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8.9. Analysis of semistability. Let SLN act on Q := Quotn,dX (ON
X ) as above. In this section,

we will determine the GIT (semi)stable points in Q with respect to the SLN -linearisation Lm.
In fact, we will prove that Qss(Lm) = Rss and Qs(Lm) = Rs.

We will use the Hilbert–Mumford criterion for our stability analysis. Let q : ON
X � F denote

a closed point in the Quot scheme Q and let λ : Gm → SLN be a 1-parameter subgroup. We
recall that the action is given by

λ(t) · q : ON
X

λ−1(t) ��ON
X

q ��F .

First of all, we would like to calculate the limit as t → 0. For this, we need some notation. The
action of λ−1 on V := kN determines a weight space decomposition

V = ⊕r∈ZVr

where Vr := {v ∈ V : λ−1(t)v = trv} are zero except for finitely many weights r and, as λ is a
1-PS of the special linear group, we have

(8)
�

r∈Z
r dimVr = 0.

There is an induced ascending filtration of V = kN given by V ≤r := ⊕s≤rVs and an induced
ascending filtration of F given by

F≤r := q(V ≤r ⊗OX)

and q induces surjections qr : Vr ⊗ OX → Fr := F≤r/F≤r−1 which fit into a commutative
diagram

V ≤r−1 ⊗OX
��

����

V ≤r ⊗OX
��

����

Vr ⊗OX

qr
����F≤r−1 ��F≤r �� ��Fr.

Lemma 8.51. Let q : ON
X � F be a k-point in Q and λ : Gm → SLN be a 1-PS as above; then

lim
t→0

λ(t) · q =
�

r∈N
qr.

Proof. As the quot scheme is projective, there is a unique limit. Therefore, it suffices to construct
a family of quotient sheaves of ON

X over A1 = Spec k[t]

Φ : ON
X×A1 � E

such that Φt = λ(t) · q for all t �= 0 and Φ0 = ⊕rqr.
We will use the equivalence between quasi-coherent sheaves on A1 and k[t]-modules. Consider

the k[t]-module

V :=
�

r

V ≤r ⊗k t
rk

with action given by t · (v≤r ⊗ tr) = v≤r ⊗ tr+1 ∈ V ≤r+1 ⊗ r, which works as the filtration
is increasing. Since the filtration on V is zero for sufficiently small r and stabilises to V for
sufficiently large r: there is an integer R such that V ≤r = 0 for all r ≤ R and so V ⊂ V ⊗k t

Rk[t];
hence, V is coherent. The 1-PS λ−1 determines a sheaf homomorphism over A1

γ : V ⊗k k[t] → V :=
�

r

V ≤n ⊗k t
rk

given by v ⊗ ts =
�

r vr ⊗ ts �→ �
r vr ⊗ tr+s, where vr ∈ Vr and so, as s is non-negative,

vr ∈ V ≤r+s. By construction, γ|Vr = tr · IdVr . We leave it to the reader to write down an inverse
which shows that γ is an isomorphism.

Over Spec k, the k-module k[t] determines a quasi-coherent (but not coherent) sheaf, we let
OX ⊗k k[t] denote the pullback of this quasi-coherent sheaf to X. Then to describe coherent
sheaves on X ×A1, we will use the equivalence between the category of quasi-coherent sheaves
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on X × A1 and the category of OX ⊗k k[t]-modules. Using the filtration F≤r we construct a
quasi-coherent sheaf E over X × A1 as follows. Let

E :=
�

n

F≤r ⊗k t
rk ⊂ F ⊗k t

Rk[t]

for R as above. The action of t is identical to the action of t on V given above. Furthermore,
we have the above inclusion as the filtration is zero for r sufficiently small and stabilises to F
for r sufficiently large; in particular E is a coherent sheaf on X × A1.

