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2.3. Fine moduli spaces. The ideal situation is when there is a scheme that represents our
given moduli functor.

Definition 2.15. Let M : Sch → Set be a moduli functor; then a scheme M is a fine moduli
space for M if it represents M.

Let’s carefully unravel this definition: M is a fine moduli space for M if there is a natural
isomorphism η : M → hM . Hence, for every scheme S, we have a bijection

ηS : M(S) := {families over S}/ ∼S←→ hM (S) := {morphisms S → M}.
In particular, if S = Spec k, then the k-points of M are in bijection with the set A/ ∼.
Furthermore, these bijections are compatible with morphisms T → S, in the sense that we have
a commutative diagram

M(S)

M(f)

��

ηS ��hM (S)

hM (f)

��
M(T ) ηT

��hM (T ).

The natural isomorphism η : M → hM determines an element U = η−1
M (idM ) ∈ M(M); that

is, U is a family over M (up to equivalence).

Definition 2.16. Let M be a fine moduli space for M; then the family U ∈ M(M) corre-
sponding to the identity morphism on M is called the universal family.

This family is called the universal family, as any family F over a scheme S (up to equivalence)
corresponds to a morphism f : S → M and, moreover, as the families f∗U and F correspond
to the same morphism idM ◦ f = f , we have

f∗U ∼S F ;

that is, any family is equivalent to a family obtained by pulling back the universal family.

Remark 2.17. If a fine moduli space for M exists, it is unique up to unique isomorphism:
that is, if (M, η) and (M �, η�) are two fine moduli spaces, then they are related by unique
isomorphisms η�M ((ηM )−1(IdM )) : M → M � and ηM �((η�M �)−1(IdM �)) : M � → M .

We recall that a presheaf F : Sch → Set is said to be a sheaf in the Zariski topology if for
every scheme S and Zariski cover {Si} of S, the natural map

{f ∈ F (S)} −→ {(fi ∈ F (Si))i : fi|Si∩Sj = fj |Sj∩Si for all i, j}
is a bijection. A presheaf is called a separated presheaf if these natural maps are injective.

Exercise 2.18.

(1) Show that the functor of points of a scheme is a sheaf in the Zariski topology. In
particular, deduce that for a presheaf to be representable it must be a sheaf in the
Zariski topology.

(2) Consider the moduli functor of vector bundles over a fixed scheme X, where we say
two families E and F are equivalent if and only if they are isomorphic. Show that
the corresponding moduli functor fails to be a separable presheaf (it may be useful to
consider the second equivalence relation we introduced for families of vector bundles in
Exercise 2.12).

Example 2.19. Let us consider the projective space Pn = Proj k[x0, . . . , xn]. This variety can
be interpreted as a fine moduli space for the moduli problem of lines through the origin in
V := An+1. To define this moduli problem carefully, we need to define a notion of families and
equivalences of families. A family of lines through the origin in V over a scheme S is a line
bundle L over S which is a subbundle of the trivial vector bundle V × S over S (by subbundle
we mean that the quotient is also a vector bundle). Then two families are equivalent if and only
if they are equal.
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Over Pn, we have a tautological line bundle OPn(−1) ⊂ V × Pn, whose fibre over p ∈ Pn is
the corresponding line in V . This provides a tautological family of lines over Pn. The dual of
the tautological line bundle is the line bundle OPn(1), known as the Serre twisting sheaf. The
important fact we need about OPn(1) is that it is generated by the global sections x0, . . . , xn.

Given any morphism of schemes f : S → Pn, the line bundle f∗OPn(1) is generated by the
global sections f∗(x0), . . . , f∗(xn). Hence, we have a surjection On+1

S → f∗OPn(1). For locally
free sheaves, pull back commutes with dualising and so

f∗OPn(−1) ∼= (f∗OPn(1))∨.

