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8.7. The Quot scheme. The Quot scheme is a fine moduli space which generalises the Grass-
mannian in the sense that it parametrises quotients of a fixed sheaf. In this section, we will define
the moduli problem that the Quot scheme represents and give an overview of the construction
of the Quot scheme following [33].

Let Y be a projective scheme and F be a fixed coherent sheaf on X. Then one can consider
the moduli problem of classifying quotients of F . More precisely, we consider surjective sheaf
homomorphisms q : F → E up to the equivalence relation

(q : F → E) ∼ (q� : F → E �) ⇐⇒ ker q = ker q�.

Equivalently, there is a sheaf isomorphism φ : E → E � such that the following diagram commutes

F
Id
��

q ��E
φ
��

F
q�
��E �.

This gives the naive moduli problem and the following definition of families gives the extended
moduli problem.

Definition 8.37. Let F be a coherent sheaf over Y . Then for any scheme S, we let FS := π∗
Y F

denote the pullback of F to Y × S via the projection πY : Y × S → Y . A family of quotients
of F over a scheme S is a surjective OY×S-linear homomorphism of sheaves over Y × S

qS : FS → E ,
such that E is flat over S. Two families qS : FS → E and q�S : FS → E � are equivalent if
ker qS = ker q�S . It is easy to check that we can pullback families, as flatness is preserved by
base change; therefore, we let

QuotY (F) : Sch → Set

denote the associated moduli functor.

Remark 8.38.

(1) With these definitions, it is clear that we can think of the Quot scheme as instead
parametrising coherent subsheaves of F up to equality rather than quotients of F up to
the above equivalence. Indeed this perspective can also be taken with the Grassmannian
(and even projective space). For us, the quotient perspective will be the most useful.

(2) For the moduli problem of the Grassmannian, we fix the dimension of the quotient
vector spaces. Similarly for the quotient moduli problem, we can fix invariants, as for
two quotient sheaves to be equivalent, they must be isomorphic. Thus we can refine the
above moduli functor by fixing the invariants of our quotient sheaves.

Definition 8.39. For a coherent sheaf E over a projective scheme Y equipped with a fixed ample
invertible sheaf L, the Hilbert polynomial of E with respect to L is a polynomial P (E ,L) ∈ Q[t]
such that for l ∈ N sufficiently large,

P (E ,L, l) = χ(E ⊗ L⊗l) :=
�

i≥0

(−1)i dimH i(Y, E ⊗ L⊗l).

Serre’s vanishing theorem states that for l sufficiently large (depending on E), all the higher
cohomology groups of E ⊗ L⊗l vanish (see [14] III Theorem 5.2). Hence, for l sufficiently large,
P (E ,L, l) = dimH0(Y, E ⊗ L⊗l).

The proof that there is such a polynomial is given by reducing to the case of Pn (as L is
ample, we can use a power of L to embed X into a projective space) and then the proof proceeds
by induction on the dimension d of the support of the sheaf (where the inductive step is given
by restricting to a hypersurface and the base case d = 0 is trivial as the Hilbert polynomial
is constant); for a proof, see [16] Lemma 1.2.1. However, for a smooth projective curve X,
we can explicitly write down the Hilbert polynomial of a locally free sheaf over X using the
Riemann–Roch Theorem.
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Example 8.40. On a smooth projective genus g curve X, we fix a degree 1 line bundle L =
OX(x) =: OX(1). For a vector bundle E over X of rank n and degree d, the twist E(m) :=
E ⊗OX(m) has rank n and degree d+mn. The Riemann–Roch formula gives

χ(E(m)) = d+mn+ n(1− g).

Thus E has Hilbert polynomial P (t) = nt + d + n(1 − g) of degree 1 with leading coefficient
given by the rank n.

Definition 8.41. For a fixed ample line bundle L on Y , we have a decomposition

QuotY (F) =
�

P∈Q[t]

QuotP,LY (F)

into Hilbert polynomials P taken with respect to L.

If Y = X is a curve, then we have a decomposition of the Quot moduli functor by ranks and
degrees of the quotient sheaf:

QuotX(F) =
�

(n,d)

Quotn,dX (F).