The homomorphism q induces a surjective homomorphism of coherent sheaves over X × A1

qA1 :
�

n

V ≤r ⊗k t
rk → E :=

�

n

F≤r ⊗k t
rk

and we define our family of quotient sheaves over X × A1 to be Φ := qA1 ◦ π∗
A1γ, where πA1 :

X × A1 → A1 is the projection.
If we restrict Φ to A1 − {0}, then this corresponds to inverting the variable t. In this case,

we have an commutative diagram

ON
X ⊗k k[t, t

−1]

Φ|A1−{0}
��

π∗
A1−{0}(γ) ��ON

X ⊗k k[t, t
−1]

q⊗id
��

E ⊗k k[t, t
−1]

∼= ��F ⊗k k[t, t
−1]

where γ gives the action of λ−1; hence [Φt] = [λ(t) · q] for all t �= 0. Let i : 0 �→ A1 denote the
closed immersion; then the composition i∗i∗ kills the action of t. We have

i∗i∗(E) = E/t · E = (
�

r≥R

F≤r ⊗k t
rk)/(

�

r≥R

F≤r ⊗k t
r+1k) =

�

r

Fr ⊗k t
rk,

with trivial action by t. Hence, the restriction of E to the special fibre 0 ∈ A1 is E0 = ⊕rFr and
this completes the proof of the lemma. �
Lemma 8.52. Let λ : Gm → SLN be a 1-PS and q : ON

X � F be a k-point in Q. Then using
the notation introduced above for the weight decomposition of λ−1 acting on V = kN , we have

µLm(q,λ) = −
�

r∈Z
rP (Fr,m) =

�

r∈Z

�
P (F≤r,m)− dimV ≤r

N
P (F ,m)

�
.

Proof. By definition, this Hilbert–Mumford weight is negative the weight of the action of λ(Gm)
on the fibre of the line bundle Lm over the fixed point q� :=

�
r∈N qr = limt→0 λ(t) · q. The fibre

over this fixed point is

Lm,q� =
�

r∈Z
detH∗(X,Fr(m)),

where H∗(X,Fr(m)) denotes the complex defining the cohomology groups H i(X,Fr(m)) for
i = 1, 2 and the determinant of this complex is the 1-dimensional vector space

�

i≥0

detH i(X,Fr(m))⊗(−1)i = ∧h0(X,Fr(m))H0(X,Fr(m))⊗ ∧h1(X,Fr(m))H1(X,Fr(m))∨.

The virtual dimension of H∗(X,Fr(m)) is given by the alternating sums of the dimensions
of the cohomology groups of Fr(m) and thus is equal to P (Fr,m). Since λ acts with weight
r on Fr, it also acts with weight r on H i(X,Fr(m)). Therefore, the weight of λ acting on
detH∗(X,Fr(m)) is rP (Fr,m). The first equality then follows from this and the definition of
the Hilbert–Mumford weight.

For the second equality, we recall that as λ is a 1-PS of SLN , we have a relation (8) and by
definition, we have dimVr = dimV ≤r − dimV ≤r−1. Furthermore, as Fr := F≤r/F≤r−1, we
have

P (Fr) = P (F≤r)− P (F≤r−1).

The second equality then follows from these observations. �
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Remark 8.53. The second expression for the Hilbert–Mumford weight is of greater use to us,
as it is expressed in terms of subsheaves of F . The number of distinct weights for the λ−1-action
on V = kN , tells us the number of jumps in the filtration of F .

If we suppose there are only two weights r1 < r2 for λ, then we get a filtration of F by a
single subsheaf 0 � F � � F :

0 = · · · = 0 = F≤r1−1 � F � := F≤r1 = · · · = F≤r2−1 � F≤r2 = F = · · · F .

Let V � := V ≤r1 ; then we have

µLm(q,λ) = (r2 − r1)

�
P (F �,m)− dimV �

dimV
P (F ,m)

�
,

where r2 − r1 > 0.

Proposition 8.54. Let q : ON
X � F be a k-point in Q. Then q ∈ Q(s)s(Lm) if and only if for

all subspaces 0 �= V � � V = KN we have an inequality

(9)
dimV �

P (F �,m)
(≤)

dimV

P (F ,m)

where F � := q(V � ⊗OX) ⊂ F .

