Algebra III (Algebraic Geometry II) WS15-16 Fachbereich Mathematik und Informatik J-Prof. Victoria Hoskins Teaching Assistant: Eva Martínez

Algebraic Geometry II

Exercise Sheet 12

Hand-in date: 10am, Monday 18th January.

Exercise 1. Show that $Y_{d,n} := \mathbb{P}(k[x_0, \ldots, x_n]_d)$ parametrises a family of degree d hypersurfaces in \mathbb{P}^n which has the local universal property. Is this a universal family? Deduce that any moduli space of such hypersurfaces is a categorical quotient of SL_{n+1} acting on $Y_{d,n}$.

Exercise 2. Fix a non-zero homogeneous polynomial

$$F(x, y, z) = \sum_{i=0}^{3} \sum_{j=0}^{3-i} a_{ij} x^{3-i-j} y^{i} z^{j}$$

of degree 3 and let C be the corresponding plane cubic curve defined by F = 0. For $p = [1:0:0] \in \mathbb{P}^2$, show the following statements hold.

- i) $p \in C$ if and only if $a_{00} = 0$.
- ii) p is a singular point of F if and only if $a_{00} = a_{10} = a_{01} = 0$.
- iii) p is a triple point of F if and only if $a_{00} = a_{10} = a_{01} = a_{11} = a_{20} = a_{02} = 0$.
- iv) If p = [1:0:0] is a double point of F, then its tangent lines are defined by

$$a_{20}y^2 + a_{11}yz + a_{02}z^2 = 0.$$

Exercise 3. (Optional/Harder) Prove that if we define families of hypersurfaces of degree d in \mathbb{P}^n using only coefficients in the trivial line bundle, then the moduli functor is a separated presheaf but not a sheaf (and so in particular cannot be represented by a scheme). Show that the sheafification of this functor is the moduli functor defined in the course, where families are allowed to have coefficients in any line bundle.

[For the definition of sheaf and separated presheaf, see the notes from Lecture 2].