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5. Projective GIT quotients

In this section we extend the theory of affine GIT developed in the previous section to
construct GIT quotients for reductive group actions on projective schemes. The idea is that we
would like construct our GIT quotient by gluing affine GIT quotients. In order to do this we
would like to cover our scheme X by affine open subsets which are invariant under the group
action and glue the affine GIT quotients of these affine open subsets of X. However, it may not
be possible to cover all of X by such compatible open invariant affine subsets.

For a projective scheme X with an action of a reductive group G, there is not a canonical way
to produce an open subset of X which is covered by open invariant affine subsets. Instead, this
will depend on a choice of an equivariant projective embedding X �→ Pn, where G acts on Pn by
a linear representation G → GLn+1. We recall that a projective embedding of X corresponds to
a choice of a (very) ample line bundle L on X. We will shortly see that equivariant projective
embeddings are given by an ample linearisation of the G-action on X, which is a lift of the
G-action to a ample line bundle on X such that the projection to X is equivariant and the
action on the fibres is linear.

In this section, we will show for a reductive group G acting on a projective scheme X and a
choice of ample linearisation of the action, there is a good quotient of an open subset of semistable
points in X. Furthermore, this quotient is itself projective and restricts to a geometric quotient
on an open subset of stable points. The main reference for the construction of the projective
GIT quotient is Mumford’s book [25] and other excellent references are [4, 24, 31, 32, 42].

5.1. Construction of the projective GIT quotient.

Definition 5.1. Let X be a projective scheme with an action of an affine algebraic group G.
A linear G-equivariant projective embedding of X is a group homomorphism G → GLn+1 and
a G-equivariant projective embedding X �→ Pn. We will often simply say that the G-action on
X �→ Pn is linear to mean that we have a linear G-equivariant projective embedding of X as
above.

Suppose we have a linear action of a reductive group G on a projective scheme X ⊂ Pn.
Then the action of G on Pn lifts to an action of G on the affine cone An+1 over Pn. Since the
projective embedding X ⊂ Pn is G-equivariant, there is an induced action of G on the affine
cone X̃ ⊂ An+1 over X ⊂ Pn. More precisely, we have

O(An+1) = k[x0, . . . , xn] =
�

r≥0

k[x0, . . . , xn]r =
�

r≥0

H0(Pn,OX(r))

and if X ⊂ Pn is the closed subscheme associated to a homogeneous ideal I(X) ⊂ k[x0, . . . , xn],

then X̃ = SpecR(X) where R(X) = k[x0, . . . , xn]/I(X).
The k-algebras O(An+1) and R(X) are graded by homogeneous degree and, as the G-action

on An+1 is linear it preserves the graded pieces, so that the invariant subalgebra

O(An+1)G =
�

r≥0

k[x0, . . . , xn]
G
r

is a graded algebra and, similarly, R(X)G = ⊕r≥0R(X)Gr . By Nagata’s theorem, R(X)G is
finitely generated, as G is reductive. The inclusion of finitely generated graded k-algebras
R(X)G �→ R(X) determines a rational morphism of projective schemes

X ��� ProjR(X)G

whose indeterminacy locus is the closed subscheme of X defined by the homogeneous ideal
R(X)G+ := ⊕r>0R(X)Gr .

Definition 5.2. For a linear action of a reductive group G on a projective scheme X ⊂ Pn,
we define the nullcone N to be the closed subscheme of X defined by the homogeneous ideal
R(X)G+ in R(X) (strictly speaking the nullcone is really the affine cone Ñ over N). We define
the semistable set Xss = X − N to be the open subset of X given by the complement to the
nullcone. More precisely, x ∈ X is semistable if there exists a G-invariant homogeneous function
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f ∈ R(X)Gr for r > 0 such that f(x) �= 0. By construction, the semistable set is the open subset
which is the domain of definition of the rational map

X ��� ProjR(X)G.

We call the morphisms Xss → X//G := ProjR(X)G the GIT quotient of this action.

Theorem 5.3. For a linear action of a reductive group G on a projective scheme X ⊂ Pn, the
GIT quotient ϕ : Xss → X//G is a good quotient of the G-action on the open subset Xss of
semistable points in X. Furthermore, X//G is a projective scheme.