Proof. Suppose the inequality (9) holds for all subspaces V �. We will show q is (semi)stable using
the Hilbert–Mumford criterion. For any 1-PS λ : Gm → GLN , there are finitely many weights
r1 < r2 < · · · < rs for the λ

−1-action on V = KN , which give rise to subspaces V (i) = V ≤ri ⊂ V
and subsheaves F (i) := q(V (i)⊗OX) ⊂ F . Furthermore, we have F≤n = F (i) for ri ≤ n < ri+1.
Therefore, by Lemma 8.52, we have

µLm(q,λ) =
s−1�

i=1

(ri+1 − ri)

�
P (F (i),m)− dimV (i)

dimV
P (F ,m)

�
(≥)0.

Conversely, if there exists a subspace 0 � V � � kN for which the inequality (9) does not hold
(or holds with equality respectively), then we can construct a 1-PS λ with two weights r1 > r2
such that V (1) = V � and V (2) = V . Then

µLm(q,λ) = (r2 − r1)

�
P (F �,m)− dimV �

dimV
P (F ,m)

�
< 0 (resp. µLm(q,λ) = 0);

that is q is unstable for the SLN -action with respect to Lm. �
Remark 8.55. For m sufficiently large P (F �,m) and P (F ,m) are both positive; thus, we can
multiply by the denominators in the inequality (9) to obtain an equivalent inequality

(dimV � rkF)m+(dimV �)(degF+rkF(1−g))(≤)(dimV rkF �)m+(dimV )(degF �+rkF �(1−g)).

An inequality of polynomials in a variable m holds for all m sufficiently large if and only if there
is an inequality of their leading terms. If rkF � �= 0, then the leading term of the polynomial
P (F �) is rkF � and if rkF � = 0, then the Hilbert polynomial of F � is constant. Therefore, there
exists M (depending on F and F �) such that for m ≥ M

rkF � > 0 and
dimV �

rkF � (≤)
dimV

rkF > 0 ⇐⇒ dimV �

P (F �,m)
(≤)

dimV

P (F ,m)
.

In fact, M only depends on P (F) and P (F �). Moreover, as the subspaces 0 �= V � � V = kN

form a bounded family (they are parametrised by a product of Grassmannians) and the quotient
sheaves q : ON

X → F form a bounded family (they are parametrised by the Quot scheme Q),
the family of sheaves F � = q(V � ⊗F) are also bounded. Therefore, there are only finitely many
possibilities for P (F �). Hence, there exists M such that for m ≥ M the following holds: for any
q : ON

X → F in Q and 0 �= V � � V = kN , we have

rkF � > 0 and
dimV �

rkF � (≤)
dimV

rkF > 0 ⇐⇒ dimV �

P (F �,m)
(≤)

dimV

P (F ,m)

where F � = q(V � ⊗OX).
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Remark 8.56. Let q : ON
X � F ∈ Q(k). Then we note

(1) If 0 � V � ⊂ V = kN and F � := q(V � ⊗OX), then V � ⊂ H0(q)−1(H0(F �)),
(2) If G ⊂ F and V � = H0(q)−1(H0(G)), then q(V � ⊗OX) ⊂ G.

Using these two remarks, we obtain a corollary to Proposition 8.54.

Corollary 8.57. There exists M such that for m ≥ M and for a k-point q : ON
X � F in Q,

the following statements are equivalent:

(1) q is GIT (semi)stable for SLN -acting on Q with respect to Lm;
(2) for all subsheaves F � ⊂ F with V � := H0(q)−1(H0(F �)) �= 0, we have rkF � > 0 and

dimV �

rkF � (≤)
dimV

rkF .

In the remaining part of this section, we prove some additional results concerning semistability
of vector bundles, which we will eventually relate to GIT semistability.

Lemma 8.58. Let n and d be fixed such that d > n2(2g − 2). Then a locally free sheaf F of
rank n and degree d is (semi)stable if for all F � ⊂ F we have

(10)
h0(X,F �)
rkF � (≤)

χ(F)

rkF .