Example 8.42. The grassmannian moduli functor is a special example of the Quot moduli
functor:

Gr(d, n) = Quotn−d
Spec k(k

n).

Theorem 8.43 (Grothendieck). Let Y be a projective scheme and L an ample invertible sheaf

on Y . Then for any coherent sheaf F over Y and any polynomial P , the functor QuotP,LY (F)

is represented by a projective scheme QuotP,LY (F).

The idea of the construction is very beautiful but also technical; therefore, we will just give
an outline of a proof. We split the proof up into the 4 following steps.

Step 1. Reduce to the case where Y = Pn, L = OPn(1) and F is a trivial vector bundle ON
Pn .

Step 2. For m sufficiently large, construct an injective natural transformation of moduli func-
tors

Quot
P,O(1)
Pn (ON

Pn) �→ Gr(V, P (m))

to the Grassmannian moduli functor of P (m)-dimensional quotients of V := kN ⊗H0(OPn(m)).

Step 3. Prove thatQuot
P,O(1)
Pn (ON

Pn) is represented by a locally closed subscheme of Gr(V, P (m)).

Step 4. Prove that the Quot scheme is proper using the valuative criterion for properness.

Before we explain the proof of each step, we need the following definition.

Definition 8.44. A natural transformation of presheaves η : M� → M is a closed (resp. open,
resp. locally closed) immersion if ηS is injective for every scheme S and moreover, for any
natural transformation γ : hS → M from the functor of points of a scheme S, there is a closed
(resp. open, resp. locally closed) subscheme S� ⊂ S such that

hS� ∼= M� ×M hS

where the fibre product is given by

(M� ×M hS)(T ) =
�
(f : T → S ∈ hS(T ), F ∈ M�(T )) : γT (f) = ηT (F ) ∈ M(T )

�
.

Sketch of Step 1. First, we can assume that L is very ample by replacing L by a sufficiently
large positive power of L; this will only change the Hilbert polynomial. Then L defines a
projective embedding i : Y �→ Pn such that L is the pullback of OPn(1). Since i is a closed
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immersion, i∗F is coherent and, moreover i∗ is exact; therefore, we can push-forward quotient
sheaves on Y to Pn. Hence, one obtains a natural transformation

QuotY (F) → QuotPn(i∗F),

which is injective as i∗i∗ = Id. We claim that this natural transformation is a closed immersion
in the sense of the above definition. More precisely, we claim for any scheme S and natural
transformation hS → QuotPn(i∗F) there exists a closed subscheme S� ⊂ S with the following
property: a morphism f : T → S determines a family in QuotY (F)(T ) if and only if the
morphism f factors via S�. To define the closed subscheme associated to a map η : hS →
QuotPn(i∗F), we let (i∗F)S � E denote the family over S of quotients associated to ηS(idS)
and apply (idS × i)∗ to obtain a homomorphism of sheaves over Y × S

(F)S ∼= i∗(i∗F)S → i∗E ;
then we take S� ⊂ S to be the closed subscheme on which this homomorphism is surjective (the
fact that this is closed follows from a semi-continuity argument). Hence, we may assume that
(Y,L) = (Pn,O(1)).

We can tensor any quotient sheaf by a power ofO(1) and this induces a natural transformation
between

QuotPn(F) ∼= QuotPn(F ⊗O(r))

(under this natural transformation the Hilbert polynomial undergoes a explicit transformation
corresponding to this tensorisation). Hence, by replacing F with F(r) := F ⊗ O(r), we can
assume without loss of generality that F has trivial higher cohomology groups and is globally
generated; that is, the evaluation map

O⊕N
Pn

∼= H0(Pn,F)⊗OPn → F
is surjective and N = P (F , 0). By composition, this surjection induces a natural transformation

QuotPn(F) → QPn(ON
Pn)

which can also be shown to be a closed embedding. In conclusion, we obtain a natural trans-
formation

QuotP
�,L

Y (F) → Quot
P,O(1)
Pn (ON

Pn)

which is a closed embedding of moduli functors.

