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3. Algebraic group actions and quotients

In this section we consider group actions on algebraic varieties and also describe what type
of quotients we would like to have for such group actions.

3.1. Affine Algebraic groups. An algebraic group (over k) is a group object in the category
of schemes (over k). By a Theorem of Chevalley, every algebraic group is an extension of an
abelian variety (that is, a smooth connected projective algebraic group) by an affine algebraic
group (whose underlying scheme is affine) [22, Theorem 10.25]. In this course, we only work
with affine algebraic groups and cover the results which are most important for our purposes.
A good reference for affine algebraic group schemes is the book (in preparation) of Milne [23].
For those who are interested in discovering more about algebraic groups, see [3, 22, 11].

Definition 3.1. An algebraic group over k is a scheme G over k with morphisms e : Spec k → G
(identity element), m : G×G → G (group law) and i : G → G (group inversion) such that we
have commutative diagrams

G×G×G

m×id
��

id×m �� G×G

m

��

Spec k ×G
e×id ��

∼=
��

G×G

m

��

G× Spec k

∼=
��

id×e��

G×G m
�� G G

G
(i,id) ��

��

G×G

m

��

G
(id,i)��

��
Spec k e

��G Spec k.e
��

We say G is an affine algebraic group if the underlying scheme G is affine. We say G is a
group variety if the underlying scheme G is a variety (recall in our conventions, varieties are
not necessarily irreducible).

A homomorphism of algebraic groups G and H is a morphism of schemes f : G → H such
that the following square commutes

G×G
mG ��

f×f
��

G

f
��

H ×H mH

��H.

An algebraic subgroup of G is a closed subscheme H such that the immersion H �→ G is a
homomorphism of algebraic groups. We say an algebraic group G� is an algebraic quotient of G
if there is a homomorphism of algebraic groups f : G → G� which is flat and surjective.

Remark 3.2.

(1) The functor of points hG of an algebraic group has a natural factorisation through
the category of (abstract) groups, i.e, for every scheme X the operations m, e, i equip
Hom(X,G) with a group structure and with this group structure, every map hG(f) :
Hom(X,G) → Hom(Y,G) for f : Y → X is a morphism of groups. In fact, one can
show using the Yoneda lemma that there is an equivalence of categories between the
category of algebraic groups and the category of functors F : Sch → Grp such that the

composition Sch
F→ Grp → Set is representable. When restricting to the category of

affine k-schemes, this can give a very concrete description of an algebraic group, as we
will see in the examples below.

(2) Let O(G) := OG(G) denote the k-algebra of regular functions on G. Then the above
morphisms of affine varieties correspond to k-algebra homomorphisms m∗ : O(G) →
O(G) ⊗ O(G) (comultiplication) and i∗ : O(G) → O(G) (coinversion) and the identity
element corresponds to e∗ : O(G) → k (counit). These operations define a Hopf algebra
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structure on the k-algebra O(G). Furthermore, there is a bijection between finitely
generated Hopf algebras over k and affine algebraic groups (see [23] II Theorem 5.1).

(3) By a Theorem of Cartier, every affine algebraic group over a field k of characteristic zero
is smooth (see [23] VI Theorem 9.3). Moreover, in Exercise sheet 3, we see that every
algebraic group is separated. Hence, in characteristic zero, the notion of affine algebraic
group and affine group variety coincide.

(4) In the definition of homomorphisms, we only require a compatibility with the group
law m; it turns out that the compatibility for the identity and group inversion is then
automatic. This is well known in the case of homomorphisms of abstract groups, and
the algebraic case can then be deduced by applying the Yoneda lemma.

(5) For the definition of a quotient group, the condition that the homomorphism is flat is
only needed in positive characteristic, as in characteristic zero this morphism is already
smooth (this follows from the Theorem of Cartier mentioned above and the fact that
the kernel of a homomorphism of smooth group schemes is smooth; see [22] Proposition
1.48)

Example 3.3. Many of the groups that we are already familiar with are affine algebraic groups.

(1) The additive group Ga = Spec k[t] over k is the algebraic group whose underlying variety
is the affine line A1 over k and whose group structure is given by addition:

m∗(t) = t⊗ 1 + 1⊗ t and i∗(t) = −t.

Let us indicate how to show these operations satisfy the group axioms. We only prove
the associativity, the other axioms being similar and easier. We have to show that

(m∗ ⊗ id) ◦m∗ = (id⊗m∗) ◦m∗ : k[t] → k[t]⊗ k[t]⊗ k[t].