Proof. Suppose F is not semistable; then there exists a subsheaf F � ⊂ F with µ(F �) > µ(F).
In fact, we can assume F � is semistable (if not, there is a vector subbundle F �� of F � with larger
slope, and so we can replace F � with F ��). Then

degF � >
d

n
rkF � >

d

n
> n(2g − 2) > rkF �(2g − 2).

Then it follow from Lemma 8.36 that H1(X,F �) = 0. However, in this case

h0(X,F �)
rkF � = µ(F �) + (1− g) > µ(F) + (1− g) =

χ(F)

rkF
which contradicts (10). Furthermore, if the inequality (10) holds with a strict inequality and
F is not stable, then we can apply the above argument to any subsheaf F � ⊂ F with the same
slope as F and get a contradiction. �

The converse to this lemma also holds for d sufficiently large, as we will demonstrate in
Proposition 8.61; however, first we need some preliminary results.

Lemma 8.59. (Le Potier bounds) For any semi-stable locally free sheaf F of rank n and slope
µ, we have

h0(X,F)

n
≤ [µ+ 1]+ := max(µ+ 1, 0)

Proof. If µ < 0, then H0(X,F) = 0. For µ ≥ 0, we proceed by induction on the degree d of F .
If we assume the lemma holds for all degrees less than d, then we can consider the short exact
sequence

0 → F(−x) → F → Fx → 0

where x ∈ X. By considering the associated long exact sequence, we see that

h0(X,F) ≤ h0(X,F(−x)) + n.

Since µ(F) = µ(F(−x)) + 1, the result follows by applying the inductive hypothesis to F(−x).
�

We recall that any vector bundle has a unique maximal destabilising sequence of vector
subbundles, known as its Harder–Narasimhan filtration (cf. Definition 8.32).
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Corollary 8.60. Let F be a locally free sheaf of rank n and slope µ with Harder–Narasimhan
filtration

0 = F (0) � F (1) � · · · � F (s) = F
i.e. Fi = F (i)/F (i−1) are semistable and µmax(F) = µ(F1) > · · · > µ(Fs) = µmin(F); then

h0(X,F)

n
≤

s�

i=1

rkFi

n
[µ(Fi) + 1]+ ≤

�
1− 1

n

�
[µ+ 1]+ +

1

r
[µmin(F) + 1]+.

Proposition 8.61. Let n and d be fixed such that d > gn2 + n(2g − 2). Let F be a semistable
locally free sheaf over X with rank r and degree d. Then for all non-zero subsheaves 0 �= F � � F ,
we have

h0(X,F �)
rkF � ≤ χ(F)

rkF
and if equality holds, then h1(X,F �) = 0 and µ(F �) = µ(F).

Proof. Let µ = d/n denote the slope and pick a constant C such that 2g−2 < C < µ− gn (this
is possible, as µ− gn > 2g − 2 by our choice of d). We will prove the following statements for
subsheaves F � ⊂ F .

(1) If µmin(F �) ≤ C, then

h0(X,F �)
rkF � <

χ(F)

rkF .

(2) If µmin(F �) > C, then h1(X,F) = 0 and

h0(X,F �)
rkF � ≤ χ(F)

rkF
and if equality holds, then µ(F �) = µ(F).

We can apply Corollary 8.60 to a subsheaf F � ⊂ F to obtain the bound

h0(X,F �)
rkF � ≤

�
1− 1

n

�
[µ+ 1]+ +

1

n
[µmin(F �) + 1]+.

If µmin(F �) ≤ C, then

h0(X,F �)
rkF � ≤

�
1− 1

n

�
(µ+ 1) +

1

n
(C + 1) < µ+ 1 + g =

χ(F)

rkF
by our choice of C, which proves (1).

For (2), suppose µmin(F �) > C; then we claim that H1(X,F �) = 0. To prove the claim, it
suffices to show that H1(X,F �

i) = 0, where F �
i are the semistable subquotients appearing in the

Harder–Narasimhan filtration of F �. For each F �
i , we have

µ(F �
i) ≥ µmin(F �) > C > 2g − 2.

