ss

d,n. There are now two problems
to address:
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(1) determine the (semi)stable points in Yd,n;
(2) geometrically interpret (semi)stability of points in terms of properties of the correspond-

ing hypersurfaces.

For small values of d and n, we shall see that it is possible to give a full solution to the above
two problems, although as both values get larger the problem becomes increasingly difficult.


