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3.6. Moduli spaces and quotients. Let us give one result about the construction of moduli
spaces using group quotients. For a moduli problem M, a family F over a scheme S has the
local universal property if for any other family G over a scheme T and for any k-point t ∈ T ,
there exists a neighbourhood U of t in T and a morphism f : U → S such that G|U ∼U f∗F .

Proposition 3.35. For a moduli problem M, let F be a family with the local universal property
over a scheme S. Furthermore, suppose that there is an algebraic group G acting on S such
that two k-points s, t lie in the same G-orbit if and only if Ft ∼ Fs. Then

a) any coarse moduli space is a categorical quotient of the G-action on S;
b) a categorical quotient of the G-action on S is a coarse moduli space if and only if it is

an orbit space.

Proof. For any scheme M , we claim that there is a bijective correspondence

{natural transformations η : M → hM} ←→ {G-invariant morphisms f : S → M}
given by η �→ ηS(F), which is G-invariant by our assumptions about the G-action on S. The
inverse of this correspondence associates to a G-invariant morphism f : S → M and a family
G over T a morphism ηT (G) : T → M by using the local universal property of F over S. More
precisely, we can cover T by open subsets Ui such that there is a morphism hi : Ui → S and
h∗iF ∼Ui G|Ui . For u ∈ Ui ∩ Uj , we have

Fhi(u) ∼ (h∗iF)u ∼ Gu ∼ (h∗jF)u ∼ Fhj(u)

and so by assumption hi(u) and hj(u) lie in the same G-orbit. Since f is G-invariant, we can
glue the compositions f ◦ hi : Ui → M glue to a morphism ηT (G) : T → M . We leave it to the
reader to verify that this determines a natural transformation η (that is, this is functorial with
respect to morphisms) and that these correspondences are inverse to each other.

Hence, if (M, η : M → hM ) is a coarse moduli space, then ηS(F) : S → M is G-invariant
and universal amongst all G-invariant morphisms from S, by the universality of η. This proves
statement a). Furthermore, the G-invariant morphism ηS(F) : S → M is an orbit space if and
only if ηSpec k is bijective. This proves statement b). �

4. Affine Geometric Invariant Theory

In this section we consider an action of an affine algebraic group G on an affine scheme X of
finite type over k and show that this action has a good quotient when G is linearly reductive.
The main references for this section are [25] and [31] (for further reading, see also [2], [4] and
[32]).

Let X be an affine scheme of finite type over k; then the ring of regular functions O(X) is
a finitely generated k-algebra. Conversely, for any finitely generated k-algebra A, the spectrum
of prime ideals SpecA is an affine scheme of finite type over k.

The action of an affine algebraic group G on an affine scheme X given by a morphism

σ : G×X → X

corresponds to a homomorphism of k-algebras σ∗ : O(X) → O(G×X) ∼= O(G)⊗kO(X), which
gives a G-co-module structure on the (typically infinite dimensional) k-vector space O(X). This
co-module structure in turn determines a linear representation G → GL(O(X)). Concretely, on
the level of k-points, the action of g ∈ G(k) on f ∈ O(X) is given by

(g · f)(x) = f(g−1 · x).
The ring of G-invariant regular functions on X is

O(X)G := {f ∈ O(X) : σ∗(f) = 1⊗ f}.
Any G-invariant morphism ϕ : X → Z of schemes induces a homomorphism ϕ∗ : O(Z) → O(X)
whose image is contained in the subalgebra of G-invariant regular functions O(X)G. This leads
us to an interesting problem in invariant theory which was first considered by Hilbert.
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4.1. Hilbert’s 14th problem. For a rational action of an affine algebraic group G on a finitely
generated k-algebra A, Hilbert asked whether the algebra of G-invariants AG is finitely gener-
ated.

The answer to Hilbert’s 14th problem is negative in this level of generality: Nagata gave
an example of an action of an affine algebraic group (constructed using copies of the additive
groups) for which the ring of invariants is not finitely generated (see [27] and [29]). However,
for reductive groups (which we introduce below), the answer is positive due to a Theorem of
Nagata. The proof of this result is beyond the scope of this course. However, we will prove that
for a rational action of a ‘linearly reductive’ group on an algebra, the subalgebra of invariants is
finitely generated, using a Reynolds operator, which essentially mimics Hilbert’s 19th century
proof that, over the complex numbers, a rational action of the general linear group GLn on an
algebra has a finitely generated invariant subalgebra.

4.2. Reductive groups. In this section, we will give the definition of a reductive group, a lin-
early reductive group and a geometrically reductive group, and explain the relationship between
these different notions of reductivity.

Our starting point is the Jordan decomposition for affine algebraic groups over k. We first
recall the Jordan decomposition for GLn: an element g ∈ GLn(k) has a decomposition

g = gssgu = gugss

where gss is semisimple (or, equivalently, diagonalisable, as k is algebraically closed) and gu is
unipotent (that is, g − In is nilpotent).