Hence, degF �
i > rkF �

i(2g − 2) and, as F �
i is semistable, we conclude that H1(X,F �

i) = 0 by
Lemma 8.36. Then by semistability of F , we have µ(F �) ≤ µ(F); hence

h0(X,F �)
rkF � = µ(F �) + 1− g ≤ µ(F) + 1− g =

χ(F)

rkF
with equality only if µ(F �) = µ(F). �

Remark 8.62. Proposition 8.61 and Lemma 8.58 together say, for sufficiently large degree d,
that (semi)stability of a locally free sheaf F over X is equivalent to

h0(X,F �)
rkF � (≤)

h0(X,F)

rkF
for all non-zero proper subsheaves F � ⊂ F . This result was first proved by Le Potier for curves
(see [35] Propositions 7.1.1 and 7.1.3) and was later generalised to higher dimensions by Simpson
[39].
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We recall that we defined open subschemes R(s)s ⊂ Q := Quotn,dX (ON ) whose k-points are

quotient sheaves q : ON
X → F such that F is a locally free (semi)stable sheaf and H0(q) is

an isomorphism. The following theorem shows that GIT semistability for SLN acting on Q
coincides with vector bundle semistability (provided d and m are sufficiently large).

Theorem 8.63. Let n and d be fixed such that d > max(n2(2g − 2), gn2 + n(2g − 2)). Then
there exists a natural number M > 0 such that for all m ≥ M , we have

Qss(Lm) = Rss and Qs(Lm) = Rs.

Proof. We pickM as required by Corollary 8.57. Since these subschemes are all open subschemes
of Q, it suffices to check these equalities of schemes on k-points.

First, let q : ON
X → F be a k-point in Rss; that is, F is a semistable locally free sheaf

and H0(q) : V → H0(X,F) is an isomorphism. We will show that q is GIT semistable using
Corollary 8.57. Let F � ⊂ F be a subsheaf with rkF � > 0 and let V � := H0(q)−1(H0(X,F �). As
H0(q) is a isomorphism, we have dimV � = h0(X,F �). By Proposition 8.61, we have either

(1) h0(X,F �) < rkF �χ(F)/rkF , or
(2) h1(X,F �) = 0 and µ(F �) = µ(F).

In the first case,
dimV �

rkF � =
h0(X,F �)
rkF � <

χ(F)

rkF =
dimV

rkF
and in the second case, dimV � = h0(X,F �) = P (F �), and we have

dimV �

rkF � =
χ(F �)
rkF � =

χ(F)

rkF =
dimV

rkF .

Hence q ∈ Q
ss
(Lm) by Corollary 8.57. In fact, this argument shows that if, moreover, F is a

stable locally free sheaf, then q ∈ Q
s
(Lm), because, in this case, condition (2) is not possible

and so we always have a strict inequality. Hence, we have inclusions R(s)s(k) ⊂ Q(s)s(Lm)(k).

Suppose that q : ON
X → F is a k-point in Q(s)s(Lm); then for every subsheaf F � ⊂ F such

that V � := H0(q)−1(H0(X,F �)) is non-zero, we have rkF � > 0 and an inequality

dimV �

rkF � (≤)
dimV

rkF
by Corollary 8.57.

We first observe that H0(q) : V → H0(X,F) is injective, as otherwise let K be the kernel,
then F � = q(K ⊗OX) = 0 has rank equal to zero, and so contradicts GIT semistability of q. In
fact, we claim that GIT semistability also implies H1(X,F) = 0; thus, dimH0(X,F) = χ(F) =
N = dimV and so the injective map H0(q) is an isomorphism. If H1(X,F) �= 0, then by Serre

duality, there is a non-zero homomorphism F → ωX whose image F �� ⊂ ωX is an invertible
sheaf. We can equivalently phrase the GIT (semi)stability of q in terms of quotient sheaves
F � F �� as giving an inequality

