
MODULI PROBLEMS AND GEOMETRIC INVARIANT THEORY 33

In preparation for proving that the GIT quotient is a good quotient, we need the following
lemma.

Lemma 4.29. Let G be a geometrically reductive group acting on an affine scheme X. If
W1 and W2 are disjoint G-invariant closed subsets of X, then there is an invariant function
f ∈ O(X)G which separates these sets i.e.

f(W1) = 0 and f(W2) = 1.

Proof. As Wi are disjoint and closed, we have

(1) = I(∅) = I(W1 ∩W2) = I(W1) + I(W2)

and so we can write 1 = f1 + f2, where fi ∈ I(Wi). Then f1(W1) = 0 and f1(W2) = 1. By
Lemma 3.8, the function f1 is contained in a finite dimensional G-invariant linear subspace V
of O(X); therefore, so we can choose a basis h1, . . . , hn of V . This basis defines a morphism
h : X → An by

h(x) = (h1(x), . . . , hn(x)).

For each i, the function hi is a linear combination of translates of f1, so we have

hi =

ni�

l=1

cil gil · f1

for constants cil and group elements gil. Then hi(x) =
�ni

l=1 cil f1(g
−1
il · x) and, as Wi are G-

invariant subsets and f1 takes the value 0 (resp. 1) on W1 (resp. W2), it follows that h(W1) = 0
and h(W2) = v �= 0.

As the functions g · hi also belong to V , we can write them in terms of our given basis as

g · hi =
n�

j=1

aij(g)hj .

This defines a representation G → GLn given by g �→ (aij(g)) such that h : X → An is G-
equivariant with respect to the G-action on X and the G-action on An via this representation
G → GLn. Therefore v = h(W2) is a non-zero G-invariant point. Since G is geometrically
reductive, there is a non-constant homogeneous polynomial P ∈ k[x1, . . . , xn]

G such that P (v) �=
0 and P (0) = 0. Then f = cP ◦ h is the desired invariant function where c = 1/P (v). �
Theorem 4.30. Let G be a reductive group acting on an affine scheme X. Then the affine
GIT quotient ϕ : X → X//G is a good quotient and, moreover, X//G is an affine scheme.

Proof. As G is reductive and so also geometrically reductive, it follows from Nagata’s Theorem
that the algebra of G-invariant regular functions on X is a finitely generated k-algebra. Hence
Y := X//G = SpecO(X)G is an affine scheme of finite type over k. Since the affine GIT quotient
is defined by taking the morphism of affine schemes associated to the inclusion O(X)G �→ O(X),
it is G-invariant and affine: this gives part i) and vi) in the definition of good quotient.

To prove ii), we take y ∈ Y (k) and want to construct x ∈ X(k) whose image under ϕ : X → Y
is y. Let my be the maximal idea in O(Y ) = O(X)G of the point y and choose generators
f1, . . . , fm of my. Since G is reductive, we claim that it follows that

m�

i=1

fiO(X) �= O(X).

For a linearly reductive group, this claim follows from Lemma 4.24 as
�

m�

i=1

fiO(X)

�
∩O(X)G =

m�

i=1

fiO(X)G �= O(X)G.

For a proof for geometrically reductive groups, see [31] Lemma 3.4.2. Then, as
�m

i=1 fiO(X)
is not equal to O(X), it is contained in some maximal idea mx ⊂ O(X) corresponding to a
closed point x ∈ X(k). In particular, we have that fi(x) = 0 for i = 1, . . . ,m and so ϕ(x) = y
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as required. Therefore, every closed point is in the image of ϕ and as the image of ϕ is a
constructible subset by Chevalley’s Theorem, we can conclude that ϕ is surjective.

For f ∈ O(X)G, the open sets U = Yf form a basis of the open subsets of Y . Therefore, to

prove iii), it suffices to consider open sets U of the form Yf for f ∈ O(X)G. Let f ∈ O(X)G;

then OY (Yf ) = (O(X)G)f is the localisation of O(X)G with respect to f and

OX(ϕ−1(Yf ))
G = OX(Xf )

G = (O(X)f )
G = (O(X)G)f = OY (Yf )

as localisation with respect to an invariant function commutes with taking G-invariants. Hence
the image of the inclusion homomorphism OY (Yf ) = (O(X)G)f → OX(ϕ−1(Yf )) = O(X)f is

OX(ϕ−1(Yf ))
G = (O(X)f )

G which proves iii).
By Remark 3.28, given the surjectivity of ϕ, properties iv) and v) are equivalent to v)� and

so it suffices to prove v)�. By Lemma 4.29, for any two disjoint G-invariant closed subsets
W1 and W2 in X, there is a function f ∈ O(X)G such that f(W1) = 0 and f(W2) = 1.
Since O(X)G = O(Y ), we can view f as a regular function on Y with f(ϕ(W1)) = 0 and
f(ϕ(W2)) = 1. Hence, it follows that

ϕ(W1) ∩ ϕ(W2) = ∅

which finishes the proof. �

Corollary 4.31. Suppose a reductive group G acts on an affine scheme X and let ϕ : X →
Y := X//G be the affine GIT quotient. Then

ϕ(x) = ϕ(x�) ⇐⇒ G · x ∩G · x� �= ∅.