Proof. We let ϕ : Xss → Y := X//G denote the projective GIT quotient. By construction
X//G is the projective spectrum of the finitely generated graded k-algebra R(X)G. We claim
that ProjR(X)G is projective over SpecR(X)G0 = Spec k. If R(X)G is finitely generated by
R(X)G1 as a k-algebra, this result follows immediately from [14] II Corollary 5.16. If not, then as
R(X)G is a finitely generated k-algebra, we can pick generators f1, . . . , fr in degrees d1, . . . , dr.
Let d := d1 · . . . · dr; then

(R(X)G)(d) =
�

l≥0

R(X)Gdl

is finitely generated by (R(X)G)
(d)
1 as k-algebra and so Proj

�
(R(X)G)(d)

�
is projective over

Spec k. Since X//G := ProjR(X)G ∼= Proj
�
(R(X)G)(d)

�
(see [14] II Exercise 5.13), we can

conclude that X//G is projective.
For f ∈ RG

+, the open affine subsets Yf ⊂ Y form a basis of the open sets on Y . Since

f ∈ R(X)G+ ⊂ R(X)+, we can also consider the open affine subset Xf ⊂ X and, by construction

of ϕ, we have that ϕ−1(Yf ) = Xf . Let X̃f (respectively Ỹf ) denote the affine cone over Xf

(respectively Yf ). Then

O(Yf ) ∼= O(Ỹf )0 ∼= ((R(X)G)f )0 ∼= ((R(X)f )0)
G ∼= (O(X̃f )0)

G ∼= O(Xf )
G

and so the corresponding morphism of affine schemes ϕf : Xf → Yf ∼= SpecO(Xf )
G is an affine

GIT quotient, and so also a good quotient by Theorem 4.30. The morphism ϕ : Xss → Y is
obtained by gluing the good quotients ϕf : Xf → Yf . Since Yf cover Y (and Xf cover Xss)
and being a good quotient is local on the target Remark 3.34, we can conclude that ϕ is also a
good quotient. �

We recall that as ϕ : Xss → X//G is a good quotient, for two semistable points x1, x2 in Xss,
we have

G · x1 ∩G · x2 ∩Xss �= ∅ ⇐⇒ ϕ(x1) = ϕ(x2).

Furthermore, the preimage of each point in X//G contains a unique closed orbit. The presence
of non-closed orbits in the semistable locus will prevent the good quotient ϕ : Xss → X//G
from being a geometric quotient.

We can now ask if there is an open subset Xs of Xss on which this quotient becomes a
geometric quotient. For this we want the action to be closed on Xs. This motivates the
definition of stability (see also Definition 4.35).

Definition 5.4. Consider a linear action of a reductive group G on a closed subscheme X ⊂ Pn.
Then a point x ∈ X is

(1) stable if dimGx = 0 and there is a G-invariant homogeneous polynomial f ∈ R(X)G+
such that x ∈ Xf and the action of G on Xf is closed.

(2) unstable if it is not semistable.

We denote the set of stable points by Xs and the set of unstable points by Xus := X−Xss = N .

We emphasise that, somewhat confusingly, unstable does not mean not stable, but this ter-
minology has long been accepted by the mathematical community.

Lemma 5.5. The stable and semistable sets Xs and Xss are open in X.
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Proof. By construction, the semistable set is open in X as it is the complement to the nullcone
N , which is closed. To prove that the stable set is open, we consider the subset Xc := ∪Xf

where the union is taken over f ∈ R(X)G+ such that the action of G on Xf is closed; then
Xc is open in X and it remains to show Xs is open in Xc. By Proposition 3.21, the function
x �→ dimGx is an upper semi-continuous function on X and so the set of points with zero
dimensional stabiliser is open. Hence, we have open inclusions Xs ⊂ Xc ⊂ X. �
Theorem 5.6. For a linear action of a reductive group G on a closed subscheme X ⊂ Pn, let
ϕ : Xss → Y := X//G denote the GIT quotient. Then there is an open subscheme Y s ⊂ Y such
that ϕ−1(Y s) = Xs and that the GIT quotient restricts to a geometric quotient ϕ : Xs → Y s.

Proof. Let Yc be the union of Yf for f ∈ R(X)G+ such that the G-action on Xf is closed and
let Xc be the union of Xf over the same index set so that Xc = ϕ−1(Yc). Then ϕ : Xc → Yc
is constructed by gluing ϕf : Xf → Yf for f ∈ R(X)G+ such that the G-action on Xf is closed.
Each ϕf is a good quotient and as the action on Xf is closed, ϕf is also a geometric quotient
by Corollary 3.32. Hence ϕ : Xc → Yc is a geometric quotient by Remark 3.34.