dimV

n
≤ dimV ��

rkF ��

where V �� denotes the image of the composition V → H0(X,F) → H0(X,F ��). We note that
dimV �� ≤ g, as V �� ⊂ H0(X,F ��) ⊂ H0(X,ωX). Therefore, GIT semistability would imply

d

n
+ (1− g) ≤ g,

which contradicts our choice of d. Thus H0(q) is an isomorphism.
We next claim that F is locally free. Since we are working over a curve, the claim is equiv-

alent to showing that F is torsion free. If F � ⊂ F is a torsion subsheaf (i.e. rkF � = 0),
then H0(X,F �) �= 0, as every torsion sheaf has a section, and so this would contradict GIT
semistability.

Let F � ⊂ F be a subsheaf and V � := H0(q)−1(H0(X,F �)); then by GIT (semi)stability

h0(X,F �)
rkF � =

dimV �

rkF � (≤)
dimV

rkF =
χ(F)

rkF .
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Hence, F is (semi)stable by Lemma 8.58. Since also H0(q) is an isomorphism, we have shown

that q ∈ R(s)s. This completes the proof of the opposite inclusion Q(s)s(Lm)(k) ⊂ R(s)s(k). �

8.10. Construction of the moduli space. Let X be a connected smooth projective curve of
genus g ≥ 2. We fix a rank n and a degree d. In this section, we will give the construction of
the moduli space of stable vector bundles on X.

We defined open subschemes R(s)s ⊂ Q := Quotn,dX (ON ) (where N := d + n(1 − g)) whose

k-points are quotients q : ON
X → F such that F is (semi)stable and H0(q) is an isomorphism.

The construction of the moduli space of stable vector bundles is originally due to Seshadri
[37]; however, we have not followed his construction (Seshadri uses a different linearisation
which embeds the Quot scheme in a product of Grassmannians). Instead, we are following the
construction due to Le Potier [35] and Simpson [39], which generalises more naturally to higher
dimensions; see Remark 8.70 for some comments on the additional complications for higher
dimensional base schemes.

Theorem 8.64. There is a coarse moduli space M s(n, d) for moduli of stable vector bundles of
rank n and degree d over X that has a natural projective completion Mss(n, d) whose k-points
parametrise polystable vector bundles of rank n and degree d.

Proof. We first construct these spaces for large d and then, by tensoring with invertible sheaves
of negative degree, we obtain the moduli spaces for smaller degree d. Hence, we may assume
that d > max(n2(2g − 2), gn2 + n(2g − 2)) We linearise the SLN -action on Q in the invertible
sheaf Lm, where m is taken sufficiently large as required for the statement of Theorem 8.63.
Then Q(s)s(Lm) = R(s)s and there is a projective GIT quotient

π : Rss = Qss(Lm) → Q//LmSLN =: M ss(n, d)

which is a categorical quotient of the SLN -action on Rss and π restrict to a geometric quotient

πs : Rs = Qs(Lm) → Qs(Lm)/SLN =: M s(n, d).

Furthermore, R(s)s parametrises a family U (s)s of (semi)stable vector bundles over X of rank

n and degree d which has the local universal property and such that two k-points in R(s)s lie
in the same orbit if and only if the corresponding vector bundles parametrised by these points
are isomorphic; see Lemmas 8.48 and 8.49. By Proposition 3.35, a coarse moduli space is a
categorical quotient of the SLN -action on R(s)s if and only if it is an orbit space. Therefore, as
πs is a categorical quotient which is also an orbit space, M s(n, d) is a coarse moduli space for
stable vector bundles on X of rank n and degree d.

