Algebra III (Algebraic Geometry II) WS15-16 Fachbereich Mathematik und Informatik J-Prof. Victoria Hoskins Teaching Assistant: Eva Martínez

Algebraic Geometry II

Exercise Sheet 1

Hand-in date: 10am, Monday 19th October.

Exercise 1. Let \mathcal{C} be any category and denote by $Psh(\mathcal{C})$ the category of presheaves on \mathcal{C} .

- i) Prove that the Yoneda embedding $h: \mathcal{C} \to Psh(\mathcal{C})$ is fully faithful.
- ii) Show that if there is a natural isomorphism $h_C \to h'_C$ then there is a canonical isomorphism $C \to C'$.

Exercise 2. Let R be a commutative ring. Let A, B, and C be R-Modules. Prove that fixing any two of A, B, C, each of the following

$$\tau_{A,B,C}$$
: Hom_R(A $\otimes_{\mathbf{R}} \mathbf{B}, \mathbf{C}) \to \operatorname{Hom}_{\mathbf{R}}(\mathbf{A}, \operatorname{Hom}(\mathbf{B}, \mathbf{C}))$

is a natural isomorphism.

(Hint: For $f \in \text{Hom}_{R}(A \otimes_{R} B, C)$, $a \in A$ and $b \in B$ consider $\tau_{A,B,C}(f)(a) \colon b \mapsto f(a \otimes b)$).

Exercise 3. Let $\operatorname{Gr}_{d,n}(k)$ be the set of *d*-dimensional subspaces of k^n , for an algebraically closed field k. We will show this is an abstract variety called the Grassmannian variety.

- i) Let $\operatorname{GL}_d(k)$ act on the set $W := M_{d \times n}^d(k)$ of $d \times n$ matrices of rank d by left multiplication. Show that there is a bijection between the orbits of this action and $\operatorname{Gr}_{d,n}(k)$.
- ii) For any $J = \{1 \leq j_1 < j_2 < \cdots < j_d \leq n\}$, let $U_J \subset \operatorname{Gr}_{d,n}(k)$ be the set of *d*dimensional subspaces $W \subset k^n$ which are complementary to the n - d-dimensional space spanned by $\{e_j\}_{j \notin J}$ and let $W_J \subset W$ be the closed set of matrices whose *J*th submatrix is I_r . Show that we can identify $U_J \cong W_J \cong \mathbb{A}_k^{d(n-d)}$. (Hint: for $M \in M_{d \times n}^d(k)$, the $\operatorname{GL}_d(k)$ -orbit of M meets W_J if and only if the *J*th minor of M is non-zero and then, by using the $\operatorname{GL}_d(k)$ -action, we can assume the *J*th submatrix is I_d .)
- iii) For $J \neq K \subset \{1, \ldots, n\}$ of cardinality d, let $W_{J,K} \subset W_J$ be the open set of matrices whose Kth minor is non-zero. Show that there are isomorphisms $\phi_{J,K} : W_{J,K} \to W_{K,J}$.
- iv) Conclude that we can construct $\operatorname{Gr}_{d,n}(k)$ as an abstract variety by gluing the affine spaces W_J along the maps $\phi_{J,K}$.