Sketch of Step 2. By a result of Mumford and Castelnuovo concerning ‘Castelnuovo–
Mumford regularity’ of subsheaves of ON

Pn , there exists M ∈ N (depending on P , n and N) such
that for all m ≥ M , the following holds for any short exact sequence of sheaves

0 → K → ON
Pn → F → 0

such that F has Hilbert polynomial P :

(1) the sheaf cohomology groups H i of K(m), F(m) vanish for i > 0,
(2) K(m) and F(m) are globally generated.

The proof of this result is by induction on n, where one restricts to a hyperplane H ∼= Pn−1 in
Pn to do the inductive step; for a full proof, see [33] Theorem 2.3. Now if we fix m ≥ M , we
claim there is a natural transformation

η : Quot
P,O(1)
Pn (ON

Pn) �→ Gr(kN ⊗H0(OPn(m)), P (m)).

First, let us define this for families over S = Spec k: for a quotient q : O⊕N
Pn � F with kernel

K, we have an associated long exact sequence in cohomology

0 → H0(K(m)) → H0(ON
Pn(m)) → H0(F(m)) → H1(K(m)) = 0.

Hence, we define

ηSpec k(q : ON
Pn � F) =

�
H0(q(m)) : W � H0(F(m))

�
,

where W := H0(ON
Pn(m)) = kN ⊗ H0(OPn(m)) and we have dimH0(F(m)) = P (m), as all

higher cohomology of F(m) vanishes.
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To define ηS for a family of quotients qS : ON
Pn×S → E over an arbitrary scheme S, we

essentially do the above process in a family. More precisely, we let πS : X × S → S be the
projection and push forward qS(m) by πS to S to obtain a surjective homomorphism of sheaves
over S

OS ⊗W ∼= πS∗(ON
Pn×S(m)) → πS∗(E(m)).

By our assumptions on m and the semi-continuity theorem, πS∗(E(m)) is locally free of rank
P (m) (as the higher rank direct images of E(m) vanish so the claim follows by EGA III 7.9.9).
Hence, we have a family of P (m)-dimensional quotients of W over S, which defines the desired
S-point in the Grassmannian.

Let Gr = Gr(W,P (m)). We claim this natural transformation η is an injection. Let us
explain how to reconstruct qS from the morphism fqs : S → Gr corresponding to the surjection

πS∗(qs(m)) : OS ⊗W → πS∗(E(m)).

Over the Grassmannian, we have a universal inclusion (and a corresponding surjection)

KGr �→ OGr ⊗W,

whose pullback to S via the morphism S → Gr is the homomorphism

π∗
SπS∗(KS(m)) → V ⊗OS = π∗

SπS∗(ON
Pn×S(m)),

where KS := ker qS . We claim that the homomorphism

f : π∗
SπS∗(KS(m)) → π∗

SπS∗(ON
Pn×S(m)) → ON

Pn×S(m)

has cokernel qS(m). To prove the claim, consider the following commutative diagram

0 ��π∗
SπS∗(KS(m))

��

��π∗
SπS∗(ON

Pn×S(m))

��

��π∗
SπS∗(E(m))

��

��0

0 ��KS(m) ��ON
Pn×S(m) ��E(m) ��0

whose rows are exact and whose columns are surjective by our assumption on m. Finally, we
can recover qS from qS(m) by twisting by O(−m).

Sketch of Step 3. For any morphism f : T → Gr = Gr(W,P (m)), we let KT,f denote the
pullback of the universal subsheaf KGr on the Grassmannian to T via f . Then consider the
induced composition

hT,f : π∗
TKT,f → π∗

T (W ⊗OT ) ∼= π∗
TπT∗(ON

Pn×T (m)) → ON
T×Pn(m)

where πT : Pn×T → T denotes the projection. Let qT,f (m) : ON
Pn×T (m) → FT,f (m) denote the

cokernel of hT,f ; then FT,f is a coherent sheaf over Pn × T .
We claim that the natural transformation defined in Step 2 is a locally closed immersion.

