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5.3. Linearisations. An abstract projective scheme X does not come with a pre-specified
embedding in a projective space. However, an ample line bundle L on X (or more precisely
some power of L) determines an embedding of X into a projective space. More precisely, the
projective scheme X and ample line bundle L, determine a finitely generated graded k-algebra

R(X,L) :=
�

r≥0

H0(X,L⊗r).

We can choose generators of this k-algebra: si ∈ H0(X,L⊗ri) for i = 0, , ..n, where ri ≥ 1. Then
these sections determine a closed immersion

X �→ P(r0, . . . , rn)
into a weighted projective space, by evaluating each point of X at the sections si. In fact, if
we replace L by L⊗m for m sufficiently large, then we can assume that the generators si of the
finitely generated k-algebra

R(X,L⊗m) =
�

r≥0

H0(X,L⊗mr)

all lie in degree 1. In this case, the sections si of the line bundle L⊗m determine a closed
immersion

X �→ Pn = P(H0(X,L⊗m)∗)
given by evaluation x �→ (s �→ s(x)).

Now suppose we have an action of an affine algebraic group G on X; then we would like to do
everything above G-equivariantly, by lifting the G-action to L such that the above embedding
is equivariant and the action of G on Pn is linear. This idea is made precise by the notion of a
linearisation.

Definition 5.15. Let X be a scheme and G be an affine algebraic group acting on X via a
morphism σ : G×X → X. Then a linearisation of the G-action on X is a line bundle π : L → X
over X with an isomorphism of line bundles

π∗
XL = G× L ∼= σ∗L,

where πX : G × X → X is the projection, such that the induced bundle homomorphism
σ̃ : G× L → L defined by

G× L

idG×π

��

∼= ��

σ̃

��σ∗L

��

��L

π
��

G×X σ
��X.

induces an action of G on L; that is, we have a commutative square of bundle homomorphisms

G×G× L

µG×idL
��

idG×σ̃ ��G× L

σ̃
��

G× L
σ̃

��L.

We say that a linearisation is (very) ample if the underlying line bundle is (very) ample.

Let us unravel this definition a little. Since σ̃ : G × L → L is a homomorphism of vector
bundles, we have

i) the projection π : L → X is G-equivariant,
ii) the action of G on the fibres of L is linear: for g ∈ G and x ∈ X, the map on the fibres

Lx → Lg·x is linear.
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Remark 5.16.

(1) The notion of a linearisation can also be phrased sheaf theoretically: a linearisation of
a G-action on X on an invertible sheaf L is an isomorphism

Φ : σ∗L → π∗
XL,

where πX : G×X → X is the projection map, which satisfies the cocycle condition:

(µ× idX)∗Φ = π∗
23Φ ◦ (idG × σ)∗Φ

where π23 : G×G×X → G×X is the projection onto the last two factors. If π : L → X
denotes the line bundle associated to the invertible sheaf L, then the isomorphism Φ
determines a bundle isomorphism of line bundles over G×X:

Φ : (G×X)×πX ,X,π L → (G×X)×σ,X,π L

and then we obtain σ̃ := πX ◦ Φ. The cocycle condition ensures that σ̃ is an action.
(2) The above notion of a linearisation of a G-action on X can be easily modified to larger

rank vector bundles (or locally free sheaves) over X. However, we will only work with
linearisations for line bundles (or equivalently invertible sheaves).

Exercise 5.17. For an action of an affine algebraic group G on a scheme X, the tensor product
of two linearised line bundles has a natural linearisation and the dual of a linearised line bundle
also has a natural linearisation. By an isomorphism of linearisations, we mean an isomorphism
of the underlying line bundles that is G-equivariant; that is, commutes with the actions of G on
these line bundles. We let PicG(X) denote the group of isomorphism classes of linearisations of
a G-action on X. There is a natural forgetful map α : PicG(X) → Pic(X).

Example 5.18. (1) Let us consider X = Spec k with necessarily the trivial G-action. Then
there is only one line bundle π : A1 → Spec k over Spec k, but there are many linearisa-
tions. In fact, the group of linearisations ofX is the character group of G. If χ : G → Gm

is a character of G, then we define an action of G on A1 by acting by G × A1 → A1.
Conversely, any linearisation is given by a linear action of G on A1; that is, by a group
homomorphism χ : G → GL1 = Gm.

(2) For any scheme X with an action of an affine algebraic group G and any character
χ : G → Gm, we can construct a linearisation on the trivial line bundle X ×A1 → X by

g · (x, z) = (g · x,χ(g)z).
More generally, for any linearisation σ̃ on L → X, we can twist the linearisation by a
character χ : G → Gm to obtain a linearisation σ̃χ.

