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We will now sketch the proof that over the complex numbers every reductive group is linearly
reductive.

Proposition 4.18. Every reductive group G over C is linearly reductive.

Proof. We let K ⊂ G(C) be a maximal compact subgroup.
Step 1. For a compact Lie subgroup K, we claim that every finite dimensional representation
of the Lie group K is completely reducible. Let us sketch the proof of this claim. Let V be a
finite dimensional representation of K (i.e. there is a morphism ρ : K → GL(V ) of Lie groups);
then analogously to Proposition 4.14 above, it suffices to prove that every K-invariant subspace
W ⊂ V has a K-stable complement. There is a K-invariant Hermitian inner product on V ,
as we can take any Hermitian inner product h on V and integrate over the compact group K
using a Haar measure dµ on K to obtain a K-invariant Hermitian inner product

hK(v1, v2) :=

�

K
h(k · v1, k · v2)dµ(k).

Then, we define the K-stable complement of W ⊂ V to be the orthogonal complement of
W ⊂ V with respect to this K-invariant Hermitian inner product.
Step 2. For G reductive and a maximal compact subgroup K ⊂ G(C), the elements of K
are Zariski dense in G. We prove this statement in Lemma 4.19 below. The proof works with
the Lie algebras k and g(C), using the fact that the exponential map exp : g(C) → G(C) is
holomorphic, the fact that g(C) = kC as G(C) is reductive (for a proof see, for example, [34]
Theorem 2.7) and the Identity Theorem from complex analysis.
Step 3. For any finite dimensional linear representation ρ : G → GL(V ), we claim that
V G = V K , where K is a maximal compact of G. As K ⊂ G is a subgroup, we have V G ⊂ V K .
To prove the reverse inclusion, let v ∈ V K and consider the morphism

σ : G → V

given by g �→ ρ(g) · v. Then σ−1(v) ⊂ G is Zariski closed. Since v ∈ V K , we have K ⊂ σ−1(v)
and so also K ⊂ σ−1(v). However, as K ⊂ G is Zariski dense, it follows that G ⊂ σ−1(v); that
is, v ∈ V G as required.
Step 4. The reductive group G is linearly reductive. By Proposition 4.14, it suffices to show
for every surjective homomorphism of finite dimensional linear G-representations φ : V → W ,
the induced homomorphism φG on invariant subspaces is also surjective. By Step 3, this is
equivalent to showing that φK is surjective, which follows by Step 1. �
Lemma 4.19. Over the complex numbers, let G be a reductive group and K ⊂ G(C) be a
maximal compact subgroup. Then the elements of K are Zariski dense in G.

Proof. If this is not the case, then there exists a function f ∈ O(G) which is not identically zero
such that f(K) = 0. On the level of Lie algebras, as G(C) is a complex reductive group and
K ⊂ G(C) a maximal compact subgroup, we have

g(C) = k⊗R C

(see [34] Theorem 2.7). Furthermore, the exponential map exp : g(C) → G(C) is holomorphic
and maps k to K. Therefore, h := f ◦ exp : g(C) → C is holomorphic and vanishes on k.
However, if V is a real vector space and l : V ⊗R C → C is holomorphic with l(V ⊗R R) = 0,
then l is identically zero (the proof of this follows from the Identity Theorem in complex analysis
when V has dimension 1 and, for higher dimensional V , we can view l as a function in a single
variable xi by fixing all other variables and by applying this argument for each i, we deduce
that l = 0). In particular, h : g(C) → C is identically zero and, as the exponential map is a
local homeomorphism, we deduce that f is identically zero which is a contradiction. �

4.3. Nagata’s theorem. In this section, when we talk of a group G acting on a k-algebra A,
we will always mean that the group G acts by k-algebra homomorphisms. We recall that a
G-action on a k-algebra A is rational if every element of A is contained in a finite dimensional
G-invariant linear subspace of A. In particular, if A = O(X) and the G-action on A comes from
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an algebraic action of an affine algebraic group G on X, then this action is rational by Lemma
3.8.

Theorem 4.20 (Nagata). Let G be a geometrically reductive group acting rationally on a finitely
generated k-algebra A. Then the G-invariant subalgebra AG is finitely generated.