To prove the claim, we need to show for any morphism h : S → Gr, there is a unique locally
closed subscheme S� �→ S with the property that a morphism f : T → S factors via S� �→ S if
and only if the sheaf FT,h◦f is flat over T and has Hilbert polynomial P at each t ∈ T . This
locally closed subscheme S� ⊂ S is constructed as the stratum with Hilbert polynomial P in
the flattening stratification for the sheaf FT,f � over T × Pn. For details, see [33] Theorem 4.3.

Let QuotPPn(ON
Pn) be the locally closed subscheme of Gr associated to the identity morphism

on Gr (which corresponds to the universal family on the Grassmannian); then it follows from
the above arguments that this scheme represents the functor QuotPPn(ON

Pn).
The Grassmannian Gr = Gr(W,P (m)) has its Pücker embedding into projective space

Gr(W,P (m)) �→ P(∧P (m)W∨).

Therefore, we have a locally closed embedding

(6) QuotPn(O⊕N
Pn , P ) �→ P(∧P (m)W∨).

In particular, the Quot scheme is quasi-projective; hence, separated and of finite type.
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Sketch of Step 4. We will prove the valuative criterion for the Quot scheme using its moduli
functor. The Quot scheme QuotPPn(O⊕N

Pn ) is proper over Spec k if and only if for every discrete
valuation ring R over k with quotient field K, the restriction map

QuotPPn(ON
Pn)(SpecR) → QuotPPn(ON

Pn)(SpecK)

is bijective. Since the Quot scheme is separated, we already know that this map is injective.
Let j : Pn

K �→ Pn
R denote the open immersion. Any quotient sheaf qK : ON

Pn
K
→ FK can be lifted

to a quotient sheaf qR : ON
Pn
R
→ FR where FR is the image of the homomorphism

qR : O⊕N
Pn
R

→ j∗(O⊕N
Pn
K
) → j∗FK .

The sheaf FR is torsion free as it as a subsheaf of j∗FK , which is torsion free as j∗ is exact,
j∗j∗FK = FK and FK is torsion free (as it is flat over K). Hence, FR is flat over R, as over
a DVR flat is equivalent to torsion free and so this gives a well defined R-valued point of the
Quot scheme. It remains to check that the image of qR under the restriction map is qK . As j∗ is
left exact, the map j∗FR → j∗j∗FK = FK is injective and the following commutative diagram

O⊕N
Pn
K

qK �� ��

j∗qR�� ��j∗FR

��FK

implies that the vertical homomorphism must also be surjective; thus j∗FR
∼= j∗j∗FK = FK as

required. Hence, the Quot scheme is proper over Spec k.
Since QuotPn(O⊕N

Pn ;P ) is proper over Spec k, the embedding (6) is a closed embedding.

Remark 8.45.

(1) As the Quot scheme Q := QuotP,LY (F) is a fine moduli space, the identity morphism on
Q corresponds to a universal quotient homomorphism

π∗
Y F � U

over Q× Y , where πY : Q× Y → Y denotes the projection to Y .
(2) The Quot scheme can also be defined in the relative setting, where we replace our field k

by a general base scheme S and look at quotients of a fixed coherent sheaf on a scheme
X → S; the construction in the relative case is carried out in [33].

The Hilbert schemes are special examples of Quot schemes, which also play an important
role in the construction of many moduli spaces.

Definition 8.46. A Hilbert scheme is a Quot scheme of the form QuotPY (OY ) and represents
the moduli functor that sends a scheme S to the set of closed subschemes Z ⊂ Y × S that are
proper and flat over S with the given Hilbert polynomial.

Exercise 8.47. For a natural number d ≥ 1, prove that the Hilbert scheme

QuotdP1(OP1)

is isomorphic to Pd by showing they both have the same functor of points in the following way.

a) Show that any family Z ⊂ P1 over Spec k in this Hilbert scheme is a degree d hypersurface
in P1.

b) Let S be a scheme and πS : P1
S := P1 × S → S denote the projection. Show that any

family Z ⊂ P1
S over S in this Hilbert scheme is a Cartier divisor in P1

S and so there is a

line subbundle of πS∗(OP1
S
(d)) which determines a morphism fZ : S → Pd. In particular,

this gives a natural transformation

QuotdP1(OP1) → hPd .

