Algebra III (Algebraic Geometry II) WS15-16 Fachbereich Mathematik und Informatik J-Prof. Victoria Hoskins Teaching Assistant: Eva Martínez

Algebraic Geometry II

Exercise Sheet 10

Hand-in date: 10am, Monday 11th January.

Note: There will be no exercise class on the 5th January.

Exercise 1. Let G be a reductive group acting linearly on a projective scheme $X \subset \mathbb{P}^n$. For a 1-PS λ of G and $x \in X(k)$ and a non-zero lift $\tilde{x} \in \tilde{X}$, show that the Hilbert–Mumford weight has the following properties.

- a) $\mu(x,\lambda)$ is the unique integer μ such that $\lim_{t\to 0} t^{\mu}\lambda(t) \cdot \tilde{x}$ exists and is non-zero.
- b) $\mu(x, \lambda^n) = n\mu(x, \lambda)$ for positive integers n.
- c) $\mu(g \cdot x, g\lambda g^{-1}) = \mu(x, \lambda)$ for all $g \in G(k)$.
- d) $\mu(x,\lambda) = \mu(y,\lambda)$ where $y = \lim_{t\to 0} \lambda(t) \cdot x$.

Exercise 2. Let SL_2 act on $V = k^2$ by left multiplication and consider the induced linear action of SL_2 on $Sym^d(V)$. To simplify notation we identify $V \cong k[x, y]_1$ and $Sym^d(V) \cong k[x, y]_d$. The goal of this exercise is to determine the (semi)stable k-points for the linear SL_2 -action on $\mathbb{P}^{d+1} \cong \mathbb{P}(Sym^d(V))$.

a) Show that any primitive 1-PS (that is, a 1-PS which is not a positive multiple of any other 1-PS) of SL₂ is conjugate to the 1-PS $\lambda : \mathbb{G}_m \to SL_2$

$$t \mapsto \left(\begin{array}{cc} t & 0 \\ 0 & t^{-1} \end{array} \right).$$

- b) Prove using Exercise 1, that a k-point $p \in \mathbb{P}^{d+1}$ is SL₂-semistable (resp. stable) if and only if $\mu(g \cdot p, \lambda) \ge 0$ (resp. > 0) for the above 1-PS λ and for all $g \in SL_2(k)$.
- c) Calculate the Hilbert–Mumford weight $\mu(p,\lambda)$ for any $p \in \mathbb{P}^{d+1}$ (for this, let $\tilde{p} = \sum_{i=0}^{d} a_i x^i y^{d-i}$ be a non-zero lift of p and note that the $\lambda(\mathbb{G}_m)$ -action with respect to the basis $x^i y^{d-i}$ is diagonal).
- d) Deduce that $\mu(p,\lambda) \ge 0$ if and only if (1,0) occurs as a zero of $\sum_{i=0}^{d} a_i x^i y^{d-i}$ with multiplicity at most d/2. Determine an analogous statement for stability.

- e) Determine the (semi)stability of p in terms of the multiplicities of the zeros of $\sum_{i=0}^{d} a_i x^i y^{d-i}$ in \mathbb{P}^1 .
- f) For d = 3, 4, determine the GIT quotient $\mathbb{P}^{d+1}//\mathrm{SL}_2$ and the geometric quotient of the stable locus (recall the closed points of the GIT quotient $\mathbb{P}^{d+1}//\mathrm{SL}_2$ are in bijection with the polystable orbits).
- g) (Optional/Harder.) Determine a moduli problem for which the GIT quotient $\mathbb{P}^{d+1}//SL_2$ is a coarse moduli space.