This is a map of k-algebras, so it is enough to check it for t. We have

((m∗ ⊗ id) ◦m∗)(t) = (m∗ ⊗ id)(t⊗ 1 + 1⊗ t) = t⊗ 1⊗ 1 + 1⊗ t⊗ 1 + 1⊗ 1⊗ t

and similarly

((id⊗m∗) ◦m∗)(t) = t⊗ 1⊗ 1 + 1⊗ t⊗ 1 + 1⊗ t⊗ 1

which completes the proof. For a k-algebra R, we have Ga(R) = (R,+); this justifies
the name of the ‘additive group’.

(2) The multiplicative group Gm = Spec k[t, t−1] over k is the algebraic group whose under-
lying variety is the A1 − {0} and whose group action is given by multiplication:

m∗(t) = t⊗ t and i∗(t) = t−1.

For a k-algebra R, we have Gm(R) = (R×, ·); hence, the name of the ‘multiplicative
group’.

(3) The general linear group GLn over k is an open subvariety of An2
cut out by the

condition that the determinant is non-zero. It is an affine variety with coordinate ring
k[xij : 1 ≤ i, j ≤ n]det(xij). The co-group operations are defined by:

m∗(xij) =
n�

k=1

xik ⊗ xkj and i∗(xij) = (xij)
−1
ij

where (xij)
−1
ij is the regular function on GLn given by taking the (i, j)-th entry of the

inverse of a matrix. For a k-algebra R, the group GLn(R) is the group of invertible
n× n matrices with coefficients in R, with the usual matrix multiplication.

(4) More generally, if V is a finite-dimensional vector space over k, there is an affine algebraic
group GL(V ) which is (non-canonically) isomorphic to GLdim(V ). For a k-algebra R, we
have GL(V )(R) = AutR(V ⊗k R).

(5) Let G be a finite (abstract) group. Then G can be naturally seen as an algebraic group
Gk over k as follows. The group operations on G make the group algebra k[G] into a
Hopf algebra over k, and Gk := Spec(k[G]) is a 0-dimensional variety whose points are
naturally identified with elements of G.
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(6) Let n ≥ 1. Put µn := Spec k[t, t−1]/(tn − 1) ⊂ Gm, the subscheme of n-roots of unity.
Write I for the ideal (tn − 1) of R := k[t, t−1]. Then

m∗(tn − 1) = tn ⊗ tn − 1⊗ 1 = (tn − 1)⊗ tn + 1⊗ (tn − 1) ∈ I ⊗R+R⊗ I

which implies that µn is an algebraic subgroup of Gm. If n is different from char(k),
the polynomial Xn − 1 is separable and there are n distinct roots in k. Then the choice
of a primitive n-th root of unity in k determines an isomorphism µn � Z/nZ

k
. If

n = char(k), however, we have Xn − 1 = (X − 1)n in k[X], which implies that the
scheme µn is non-reduced (with 1 as only closed point). This is the simplest example of
a non-reduced algebraic group.

A linear algebraic group is by definition a subgroup of GLn which is defined by polynomial
equations; for a detailed introduction to linear algebraic groups, see [1, 15, 40]. For instance,
the special linear group is a linear algebraic group. In particular, any linear algebraic group
is an affine algebraic group. In fact, the converse statement is also true: any affine algebraic
group is a linear algebraic group (see Theorem 3.9 below).

An affine algebraic group G over k determines a group-valued functor on the category of
finitely generated k-algebras given by R �→ G(R). Similarly, for a vector space V over k,
we have a group valued functor GL(V ) given by R �→ AutR (V ⊗k R), the group of R-linear
automorphisms. If V is finite dimensional, then GL(V ) is an affine algebraic group.

Definition 3.4. A linear representation of an algebraic group G on a vector space V over k
is a homomorphism of group valued functors ρ : G → GL(V ). If V is finite dimensional, this
is equivalent to a homomorphism of algebraic groups ρ : G → GL(V ), which we call a finite
dimensional linear representation of G.