Since the k-points of the GIT quotient parametrise closed orbits, to complete the proof it
remains to show that the orbit of q : ON

X → F in Rss is closed if and only if F is polystable. If
F is not polystable, then there is a non-split short exact sequence

0 → F � → F → F �� → 0

where F � and F �� are semistable with the same slope as F . In this case, we can find a 1-PS λ
such that limt→0 λ(t) · [q] = [ON

X → F �� ⊕F �], which shows that the orbit is not closed. In fact,
by repeating this argument one case show that a quotient homomorphism for a semistable sheaf
contains a quotient homomorphism for a polystable sheaf in its orbit closure. More precisely,
one can define a Jordan–Holder filtration of F by stable vector bundles of the same slope as F :

0 � F(1) � F(2) � · · · � F(s) = F
and then pick out a 1-PS λ which inducing this filtration so that the limit as t → 0 is the asso-
ciated graded object grJH(F) := ⊕iF(i)/F(i−1). We note that unlike the Harder–Narasimhan
filtration, the Jordan–Holder filtration is not unique but the associated graded object is unique.
Now suppose that F is polystable so we have F = ⊕F⊕ni

i for non-isomorphic stable vector

bundles Fi; then we want to show the orbit of q is closed: i.e. for every point q� : ON
X → F �

in the closure of the orbit of q, we have an isomorphism F ∼= F �. Using Theorem 6.13, we can
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produce a 1-PS λ such that limt→0 λ(t) · q = q�. This corresponds to a family E over A1 of
semistable vector bundles such that

Et ∼= F for t �= 0, and E0 = F �.

Since the stable bundles Fi are simple and any non-zero homomorphism between stable vector
bundles of the same slope is an isomorphism, we see that dimHom(Fi,F) = ni. As E is flat
over A1, this dimension function is upper semi-continuous; hence dimHom(Fi,F �) =: n�

i ≥ ni.
As Fi is stable, the evaluation map ei : Fi ⊗ Hom(Fi,F �) → F � must be injective. Moreover

sum
�Fn�

i
i ⊂ F � is a direct sum as Fi � Fj by assumption. By comparing the ranks, we must

have ni = n�
i for all i and F � ∼= ⊕F⊕ni

i = F . �

Proposition 8.65. The moduli space M s(n, d) of stable vector bundles is a smooth quasi-
projective variety of dimension n2(g − 1) + 1.

Proof. We claim that the open subscheme Rs ⊂ Q is smooth and has dimension n2(g−1)+N2.
To prove this claim, we use the following results concerning the local smoothness and Zariski
tangent spaces of the quot scheme: for a k-point q : ON

X → F of Q, we have

(1) TqQ ∼= Hom(K,F), where K = ker q.
(2) If Ext1(K,F) = 0, then Q is smooth in a neighbourhood of q.

For a proof of these results, see [16] Propositions 2.2.7 and 2.2.8; in fact, the description of the
tangent spaces should remind you of the description of the tangent spaces to the Grassmannian.
To prove the claim, for q ∈ Rs, we apply Hom(−,F) to the short exact sequence

0 → K → ON
X → F → 0

to obtain a long exact sequence

· · · → Hom(K,F) → Ext1(F ,F) → Ext1(ON
X ,F) → Ext1(K,F) → 0.

Since Ext1(ON
X ,F) = H1(X,F)N = 0 (by our assumption on the degree of d), we see that Q is

smooth in a neighbourhood of every point q ∈ Q. To calculate the dimension, we consider the
following long exact sequence for q ∈ Rs:

0 → Hom(F ,F) → Hom(ON
X ,F) → Hom(K,F) → Ext1(F ,F) → 0

where hom(F ,F) = 1 as every stable bundle is simple, and hom(ON
X ,F) = N2 as our assumption

on d impliesH1(X,F) = 0, and Ext1(F ,F) = H1(F∨⊗F) = n2(g−1)+1 by the Riemann–Roch
formula. Hence,

dimRss = dimTqQ = dimHom(K,F) = n2(g − 1) + 1 +N2 − 1 = n2(g − 1) +N2.