Dually the above surjection gives an inclusion L := f∗OPn(−1) → On+1
S = V × S which

determines a family of lines in V over S.
Conversely, let L ⊂ V × S be a family of lines through the origin in V over S. Then, dual to

this inclusion, we have a surjection q : V ∨ × S → L∨. The vector bundle V ∨ × S is generated
by the global sections σ0, . . . ,σn corresponding to the dual basis for the standard basis on V .
Since q is surjective, the dual line bundle L∨ is generated by the global sections q◦σ0, . . . , q◦σn.
In particular, there is a unique morphism f : S → Pn given by

s �→ [q ◦ σ0(s) : · · · : q ◦ σn(s)]
such that f∗OPn(−1) = L ⊂ V × S (for details, see [14] II Theorem 7.1).

Hence, there is a bijective correspondence between morphisms S → Pn and families of lines
through the origin in V over S. In particular, Pn is a fine moduli space and the tautological
family is a universal family. The keen reader may note that the above calculations suggests we
should rather think of Pn as the space of 1-dimensional quotient spaces of a n+ 1-dimensional
vector space (a convention that many algebraic geometers use).

Exercise 2.20. Consider the moduli problem of d-dimensional linear subspaces in a fixed vector
space V = An, where a family over S is a rank d vector subbundle E of V ×S and the equivalence
relation is given by equality. We denote the associated moduli functor by Gr(d, n).

We recall that there is a projective variety Gr(d, n) whose k-points parametrise d-dimensional
linear subspaces of kn, called the Grassmannian variety. Let T ⊂ V × Gr(d, n) be the tauto-
logical family over Gr(d, n) whose fibre over a point in the Grassmannian is the corresponding
linear subspace of V . In this exercise, we will show that the Grassmannian variety Gr(d, n) is
a fine moduli space representing Gr(d, n).

Let us determine the natural isomorphism η : Gr(d, n) → hGr(d,n). Consider a family E ⊂
V ×S over S. As E is a rank d vector bundle, we can pick an open cover {Uα} of S on which E
is trivial, i.e. E|Uα

∼= Uα ×Ad. Then, since we have Uα ×Ad ∼= E|Uα ⊂ V × S|Uα = An ×Uα, we
obtain a homomorphism Uα×Ad �→ Uα×An of trivial vector bundles over Uα. This determines
a n × d matrix with coefficients in O(Uα) of rank d; that is, a morphism Uα → Md

n×d(k), to
the variety of n × d matrices of rank d. By taking the wedge product of the d rows in this
matrix, we obtain a morphism fα : Uα → P(∧d(kn)) with image in the Grassmannian Gr(d, n).
Using the fact that the transition functions of E are linear, verify that these morphisms glue to
define a morphism f = fE : S → P(∧d(kn)) such that f∗T = E . In particular, this procedure
determines the natural isomorphism: ηS(E) = fE .

For a comprehensive coverage of the Grassmannian moduli functor and its representability,
see [8] Section 8. The Grassmannian moduli functor has a natural generalisation to the moduli
problem of classifying subsheaves of a fixed sheaf (or equivalently quotient sheaves with a
natural notion of equivalence). This functor is representable by a quot scheme constructed by
Grothendieck [9, 10] (for a survey of the construction, see [33]). Let us mention two special cases
of this construction. Firstly, if we take our fixed sheaf to be the structure sheaf of a scheme X,
then we are considering ideal sheaves and obtain a Hilbert scheme classifying subschemes of X.
Secondly, if we take our fixed sheaf to be a locally free coherent sheaf E over X and consider
quotient line bundles of E , we obtain the projective space bundle P(E) over X (see [14] II §7).
2.4. Pathological behaviour. Unfortunately, there are many natural moduli problems which
do not admit a fine moduli space. In this section, we study some examples and highlight two
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particular pathologies which prevent a moduli problem from admitting a fine moduli space,
namely:

(1) The jump phenomena: moduli may jump in families (in the sense that we can have
a family F over A1 such that Fs ∼ Fs� for all s, s� ∈ A1 − {0}, but F0 � Fs for
s ∈ A1 − {0}).

(2) The moduli problem may be unbounded (in that there is no family F over a scheme S
which parametrises all objects in the moduli problem).