For any affine algebraic group G, we would like to have an analogous decomposition, and
we can hope to make use of the fact that G admits a faithful linear representation G �→ GLn.
However, this would require the decomposition to be functorial with respect to closed immersions
of groups.

Definition 4.1. Let G be an affine algebraic group over k. An element g is semisimple (resp.
unipotent) if there is a faithful linear representation ρ : G �→ GLn such that ρ(g) is diagonalisable
(resp. unipotent).

Theorem 4.2 (Jordan decomposition, see [23] X Theorem 2.8 and 2.10). Let G be an affine
algebraic group over k. For every g ∈ G(k), there exists a unique semisimple element gss and a
unique unipotent element gu such that

g = gssgu = gugss.

Furthermore, this decomposition is functorial with respect to group homomorphisms. In particu-
lar, if g ∈ G(k) is semisimple (resp. unipotent), then for all linear representations ρ : G → GLn,
the element ρ(g) is semisimple (resp. unipotent).

Let ρ : G → GL(V ) be a linear representation of an affine algebraic group G on a vector
space V and let ρ∗ : V → O(G)⊗k V denote the associated co-module. Then a vector subspace
V � ⊂ V is G-invariant if ρ∗(V �) ⊂ O(G)⊗kV

� and a vector v ∈ V is G-invariant if ρ∗(v) = 1⊗v.
We let V G denote the subspace of G-invariant vectors.

Definition 4.3. An affine algebraic group G is unipotent if every non-trivial linear representa-
tion ρ : G → GL(V ) has a non-zero G-invariant vector.

Proposition 4.4. For an affine algebraic group G, the following statements are equivalent.

i) G is unipotent.
ii) For every representation ρ : G → GL(V ) there is a basis of V such that ρ(G) is contained

in the subgroup U ⊂ GL(V ) consisting of upper triangular matrices with diagonal entries
equal to 1.

iii) G is isomorphic to a subgroup of a standard unipotent group Un ⊂ GLn consisting of
upper triangular matrices with diagonal entries equal to 1.
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Proof. i) ⇐⇒ ii): If e1, . . . , en is a basis of V such that ρ(G) ⊂ U, then e1 is fixed by ρ.
Conversely if ρ : G → GL(V ) is a representation of a unipotent group G, then we can proceed
by induction on the dimension of V . As U is unipotent, the linear subspace of G-fixed points
V G is non-zero; let e1, · · · em be a basis of V G. Then there is a basis em+1, . . . , en of V/V G

such that the induced representation has image in the upper triangular matrices with diagonal
entries equal to 1. By choosing lifts em+i ∈ V of em+i, we get the desired basis of V .

ii) ⇐⇒ iii): As every affine algebraic group G has a faithful representation ρ : G → GLn,
we see that ii) implies iii). Conversely, any subgroup of Un is unipotent (see [23] XV Theorem
2.4). �

Remark 4.5. If G is a unipotent affine algebraic group, then every g ∈ G(k) is unipotent. The
converse is true if in addition G is smooth (for example, see [23] XV Corollary 2.6 or SGA3
XVII Corollary 3.8).

Example 4.6.

(1) The additive group Ga is unipotent, as we have an embedding Ga �→ U2 given by

c �→
�

1 c
0 1

�
.

(2) In characteristic p, there is a finite subgroup αp ⊂ Ga where we define the functor of
points of αp by associating to a k-algebra R,

αp(R) := {c ∈ Ga(R) : cp = 0}.
This is represented by the scheme Spec k[t]/(tp) and so αp is a unipotent group which
is not smooth.

Definition 4.7. An algebraic subgroup H of an affine algebraic group G is normal if the
conjugation action H ×G → G given by (h, g) �→ ghg−1 factors through H �→ G.

Definition 4.8. An affine algebraic group G over k is reductive if it is smooth and every smooth
unipotent normal algebraic subgroup of G is trivial.

Remark 4.9. In fact, one can define reductivity by saying that the unipotent radical ofG (which
is the maximal connected unipotent normal algebraic subgroup of G) is trivial; however, to
define the unipotent radical carefully, we would need to prove that, for a group G, the subgroup
generated by two smooth algebraic subgroups of G is also algebraic (see [22] Proposition 2.24).

Exercise 4.10. Show that the general linear group GLn and the special linear group SLn

are reductive. [Hint: if we have a non-trivial smooth connected unipotent normal algebraic
subgroup U ⊂ GLn, then there exists g ∈ U(k) ⊂ GLn(k) whose Jordan normal form has a
r × r Jordan block for r > 1 (as g is unipotent). Using normality of U , find another element
g� ∈ U(k) such that the product gg� is not unipotent.]

Definition 4.11. An affine algebraic group G is

(1) linearly reductive if every finite dimensional linear representation ρ : G → GL(V ) is com-
pletely reducible; that is the representation decomposes as a direct sum of irreducibles.