(3) Not every linearisation on a trivial line bundle comes from a character. For example,
consider G = µ2 = {±1} acting on X = A1 − {0} by (−1) · x = x−1. Then the
linearisation on X × A1 → X given by (−1) · (x, z) = (x−1, xz) is not isomorphic to a
linearisation given by a character, as over the fixed points +1 and −1 in X, the action
of −1 ∈ µ2 on the fibres is given by z �→ z and z �→ −z respectively.

(4) The natural actions of GLn+1 and SLn+1 on Pn inherited from the action of GLn+1 on
An+1 by matrix multiplication can be naturally linearised on the line bundle OPn(1). To
see why, we note that the trivial rank n+1-vector bundle on Pn has a natural linearisation
of GLn+1 (and also SLn+1). The tautological line bundle OPn(−1) ⊂ Pn × An+1 is
preserved by this action and so we obtain natural linearisations of these actions on
OPn(±1). However, the action of PGLn+1 on Pn does not admit a linearisation onOPn(1)
(see Exercise Sheet 9), but we can always linearise any G-action on Pn to OPn(n + 1)
as this is isomorphic to the nth exterior power of the cotangent bundle, and we can lift
any action on Pn to its cotangent bundle.

Lemma 5.19. Let G be an affine algebraic group acting on a scheme X via σ : G ×X → X
and let σ̃ : G × L → L be a linearisation of the action on a line bundle L over X. Then there
is a natural linear representation G → GL(H0(X,L)).
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Proof. We construct the co-module H0(X,L) → O(G)⊗kH
0(X,L) defining this representation

by the composition

H0(X,L)
σ∗
��H0(G×X,σ∗L) ∼= H0(G×X,G× L) ∼= H0(G,OG)⊗H0(X,L)

where the final isomorphism follows from the Künneth formula and the middle isomorphism is
defined using the isomorphism G× L ∼= σ∗L. �

Remark 5.20. Suppose that X is a projective scheme and L is a very ample linearisation.
Then the natural evaluation map

H0(X,L)⊗k OX → L

is G-equivariant. Moreover, this evaluation map induces a G-equivariant closed embedding

X �→ P(H0(X,L)∗)

such that L is isomorphic to the pullback of the Serre twisting sheaf O(1) on this projective
space. In this case, we see that we have an embedding of X as a closed subscheme of a
projective space P(H0(X,L)∗) such that the action of G on X comes from a linear action of G
on H0(X,L)∗. In particular, we see that a linearisation naturally generalises the setting of G
acting linearly on X ⊂ Pn.

5.4. Projective GIT with respect to an ample linearisation. Let G be a reductive group
acting on a projective scheme X and let L be an ample linearisation of the G-action on X.
Then consider the graded finitely generated k-algebra

R := R(X,L) :=
�

r≥0

H0(X,L⊗r
)

of sections of powers of L. Since each line bundle L⊗r has an induced linearisation, there is
an induced action of G on the space of sections H0(X,L⊗r

) by Lemma 5.19. We consider the
graded algebra of G-invariant sections

RG =
�

r≥0

H0(X,L⊗r
)G.

The subalgebra of invariant sections RG is a finitely generated k-algebra and ProjRG is projec-
tive over RG

0 = kG = k following a similar argument to above.

Definition 5.21. For a reductive group G acting on a projective scheme X with respect to an
ample line bundle, we make the following definitions.

1) A point x ∈ X is semistable with respect to L if there is an invariant section σ ∈
H0(X,L⊗r

)G for some r > 0 such that σ(x) �= 0.
2) A point x ∈ X is stable with respect to L if dim G ·x = dim G and there is an invariant

section σ ∈ H0(X,L⊗r
)G for some r > 0 such that σ(x) �= 0 and the action of G on

Xσ := {x ∈ X : σ(x) �= 0} is closed.

We let Xss(L) and Xs(L) denote the open subset of semistable and stable points in X respec-
tively. Then we define the projective GIT quotient with respect to L to be the morphism

Xss → X//LG := ProjR(X,L)G

associated to the inclusion R(X,L)G �→ R(X,L).

Exercise 5.22. We have already defined notions of semistability and stability when we have a
linear action of G on X ⊂ Pn. In this case, the action can naturally be linearised using the line
bundle OPn(1). Show that the two notions of semistability agree; that is,

X(s)s = X(s)s(OPn(1)|X).
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Theorem 5.23. Let G be a reductive group acting on a projective scheme X and L be an ample
linearisation of this action. Then the GIT quotient

ϕ : Xss(L) → X//LG = Proj
�

r≥0

H0(X,L⊗r
)G

is a good quotient and X//LG is a projective scheme with a natural ample line bundle L� such
that ϕ∗L� = L⊗n for some n > 0. Furthermore, there is an open subset Y s ⊂ X//LG such that
ϕ−1(Y s) = Xs(L) and ϕ : Xs(L) → Y s is a geometric quotient for the G-action on Xs(L).