If G is affine, we can describe a linear representation ρ : G → GL(V ) more concretely in
terms of its associated co-module as follows. The natural inclusion GL(V ) → End(V ) and
ρ : G → GL(V ) determine a functor G → End(V ), such that the universal element in G(O(G))
given by the identity morphism corresponds to an O(G)-linear endomorphism of V ⊗k O(G),
which by the universality of the tensor product is uniquely determined by its restriction to a
k-linear homomorphism ρ∗ : V → V ⊗k O(G); this is the associated co-module. If V is finite
dimensional, we can even more concretely describe the associated co-module by considering
the group homomorphism G → End(V ) and its corresponding homomorphism of k-algebras
O(V ⊗k V

∗) → O(G), which is determined by a k-linear homomorphism V ⊗k V
∗ → O(G) or

equivalently by the co-module ρ∗ : V → V ⊗k O(G). In particular, a linear representation of an
affine algebraic group G on a vector space V is equivalent to a co-module structure on V (for
the full definition of a co-module structure, see [23] Chapter 4).

3.2. Group actions.

Definition 3.5. An (algebraic) action of an affine algebraic group G on a scheme X is a
morphism of schemes σ : G×X → X such that the following diagrams commute

Spec k ×X
e×idX ��

∼=
��

G×X

σ

��

G×G×X
idG×σ ��

mG×idX
��

G×X

σ

��
X G×X σ

�� X.

Suppose we have actions σX : G×X → X and σY : G× Y → Y of an affine algebraic group G
on schemes X and Y . Then a morphism f : X → Y is G-equivariant if the following diagram
commutes

G×X
idG×f ��

σX

��

G× Y

σY

��
X

f
�� Y.



MODULI PROBLEMS AND GEOMETRIC INVARIANT THEORY 15

If Y is given the trivial action σY = πY : G×Y → Y , then we refer to a G-equivariant morphism
f : X → Y as a G-invariant morphism.

Remark 3.6. If X is an affine scheme over k and O(X) denotes its algebra of regular functions,
then an action of G on X gives rise to a coaction homomorphism of k-algebras:

σ∗ : O(X) → O(G×X) ∼= O(G)⊗k O(X)
f �→ �

hi ⊗ fi.

This gives rise to a homomorphism G → Aut(O(X)) where the k-algebra automorphism of
O(X) corresponding to g ∈ G is given by

f �→
�

hi(g)fi ∈ O(X)

for f ∈ O(X) with σ∗(f) =
�

hi ⊗ fi.

Definition 3.7. An action of an affine algebraic group G on a k-vector space V (resp. k-algebra
A) is given by, for each k-algebra R, an action of G(R) on V ⊗k R (resp. on A⊗k R)

σR : G(R)× (V ⊗k R) → V ⊗k R (resp. σR : G(R)× (A⊗k R) → A⊗k R)

such that σR(g,−) is a morphism of R-modules (resp. R-algebras) and these actions are func-
torial in R. We say that an action of G on a k-algebra A is rational if every element of A is
contained in a finite dimensional G-invariant linear subspace of A.

Lemma 3.8. Let G be an affine algebraic group acting on an affine scheme X. Then any
f ∈ O(X) is contained in a finite dimensional G-invariant subspace of O(X). Furthermore, for
any finite dimensional vector subspace W of O(G), there is a finite dimensional G-invariant
vector subspace V of O(X) containing W .

Proof. Let σ : O(X) → O(G)⊗O(X) denote the coaction homomorphism. Then we can write
σ∗(f) =

�n
i=1 hi ⊗ fi, for hi ∈ O(G) and fi ∈ O(X). Then g · f =

�
i hi(g)fi and so the vector

space spanned by f1, . . . , fn is a G-invariant subspace containing f . The second statement
follows by applying the same argument to a given basis of W . �

In particular, the action of G on the k-algebra O(X) is rational (that is, every f ∈ O(X) is
contained in a finite dimensional G-invariant linear subspace of O(X)).

One of the most natural actions is the action of G on itself by left (or right) multiplication.
This induces a rational action σ : G → Aut(O(G)).

Theorem 3.9. Any affine algebraic group G over k is a linear algebraic group.

Proof. As G is an affine scheme (of finite type over k), the ring of regular functions O(G) is a
finitely generated k-algebra. Therefore the vector space W spanned by a choice of generators for
O(G) as a k-algebra is finite dimensional. By Lemma 3.8, there is a finite dimensional subspace
V of O(G) which is preserved by the G-action and contains W .

Let m∗ : O(G) → O(G)⊗O(G) denote the comultiplication; then for a basis f1, . . . , fn of V ,
we have m∗(fi) ∈ O(G)⊗ V , hence we can write

m∗(fi) =
n�

j=1

aij ⊗ fj

for functions aij ∈ O(G). In terms of the action σ : G → Aut(O(G)), we have that σ(g, fi) =�
j aij(g)fj . This defines a k-algebra homomorphism

ρ∗ : O(Matn×n) → O(G) xij �→ aij .