c) Construct the inverse to the above natural transformation using the tautological family
of degree d hypersurfaces in P1 parametrised by Pd.
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8.8. GIT set up for construction of the moduli space. Throughout this section, we fix a
connected smooth projective curve X and we assume the genus of X is greater than or equal to
2 to avoid special cases in low genus. We fix a rank n and a degree d > n(2g − 1) (recall that
tensoring with a line bundle does not alter semistability and so we can pick the degree to be
arbitrarily large; in fact, eventually we will choose d to be even larger). It follows from Lemma
8.36 that any locally free semistable sheaf E of rank r and degree d is globally generated with
H1(X, E) = 0. By the Riemann–Roch Theorem,

dimH0(X, E) = d+ n(1− g) =: N.

If we choose an identification H0(X, E) ∼= kN , then the evaluation map

H0(X, E)⊗OX → E ,
which is surjective as E is globally generated, determines a quotient sheaf q : ON

X � E .
Let Q := Quotn,dX (ON

X ) be the Quot scheme of quotient sheaves of the trivial rank N vector

bundle ON
X of rank n and degree d. Let R(s)s ⊂ Q denote the open subscheme consisting

of quotients q : ON
X → F such that F is a (semi)stable locally free sheaf and H0(q) is an

isomorphism. For a proof that these conditions are open see [16] Proposition 2.3.1.
The Quot scheme Q parametrises a universal quotient

qQ : ON
Q×X � U

and we let q(s)s : ON
R(s)s×X

→ U (s)s := U|R(s)s denote the restriction to R(s)s.

Lemma 8.48. The universal quotient sheaf U (s)s over R(s)s × X is a family over R(s)s of
(semi)stable locally free sheaves over X with invariants (n, d) with the local universal property.

Proof. Let F be a family over a scheme S of (semi)stable locally free sheaves over X with fixed
invariants (n, d). Then for each s ∈ S, the locally free semistable sheaf Fs is globally generated
with vanishing first cohomology by our assumption on d. Therefore, by the semi-continuity
Theorem, πS∗F is a locally free sheaf over S of rank N = d+n(1− g). For each s ∈ S, we need

to show there is an open neighbourhood U ⊂ S of s ∈ S and a morphism f : S → R(s)s such
that F|U ∼ f∗U (s)s. Pick an open neighbourhood U � s on which πS∗F is trivial; that is, we
have an isomorphism

Φ : ON
U

∼= (πS∗F)|U .
Then the surjective homomorphism of sheaves over U ×X

qU : ON
U×X

π∗
UΦ

��π∗
UπU∗(F|U ) ��F|U

determines a morphism f : U → Q to the quot scheme such that there is a commutative diagram

ON
U×X

qu ��

Id

��

F|U

∼=

��
ON

U×X

f∗qQ ��f∗U
In particular F|U ∼= f∗U and, as F is a family of (semi)stable vector bundles, the morphism

f : U → Q factors via R(s)s. �
These families U (s)s over R(s)s are not universal families as the morphisms described above

are not unique: if we take S = Spec k and E to be a (semi)stable locally free sheaf, then different

choices of isomorphism H0(X, E) ∼= kN give rise to different points in R(s)s.
Any two choices of the above isomorphism are related by an element in the general linear

group GLN and so it is natural to mod out by the action of this group.

Lemma 8.49. There is an action of GLN on Q := Quotn,dX (ON
X ) such that the orbits in R(s)s

are in bijective correspondence with the isomorphism classes of (semi)stable locally free sheaves
on X with invariants (n, d).
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Proof. We claim there is a (left) action

σ : GLN ×Q → Q

which on k-points is given by

g · (ON
X

q ��E ) = (ON
X

g−1

��ON
X

q ��E ).
To construct the action morphism it suffices to give a family over GLN ×Q of quotients of ON

X

with invariants (n, d). The inverse map on the group i−1 : GLN → GLN determines a universal
inversion which is a sheaf isomorphism

(7) τ : kN ⊗OGLN
→ kN ⊗OGLN

.