Furthermore, the preimage of each point y ∈ Y contains a unique closed orbit. In particular, if
the action of G on X is closed, then ϕ is a geometric quotient.

Proof. As ϕ is a good quotient, this follows immediately from Corollary 3.32 �

Example 4.32. Consider the action of G = Gm on X = A2 by t · (x, y) = (tx, t−1y) as in
Example 3.17. In this case O(X) = k[x, y] and O(X)G = k[xy] ∼= k[z] so that Y = A1 and the
GIT quotient ϕ : X → Y is given by (x, y) �→ xy. The three orbits consisting of the punctured
axes and the origin are all identified and so the quotient is not a geometric quotient.

Example 4.33. Consider the action of G = Gm on An by t · (x1, . . . , xn) = (tx1, . . . , txn) as
in Example 3.18. Then O(X) = k[x1, . . . , xn] and O(X)G = k so that Y = Spec k is a point
and the GIT quotient ϕ : X → Y = Spec k is given by the structure morphism. In this case all
orbits are identified and so this good quotient is not a geometric quotient.

Remark 4.34. We note that the fact that G is reductive was used several times in the proof,
not just to show the ring of invariants is finitely generated. In particular, there are non-reductive
group actions which have finitely generated invariant rings but for which other properties listed
in the definition of good quotient fail. For example, consider the additive group Ga acting on
X = A4 by the linear representation ρ : Ga → GL4

s �→




1 s
1

1 s
1


 .

Even though Ga is non-reductive, the invariant ring is finitely generated: one can prove that

k[x1, x2, x3, x4]
Ga = k[x2, x4, x1x4 − x2x3].

However the GIT ‘quotient’ map X → X//Ga = A3 is not surjective: its image misses the
punctured line {(0, 0,λ) : λ ∈ k∗} ⊂ A3. For further differences, see [6].
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4.6. Geometric quotients on open subsets. As we saw above, when a reductive group G
acts on an affine scheme X in general a geometric quotient (i.e. orbit space) does not exist
because the action is not necessarily closed. For finite groups G, every good quotient is a
geometric quotient as the action of a finite group is always closed. In this section, we define an
open subset Xs of ‘stable’ points in X for which there is a geometric quotient.

Definition 4.35. We say x ∈ X is stable if its orbit is closed in X and dimGx = 0 (or
equivalently, dimG · x = dimG). We let Xs denote the set of stable points.

Proposition 4.36. Suppose a reductive group G acts on an affine scheme X and let ϕ : X →
Y := X//G be the affine GIT quotient. Then Xs ⊂ X is an open and G-invariant subset,
Y s := ϕ(Xs) is an open subset of Y and Xs = ϕ−1(Y s). Moreover, ϕ : Xs → Y s is a geometric
quotient.

Proof. We first show that Xs is open by showing for every x ∈ Xs(k) there is an open neigh-
bourhood of x in Xs. By Lemma 3.21, the set X+ := {x ∈ X : dimGx > 0} of points with
positive dimensional stabilisers is a closed subset of X. If x ∈ Xs, then by Lemma 4.29 there is
a function f ∈ O(X)G such that

f(X+) = 0 and f(G · x) = 1.

Then x ∈ Xf (k) and we claim that Xf ⊂ Xs so that Xf is an open neighbourhood of x in Xs.
Since all points in Xf have stabilisers of dimension zero, it remains to check that their orbits
are closed. Suppose z ∈ Xf (k) has a non-closed orbit so w /∈ G · z belongs to the orbit closure
of z; then w ∈ Xf (k) too as f is G-invariant and so w must have stabiliser of dimension zero.
However, by Proposition 3.15 the boundary of the orbit G · z is a union of orbits of strictly
lower dimension and so the orbit of w must be of dimension strictly less than that of z which
contradicts the fact that w has zero dimensional stabiliser. Hence, Xs is an open subset of X,
and is covered by sets of the form Xf as above.

Since ϕ(Xf ) = Yf is open in Y and also Xf = ϕ−1(Yf ), it follows that Y
s is open in Y and

also Xs = ϕ−1(ϕ(Xs)). Then ϕ : Xs → Y s is a good quotient by Corollary 3.33. Furthermore,
the action of G on Xs is closed and so ϕ : Xs → Y s is a geometric quotient by Corollary
3.32. �

Example 4.37. We can now calculate the stable set for the action of G = Gm on X = A2 as
in Examples 3.17 and 4.32. The closed orbits are the conics {xy = α} for α ∈ A1 − {0} and the
origin, but the origin has a positive dimensional stabiliser. Thus

Xs = {(x, y) ∈ A2 : xy �= 0} = Xxy.