To show that the corresponding morphism of affine schemes ρ : G → Matn×n is a closed
embedding, we need to show ρ∗ is surjective. Note that V is contained in the image of ρ∗ as

fi = (IdO(G) ⊗ e∗)m∗(fi) = (IdO(G) ⊗ e∗)
n�

j=1

aij ⊗ fj =
n�

j=1

e∗(fj)aij .
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Since V generates O(G) as a k-algebra, it follows that ρ∗ is surjective. Hence ρ is a closed
immersion.

Finally, we claim that ρ : G → Matn×n is a homomorphism of semigroups (recall that a
semigroup is a group without inversion, such as matrices under multiplication) i.e. we want to
show on the level of k-algebras that we have a commutative square

O(Matn×n)
m∗

Mat ��

ρ∗⊗ρ∗

��

O(Matn×n)⊗O(Matn×n)

ρ∗

��
O(G)

m∗
G

��O(G)⊗O(G);

that is, we want to show for the generators xij ∈ O(Matn×n), we have

m∗
G(aij) = m∗

G(ρ
∗(xij)) = (ρ∗ ⊗ ρ∗)(m∗

Mat(xij)) = (ρ∗ ⊗ ρ∗)

��

k

xik ⊗ xkj

�
=

�

k

aik ⊗ akj .

To prove this, we consider the associativity identity mG ◦ (id×mG) = mG ◦ (mG× id) and apply
this on the k-algebra level to fi ∈ O(G) to obtain

�

k,j

aik ⊗ akj ⊗ fj =
�

j

m∗
G(aij)⊗ fj

as desired. Furthermore, as G is a group rather than just a semigroup, we can conclude that the
image of ρ is contained in the group GLn of invertible elements in the semigroup Matn×n. �

Tori are a basic class of algebraic group which are used extensively to study the structure of
more complicated algebraic groups (generalising the use of diagonal matrices to study matrix
groups through eigenvalues and the Jordan normal form).

Definition 3.10. Let G be an affine algebraic group scheme over k.

(1) G is an (algebraic) torus if G ∼= Gn
m for some n > 0.

(2) A torus of G is a subgroup scheme of G which is a torus.
(3) A maximal torus of G is a torus T ⊂ G which is not contained in any other torus.

For a torus T , we have commutative groups

X∗(T ) := Hom(T,Gm) X∗(T ) := Hom(Gm, T )

called the character group and cocharacter group respectively, where the morphisms are homo-
morphisms of linear algebraic groups. Let us compute X∗(Gm).

Lemma 3.11. The map

θ : Z → X∗(Gm)

n �→ (t �→ tn)

is an isomorphism of groups.

Proof. Let us first show that this is well defined. Write m∗ for the comultiplication on O(Gm).
Then m∗(tn) = (t⊗t)n = tn⊗tn shows that θ(n) : Gm → Gm is a morphism of algebraic groups.
Since tatb = ta+b, θ itself is a morphism of groups. It is clearly injective, so it remains to show
surjectivity.

Let φ be an endomorphism of Gm. Write φ∗(t) ∈ k[t, t−1] as
�

|i|<m ait
i. We havem∗(φ∗(t)) =

φ∗(t)⊗ φ∗(t), which translates into
�

i

ait
i ⊗ ti =

�

i,j

aiajt
i ⊗ tj .

From this, we deduce that at most one ai is non-zero, say an. Looking at the compatibility
of φ with the unit, we see that necessarily an = 1. This shows that φ = θ(n), completing the
proof. �
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For a general torus T , we deduce from the Lemma that the (co)character groups are finite free
Z-modules of rank dimT . There is a perfect pairing between these lattices given by composition

< , >: X∗(T )×X∗(T ) → Z

where < χ,λ >:= χ ◦ λ.
An important fact about tori is that their linear representations are completely reducible.

We will often use this result to diagonalise a torus action (i.e. choose a basis of eigenvectors for
the T -action so that the action is diagonal with respect to this basis).

Proposition 3.12. For a finite dimensional linear representation of a torus ρ : T → GL(V ),
there is a weight space decomposition

V ∼=
�

χ∈X∗(T )

Vχ

where Vχ = {v ∈ V : t · v = χ(t)v ∀t ∈ T} are called the weight spaces and {χ : Vχ �= 0} are
called the weights of the action.