As every reductive group is geometrically reductive, we can use Nagata’s theorem for reductive
groups. In the following section, we will prove this result for linearly reductive groups using
Reynolds operators (so in characteristic zero this also proves Nagata’s theorem). Nagata also
gave a counterexample of a non-reductive group action for which the ring of invariants is not
finitely generated (see [27] and [29]).

4.4. Reynolds operators. Given a linearly reductive group G, for any finite dimensional linear
representation ρ : G → GL(V ), we can write V = V G ⊕ W where W is the direct sum of all
non-trivial irreducible subrepresentations. This gives a canonical G-complement W to V G and
a unique projection pV : V → V G. This projection motivates the following definition.

Definition 4.21. For a group G acting on a k-algebra A, a linear map RA : A → AG is
called a Reynolds operator if it is a projection onto AG and, for a ∈ AG and b ∈ A, we have
RA(ab) = aRA(b).

Lemma 4.22. Let G be a linearly reductive group acting rationally on a finitely generated
k-algebra A; then there exists a Reynolds operator RA : A → AG.

Proof. Since A is finitely generated, it has a countable basis. Therefore, we can write A as
an increasing union of finite dimensional G-invariant vector subspaces An ⊂ A using the fact
that the action is rational. More precisely, if we label our basis elements a1, a2, . . . , then we
iteratively construct the subsets An by letting An be the finite dimensional G-invariant subspace
containing a1, . . . , an and a basses of An−1 and aj · An−1 for j = 1, . . . , n. Then A =

�
n≥1An.

Since G is linearly reductive and each An is a finite dimensional G-representation, we can write

An = AG
n ⊕A�

n

where A�
n is the direct sum of all non-trivial irreducible G-subrepresentations of An. We let

Rn : An → AG
n be the canonical projection onto the direct factor AG

n .
For m > n, we have a commutative square

An� �

��

Rn

�� AG
n� �

��
Am

Rm

�� AG
m,

as we have A�
n ⊂ A�

m and AG
n ⊂ AG

m. Hence, we have a linear map RA : A → AG given by the
compatible projections Rn : An → AG

n for each n.
It remains to check that for a ∈ AG and b ∈ A, we have RA(ab) = aRA(b). Pick n such

that a, b ∈ An and pick m ≥ n such that a(An) ⊂ Am. Then consider the homomorphism of
G-representations given by left multiplication by a

la : An → Am.

We can write An = AG
n ⊕A�

n, where A
�
n = W1⊕ · · ·⊕Wr is a direct sum of non-trivial irreducible

subrepresentations Wi ⊂ An. Since G acts by algebra homomorphisms and a ∈ AG, we have
la(A

G
n ) ⊂ AG

m. By Schur’s Lemma, the image of each irreducible Wi under la is either zero
or isomorphic to Wi. Therefore, we have la(Wi) ⊂ A�

m and so la(A
�
n) ⊂ A�

m. In particular,
if we write b = bG + b� for bG ∈ AG

n and b� ∈ A�
n, then ab = la(b) = la(b

G) + la(b
�), where

la(b
G) = abG ∈ AG

m and la(b
�) = ab� ∈ A�

m. Hence,

RA(ab) = abG = aRA(b)

as required. �
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In fact, the arguments used in the final part of this proof, give the following result.

Corollary 4.23. Let A and B be k-algebras with a rational action of a linearly reductive group
G, which have Reynolds operators RA : A → AG and RB : B → BG. Then any G-equivariant
homomorphism h : A → B of these k-algebras commutes with the Reynolds operators: RB ◦h =
h ◦RA.

Lemma 4.24. Let A be a k-algebra with a rational G-action and suppose that A has a Reynolds
operator RA : A → AG. Then for any ideal I ⊂ AG, we have IA ∩ AG = I. More generally, if
{Ij}j∈J are a set of ideals in AG, then we have

(
�

j∈J
IjA) ∩AG =

�

j∈J
Ij .

In particular, if A is noetherian, then so is AG.

Proof. Clearly, I ⊂ IA∩AG. Conversely, let x ∈ IA∩AG; then we can write x =
�n

l=1 ilxl for
il ∈ I and xl ∈ A. As RA is a Reynolds operator,

x = RA(x) = RA

�
n�

l=1

ilxl

�
=

n�

l=1

ilRA(xl) ∈ I.