Example 2.21. We consider the naive moduli problem of classifying endomorphisms of a
n-dimensional k-vector space. More precisely A consists of pairs (V, T ), where V is an n-
dimensional k-vector space and T is an endomorphism of V . We say (V,φ) ∼ (V �,φ�) if there
exists an isomorphism h : V → V � compatible with the endomorphisms i.e. h ◦ φ = φ� ◦ h. We
extend this to a moduli problem by defining a family over S to be a rank n vector bundle F over
S with an endomorphism φ : F → F . Then we say (F ,φ) ∼S (G,φ�) if there is an isomorphism
h : F → G such that h ◦ φ = φ� ◦ h. Let Endn be the corresponding moduli functor.

For any n ≥ 2, we can construct families which exhibit the jump phenomena. For concrete-
ness, let n = 2. Then consider the family over A1 given by (F = O⊕2

A1 ,φ) where for s ∈ A1

φs =

�
1 s
0 1

�
.

For s, t �= 0, these matrices are similar and so φt ∼ φs. However, φ0 � φ1, as this matrices have
distinct Jordan normal forms. Hence, we have produced a family with the jump phenomenon.

Example 2.22. Let us consider the moduli problem of vector bundles over P1 of rank 2 and
degree 0.

We claim there is no family F over a scheme S with the property that for any rank 2 degree 0
vector bundle E on P1, there is a k-point s ∈ S such that F|s ∼= E . Suppose such a family F over
a scheme S exists. For each n ∈ N, we have a rank 2 degree 0 vector bundle OP1(n)⊕OP1(−n)
(in fact, by Grothendieck’s Theorem classifying vector bundles on P1, every rank 2 degree 0
vector bundle on P1 has this form). Furthermore, we have

dimH0(P1,OP1(n)⊕OP1(−n)) = dimk(k[x0, x1]n ⊕ k[x0, x1]−n) =

�
2 if n = 0,
n+ 1 if n ≥ 1.

Consider the subschemes Sn := {s ∈ S : dimH0(P1,Fs) ≥ n} of S, which are closed by the
semi-continuity theorem (see [14] III Theorem 12.8). Then we obtain a decreasing chain of
closed subschemes

S = S2 � S3 � S4 � ....

each of which is distinct as OP1(n) ⊕ OP1(−n) ∈ Sn+1 − Sn+2. The existence of this chain
contradicts the fact that S is Noetherian (recall that for us scheme means scheme of finite
type over k). In particular, the moduli problem of vector bundles of rank 2 and degree 0 is
unbounded.

In fact, we also see the jump phenomena: there is a family F of rank 2 degree 0 vector
bundles over A1 = Spec k[s] such that

Fs =

�
O⊕2

P1 s �= 0
OP1(1)⊕OP1(−1) s = 0.

To construct this family, we note that

Ext1(OP1(1),OP1(−1)) ∼= H1(P1,OP1(−2)) ∼= H0(P1,OP1)∗ ∼= k

by Serre duality. Therefore, there is a family of extensions F over A1 of OP1(1) by OP1(−1)
with the desired property.

In both cases there is no fine moduli space for this problem. To solve these types of phenom-
ena, one usually restricts to a nicer class of objects (we will return to this idea later on).
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Example 2.23. We can see more directly that there is no fine moduli space for Endn. Suppose
M is a fine moduli space. Then we have a bijection between morphisms S → M and families
over S up to equivalence. Choose any n × n matrix T , which determines a point m ∈ M .
Then for S = P1 we have that the trivial families (On

P1 , T ) and (On
P1 ⊗ OP1(1), T ⊗ IdOP1 (1)

)

are non-equivalent families which determine the same morphism P1 → M , namely the constant
morphism to the point m.

2.5. Coarse moduli spaces. As demonstrated by the above examples, not every moduli func-
tor has a fine moduli space. By only asking for a natural transformation M → hM which
is universal and a bijection over Spec k (so that the k-points of M are in bijection with the
equivalence classes A/ ∼), we obtain a weaker notion of a coarse moduli space.