Proof. To keep the notation simple, we give the proof for T ∼= Gm, whereX∗(T ) ∼= Z; the general
case can be obtained either by adapting the proof (with further notation) or by induction on
the dimension of T . The representation ρ has an associated co-module

ρ∗ : V → V ⊗k O(Gm) ∼= V ⊗ k[t, t−1].

and the diagram

V ρ
��

ρ

��

V ⊗ k[t, t−1]

id⊗m∗

��
V ⊗ k[t, t−1]

ρ⊗id
�� V ⊗ k[t, t−1]⊗ k[t, t−1]

commutes. From this, it follows easily that, for each integer m, the space

Vm = {v ∈ V : ρ∗(v) = v ⊗ tm}
is a subrepresentation of V .

For v ∈ V , we have ρ∗(v) =
�

m∈Z fm(v)⊗tm where fm : V → V is a linear map, and because
of the compatibility with the identity element, we find that

v =
�

m∈Z
fm(v).

If ρ∗(v) =
�

m∈Z fm(v)⊗ tm, then we claim that fm(v) ∈ Vm. From the diagram above
�

m∈Z
ρ∗(fm(v))⊗ tm = (ρ∗ ⊗ Idk[t,t−1])(ρ

∗(v)) = (IdV ⊗m∗)(ρ∗(v)) =
�

m∈Z
fm(v)⊗ tm ⊗ tm

and as {tm}m∈Z are linearly independent in k[t, t−1], the claim follows.
Let us show that in fact, the fm form a collection of orthogonal projectors onto the subspaces

Vm. Using the commutative diagram again, we get
�

m∈Z
fm(v)⊗ tm ⊗ tm =

�

m,n∈Z
fm(fn(v))⊗ tm ⊗ tn,

which again by linear independence of the {tm} shows that fm ◦ fn vanishes if m �= n and is
equal to fn otherwise; this proves that they are orthogonal idempotents. Hence, the Vm are
linearly independent and this completes the proof. �

This result can be phrased as follows: there is an equivalence between the category of linear
representations of T and X∗(T )-graded k-vector spaces. We note that there are only finitely
many weights of the T -action, for reasons of dimension.
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3.3. Orbits and stabilisers.

Definition 3.13. Let G be an affine algebraic group acting on a scheme X by σ : G×X → X
and let x be a k-point of X.

i) The orbit G ·x of x to be the (set-theoretic) image of the morphism σx = σ(−, x) : G(k) →
X(k) given by g �→ g · x.

ii) The stabiliser Gx of x to be the fibre product of σx : G → X and x : Spec k → X.

The stabiliser Gx of x is a closed subscheme of G (as it is the preimage of a closed subscheme
of X under σx : G → X). Furthermore, it is a subgroup of G.

Exercise 3.14. Using the same notation as above, consider the presheaf on Sch whose S-points
are the set

{g ∈ hG(S) : g · (xS) = xS}
where xS : S → X is the composition S → Spec k → X of the structure morphism of S with
the inclusion of the point x. Describe the presheaf structure and show that this functor is
representable by the stabiliser Gx.

The situation for orbits is clarified by the following result.

Proposition 3.15. Let G be an affine algebraic group acting on a scheme X. The orbits of
closed points are locally closed subsets of X, hence can be identified with the corresponding
reduced locally closed subschemes.

Moreover, the boundary of an orbit G · x − G · x is a union of orbits of strictly smaller
dimension. In particular, each orbit closure contains a closed orbit (of minimal dimension).

Proof. Let x ∈ X(k). The orbit G · x is the set-theoretic image of the morphism σx, hence by
a theorem of Chevalley ([14] II Exercise 3.19), it is constructible, i.e., there exists a dense open
subset U of G · x with U ⊂ G · x ⊂ G · x. Because G acts transitively on G · x through σx, this
implies that every point of G · x is contained in a translate of U . This shows that G · x is open
in G · x, which precisely means that G · x is locally closed. With the corresponding reduced
scheme structure of G · x, there is an action of Gred on G · x which is transitive on k-points. In
particular, it makes sense to talk about its dimension (which is the same at every point because
of the transitive action of Gred).

The boundary of an orbit G ·x is invariant under the action of G and so is a union of G-orbits.
Since G · x is locally closed, the boundary G · x−G · x, being the complement of a dense open
set, is closed and of strictly lower dimension than G · x. This implies that orbits of minimum
dimension are closed and so each orbit closure contains a closed orbit. �
Definition 3.16. An action of an affine algebraic group G on a schemeX is closed if all G-orbits
in X are closed.