Proof. As L is ample, for each σ ∈ R(X,L)G+, the open set Xσ is affine and the above GIT
quotient is obtained by gluing affine GIT quotients (we omit the proof as it is very similar to
that of Theorem 5.3 and Theorem 5.6). �

Remark 5.24. In fact, the graded homogeneous ring R(X,L)G also determines an ample line
bundle L� on its projectivisation X//LG such that R(X//LG,L�) ∼= R(X,L)G. Furthermore,
φ∗(L�) = L⊗r for some r > 0 (for example, see [4] Theorem 8.1 for a proof of this statement).

Remark 5.25 (Variation of geometric invariant theory quotient). We note that the GIT
quotient depends on a choice of linearisation of the action. One can study how the semistable
locus Xss(L) and the GIT quotient X//LG vary with the linearisation L; this area is known
as variation of GIT. A key result in this area is that there are only finitely many distinct GIT
quotients produced by varying the ample linearisation of a fixed G-action on a projective normal
variety X (for example, see [5] and [41]).

Remark 5.26. For an ample linearisation L, we know that some positive power of L is very
ample. By definition Xss(L) = Xss(L⊗n) and Xs(L) = Xs(L⊗n) and X//LG ∼= X//L⊗nG (as
abstract projective schemes), we can assume without loss of generality that L is very ample
and so X ⊂ Pn and G acts linearly. However, we note that the induced ample line bundles on
X//LG and X//L⊗nG are different, and so these GIT quotients come with different embeddings
into (weighted) projective spaces.

Definition 5.27. We say two semistable k-points x and x� in X are S-equivalent if the orbit
closures of x and x� meet in the semistable subset Xss(L). We say a semistable k-point is
polystable if its orbit is closed in the semistable locus Xss(L).

Corollary 5.28. Let x and x� be k-points in Xss(L); then ϕ(x) = ϕ(x�) if and only if x and x�

are S-equivalent. Moreover, we have a bijection of sets

(X//LG)(k) ∼= Xps(L)(k)/G(k) ∼= Xss(L)(k)/ ∼S-equiv.

where Xps(L)(k) is the set of polystable k-points.

5.5. GIT for general varieties with linearisations. In this section, we give a more gen-
eral theorem of Mumford for constructing GIT quotients of reductive group actions on quasi-
projective schemes with respect to (not necessarily ample) linearisations.

Definition 5.29. Let X be a quasi-projective scheme with an action by a reductive group G
and L be a linearisation of this action.

1) A point x ∈ X is semistable with respect to L if there is an invariant section σ ∈
H0(X,L⊗r

)G for some r > 0 such that σ(x) �= 0 and Xσ = {x ∈ X : σ(x) �= 0} is affine.
2) A point x ∈ X is stable with respect to L if dim G ·x = dim G and there is an invariant

section σ ∈ H0(X,L⊗r
)G for some r > 0 such that σ(x) �= 0 and Xσ is affine and the

action of G on Xσ is closed.

The open subsets of stable and semistable points with respect to L are denoted Xs(L) and
Xss(L) respectively.

Remark 5.30. If X is projective and L is ample, then this agrees with Definition 5.21 as Xσ

is affine for any non-constant section σ (see [14] III Theorem 5.1 and II Proposition 2.5).
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In this setting, the GIT quotient X//LG is defined by taking the projective spectrum of the
ring R(X,L)G of G-invariant sections of powers of L. One proves that ϕ : Xss(L) → Y :=
X//LG is a good quotient by locally showing that this morphism is obtained by gluing affine
GIT quotients ϕσ : Xσ → Yσ in exactly the same way as Theorem 5.3. Then similarly to
Theorem 5.6, one proves that this restricts to a geometric quotient on the stable locus. In
particular, we have the following result.

Theorem 5.31. (Mumford) Let G be a reductive group acting on a quasi-projective scheme X
and L be a linearisation of this action. Then there is a quasi-projective scheme X//LG and a
good quotient ϕ : Xss(L) → X//LG of the G-action on Xss(L). Furthermore, there is an open
subset Y s ⊂ X//LG such that ϕ−1(Y s) = Xs(L) and ϕ : Xs(L) → Y s is a geometric quotient
for the G-action on Xs(L).

The only part of this theorem which remains to be proved is the statement that the GIT
quotient X//LG is quasi-projective. To prove this, one notes that the GIT quotient comes with
an ample line bundle L� which can be used to give an embedding of X into a projective space.