By definition, Xs is the open subset ofXc consisting of points with zero dimensional stabilisers
and we let Y s := ϕ(Xs) ⊂ Yc. It remains to prove that Y s is open. As ϕ : Xc → Yc is a geometric
quotient and Xs is a G-invariant subset of X, ϕ−1(Y s) = Xs and also Yc−Y s = ϕ(Xc−Xs). As
Xc−Xs is closed in Xc, property iv) of good quotient gives that ϕ(Xc−Xs) = Yc−Y s is closed
in Yc and so Y s is open in Yc. Since Yc is open in Y , we can conclude that Y s ⊂ Y is open.
Finally, the geometric quotient ϕ : Xc → Yc restricts to a geometric quotient ϕ : Xs → Y s by
Corollary 3.33. �
Remark 5.7. We see from the proof of this theorem that to get a geometric quotient we do
not have to impose the condition dimGx = 0 and in fact in Mumford’s original definition of
stability this condition was omitted. However, the modern definition of stability, which asks for
zero dimensional stabilisers, is now widely accepted. One advantage of the modern definition
is that if the semistable set is nonempty, then the dimension of the geometric quotient equals
its expected dimension. A second advantage of the modern definition of stability is that it is
better suited to moduli problems.

Example 5.8. Consider the linear action of G = Gm on X = Pn by

t · [x0 : x1 : · · · : xn] = [t−1x0 : tx1 : · · · : txn].
In this case R(X) = k[x0, . . . , xn] which is graded into homogeneous pieces by degree. It is
easy to see that the functions x0x1, . . . , x0xn are all G-invariant. In fact, we claim that these
functions generate the ring of invariants. To prove the claim, suppose we have f ∈ R(X); then

f =
�

m=(m0,...,mn)

a(m)xm0
0 xm1

1 . . . xmn
n

and, for t ∈ Gm,

t · f =
�

m=(m0,...,mn)

a(m)tm0−m1−···−mnxm0
0 xm1

1 . . . xmn
n .

Then f is G-invariant if and only if a(m) = 0 for all m = (m0, . . . ,mn) such that m0 �=
�n

i=1mi.
If m satisfies m0 =

�n
i=1mi, then

xm0
0 xm1

1 . . . xmn
n = (x0x1)

m1 . . . (x0xn)
mn ;

that is, if f is G-invariant, then f ∈ k[x0x1, . . . x0xn]. Hence

R(X)G = k[x0x1, . . . , x0xn] ∼= k[y0, . . . , yn−1]

and after taking the projective spectrum we obtain the projective variety X//G = Pn−1. The
explicit choice of generators for R(X)G allows us to write down the rational morphism

ϕ : X = Pn ��� X//G = Pn−1

[x0 : x1 : · · · : xn] �→ [x0x1 : · · · : x0xn]
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and its clear from this description that the nullcone

N = {[x0 : · · · : xn] ∈ Pn : x0 = 0 or (x1, · · · , xn) = 0}
is the projective variety defined by the homogeneous ideal I = (x0x1, · · · , x0xn). In particular,

Xss =
n�

i=1

Xx0xi = {[x0 : · · · : xn] ∈ Pn : x0 �= 0 and (x1, . . . , xn) �= 0} ∼= An − {0}

where we are identifying the affine chart on which x0 �= 0 in Pn with An. Therefore

ϕ : Xss = An − {0} ��� X//G = Pn−1

is a good quotient of the action on Xss. As the preimage of each point in X//G is a single orbit,
this is also a geometric quotient. Moreover, every semistable point is stable as all orbits are
closed in An − {0} and have zero dimensional stabilisers.

In general it can be difficult to determine which points are semistable and stable as it is
necessary to have a description of the graded k-algebra of invariant functions. The ideal situation
is as above where we have an explicit set of generators for the invariant algebra which allows
us to write down the quotient map. However, finding generators and relations for the invariant
algebra in general can be hard. We will soon see that there are other criteria that we can use
to determine (semi)stability of points.

Lemma 5.9. Let G be a reductive group acting linearly on X ⊂ Pn. A k-point x ∈ X(k) is
stable if and only if x is semistable and its orbit G · x is closed in Xss and its stabiliser Gx is
zero dimensional.

Proof. Suppose x is stable and x� ∈ G · x ∩ Xss; then ϕ(x�) = ϕ(x) and so x� ∈ ϕ−1(ϕ(x)) ⊂
ϕ−1(Y s) = Xs. As G acts on Xs with zero-dimensional stabiliser, this action must be closed as
the boundary of an orbit is a union of orbits of strictly lower dimension. Therefore, x� ∈ G · x
and so the orbit G · x is closed in Xss.