Now suppose that A is Noetherian and consider a chain I1 ⊂ I2 ⊂ · · · of ascending ideals
in AG. Then I1A ⊂ I2A ⊂ · · · is a chain of ascending ideals in A and so must stabilise as
A is Noetherian. However, as In = InA ∩ AG, it follows that the chain of ideals In must also
stabilise. �
Theorem 4.25 (Hilbert, Mumford). Let G be a linearly reductive group acting rationally on a
finitely generated k-algebra A. Then AG is finitely generated.

Proof. Let us first reduce to the case where A is a polynomial algebra and the G-action is linear.
Let V be a finite dimensional G-invariant vector subspace of A containing a set of generators
for A as a k-algebra; the existence of V is guaranteed as our action is rational. As V contains
generators for A as an algebra, we have a G-equivariant surjection of k-algebras

O(V ∨) = Sym∗(V ) → A.

Since G is linearly reductive, both algebras admit a Reynolds operator by Lemma 4.22 and,
moreover, these Reynolds operators commute with this surjection by Corollary 4.23. Therefore,
we have a surjection (Sym∗(V ))G → AG and so to prove AG is finitely generated, it suffices to
assume that A is a polynomial algebra with a linear G-action.

Let A = Sym∗(V ) where V is a finite dimensional G-representation. Then A is naturally a
graded k-algebra, where the grading is by homogeneous degree A = ⊕nAn = ⊕n≥0 Sym

n V . As
theG-action on A is linear, the invariant subalgebra AG is also graded AG = ⊕nA

G
n . By Hilbert’s

basis theorem, A is Noetherian and so by Lemma 4.24, the invariant ring AG is also Noetherian.
Hence, the ideal AG

+ = ⊕n>0A
G
n ⊂ AG is finitely generated. We then use the following technical

but not difficult result: for a graded k-algebra B = ⊕n≥0Bn and b1, . . . , bm ∈ B homogeneous
elements of positive degree, the following statements are equivalent:

(1) B is generated by b1, . . . , bm as a B0-algebra; that is, B = B0[b1, . . . bm];
(2) B+ := ⊕n>0Bn is generated by b1, . . . , bm as an ideal; that is B+ = Bb1 + · · ·+Bbm.

By applying this to AG and the finitely generated ideal AG
+ = ⊕n>0A

G
n , we deduce that AG is

a finitely generated k-algebra. �
Nagata gave an example of an action of a product of additive groups Gr

a on an affine space
An such that the algebra of invariants fails to be finitely generated; see [27] and [29]. From this
example, one can produce an affine scheme X with a Ga-action such that O(X)Ga is not finitely
generated. More generally, a theorem of Popov states that for any non-reductive group G there
is an affine scheme X such that O(X)G is not finitely generated. Let us quickly outline the proof
following [25] Theorem A.1.0. As G is non-reductive, we can pick a surjective homomorphism
from the unipotent radical Ru(G) of G onto Ga, which defines an action of Ru(G) on X such
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that the algebra of invariants is not finitely generated. Then we can take the Borel construction
associated to Ru(G) ⊂ G

Y := G×Ru(G) X := (G×X)/Ru(G)

which is locally trivial over G/Ru(G) with fibre X and there is a natural G-action on Y where

O(Y )G ∼= O(X)Ru(G)

is not finitely generated. In fact Y is affine (and so O(Y ) is finitely generated) as G → G/Ru(G)
has a local section by a result of Rosenlicht and so the fibre bundle Y → G/Ru(G) also has a
local section.

Theorem 4.26 (Popov). An affine algebraic group G over k is reductive if and only if for
every rational G-action on a finitely generated k-algebra A, the subalgebra AG of G-invariants
is finitely generated.

4.5. Construction of the affine GIT quotient. Let G be a reductive group acting on an
affine scheme X. We have seen that this induces an action of G on the coordinate ring O(X),
which is a finitely generated k-algebra. By Nagata’s Theorem, the subalgebra of invariants
O(X)G is finitely generated.

Definition 4.27. The affine GIT quotient is the morphism ϕ : X → X//G := SpecO(X)G of
affine schemes associated to the inclusion ϕ∗ : O(X)G �→ O(X).

Remark 4.28. The double slash notation X//G used for the GIT quotient is a reminder that
this quotient is not necessarily an orbit space and so it may identify some orbits. In nice cases,
the GIT quotient is also a geometric quotient and in this case we shall often write X/G instead
to emphasise the fact that it is an orbit space.

We will soon prove that the reductive GIT quotient is a good quotient.