Definition 2.24. A coarse moduli space for a moduli functor M is a scheme M and a natural
transformation of functors η : M → hM such that

(a) ηSpec k : M(Spec k) → hM (Spec k) is bijective.
(b) For any scheme N and natural transformation ν : M → hN , there exists a unique

morphism of schemes f : M → N such that ν = hf ◦ η, where hf : hM → hN is the
corresponding natural transformation of presheaves.

Remark 2.25. A coarse moduli space for M is unique up to unique isomorphism: if (M, η) and
(M �, η�) are coarse moduli spaces for M, then by Property (b) there exists unique morphisms
f : M → M � and f � : M � → M such that hf and hf � fit into two commutative triangles:

hM

hf

��

Mη��

η���

η� ��

η ��

hM �

hf �
��

hM � hM .

Since η = hf � ◦ hf ◦ η and η = hidM ◦ η, by uniqueness in (b) and the Yoneda Lemma, we have
f � ◦ f = idM and similarly f ◦ f � = idM � .

Proposition 2.26. Let (M, η) be a coarse moduli space for a moduli problem M. Then (M, η)
is a fine moduli space if and only if

(1) there exists a family U over M such that ηM (U) = idM ,
(2) for families F and G over a scheme S, we have F ∼S G ⇐⇒ ηS(F) = ηS(G).

Proof. Exercise. �

Lemma 2.27. Let M be a moduli problem and suppose there exists a family F over A1 such
that Fs ∼ F1 for all s �= 0 and F0 � F1. Then for any scheme M and natural transformation
η : M → hM , we have that ηA1(F) : A1 → M is constant. In particular, there is no coarse
moduli space for this moduli problem.

Proof. Suppose we have a natural transformation η : M → hM ; then η sends the family F over
A1 to a morphism f : A1 → M . For any s : Spec k → A1, we have that f ◦ s = ηSpec k(Fs) and,
for s �= 0, Fs = F1 ∈ M(Spec k), so that f |A1−{0} is a constant map. Let m : Spec k → M be
the point corresponding to the equivalence class for F1 under η. Since the k-valued points of M
are closed (recall M is a scheme of finite type over an algebraically closed field), their preimages
under morphisms must also be closed. Then, as A1− {0} ⊂ f−1(m), the closure A1 of A1− {0}
must also be contained in f−1(m); that is, f is the constant map to the k-valued point m of
M . In particular, the map ηSpec k : M(Spec k) → hM (Spec k) is not a bijection, as F0 �= F1 in
M(Spec k), but these non-equivalent objects correspond to the same k-point m in M . �

In particular, the moduli problems of Examples 2.22 and 2.21 do not even admit coarse
moduli spaces.
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2.6. The construction of moduli spaces. The construction of many moduli spaces follows
the same general pattern.

(1) Fix any discrete invariants for our objects - here the invariants should be invariant under
the given equivalence relation (for example, for isomorphism classes of vector bundles
on a curve, one may fix the rank and degree).

(2) Restrict to a reasonable class of objects which are bounded (otherwise, we can’t find a
coarse moduli space). Usually one restricts to a class of stable objects which are better
behaved and bounded.

(3) Find a family F over a scheme P with the local universal property (i.e. locally any other
family is equivalent to a pullback of this family - see below). We call P a parameter
space, as the k-points of P surject onto A/ ∼; however, this is typically not a bijection.

(4) Find a group G acting on P such that p and q lie in the same G-orbit in P if and only
if Fp ∼ Fq. Then we have a bijection P (k)/G ∼= A/ ∼.

(5) Typically this group action is algebraic (see Section 3) and by taking a quotient, we
should obtain our moduli space. The quotient should be taken in the category of schemes
(in terminology to come, it should be a categorical quotient) and this is done using
Mumford’s Geometric Invariant Theory.

Definition 2.28. For a moduli problem M, a family F over a scheme S has the local universal
property if for any other family G over a scheme T and for any k-point t ∈ T , there exists a
neighbourhood U of t in T and a morphism f : U → S such that G|U ∼U f∗F .

In particular, we do not require the morphism f to be unique. We note that, for such a
family to exist, we need our moduli problem to be bounded.