Conversely, we suppose x is semistable with closed orbit in Xss and zero dimensional sta-
biliser. As x is semistable, there is a homogeneous f ∈ R(X)G+ such that x ∈ Xf . As G · x
is closed in Xss, it is also closed in the open affine set Xf ⊂ Xss. By Proposition 3.21, the
G-invariant set

Z := {z ∈ Xf : dimGz > 0}
is closed in Xf . Since Z is disjoint from G · x and both sets are closed in the affine scheme Xf ,

by Lemma 4.29, there exists h ∈ O(Xf )
G such that

h(Z) = 0 and h(G · x) = 1.

We claim that from the function h, we can produce a G-invariant homogeneous polynomial
h� ∈ R(X)G+ such that x ∈ Xfh� and Xfh� is disjoint from Z, as then all orbits in Xfh� have
zero dimensional stabilisers and so must be closed in Xfh� (as the closure of an orbit is a union
of lower dimensional orbits), in which case we can conclude that x is stable. The proof of the
above claim follows from Lemma 5.10 below and uses the fact that G is geometrically reductive.
More precisely, we have that O(Xf ) = O(X̃f )0 is a quotient of A := (k[x0, . . . , xn]f )0 and we

take I to be the kernel. Then hr = h�/f s ∈ AG/(I ∩AG) for some homogeneous polynomial h�

and positive integers r and s. �
Lemma 5.10. Let G be a geometrically reductive group acting rationally on a finitely generated
k-algebra A. For a G-invariant ideal I of A and a ∈ (A/I)G, there is a positive integer r such
that ar ∈ AG/(I ∩AG).

Proof. Let b ∈ A be an element whose image in A/I is a and we can assume a �= 0. As the
action is rational, b is contained in a finite dimensional G-invariant linear subspace V ⊂ A
spanned by the translates g · b. Then b /∈ V ∩ I as a �= 0; however, g · b− b ∈ V ∩ I for all g ∈ G
as a is G-invariant. Therefore dimV = dim(V ∩ I) + 1 and every element in V can be uniquely
written as λb+b� for λ ∈ k and b� ∈ V ∩I. Consider the linear projection l : V → k onto the line
spanned by b, which is G-equivariant. In terms of the dual representation V ∨, the projection l
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corresponds to a non-zero fixed point l∗ and so, as G is geometrically reductive, there exists a
G-invariant homogeneous function F ∈ O(V ∨) of positive degree r which is not vanishing at l∗.
We can take a basis of V (and dual basis of V ∨) where the first basis vector corresponds to b.
Then the coefficient λ of xr1 in F is non-zero. Consider the algebra homomorphism

O(V ∨) = Sym∗ V → A

and let b0 ∈ AG be the image of F ∈ O(V ∨)G. Then b0 − λbr ∈ I, as this belongs to the ideal
generated by a choice of basis vectors for V ∩ I. Hence ar ∈ AG/(I ∩AG) as required. �
Remark 5.11. If G is linearly reductive, then taking G-invariants is exact, and so we can take
r = 1 in the above lemma.

5.2. A description of the k-points of the GIT quotient.

Definition 5.12. Let G be a reductive group acting linearly on X ⊂ Pn. A k-point x ∈ X(k)
is said to be polystable if it is semistable and its orbit is closed in Xss. We say two semistable
k-points are S-equivalent if their orbit closures meet in Xss. We write this equivalence relation
on Xss(k) as ∼S-equiv. and let Xss(k)/ ∼S-equiv. denote the S-equivalence classes of semistable
k-points.

By Lemma 5.9 above, every stable k-point is polystable.

Lemma 5.13. Let G be a reductive group acting linearly on X ⊂ Pn and let x ∈ X(k) be a
semistable k-point; then its orbit closure G · x contains a unique polystable orbit. Moreover, if
x is semistable but not stable, then this unique polystable orbit is also not stable.

Proof. The first statement follows from Corollary 3.32: ϕ is constant on orbit closures and the
preimage of a k-point under ϕ contains a orbit which is closed in Xss; this is the polystable
orbit. For the second statement we note that if a semistable orbit G · x is not closed, then the
unique closed orbit in G · x has dimension strictly less than G · x by Proposition 3.15 and so
cannot be stable. �
Corollary 5.14. Let G be a reductive group acting linearly on X ⊂ Pn. For two semistable
points x, x� ∈ Xss, we have ϕ(x) = ϕ(x�) if and only if x and x� are S-equivalent. Moreover,
there is a bijection of sets

X//G(k) ∼= Xps(k)/G(k) ∼= Xss(k)/ ∼S-equiv.

where Xps(k) is the set of polystable k-points.