Let qQ : kN ⊗ OQ×X → U denote the universal quotient homomorphism on Q ×X. Then the
action σ : GLN ×Q → Q is determined by the following family of quotient maps over GLN ×Q

kN ⊗OGLN×Q×X

p∗GLN
τ

��kN ⊗OGLN×Q×X

(pQ×X)∗qQ ��p∗Q×XU
where pGLN

: GLN ×Q×X → GLN and pQ×X : GLN ×Q×X → Q×X denote the projection
morphisms.

From the definition of R(s)s, we see these subschemes are preserved by the action. Consider
quotient sheaves qE : ON

X � E and qE : ON
X � F in R(s)s. If g ·qE ∼ qF , then there is an isomor-

phism E ∼= F which fits into a commutative square, and so E and F are isomorphic. Conversely,
if E ∼= F , then there is an induced isomorphism φ : H0(E) ∼= H0(F). The composition

kN
H0(qE ) ��H0(E) φ ��H0(F)

H0(qF )−1

��kN

is an isomorphism which determines a point g ∈ GLN such that g · qE ∼ qF . �

Remark 8.50. In particular, any coarse moduli space for (semi)stable vector bundles is con-

structed as a categorical quotient of the GLN -action on R(s)s. Furthermore, if there is an orbit
space quotient of the GLN -action on R(s)s, then this is a coarse moduli space. In fact, as the
diagonal Gm ⊂ GLN acts trivially on the Quot scheme, we do not lose anything by instead
working with the SLN -action.

Finally, we would like to linearise the action to construct a categorical quotient via GIT.
There is a natural family of invertible sheaves on the Quot scheme arising from Grothendieck’s
embedding of the Quot scheme into the Grassmannians: for sufficiently large m, we have a
closed immersion

Q = Quotn,dX (ON
X ) �→ Gr(H0(ON

X (m)),M) �→ P := P(∧MH0(ON
X (m))∨)

whereM = mr+d+r(1−g). We let Lm denote the pull back ofOP(1) to the Quot scheme via this
closed immersion. There is a natural linear action of SLN on H0(ON

X (m)) = (kN ⊗H0(OX(m)),
which induces a linear action of SLN on P(∧MH0(ON

X (m))∨); hence, Lm admits a linearisation
of the SLN -action.

We can define the linearisation Lm using the universal quotient sheaf U on Q×X: we have

Lm = det(πQ∗(U ⊗ π∗
XOX(m)))

where πX : Q×X → X and πQ : Q×X → Q are the projection morphisms. Furthermore, the
universal quotient sheaf U admits a SLN -linearisation: we have equivalent families of quotients
sheaves over SLN ×Q given by

kN ⊗OSLN×Q×X

(σ×idX)∗qQ ��(σ × idX)∗U
and

kN ⊗OSLN×Q×X

p∗SLN
τ

��kN ⊗OSLN×Q×X

p∗Q×XqQ
��p∗Q×XU ,
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where qQ : kN ⊗OQ×X → U denotes the universal quotient homomorphism, σ : SLN ×Q → Q
denotes the group action, pQ×X and pSLN

denote the projections from SLN × Q × X to the
relevant factor and τ is the isomorphism given in (7). Hence, there is an isomorphism

Φ : (σ × idX)∗U → (pQ×X)∗U
satisfying the cocycle condition, which gives a linearisation of the SLN -action on U . For m
sufficiently large, Lm is ample and admits an SLN -linearisation, as the construction of Lm

commutes with base change for m sufficiently large. Hence, at q : ON
X → F in Q, the fibre of

the of the associated line bundle Lm is naturally isomorphic to an alternating tensor product
of exterior powers of the cohomology groups of F(m):

Lm,q
∼= detH∗(X,F(m)) =

�

i≥0

detH i(X,F(m))⊗(−1)i .

In fact, by the Castelnuovo–Mumford regularity result explained in the second step of the
construction of the quot scheme, for m sufficiently large, we have H i(X,F(m)) = 0 for all i > 0
for all points q : ON

X → F in Q. Therefore, for m sufficiently large, the fibre at q is

Lm,q
∼= detH0(X,F(m)).