Since SLN acts with only a finite global stabiliser on the smooth quasi-projective variety Rs and
the quotient Rs → M s(n, d) is geometric, it follows from a deep result concerning étale slices of
GIT quotients known as Luna’s slice theorem [21], that Ms(n, d) is smooth. Furthermore, we
have

dimM s(n, d) = dimRs − dimSLN = n2(g − 1) + 1

which completes the proof. �

Remark 8.66. In fact, using deformation theory of vector bundles, one can identify the Zariski
tangent space to M s(n, d) at the isomorphism class [E] of a stable vector bundle E as follows

T[E]M
s(n, d) ∼= Ext1(E,E).

The obstruction to M s(n, d) being smooth is controlled by Ext2(E,E), which vanishes as we
are working over a curve. The same description holds in higher dimensions, except now this
second Ext group could be non-zero and so in general the moduli space is not smooth; see [16]
Corollary 4.52.
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If the degree and rank are coprime, the notions of semistability and stability coincide; hence,
in the coprime case, the moduli space of stable vector bundles of rank r and degree d on X is
a smooth projective variety.

Finally, we ask whether this coarse moduli space is ever a fine moduli space. In fact, we see
why it is necessary to allow a more general notion of equivalence of families of vector bundles
with a twist by a line bundle:

Remark 8.67. Two families E and F parametrised by S determine the same morphism to
M s(n, d) if E ∼= F ⊗ π∗

SL for a line bundle L on S where πS : S ×X → S is the projection map
and, in fact, this is an if and only if statement by [31] Lemma 5.10.

It is a result of Mumford and Newstead, for n = 2 [26], and Tjurin [43] in general that the
moduli space of stable vector bundles is a fine moduli space for coprime rank and degree.

Theorem 8.68. If (n, d) = 1, then M s(n, d) = M ss(n, d) is a fine moduli space.

The idea of the proof is to construct a universal family over this moduli space by descending
the universal family U over Rs ×X to the GIT quotient. For more details, we recommend the
exposition given by Newstead [31], Theorem 5.12.

Remark 8.69. If (n, d) �= 1, then Ramanan observes that a fine moduli space for stable sheaves
does not exist [36].

Remark 8.70. In this remark, we briefly explain some of the additional complications that
arise when studying moduli of vector bundles over a higher dimensional projective base Y .

(1) Instead of fixing just the rank and degree, one must fix higher Chern classes (or the
Hilbert polynomial) of the sheaves.

(2) In higher dimensions, torsion free and locally free not longer agree; therefore, rather
than working with locally free sheaves, we must enlarge our category to torsion free
sheaves in order to get a projective completion of the moduli space of stable sheaves.

(3) As we have seen for curves, slope (semi)stability is equivalent to an inequality of reduced
Hilbert polynomials, known as Gieseker (semi)stability

µ(E �) ≤ µ(E) ⇐⇒ P (E �)
rkE � ≤ P (E)

rkE .

However, in higher dimensions, slope (semi)stability and Gieseker (semi)stability do not
coincide: we have

slope stable =⇒ Gieseker stable =⇒ Gieseker semistable =⇒ slope semistable.

In higher dimensions, one constructs a moduli space for Gieseker stable torsion free
sheaves (or for Gieseker semistable pure sheaves).

(4) Since the Hilbert polynomial is taken with respect to a choice of ample line bundle on
Y , the notion of Gieseker (semi)stability also depends on this choice. Over a curve,
the Hilbert polynomial of a vector bundle only depends on the degree of the ample line
bundle we take and consequently all ample line bundles determine the same notion of
semistability. In particular, one can study how the moduli space changes as we vary
this ample line bundle on Y .

(5) The Quot scheme is longer smooth, due to the existence of some non-vanishing second
Ext groups. In particular, the moduli space of stable torsion free sheaves is no longer
smooth in general.

(6) To construct the moduli spaces in higher dimensions, we do not take a GIT quotient of
the whole Quot scheme, but rather the closure of Rss in Q. The reason for this, is that
there may be semistable points in the quot scheme which are not torsion free (or pure)
sheaves;

(7) In higher dimensions, the Le Potier bounds become more difficult to prove; although
there are essentially analogous statements.

For the interested reader, we recommend the excellent book of Huybrechts and Lehn [16].