In this example, it is clear why we need to insist that dimGx = 0 in the definition of stability:
so that the stable set is open. In fact this requirement should also be clear from the proof of
Proposition 4.36.

Example 4.38. We may also consider which points are stable for the action of G = Gm on An

as in Examples 3.18 and 4.33. The only closed orbit is the origin, whose stabiliser is positive
dimensional, and so Xs = ∅. In particular, this example shows that the stable set may be
empty.

Example 4.39. ConsiderG = GL2 acting on the spaceM2×2 of 2×2 matrices with k-coefficients
by conjugation. The characteristic polynomial of a matrix A is given by

charA(t) = det(xI −A) = x2 + c1(A)x+ c2(A)

where c1(A) = −Tr(A) and c2(A) = det(A) and is well defined on the conjugacy class of a
matrix. The Jordan canonical form of a matrix is obtained by conjugation and so lies in the
same orbit of the matrix. The theory of Jordan canonical forms says there are three types of
orbits:
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• matrices with characteristic polynomial with distinct roots α,β. These matrices are
diagonalisable with Jordan canonical form

�
α 0
0 β

�
.

These orbits are closed and have dimension 2. The stabiliser of the above matrix is the
subgroup of diagonal matrices which is 2 dimensional.

• matrices with characteristic polynomial with repeated root α for which the minimum
polynomial is equal to the characteristic polynomial. These matrices are not diagonal-
isable and their Jordan canonical form is�

α 1
0 α

�
.

These orbits are also 2 dimensional but are not closed: for example

lim
t→0

�
t 0
0 t−1

��
α 1
0 α

��
t−1 0
0 t

�
=

�
α 0
0 α

�
.

• matrices with characteristic polynomial with repeated root α for which the minimum
polynomial is x− α. These matrices have Jordan canonical form

�
α 0
0 α

�
.

Since scalar multiples of the identity commute with everything, their stabilisers are
equal to the full group GL2 and their orbits are simply a point, which is closed and zero
dimensional.

We note that every orbit of the second type contains an orbit of the third type and so will be
identified in the quotient. Clearly there are two G-invariant functions on M2×2: the trace and
determinant, and so

k[tr, det] ⊂ O(M2×2)
GL2 .

We claim that these are the only G-invariant functions on M2×2. To see this we note that from
the above discussion about Jordan normal forms and orbit closures, a G-invariant function on
M2×2 is completely determined by its values on the diagonal matrices D2 ⊂ M2×2. Hence the
ring of GL2-invariants on M2×2 is contained in the ring O(D2) ∼= k[x11, x22]. In fact, using the
GL2-action we can permute the diagonal entries; therefore,

O(M2×2)
GL2 ⊂ k[x11, x22]

S2 = k[x11 + x22, x11x22],

as the symmetric polynomials are generated by the elementary symmetric polynomials. These
elementary symmetric polynomials correspond to the trace and determinant respectively, and
we see there are no additional invariants. Hence

k[tr, det] = O(M2×2)
GL2

and the affine GIT quotient is given by

ϕ = (tr, det) : M2×2 → A2.

The subgroup GmI2 fixes every point and so there are no stable points for this action.

Example 4.40. More generally, we can consider G = GLn acting on Mn×n by conjugation. If
A is an n× n matrix, then the coefficients of its characteristic polynomial

charA(t) = det(tI −A) = tn + c1(A)tn−1 + · · ·+ cn(A)

are all G-invariant functions. As in Example 4.39 above, we can use the theory of Jordan normal
forms as above to describe the different orbits and the closed orbits correspond to diagonalisable
matrices. By a similar argument to above, we have

k[c1, . . . , cn] ⊂ O(Mn×n)
GLn ⊂ O(Dn)

Sn ∼= k[x11, . . . , xnn]
Sn = k[σ1, . . . ,σn]
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where σi is the ith elementary symmetric polynomial in the xjs. Hence, we conclude these are
all equalities and the affine GIT quotient is given by

ϕ : Mn×n → An

A �→ (c1(A), . . . , cn(A)).

Again as every orbit contains a copy of Gm in its stabiliser subgroup, there are no stable points.

Remark 4.41. In situations where there is a non-finite subgroup H ⊂ G which is contained in
the stabiliser subgroup of every point for a given action of G onX, the stable set is automatically
empty. Hence, for the purposes of GIT, it is better to work with the induced action of the group
G/H. In the above example, this would be equivalent to considering the action of the special
linear group on the space of n× n matrices by conjugation.