(2) geometrically reductive if, for every finite dimensional linear representation ρ : G →
GL(V ) and every non-zero G-invariant point v ∈ V , there is a G-invariant non-constant
homogeneous polynomial f ∈ O(V ) such that f(v) �= 0.

Example 4.12. Any algebraic torus (Gm)r is linearly reductive by Proposition 3.12.

Exercise 4.13. Show directly that the additive group Ga is not geometrically reductive. [Hint:
there is a representation ρ : Ga → GL2 and a G-invariant point v ∈ A2 such that every non-
constant G-invariant homogeneous polynomial in two variables vanishes at v].

Proposition 4.14. For an affine algebraic group G, the following statements are equivalent.

i) G is linearly reductive.
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ii) For any finite dimensional linear representation ρ : G → GL(V ), any G-invariant
subspace V � ⊂ V admits a G-stable complement (i.e. there is a subrepresentation V �� ⊂
V such that V = V � ⊕ V ��).

iii) For any surjection of finite dimensional G-representations φ : V → W , the induced map
on G-invariants φG : V G → WG is surjective.

iv) For any finite dimensional linear representation ρ : G → GL(V ) and every non-zero
G-invariant point v ∈ V , there is a G-invariant linear form f : V → k such that
f(v) �= 0.

v) For any finite dimensional linear representation ρ : G → GL(V ) and any surjective
G-invariant linear form f : V → k, there is v ∈ V G such that f(v) �= 0.

Proof. The equivalence i) ⇐⇒ ii) is clear, as we are working with finite dimensional represen-
tations.

ii) =⇒ iii): Let f : V → W be a surjection of finite dimensional G-representations and
V � := ker(f) ⊂ V . Then, by assumption, V � has a G-stable complement V �� ∼= W . Since both
V � and V �� are G-invariant, V G = (V �)G ⊕ (V ��)G and so fG : V G → (V ��)G ∼= WG is surjective.

iii) =⇒ ii): Let ρ : G → GL(V ) be a finite dimensional linear representation and V � ⊂ V a
G-invariant subspace. Then we have a surjection

φ : Hom(V, V �) → Hom(V �, V �)

of finite dimensional G-representations and so by iii) the identity map id�V lifts to G-equivariant
morphism f : V → V � splitting the inclusion V � ⊂ V . More precisely, V � has G-stable comple-
ment V �� := kerf .

iv) ⇐⇒ v): We can identify V G with the space of G-invariant linear forms V ∨ → k

V G = HomG(k, V ) = HomG(V
∨, k).

iii) =⇒ iv): Let V be a finite dimensional linear G-representation and v ∈ V G be a non-zero
G-invariant vector. Then v determines a G-invariant linear form φ : V ∨ → k. By letting G act
trivially on k, we can view φ as a surjection of G-representations and so by iii), the fixed point
1 ∈ k = kG has a lift f ∈ (V ∨)G = HomG(V, k) such that f(v) = 1.

iv) =⇒ iii): Let φ : V → W be a finite dimensional G-representation. Then we want to
prove that φG is surjective: i.e. lift any non-zero w ∈ WG to a point v ∈ V G. By iv), there
exists a G-invariant form f : W → k such that f(w) �= 0. Then f ◦ φ : V → k is a G-invariant
surjective form on V and so by v) ⇐⇒ iv), there exists v ∈ V G such that (f ◦ φ)(v) �= 0. By
suitably rescaling v ∈ V G so that (f ◦ φ)(v) = f(w), we get the desired lift. �
Exercise 4.15. Prove that any finite group of order not divisible by the characteristic of k is
linearly reductive. [Hint: consider averaging over the group.]

We summarise the main results relating the different notions of reductivity in the following
theorem, whose proof is beyond the scope of this course.

Theorem 4.16. (Weyl, Nagata, Mumford, Haboush)

i) Every linearly reductive group is geometrically reductive.
ii) In characteristic zero, every reductive group is linearly reductive.
iii) A smooth affine algebraic group is reductive if and only if it is geometrically reductive.

In particular, for smooth affine algebraic group schemes, we have

linearly reductive =⇒ geometrically reductive ⇐⇒ reductive

and all three notions coincide in characteristic zero.

Statement i) follows immediately from the definition of geometrically reductive and Propo-
sition 4.14. There are several proofs of Statement ii); the earliest goes back to Weyl, where
he first reduces to k = C, and then uses the representation theory of compact Lie groups (this
argument is known an Weyl’s unitary trick; see Proposition 4.18). An alternative approach is to
use Lie algebras (for example, see the proof that SLn is linearly reductive in characteristic zero
in [24] Theorem 4.43). Statement iii) was conjectured by Mumford after Nagata proved that
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every geometrically reductive group is reductive [29], and the converse statement was proved
by Haboush [12].

Remark 4.17. In positive characteristic, the groups GLn, SLn and PGLn are not linearly
reductive for n > 1; see [28].


